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 ANNALS OF MATHEMATICS

 Vol. 39, No. 1, January, 1938

 THE GRAVITATIONAL EQUATIONS AND THE PROBLEM OF MOTION

 BY A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 (Received June 16, 1937)

 Introduction. In this paper we investigate the fundamentally simple ques-
 tion of the extent to which the relativistic equations of gravitation determine
 the motion of ponderable bodies.

 Previous attacks on this problem' have been based upon gravitational equa-
 tions in which some specific energy-momentum tensor for matter has been
 assumed. Such energy-momentum tensors, however, must be regarded as
 purely temporary and more or less phenomenological devices for representing
 the structure of matter, and their entry into the equations makes it impossible
 to determine how far the results obtained are independent of the particular
 assumption made concerning the constitution of matter.

 Actually, the only equations of gravitation which follow without ambiguity
 from the fundamental assumptions of the general theory of relativity are the
 equations for empty space, and it is important to know whether they alone are
 capable of determining the motion of bodies. The answer to this question is
 not at all obvious. It is possible to find examples in classical physics leading
 to either answer, yes or no. For instance, in the ordinary Maxwell equations
 for empty space, in which electrical particles are regarded as point singularities
 of the field, the motion of these singularities is not determined by the linear
 field equations. On the other hand, the well-known theory of Helmholtz on the
 motion of vortices in a non-viscous fluid gives an instance where the motion of
 line singularities is actually determined by partial differential equations alone,
 which are there non-linear.

 We shall show in this paper that the gravitational equations for empty space
 are in fact sufficient to determine the motion of matter represented as point
 singularities of the field. The gravitational equations are non-linear, and,
 because of the necessary freedom of choice of the coordinate system, are such
 that four differential relations exist between them so that they form an over-
 determined system of equations. The overdetermination is responsible for the
 existence of equations of motion, and the non linear character for the existence
 of terms expressing the interaction of moving bodies.

 Two essential steps lead to the determination of the motion.

 1 Droste, Ac. van Wet. Amsterdam 19, 447 (1916). De Sitter, Monthly Notices of the
 R. A. S. 67, 155 (1916). Mathisson, Zeits. f. Physik, 67, 270, 826 (1931), 69, 389 (1931).
 Levi-Civita, Am. Jour. of Math., lix, 3, 225 (1937).

 65
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 66 A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 (1) By means of a new method of approximation, specially suited to the treat-
 ment of quasi-stationary fields, the gravitational field due to moving
 particles is determined.

 (2) It is shown that for two-dimensional spatial surfaces containing singu-
 larities certain surface integral conditions are valid which determine the
 motion.

 In the second part of this paper we actually calculate the first two non-trivial
 stages of the approximation. In the first of these the equations of motion
 take the Newtonian form. In the second the equations of motion, which we
 calculate only for the case of two massive particles, take a more complicated form
 but do not involve third or higher derivatives with respect to the time.

 The method is, in principle, applicable for any order of approximation, the
 problem reducing to specific integrations at each stage, but we have not proved
 that higher time derivatives than the second will not ultimately occur in the
 equations of motion.

 In the determination of the field and the equations of motion non-Galilean

 values at infinity and singularities of the type of dipoles, quadrupoles, and
 higher poles, must be excluded from the field in order that the solution shall be
 unique.

 It is of significance that our equations of motion do not restrict the motion
 of the singularities more strongly than the Newtonian equations, but this may
 be due to our simplifying assumption that matter is represented by singularities,
 and it is possible that it would not be the case if we could represent matter in
 terms of a field theory from which singularities were excluded. The repre-
 sentation of matter by means of singularities does not enable the field equa-
 tions to fix the sign of mass so that, so far as the present theory is concerned, it
 is only by convention that the interaction between two bodies is always an
 attraction and not a repulsion. A possible clue as to why the mass must be
 positive can be expected only from a theory which gives a representation of
 matter free from singularities.2

 Our method can be applied to the case when the Maxwell energy-momentum
 tensor is included in the field equations and, as is shown in part II, it leads to a
 derivation of the Lorentz force.

 In the Maxwell-Lorentz electrodynamics, as also in the earlier approxima-
 tion method for the solution of the gravitational equations, the problem of deter-
 mining the field due to moving bodies is solved through the integration of wave
 equations by retarded potentials. The sign of the flow of time there plays a

 decisive role since, in a certain sense, the field is expanded in terms of only
 those waves which proceed towards infinity. In our theory, however, the equa-
 tions to be solved at each stage of the approximation are not wave equations
 but merely spatial potential equations. Since such equations as those of the
 gravitational and of the electromagnetic field are actually invariant under a

 2 Einstein and Rosen, Phys. Rev. vol. 48, 73 (1935).
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 67

 reversal of the sign of time, it would seem that the method presented here, is
 the natural one for their solution. Our method, in which the time direction
 is not distinguished, corresponds to the introduction of standing waves in the
 wave equation and cannot lead to the conclusion that in the circular motion of
 two point masses energy is radiated to infinity in the form of waves.

