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T his month marks the centenary of the
Einstein field equations, the capstone on
the general theory of relativity and the
highlight of Albert Einstein’s scientific
career.1 The equations, which relate space-

time curvature to the energy and momentum of
matter, made their first appearance in a four-page
paper submitted on 25 November 1915 to the Prus -
sian Academy of Sciences in Berlin and reprinted in
The Collected Papers of Albert Einstein (CPAE),2 vol-
ume 6, document 21. How did Einstein, shown in
figure 1, arrive at those equations? He later insisted
that the gravitational equations “could only be found
by a purely formal principle (general covariance).”3

Such statements mainly served to justify his strategy
in the search for a unified field theory during the
second half of his career. As a description of how he
found the field equations of general relativity, they
are highly misleading.

The 25 November paper was the last in a series
of short communications submitted to the Berlin
Academy on four consecutive Thursdays that month
(CPAE 6; 21, 22, 24, 25). In the first paper, Einstein
replaced the field equations that he had published
in 1913 with equations that retain their form under
a much broader class of coordinate transformations
(see figure 2). In the second, a highly speculative hy-

pothesis he adopted about the nature of matter al-
lowed him to change those equations to equations
that are generally covariant—that is, retain their
form under arbitrary coordinate transformations. In
the fourth, he achieved the same end by changing
the field equations of the first paper in a different
and more convincing way, as shown in figure 3. In
the third, based on the field equations of the second
paper but unaffected by the modification of the
fourth, he accounted for the 43 seconds of arc per
century missing in the Newtonian account of the
perihelion motion of Mercury.

In the first November paper, Einstein made it
sound as if he had gone from the old to the new field
equations by leveling one cathedral and building a
new one on its ruins in a completely different style.
The former was built according to principles of
physics; the latter, Einstein wanted his readers to be-
lieve, according to principles of mathematics. “It is
a real triumph of the method of the general differ-
ential calculus,” he rhapsodized—even before his
theory was generally covariant (CPAE 6; 21). Careful
examination of the November papers and his corre-
spondence at the time suggests a different architec-
tural metaphor.4 Einstein used the elaborate frame-
work he had built around the field equations of 1913
as a scaffold on which he carefully placed the arch
stones of the Einstein field equations.

Covariance lost
As the box on page 31 shows, Einstein had already
considered the equations of his first November
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paper three years earlier in the course of his collab-
oration with mathematician Marcel Grossmann,5

shown in figure 4. The two of them had been class-
mates at what is now ETH Zürich and were reunited
at their alma mater in July 1912. Notes of their col-
laboration have been preserved in the so-called
Zürich notebook.6 In the notebook, as Einstein re-
called in the introduction of his first November paper,
they had given up the search for field equations
based on the Riemann tensor “with a heavy heart.”
What had defeated them were problems with the
physical interpretation of such equations. Eventu-
ally they adopted field equations specifically engi-
neered to avoid those problems and published them
in a joint paper in June 1913 (CPAE 4; 13). The theory
and the field equations they presented are known,
based on the title of that paper, as the Entwurf (out-
line or draft) theory and the Entwurf field equations.

Except for its field equations, the Entwurf the-
ory has all the basic elements of the mathematical
formalism of general relativity. Einstein nonetheless
cautiously referred to it as a generalized theory of
relativity—not a general theory—because of the
limited covariance of the Entwurf field equations. 

Part of Einstein’s difficulty was that throughout
the period from late 1912 to late 1916, he conflated
general covariance and general relativity of motion.
A map analogy illustrates the difference. The short-
est route between two cities is a segment of the great
circle connecting them. Suppose you have a map on
which that route does not correspond to a straight
line. By switching to a different map (probably one

that is not very practical) you can turn the route be-
tween the two cities into a straight line. That ability
is the analogue of general covariance. Nonetheless,
no matter what it looks like on any given map, the
segment of the great circle remains the shortest route.
Similarly, general covariance cannot make all trajec-
tories in spacetime equivalent, and it is simply not the
case that all states of motion are on the same footing.

In a sense, therefore, the formulation of gener-
ally covariant field equations in November 1915 was
an empty victory. Despite its misleading name,
however, general relativity was a powerful new the-
ory of gravity, based on the equivalence principle,
which in the mature form Einstein gave it in 1918
states that both the spacetime geometry and gravity
should be represented by the metric tensor field (see
reference 7 and CPAE 7; 4).

Coordinate restrictions
Why did Einstein reject the field equations of the
first November paper when he and Grossmann first
considered them in 1912–13? For a long time, the an-
swer given by historians was that the two did not
know about coordinate conditions. To compare field
equations of broad covariance with field equations
of limited covariance, such as the Poisson equation
of Newtonian theory, the former need to be consid-
ered in a similarly restricted class of coordinate sys-
tems. That is done with the help of a coordinate con-
dition consisting of four equations for the metric
tensor field (hereafter, metric for short). Imposing a
suitable coordinate condition, one eliminates various
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General relativity
under construction
The so-called Zürich notebook contains Albert Einstein’s
research notes of 1912–13 as, with the help of Marcel
Grossmann, he began looking for field equations for his
new theory of gravity.6 At the top of this particular page,
22R, Einstein wrote down the generally covariant Ricci
tensor Til under the heading “Grossmann,” presumably
because Grossmann had suggested it to him. “If [the 
determinant of the metric] G is a scalar” (Wenn G ein
Skalar ist), Einstein noted, the first half of Til transforms as
a tensor. Coordinate transformations satisfying that 
determinant condition are now called unimodular trans-
formations. If the first half transforms as a tensor under
unimodular transformations, the second half must too,
since their sum transforms as a tensor under arbitrary
transformations. Underneath the second half of the 
second equation, Einstein wrote, “probable gravitation
tensor” (Vermutlicher Gravitationstensor).

Thus in 1912–13 Einstein had already considered 
the field equations he proposed in the first of the four 
papers he submitted to the Prussian Academy of Sciences
in Berlin in November 1915 (see figure 2). Near the 
middle of the page, Einstein imposed the condition
Σκ∂γκα/∂xκ = 0, in modern notation ∂μgμν = 0. That is 
the same condition he imposed in the first November
1915 paper to show that those field equations reduce to
their Newtonian counterpart in the case of weak static
fields. (Courtesy of the Albert Einstein Archives, Hebrew
University of Jerusalem.)



terms from the broadly covariant field equations to
leave only one term with second-order derivatives
of the metric. One then shows that this term reduces
to its Newtonian counterpart for weak static fields.
In his well-known scientific biography of Einstein,
Abraham Pais, for example, wrote that “Einstein still
had to understand . . . that the choice of coordinates
is a matter of convention without physical content.”8

Pais did not examine the Zürich notebook. In
the entry reproduced in the box, Einstein imposed
the condition that the four-dimensional divergence
of the metric vanish. He used that same condition in
his first November paper to eliminate unwanted
terms with second-order derivatives of the metric
from his field equations and to prove that the equa-
tions have the correct Newtonian limit. The Zürich
notebook thus seems to provide incontrovertible 
evidence that Pais was wrong.

But then why did Einstein reject the field equa-
tions of the first November paper in the Zürich note-
book? In his groundbreaking study of the notebook,

John Norton suggested that it may have been 
because the four-divergence of the metric of
Minkowski spacetime in rotating coordinates does
not vanish.9 For ease of reference, we rephrase Nor-
ton’s suggestion using some shorthand introduced
in The Genesis of General Relativity1 (hereafter Gene-
sis): Einstein rejected the November tensor (the Rim
introduced in figure 2) because the rotation metric
(the metric of Minkowski spacetime in rotating 
coordinates) does not satisfy the Hertz condition
(the vanishing of the four-divergence of the metric).
But why, Norton wondered, did Einstein see that as
a problem? The analysis of the notebook in Genesis
answers his question. It turns out that Pais was not
entirely wrong.

Before November 1915 Einstein used coordi-
nate conditions in a way that is fundamentally dif-
ferent from the way they are used today. Nowadays,
it is well known that coordinate conditions are
gauge conditions. They select one or more represen-
tatives from each equivalence class of metrics.
Which ones are chosen is a matter of convenience:
Different coordinate conditions are appropriate for
different problems. By contrast, Einstein used coor-
dinate conditions—not just in the Zürich notebook
but throughout the reign of the Entwurf theory—in
a one-size-fits-all fashion: The same coordinate con-
dition suits all problems. 

In Genesis, we introduced the term coordinate
restriction to characterize that idiosyncratic use. Un-
like coordinate conditions, coordinate restrictions
are an integral part of the theory in which they are
used. The fundamental field equations are no longer
the equations of broad or general covariance; in-
stead, they are the truncated equations obtained
once various terms have been eliminated with the
help of a coordinate restriction. An additional dif-
ference between coordinate conditions and coordi-
nate restrictions is that Einstein expected the restric-
tions to do double duty. He imposed them to ensure
both that the field equations have the right Newton-
ian limit and that they are compatible with energy–
momentum conservation.