 I. GENERAL THEORY

 1. Field Equations and Coordinate Conditions. Since it is an essential part
 of the work to make a separation between space and time we shall, throughout
 this paper, use the convention that Latin indices take on only the spatial
 values 1, 2, 3 while Greek indices refer to both space and time, running over the
 values 0, 1, '2, 3.

 As explained in the introduction, we discuss only the gravitational equations
 for empty space, treating the sources of the field as singularities. If we denote
 the ordinary derivative of a quantity by means of a line followed by the appro-
 priate suffix, as

 (1, 1) ag~s. >__ ; axe axp

 we may write the field equations in the form

 (1,2) RA Y ? {z} + {x}{,:} - = 0.

 Let the symbols 77,., aim be defined by

 +1 0 0 0o
 o -1 0 0

 (1,3)=0
 (1,3) = 7= 0 0 -1 0

 ,o 0 0 -1

 so that they represent the metric of empty space-time. Then if we introduce
 the quantities ha,, hPV by the relations

 (1,4) gpv = ny;, h ? ghS = ?? M+ hW,

 the h, and h"' will represent the deviation of space-time from the flat case.
 The hMW can be calculated as functions of the hy, by means of the relations

 (1 ,5) gWa gJiP

 In general the ha, will be small relative to unity, but we make no assumptions
 here concerning their order of magnitude.

 By means of (1, 4), (1, 5) we can express the components of R, as functions
 of the hy, and for reasons which will become clear when we come to the method
 of approximation used in the present work we separate the various terms so
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 68 A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 obtained into two groups in the following manner. First we separate the terms
 linear in the h's from those which are quadratic and of higher order. At this
 stage of the separation the field equations are of the form

 (1, 6) Roo = I-hools + 2ho8jo8 - h.1oo) + Loo = O0
 (1, 7) R0n = 2{-hOnie + ho081s + hnslo8 - hs81no) + Lln = O0

 (1, 8) Rmn = { -hmnlse + hme ns + hnlime - h88,mn + hmnloo - hmolno

 - hnOjmO + hoo0mnl + Lmn = O0

 where the L,", represent the non-linear terms. We now take

 (1, 9) from Roo the terms ho00os- -hasloo

 (1, 10) from Ron no terms

 (1, 11) and from Rmn the terms -4homon - 'honl0m + 2hmnl00,

 and add them to the non-linear group. Introducing the symbol L,, to denote
 the non-linear group L', together with these added linear members, we may
 write the field equations in the separated from

 (1, 12) Roo = -4hool,, + Loo = O0

 (1, 13) Ron = -1hon + -(hs 45nshl, + 15nhoo),o
 - 1(hoo + h.,)IOn + jhoeins + Lon = 0,

 (1, 14) Rmn = jhmnJe, + 1(hm8 - 15mshl + j5mehoo)jne
 1+ (hnm - 15n,,hjj + kbnehoo)lms + Lmn = O0

 where the L's are given explicitly by the formulas

 Loo = ho0os - Jhs oo- (h"[00, a-]) Ix + (h"`[fX, a]) lo

 (1, 15) + {O} {,O} {0} {:}'

 (1, 16) Lon =- (h" [On, a]) I x + (h>"[nX, a]) I o + -

 Lmn = -24mhn I Onn -hgnI Oim + hmn I00 - (h" [mn, a]) I A

 (1, 17) + (hm [ l) In + {a} {An} {A1} {?}

 If we introduce the quantities -y,, defined by

 (1, 18) 7y,, = hot, 41 7,phopy
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 69

 or, in expanded form,

 (1, 19) ' oo = 'ho + 'hi1,

 (1, 20) Yon = hOn X

 (1, 21) ymn = hmn - 4Zimnhil + 4bmnhooy
 we may write the field equations (1, 12), (1, 13), (1, 14) in the form

 (1, 22) Roo = - hools8 + Loo = O0

 (1, 23) Ron = -1honls8 + 4'Yna.os + i(70818 - 'Yooio)in + Lon = 0,

 (1, 24) Rmn = j-2hmnis8 + 27mIen + -tny-sem + Lmn = 0.
 Since there are four identities between these field equations, we may impose

 four coordinate conditions, in the form of four non-tensorial equations involving
 the gravitational potentials, so as to limit the arbitrariness of the solutions by
 limiting the freedom of choice of the coordinate system. It turns out to be
 simplest to use coordinate conditions which involve only quantities which
 enter the explicitly written parts of the field equations (1, 23), (1, 24). These
 equations, in fact, suggest that we take as our coordinate conditions3

 (1, 25) 7081. - 7Yo1o = 0,

 (1, 26) 'YmaJ = 0.