Einstein’s use of coordinate restrictions explains
why it was a problem for him that the rotation met-
ric does not satisfy the Hertz condition. He wanted
the rotation metric to be a solution of the field equa-
tions in the absence of matter so that he could inter-
pret the inertial forces in a rotating frame of refer-
ence as gravitational forces. The November tensor
itself vanishes for the rotation metric. However, if
the rotation metric does not satisfy the Hertz restric-
tion, what is left of the November tensor after it has
been truncated with the Hertz restriction does not
vanish. By the time he wrote the first November
paper, Einstein recognized that the truncation issue
was not a problem. Right after using the Hertz con-
dition to demonstrate that his field equations based
on the November tensor have the correct Newton-
ian limit, he noted that they allow transformations
to rotating coordinates; evidently, by November
1915 Einstein was using the Hertz condition as a co-
ordinate condition in the modern sense.

In the Zürich notebook, Einstein studied the co-
variance of candidate field equations obtained by
truncating the November tensor by investigating
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Figure 1. Albert Einstein (1879–1955), in this 1916 photograph,
poses in his study at Wittelsbacherstraße 13 in Berlin-Wilmersdorf.
(Courtesy of the Leo Baeck Institute, New York.)



the covariance of the coordinate restrictions used to
do the truncating. In the case of the Hertz restric-
tion, there seems to be nothing to investigate. The
condition that the four-divergence of the metric
must vanish is covariant only under linear trans -
formations. The covariance, however, is broader if
one allows what Einstein called “nonautonomous
transformations” in a letter to Hendrik A. Lorentz
(CPAE 5; 467) and then, in publications from 1914
(CPAE 6; 2, 9), “justified transformations between
adapted coordinates” (adapted, that is, to the met-
ric). For ordinary, or autonomous, transformations,
the new coordinates are simply functions of the old
ones; for nonautonomous transformations, they are
functions of the old coordinates and of the metric in
the old coordinates.

The notions of coordinate restrictions and non -
autonomous transformations fell by the wayside in
Einstein’s final theory.10 However, in both the Zürich
notebook and his papers on the Entwurf theory, one
of Einstein’s central concerns was to make sure that
his coordinate restrictions were covariant under a
broad enough class of nonautonomous transforma-
tions to implement a relativity principle for arbitrary
motion, a goal that itself turned out to be illusory.7

The Entwurf theory
The pages of the Zürich notebook show Einstein
eventually giving up on constructing candidate field
equations by truncating the November tensor with
various coordinate restrictions. Instead, relying on
an elaborate analogy between gravitational and
electromagnetic fields, he produced the Entwurf
field equations. He made his peace with their lim-
ited covariance when in August 1913 he hit upon the
so-called hole argument, which purported to show
that generally covariant equations cannot uniquely
determine the metric in a region of spacetime with-
out matter—a hole. 

For a long time, historians thought that Einstein
simply mistook two different coordinate represen-
tations of the same metric for two physically differ-
ent metrics and that what the hole argument showed
was not indeterminism but the same lack of under-
standing of coordinate conditions that had made
him forego general covariance in the first place.8

John Stachel, founding editor of CPAE, was the first
to show that such an uncharitable reading of the ar-
gument is incompatible with Einstein’s most careful
statement of it (CPAE 6; 9, page 1067). Its resolution,
accordingly, involved more than the correction of an
elementary error. Einstein said nothing about the
hole argument in November 1915. Only when
pressed on the issue afterwards did he come up with
an escape from it.11

In early 1914 Einstein and Grossmann pro-
duced a second paper together (CPAE 6; 2). The idea
was to get a better handle on the covariance prop-
erties of the Entwurf equations by deriving them
from a variational principle. After all, it is easier to
study the covariance of the Lagrangian, which in the
variational approach determines the field equa-
tions, than it is to ascertain the covariance of the
many-component field equations themselves. The
Lagrangian for the Entwurf field equations has the
same structure as the Lagrangian for the source-free

Maxwell equations: It is essentially the square of the
gravitational field, defined as minus the gradient of
the metric. Since the metric plays the role of the
gravitational potential in the theory, it was only nat-
ural to define the gravitational field as minus its gra-
dient. Einstein and Grossmann found four conditions
that, if imposed on the metric and its derivatives, not
only ensure energy–momentum conservation but
also determine the class of nonautonomous trans-
formations under which the Entwurf Lagrangian re-
tains its form. Einstein convinced himself that the
class was broad enough to make all motion relative.
He was wrong. The rotation metric, for instance, is not
a matter-free solution of the Entwurf field equations.

By the time that second paper appeared, Ein-
stein had moved from Zürich to Berlin. He reprised
its variational approach in a lengthy, self-contained
exposition on the Entwurf theory, which appeared
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Figure 2. In his paper of 4 November 1915, Einstein split 
up the Ricci tensor Gim, which encodes spacetime curvature.
(The indices i, l, m, and ρ take on the values 1 through 4.) As his
new field equations, he proposed Rim = −κTim, where Tim is the
energy–momentum tensor for matter and κ is proportional to
Newton’s gravitational constant. These are equations of broad
but not yet general covariance.

Figure 3. The Einstein field equations first appear in Einstein’s
25 November 1915 paper. Here, Gim is the Ricci tensor; gim, the
metric tensor; and Tim, the energy–momentum tensor for 
matter. Three weeks earlier Einstein had proposed the field
equations Rim = −κTim (see figure 2), which retain their form
under unimodular transformations. The following week, he had
shown that, as long as the trace T of the energy–momentum
tensor vanishes, those equations could be seen as generally
covariant equations Gim = −κTim expressed in unimodular 
coordinates, for which the determinant of the metric tensor is
−1 and Gim = Rim. To guarantee the vanishing of T, Einstein had
assumed that all matter could be reduced to electromagnetic
and gravitational fields. The addition of the trace term in the
25 November communication obviated the need for that
questionable assumption.



in November 1914 (CPAE 6; 9). As a newly minted
member of the Berlin Academy, he dutifully submit-
ted his review article for publication in its proceed-
ings. The title, “The formal foundation of the gen-
eral theory of relativity,” reflects Einstein’s increased
confidence in the theory. In the article, Einstein ini-
tially left open how the Lagrangian depends on the
metric and its first-order derivatives. Once again, he
found that the same conditions that determine the
covariance of the Lagrangian also ensure energy–
momentum conservation. His result is a special case
of a theorem, published in 1918 by Emmy Noether,
that connects symmetries and conservation laws.
But the way Einstein looked on his result in 1914
was that energy–momentum conservation requires
that the covariance of the field equations be re-
stricted. Einstein proceeded to argue that the restric-
tion uniquely picks out the Lagrangian that gener-
ates the Entwurf field equations.

Einstein and Hilbert
In 1915 Einstein was invited to give the Wolfskehl
Lectures in Göttingen. From 28 June to 5 July, he lec-
tured on the Entwurf theory and captured the imag-
ination of his host, the great mathematician David
Hilbert. The only surviving notes of those lectures
(CPAE 6; appendix B) do not mention the Entwurf
field equations, but it is safe to assume that Einstein
covered them along the lines of his 1914 review ar-
ticle. A few months later, as his letters reveal, his
confidence in those equations crumbled. In Septem-
ber he checked once again whether the rotation met-
ric is a matter-free solution and found to his dismay
that it is not (CPAE 8; 123). In October he discovered
that his uniqueness argument for the Entwurf La-
grangian was fallacious (CPAE 8; 129).

Since he knew Hilbert was hot on his trail (see
figure 5), Einstein may have rushed new field equa-
tions into print in early November. That haste helps
explain why he had to correct them twice in the span
of only three weeks. Hilbert presented his new field
equations to the Göttingen Academy of Sciences on
20 November, five days before the Einstein field
equations were presented in Berlin. It thus looks as
if Hilbert, following a purely mathematical ap-
proach, beat Einstein to the punch. Einstein was an-
noyed that Hilbert was poaching on his preserves,
but he quickly recognized the pettiness of that sen-
timent. Still, the episode goes a long way to explain
both Einstein’s switch to a purely mathematical ap-
proach in his search for a unified field theory12 and
the selective amnesia that enabled him to believe
that a mathematical approach had led him to the
field equations of general relativity.13

Page proofs of Hilbert’s paper, which was not
published until March 1916, surfaced in the late
1990s. An analysis of them14 shows that Einstein
need not have worried about Hilbert in November
1915. In important ways, the theory presented in the
page proofs is closer to the Entwurf theory than to
general relativity in its final form. It has the same
structure as the version of the Entwurf theory pub-
lished in the review article of November 1914. It is
true that Hilbert chose as his Lagrangian the Rie-
mann curvature scalar, which is the gravitational
part of the Lagrangian for the generally covariant

Einstein field equations. At that point, however,
Hilbert accepted Einstein’s hole argument against
generally covariant field equations and imposed a
coordinate restriction via a relation he suggestively
called the energy theorem. So the actual field equa-
tions in the page proofs are not generally covariant.
The restriction was dropped in the published ver-
sion of the paper.