 With these coordinate conditions the field equations become merely

 (1, 27) hoo188 = 2Loo,

 (1, 28) hOnles = 2Lon

 (1, 29) hmnlJs = 2Lmn.

 For the further argument it is necessary that we write these equations in
 such a way that the Laplacians of the it's enter instead of the Laplacians of the
 h's. We therefore replace the above equations by the equivalent equations

 (1, 30) 7yo0,8 = 2Ao00

 (1, 31) 7Yon,a. = 2A~n

 (1, 32) lYmn8a8 = 2AmnX

 3 The choice of the coordinate conditions is, to a large extent arbitrary, and it might
 seem rather more natural to use the conditions

 1 'Yavii = 0

 which are invariant under a Lorentz transformation. However, it turns out that the
 actual calculation of the field is simpler when we use the coordinate conditions given in the
 text and it is for this reason that we employ it in the general theory.
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 70 A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 where A is related to L exactly as y is to h:

 (1, 33) A0O = 'Loo + 'L11,

 (1, 34) AO. = LOn X

 (1, 35) Amn = Lmn - 24imnLl + 22imnLoo.

 These field equations, (1, 33), (1, 34), (1, 35) together with the coordinate con-
 ditions (1, 25), (1, 26) will form the basis of our further considerations.

 2. Fundamental Integral Properties of the Field. Let us consider three
 functions An; (n = 1, 2, 3). They need not be tensors. From these functions
 we may build the three further functions

 (2, 1) (AnIs - A,9101.

 which can be explicitly written as

 ) (A112- A211)12 - (A311- All 3)131, {(A213- A312)13 - (A112-A21I)II},
 ({(A311 - A113)11 - (A213 -A312)121

 These three functions thus constitute the curl of the three functions

 (2, 3) (A213 - A312), (A311 - A113), (A112 - A211).

 Consider any surface S which does not pass through singularities of the field.
 Since (2, 1) is the curl of (2, 3), it follows from Stokes' theorem that the integral
 of the "normal"4 component of (2, 1) over S is equal to the line integral of the
 tangential component of (2, 3) taken around the rim of S. If S is a closed
 surface its rim is of zero length so that the latter integral will vanish. We
 therefore have the theorem that, if S is any closed surface which does not
 pass through singularities of the field, then

 (2, 4) f (Anj1 - A8n) 18 COS (nuN) dS = 0,

 where (n. N) denotes the "angle" between the direction of Xn and the "normal"
 to S, and the summation convention applies to the n. This theorem is valid
 whether S encloses singularities or not, and we shall now apply it to the present
 problem.

 4Words like normal, angle, sphere, and so on are used here in a purely conventional
 sense to designate the corresponding functions of the coordinates xm and equations which
 are implied by these terms in Euclidean geometry. The argument of this paragraph is
 independent of any particular metric, and we use the Euclidean nomenclature merely
 because it is apt and convenient.
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 71

 From the coordinate conditions (1, 25), (1, 26) and the field equations (1, 31),
 (1, 32) we have

 (2, 5) ('YOnjs - 'YOsJn)|J = 2AOn - 'Yoo|On

 (2, 6) (YmnIJ - 'Yman)J= 2Amn

 We see that the left-hand sides of (2, 5), (2, 6) give four quantities of the form
 (2, 1), one coming from (2, 5) and three from (2, 6) for m = 1, 2, 3. It follows
 from (2, 4) that, if S is a surface which does not pass through singularities of
 the field,

 (2, 7) f ('YOIOn - 2A0n) COs (n-N) dS = 0,

 (2, 8) f 2Amn cos (n N) dS = 0.

 From (2, 5), (2, 6) we see that, in those regions where there are no singu-
 larities,

 (2, 9) (YOO OI - 2AOn) in = O0

 (2, 10) (2Amn){n = 0.

 Therefore Gauss' theorem shows that if we take two closed surfaces S, S' such
 that no singularity lies on or between S and S', the integrals over S and S'
 give the same result. But the validity of the integral conditions for surfaces
 which enclose singularities, or more generally, which enclose regions where the
 field equations for empty space are not fulfilled, can only be shown by means of
 Stokes' theorem.

 We are treating matter as a singularity in the field. Let us assume there are
 p bodies, each represented by a point singularity. The coordinates of each
 such singularity will be functions of the time alone. Since (2, 7), (2, 8) are
 valid for any S provided only that it does not pass through a singularity, we
 may choose p such surfaces, each enclosing only one of the p singularities, and
 thus obtain 4p distinct integral conditions. Each of these, being now inde-
 pendent of the shape of its S, will give a relation between the coordinates of the
 singularities and their time derivatives, and we shall see later that the integral
 conditions give, in fact, the equations of motion of the singularities. These
 equations are derived here from the field equations and coordinate conditions
 alone without any extraneous assumption.

 If, instead of integrating around one singularity at a time, we integrate over
 a surface which contains all the singularities, we obtain the laws of conserva-
 tion of energy and linear momentum for the whole system. These laws are, of
 course, merely consequences of the laws of motion for the individual particles
 but owing to many cancellations they take a comparatively simple form.
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 72 A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 3. The Method of Approximation. The method of approximation which
 has been used up to now in the theory of relativity is as follows. We consider

 that in the equation

 (3 1) g, = 7, + h,

 the h,, depend continuously on a positive parameter X in such a way that they
 vanish for X = 0, so that for X = 0 space-time becomes Galilean. We assume,
 therefore, that the h,zv can be expanded in a power series" in X:

 00

 (3,2) h,= hX
 1=1 1

 This expansion is introduced in the field equations which are then grouped

 according to the different powers of X, taking the form

 (3,3) 0 = = _ RR,.
 1=1 1

 In order that a set of hp, depending on the parameter X shall exist as a solution
 of the field equations it is necessary that each of the equations

 (3,4) R, =O

 shall be satisfied. The best known example of this method is its application to

 the first approximation.

 We shall now show why this method of approximation is unsuitable for the
 treatment of quasi-stationary fields. If we introduce an energy tensor for the

 matter which produces the field we obtain for the first approximation, using
 imaginary time, the well-known equations

 (3, 5) yuvI a = -2T,

 where the coordinate system is determined by the equations

 (3, 6) 'Y oro = 0.

 In the simplest case of incoherent matter (dust) producing the field we have

 T dt" dt'
 (3, 7) To V p ds ds

 where da~ds are the components of the velocity measured in terms of the

 proper time s. If we are concerned with a quasi-static situation, de0/ds is of
 the order of magnitude of unity while the dt'/ds are relatively small. Thus
 in such a case we shall have

 (3, 8) 1 Too i >?I To.n I A I TmnI,

 5 In XI the 1 will always be an exponent, not a contravariant index!
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 73

 and from the equations (3, 5) we must have correspondingly

 (3, 9) zYoo I >> TYo. I >> I -Y.n I .
 The usual method of approximation does not take this into account since it

 treats all the Y's as of the same order of magnitude although, in the quasi-
 static case, -Yoo is very much larger than the other components of -y,, . A really
 good method of approximation for the quasi-static case should make essential

 use of the relations (3, 9).
 We are led to our present method of approximation most simply by con-

 sidering the problem of constructing a method of approximation which is
 suitable for the solution of the approximate field equations (3, 5) for the quasi-
 static case. It turns out that the method of approximation to which we are

 led in this way is also suitable for the solution of the rigorous gravitational
 -equations even when we are not dealing with quasi-static cases.

 The first step is to give an explicit expression for the fact that the time

 derivative of a field quantity is small relative to the quantity itself and to its
 spatial derivatives. To do this we introduce an auxiliary time coordinate

 (3, 10) r = Xx0

 and assume that every field quantity is a function of (T, X Y, X22 X3) rather than
 of (X0, xX1 X2 X3). If 50 is such a quantity we now assume that so, PI,. and aco/ar
 are of the same order of magnitude, so that V1o is of the order of Xsp .

 From this we conclude that if Too in (3, 7) is of the order of magnitude of X
 then To. will be of the order of X'+l and Tmn of the order of X,+2

 Further, it follows from well-known considerations concerning the first ap-
 proximation (the conservation of energy for the motion of a point) that yoo,
 which is the potential energy of a unit mass, is of the same order of magnitude
 as the square of the velocity and is thus, in our present notation, of the order
 of X2. Hence we have the following orders of magnitude for the y's:

 (3, 11) z 0oo X ;- on '-' 3 uYmn '' X

 If we expand the it's as power series in X we must therefore take the lowest
 powers of the expansions to be of the orders given in (3, 11). The fact that
 only second derivatives of the iy's with respect to the time enter the equation
 (3, 5) shows that the powers of X in successive terms of the expansions of the