Replacing the Entwurf equations
The collapse of the uniqueness argument for the Ent -
wurf Lagrangian in October 1915 was undoubtedly
a setback for Einstein, but it also opened up new
possibilities. It allowed him to consider different La-
grangians while keeping the general formalism of
the 1914 review article intact. One option was to re-
tain the Entwurf Lagrangian, modeled on the La-
grangian for the electromagnetic field, but to change
the definition of the gravitational field. It had
seemed only natural to define the gravitational 
field as minus the gradient of the gravitational po-
tential, represented by the metric, just as the electro-
static field is minus the gradient of the electrostatic
potential. However, the analogy between gravity
and electromagnetism, on which Einstein relied so
heavily in his work on the Entwurf theory, also il-
lustrates that in general, the relation between field
and potential is more complicated. In the first No-
vember paper, Einstein acknowledged that energy–
momentum conservation had previously led him to
view a single term with a gradient of the metric 
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Figure 4. Marcel Grossmann (1878–1936) was a
friend, classmate, and early collaborator of Einstein.
(Portrait, from 1909, courtesy of ETH Zürich Library.)



as the natural expression of the components
of the gravitational field, even though the
formulae of the absolute differential calcu-
lus suggest the Christoffel symbols [a sum
of three such terms]. This was a fateful 
prejudice. (CPAE 6; 21)

A few weeks later, Einstein wrote to Arnold
Sommerfeld (CPAE 8; 153) that the redefinition of
the gravitational field in terms of Christoffel sym-
bols had been “the key to [the] solution.” If the new
expression for the gravitational field is inserted into
the Entwurf Lagrangian, the resulting field equa-
tions include the November tensor. If the formalism
is restricted to unimodular transformations (a mod-
est restriction requiring that the transformation 
determinant be equal to 1), the field equations are
exactly the ones based on the November tensor
found both in the Zürich notebook and in the paper
of 4 November 1915.

In our account, then, Einstein found his way
back to the equations of the first November paper
through considerations of physics.13 The other pos-
sibility is suggested by Einstein’s claim in the intro-
duction of the first November paper that the demise
of the Entwurf equations had led him back to “the
requirement of a broader covariance”: He returned
to the November tensor because of its pedigree in
the Riemann tensor.12 In that account, which takes
Einstein’s later recollections at face value and gives
pride of place to considerations of mathematics, he
only found the Lagrangian for the new field equa-
tions afterwards. There is no conclusive evidence 
to determine which came first, the redefinition of
the gravitational field or the return to the Riemann
tensor.

The important point, however, is that Einstein
needed both to make sure his new field equations
met all requirements. That the November tensor
was connected to the Riemann tensor ensured that
the field equations based on it had a broad enough
covariance; that the field equations followed from a
physically plausible Lagrangian ensured that they
were compatible with energy–momentum conser-
vation. With two routes to the same equations, Ein-
stein had the luxury of a choice when he wrote his
first November paper. Understandably, he chose 
the simpler mathematical route and followed the
messier physical route only to handle energy–
 momentum conservation.

Covariance regained
Despite the remarkable convergence of physical and
mathematical considerations that led to the first No-
vember paper, more work remained to be done to
make them mesh. The general variational formalism
of the 1914 review article, restricted to unimodular
transformations, gave four conditions on the metric.
Einstein expected those conditions both to guaran-
tee energy–momentum conservation and to deter-
mine the class of nonautonomous transformations
under which the new field equations were covari-
ant. He already knew, however, that the new field
equations, based on the November tensor, were 
covariant under the much broader class of au-
tonomous unimodular transformations. In the first

November paper, he could not quite resolve that
tension, but he did manage to alleviate it. He re-
placed the four conditions needed to secure energy–
momentum conservation by just one on the deter-
minant g of the metric.