 'Y's may differ by two.6 We are thus led to the simple assumption that

 -Y 27 = Y0 + X -Yoo + X -oo +***X
 2 4 6

 (3, 12) -Yon = X3 -on + X 5'Yon +
 3 5

 'Ymn = XA 'mn + X 'Ymn +
 4 6

 6 The omission of terms with X1+1 in zyoo, 'yn and with X21 in 'Yom is possible and natural,
 but logically not strictly necessary. The addition of the omitted terms of (3, 12) could
 be made in such a way that it would correspond to an introduction of a retarded potential
 (outgoing wave). Such a procedure would however, be artificial though it would not
 influence the equations of motion derived in II, as will be shown elsewhere.
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 74 A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 We cannot discuss the question of convergence in general, but it is of interest

 to show that the new method of approximation can give convergent results
 even where this would not at first be expected. We consider the case of the
 one-dimensional wave equation in its simplest form

 (3, 13) f-X -ft=t ?-

 If, in accordance with the main idea of the new method of approximation, we
 write

 f + X2f + X4f +

 0 2 4

 (3, 14) X = f + X2f + X4f +
 0 2 4

 tt = 7f = X fTT + -I f- + XfT7 +* -
 0 2 4

 we obtain from (3, 13) the successive equations

 (3, 15a) f1X = 0,
 0

 (3, 15b) f~l - fTT = 0,
 2 0

 (3, 15c) f - f77 = 0,
 4 2

 From these equations we can find the general solution of the wave equation
 (3, 13) expressed as a power series in X. For simplicity we shall consider only
 the case of a sinusoidal wave so that, out of the totality of solutions of (3, 15a),

 (3,16) f = A(r) + xB(T),
 0

 we choose the particular solution'

 (3, 17a) f = sin r
 0

 and at each subsequent stage of the procedure we ignore all arbitrary functions
 which may enter. From (3, 15b), (3, 15c), . . ., we thus find

 2

 (3,17b) f = - -sinT,
 2 2!

 4
 X

 (3, 17c) f = - sin T,
 4 4

 so that the solution takes the form

 f= sin {1 - + (Z - .._ } COS (XX) sinT.

 The inclusion of the solution f = x sin r also leads to sinusoidal waves, as is easily seen.
 0
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 75

 On replacing r by Xt we have

 (3, 18) f = cos (Xx) sin (Xt)

 which is an exact solution of (3, 13).

 4. Expansion Properties of Field Quantities. We shall show in this section
 that there is a simple general rule concerning the types of expansion which will
 occur when we treat the gravitational equations by the present method of
 approximation. This rule is that

 Any component having an odd number of zero suffixes will have only odd
 powers of X in its expansion, while any component having an even number of
 such suffixes will involve only even powers of X in its expansion.

 The fundamental equations (3, 12) show that the -y. conform to this rule.

 The relations (1, 19), (1, 20), (1, 21) between y,, and h,, have inverse relations
 of precisely the same form with y and h interchanged, as

 (4 1) hoo = yoo + j'z ,

 (4, 2) hon = 'YOn ,

 (4, 3) hmn = Hymn - 26mn-11 + 26mn-Too ,

 and from (3, 12) it follows that the expansions for the h's in powers of X are of
 the form

 hoo = X2hoo + X4hoo + Xhoo + **,
 2 4 6

 (4, 4) hon = X3h0o + X5h0o +
 3 6

 hmn = X2hmn + X4hmn + X6hmn + ,
 2 4 6

 showing that the h's also conform to the general rule.

 Further, since the i7, trivially conform because 77on vanishes, it follows from
 (1, 4) that the g,, also conform.

 We may write the relation

 (4, 5) g,&V 9 = S;
 in the form

 (4, 6) 9gpn9 + o0 M - =

 The two groups of terms on the left differ by an even number of zero suffixes
 so that, since the 3' trivially conform to the general rule, we shall obtain enough
 equations at each approximation for finding the expansions of the gA if we
 assume that the general rule is valid for these components too. However, the

 g" are uniquely determined in terms of the g,, by (4, 5) so that the expansions
 according to the general rule will give the only solution and extraneous powers
 of X will necessarily have zero coefficients. Thus the rule is applicable to the
 gM and so, also, to the h"t.
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 76 A. EINSTEIN, L. INFELD, AND B. HOFFMANN

 Let us consider next the Christoffel symbols of both kinds. We have

 (4, 7) [1,4, a] = 42(g'q1 + gazlv - 9gjsv)

 and since the operation "10" introduces a factor X while the operations '
 leave the order of magnitude unchanged it is evident that the fact that the

 g, obey the general rule implies that the [,.w, a] do too.
 The Christoffel symbols of the second kind are defined by

 (4, 8) {X} -X[, I) a]

 and since whenever we have a dummy suffix we shall have either no extra zero

 suffixes or two such suffixes entering any term in the implied summation, the

 fact that gXJ and [,gw, a] separately conform to the general rule shows that this

 is true also of the

 In the course of the above considerations we have shown that neither the

 entry of dummy suffixes nor the operations ''Im'", "lo" disturbs the operation
 of the general rule. It follows that if, by the use of these operations alone, we
 form new quantities from quantities which conform to the rule these new
 quantities must also obey the general rule. This has already been exemplified

 by our discussion of the Christoffel symbols, and since all the quantities we
 shall have to consider, such as

 R(= M Ryp)A A;,, etc.
 are new quantities of this type, we see that all the quantities with which we

 have to deal will have expansions in powers of X whose general character is
 summed up in the statement at the head of this section.

 5. Alternative Form of the Equations When Singularities Are Absent. In
 this section and the next we shall discuss the case where no singularities are
 present in the field. This case is, of course, trivial from the physical point of
 view since it corresponds to the complete absence of matter and, indeed, accord-
 ing to our method of approximation leads to the Galilean solution. Despite
 this, the discussion of this case will not be without value, for it will serve to
 exhibit the general mechanism of the theory and will form a convenient intro-

 duction to the later, more difficult discussion necessary when singularities are
 present.

 Let us summarize some of the results we have obtained so far. The field has

 been subjected to the two restrictions
 I The Gravitational Field Equations, and
 II The Coordinate Conditions,

 from which we have found
 III The Surface Integral Conditions.
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 77

 That is, if we take coordinate conditions

 (1, 25) 70010 - YOnin - 0,

 (1, 26) 'ynmin ?0

 the field equations take the form

 (1, 30) yools8 = 2Aoo

 (1, 31) yont.. = 2AOn,

 (1, 32) TYmnlss = 2Amn X

 and from these two groups of equations we obtain the surface integral con-

 ditions

 (2, 7) f (yoc 1On - 2A0n) cos (n . N) dS = 0,

 (2, 8) f 2Amn, Cos (n-N) dS = 0,

 and also the results

 (2, 9) (YOOlOn - 2AOn)ln = 2A0ooO - 2AOn1n = 0,

 (2, 10) 2Amn, n = 0,

 which are essential for the validity of the surface integral conditions for arbi-

 trary surfaces.

 We shall now show that the following two sets of equations (5, 1), (5, 2) are
 equivalent when no singularities are present.

 (5, 1) (5, 2)

 (a) yoo1.S = 2A00, (a) yooIs = 2Aoo,

 (b) TOn l.. = 2A0,n (b) On I as = 2Atn

 (c) y0010 - 'YOnn = 0; (c) Aoo1o - Aon I n = 0,

 C (c"t) f(toolon - 2Aon) cos (n-N) dS = 0;

 (d) Tmnles = 2Amn, (d) ymnss = 2Amn,

 (e) ?'mnin = 0, J(e') Amnjn = 0,

 {(e") f 2Amn os (n.N) dS = O.

 In (5, 1) we have merely the field equations and coordinate conditions and we
 show essentially that the coordinate conditions may be replaced by the surface
 integral conditions8 and the conditions (2, 9) (2, 10). The proof for the present

 8 When singularities are absent (5, 2c'), (5, 2c") and also (5, 2e'), (5, 2e") are equivalent
 equations, but we include them all here in order to facilitate comparison with the situation
 which arises when singularities are present.
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 case is trivial. For we have already shown that (5, 1) implies (5, 2) and the

 converse follows at once from the following considerations.
 From (5, 2a) (5, 2b) and (5, 2c') we have

 ('Yo1o - YOnln)las = 2Aoojo - 2Aonln = 0,

 and since there are no singularities and the -i's must be zero at infinity this
 gives

 7oo1o - SYonin = 0

 which is (5, ic). The proof for TYmn is similar.

 6. Splitting of the Equations When Singularities Are Absent. In the first
 section we gave a prescription for separating the terms of each of the field
 equations into two well-defined groups. In this section we shall discuss the
 splitting of the gravitational equations according to powers of X and shall
 show why just this method of separation is implied by our method of approxi-
 mation.

 It is necessary first to introduce certain notations. Consider the quantity

 (6, 1) hmnlOs.