The determinant condition, however, is an odd
one. It implies that g can be a constant only if the
trace T of the energy–momentum tensor vanishes.
In particular, a nonvanishing T would rule out uni-
modular coordinates, in which g = −1. Unimodular
coordinates are the natural ones to use in a theory
covariant under unimodular transformations.
Moreover, the Ricci tensor introduced in figure 2 
reduces to the November tensor in unimodular 
coordinates, so the field equations of the first No-
vember paper could be seen as generally covariant
equations expressed in special coordinates. Further-
more, one could then show that covariance (under
unimodular transformations) guarantees energy–
momentum conservation (in unimodular coordi-
nates). Einstein thus had good reasons to seek a way
around the prohibition against unimodular coordi-
nates imposed by a nonvanishing T.

The field-equation amendments in the second
and fourth November papers amount to two differ-
ent ways of doing just that. At first, Einstein simply
set T = 0. He justified that assumption by adopting
the electromagnetic worldview, according to which
all matter consists of electromagnetic fields gov-
erned by some nonlinear generalization of Maxwell’s
equations. In that case, he argued, T probably van-
ishes, as it does for ordinary electromagnetic fields.
It was a high price to pay for general covariance, and
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Figure 5. Mathematician David Hilbert (1862–1943; left) and 
Albert Einstein found themselves racing in late 1915 to find new field
equations for the spacetime metric. (Drawing by Laurent Taudin, first
published in ref. 15.)



Einstein quickly realized he overpaid. There was no
need to set T = 0. If a term with T is added to the
right-hand side of the field equations (figure 3), the
determinant condition on g no longer blocks uni-
modular coordinates coexisting with a nonvanish-
ing trace. Energy–momentum conservation provided
a powerful independent argument for the addition
of the trace term. It ensured that the energy–
 momentum of matter enters the field equations in
the same way as the energy–momentum of the grav-
itational field. Einstein could be confident he got it
right this time. He had found the field equations
that will forever bear his name.

Arch and scaffold
The extant papers, notebooks, and letters from
1912–15 made it possible to reconstruct in consider-
able detail how Einstein used the Entwurf theory as
a scaffold to build the arch of the Einstein field equa-
tions. The Entwurf theory contains expressions for
and relations between the field equations, the four-
force, the energy–momentum density, and the La-
grangian for the gravitational field, all of which
mimic corresponding expressions and relations for
the electromagnetic field in the four-dimensional
formalism for electrodynamics in special relativity.
It also features a tight connection between energy–
momentum conservation and covariance. Those ex-
pressions and relations, encoded in the variational
formalism of the 1914 review article, are what held
the scaffold together.

The whole constellation survives intact when a
basic building block is swapped out for a new one—
that is, when the gravitational field is redefined
from minus the gradient of the metric to minus the
Christoffel symbols. The new building blocks, the
stones of the arch, are kept in place the same way 
as the building blocks of the scaffold. Parts of the
scaffold could be discarded, notably the ungainly
concept of nonautonomous transformations. Parts
were moved and reconfigured. Coordinate restric-
tions were turned into coordinate conditions. The
relation between covariance and energy–momentum
conservation was inverted from conservation 
restricting covariance to covariance guaranteeing
conservation.

Despite Einstein’s efforts to hide the scaffold,
the arch unveiled in the first November paper still
shows clear traces of it. Einstein wanted to display
its mathematical splendor, but his structure was 
not quite up to code yet. To prevent a violation of
energy–momentum conservation from bringing it
down, he had to prop it up with some lumber from
the Entwurf scaffold, a support beam cut to the size
of unimodular transformations. Unfortunately, that
support beam did not leave enough room for an-
other critical piece of scaffolding, the restriction to
unimodular coordinates. Only with that restriction
in place could one fully appreciate the magnificence
of the arch as a structure that looks the same from
all angles even though during construction it could
only be viewed from some. To make room for uni-
modular coordinates, Einstein brought in the heavy
machinery of the electromagnetic worldview, then
realized he did not need it. What he needed instead
was an extra term on the right-hand side of the field

equations with the trace of the energy–momentum
tensor. That trace term turned out to be the keystone
of his arch. 

That is how Einstein left the construction site 
in November 1915. During the next few months, he
cleared away the debris of the first two November
1915 papers, which resulted in the first self-
 contained exposition of the new theory, published
in May 1916 (CPAE 6; 30).15 In November 1916 he 
finally lifted the restriction to unimodular coordi-
nates (CPAE 6; 41). The arch was self-supporting at
last, a marvelous sight to behold for generations of
physicists to come.
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