 When hmn is expanded in powers of X we write

 (6, 2) hmn = X2hmn + X4hmn + *+ X2hmn +*
 2 4 21

 where the numbers underneath the h's on the right serve the double purpose of
 distinguishing between the different functions h on the right and of showing
 with what power of X each is associated in the expansion.

 Now the fundamental assumption of our method of approximation requires

 that h.nn be a function of (Xxo, x1, x2, X3) so that

 hmn~s = hm
 8 ax

 but

 8hmn Whmn hmn - ax 0- aT

 In order to distinguish between ordinary differentiation with respect to (x0, xl,
 x2, X3) and ordinary differentiation with respect to (r, X1, X2, x3) we shall denote
 the latter by a comma followed by an appropriate suffix:

 (6, 3) hmnas = a-mn - hmn,s
 axa

 (6, 4) hmni0 = ahmn = X ahmn = X hmn,0. ax0 ar
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 Thus hmn , hmn,s and hmn,o are all of the same order, but h.lnjo belongs to a power
 of X one higher.

 With this convention we may write the expansion of (6, 1) in the form

 (6, 5) hmniOs = Xhmn,Os = 3hmnOs + X5hmn0s + *-+ ?2+lhmn,0s +
 2 4 21

 Now, however, the number underneath each h on the right no longer indicates
 directly the power of X with which it is associated. We therefore write a 1
 underneath each zero suffix following a comma for every h having a number
 underneath so that (6, 5) becomes

 (6, 6) hmni . = Xhmn Os = X3hmnos + X5h n,0Os + + x2l+lhmnOs +
 2 1 4 1 21 1

 Thus now the sum of the numbers underneath each h gives the power of X
 with which it is associated while the first of these numbers indicates the particu-
 lar function h we are considering. This notation is then consistent with the
 natural notation for a product of h's.

 We consider now what happens when we introduce the power series expan-
 sions for the h's in the equations (1, 27), (1, 28), (1, 29). On equating to zero
 the coefficients of the various powers of X we shall obtain

 (6, 7) hmt = 2Lm ,
 21 21

 (6, 8) hOn 8s = 2Lo,,
 21+1 21+1

 (6, 9) hmns = 2L,,1.n
 21 21

 The lowest h's are hoo , hon , and h.n , and these will therefore be the quantities
 2 3 2

 determined in the first approximation. They correspond to 1 = 1 in the
 scheme of (6, 7) (6, 8) (6, 9). Thus at any stage, say 1, the quantities to be
 determined are hoo , h9n X hmn , and the quantities already known from the solu-

 21 21+1 21

 tions of the previous approximations are the h's having lower numbers under-
 neath.

 But if we look at the forms of the L's, as given in (1, 15), (1, 16), (1, 17) we
 see that at the stage 1 we have either quadratic terms or linear terms involving
 differentiations with respect to x0. The quadratic terms can only involve h's
 of lower order than for 1, and the linear terms may be written as

 (6, 10) ho8,o8 - 'has,oo in Loo,
 21-1 1 21-2 11 21

 (6, 11) none in Lon,
 21+1

 (6, 12) 2hmn.00 - 2homOn - 'hOnOm in Lmn. 21-2 11 21-1 1 21-1l 21
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 These are all known functions from the previous approximations. Thus the

 whole of Loo , Lo., Lmn for given I are known from the solutions of the previous
 21 21+1 21

 approximations. This is the reason for the particular method of separation
 of the field equations into two parts described in 1. When the separation is

 made in this manner and the power series expansions are inserted for the h's
 in (1, 27) (1, 28), (1, 29), for each power of X the corresponding coefficients auto-
 matically group themselves into those quantities which enter for the first time
 with the approximation in question and those which are already known, at
 least in principle, from the previous approximations. These two groups corre-

 spond exactly to the left and right hand sides of (1, 27), (1, 28), (1, 29).
 Before we can solve the approximation equations we must also split the

 coordinate conditions (1, 25), (1, 26), and the relations between the h's and
 y's according to powers of X. It turns out that we may take at each stage

 (6 13) y00,88 = 2Aoo, 7Yon,ss = 2A0on 706,0 - 'on,n = 0;
 21 21 21+1 21+1 21 1 21+1

 (6, 14) Ilmn,8s = 2Amn X 7Ymn,n = 0,
 2 -4 21 21

 where the A's are known because of the solutions of the previous approxi-
 mations.

 We may also split the alternative equations (5, 2) and use, instead, at each
 stage

 7yoo,ss = 2Aoo, 70n,ss = 2A0~n Aoo, - AOnn = 0
 21 21 21+1 21+1 21 1 21+1

 (6, 15)
 |1 (00,On- 2A0n ) cos (n * N) dS;
 J\21 1 21+1/

 (61 16) -Ymn,8s = 2Amn, Amn,n = 01 2Amn cos (nN) dS = O.
 21 21 21 21

 As in the case of the unsplit equations, the surface integral conditions are
 consequences of the others because of the absence of singularities, and the
 whole splitting actually presents no fundamental difficulties for this case.

 7. The General Theory When Singularities Are Present. The existence of
 singularities in the field introduces certain factors which make the theory de-
 veloped for the regular case inadequate. For, although the equations of the
 field are undefined at the singularities, their validity in the regular region is
 sufficient to determine the motion of these singularities. The slightest altera-
 tion in the position of a singularity amounts to an arbitrarily large alteration
 for a point near enough to the singularity, and we are therefore not permitted
 to make use of approximate expressions for the equations of motion in the
 development of our method of approximation. This fact leads to a new diffi-
 culty, in the approximation method, which must be discussed more fully.

This content downloaded from 128.195.77.115 on Wed, 22 Feb 2017 18:15:20 UTC
All use subject to http://about.jstor.org/terms



 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 81

 Let there be p particles producing the field. We may represent their posi-

 tions at any time by means of their spatial coordinates i'(r), k = 1, 2, ... , p.
 At these points the field will be singular, but we may enclose each of the singu-
 larities within a small surface9 and then the region exterior to these p surfaces
 will be regular.

 Although the equations (5, 1), (5, 2) are undefined at the singularities, they
 have meaning in the regular region and we shall show that they can still be
 regarded as in some sense equivalent. The discussion can be divided into two
 parts, one dealing with the (a), (b) and (c) equations, which involve the suffix
 zero, and the other with the remaining equations having only spatial suffixes.
 We consider the latter. The essential structure of the (d) and (e) equations is
 preserved if we omit the suffix m and write for the total field

 (7, 1) (7, 2)

 (d) ynl8s = 2An (d) Ynlaa = 2An

 (e) 'Ynin 0) ~ ~~~~~~(et) Ann= 0, (e) enln = 0, { t(e") f2An cos (n N) dS = 0.

 The proof that (7, 1) implies (7, 2) has already been given in essence in 2. To
 prove the converse we first obtain from (7, 2d)

 (7, 3) 'Ynln8s = 2An1n ,

 this being valid outside the surfaces enclosing the singularities. To solve this
 we make an analytic continuation of the functions An into the interiors of

 these surfaces in such a way that AnIn is everywhere zero. This is certainly
 possible because of the validity of (7, 2e"). So (7, 3) now becomes

 'Ynlnrss = 0

 which, being everywhere valid, has the unique solution

 Tnjn = 0

 which is (7, le).
 Thus we have shown that if we make an analytic continuation of A. so that

 (7, 2e') is valid everywhere, then (7, 1) and (7, 2) are equivalent outside the
 surfaces enclosing the singularities.

 It is clear from the proof that the result will hold for any surfaces enclosing
 the singularities.

 For the (a), (b) and (c) equations a similar proof can also be given. In this
 case it is necessary to make an analytic continuation of the quantities A00 and

 I Throughout the argument we assume that we are dealing with the situation at some
 definite time r, allowing time to flow again only after the argument is concluded.
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 AO, in such a way that (5, 2c') is valid everywhere, this being possible because
 of (5, 2c"). We omit the details of this part of the proof that (5, 1), (5, 2) may
 be considered as equivalent even where singularities are present and shall
 regard the proof as complete.

 To show the difficulty brought in by the use of our approximation method
 let us now consider only the equations (7, 2d), (7, 2e') omitting the surface inte-
 gral (7, 2e"). These equations determine the field in each of the approximation
 steps if the motions of the singularities are prescribed. The motion of the
 particles is then arbitrary as, for example, in the electrodynamical problem and
 the field is determined in each of the approximation steps by the equations

 n,88 = 2An
 21 21

 An,n = 0.
 21

 The contradiction is evident if we try to add to these equations the surface
 condition split according to our approximation method. We then have the
 additional equation

 ok

 (7, 4) f 2An cos (n N) = 0
 J21

 where (k) on top of an integral sign means that the surface of integration en-
 closes only the k-singularity. We have in (7, 4) an infinite set of equations

 k

 containing the functions t and their time derivatives. These equations cannot
 k

 be satisfied by the arbitrarily given t functions characterising the motion.
 This also shows how the difficulty can be avoided. We have to consider

 instead of (5, 1) or (5, 2) a more general set of conditions governing the field
 which contains those equations as a particular case. Since it is the surface
 integral conditions which cause the trouble we remove (5, 2c"), (5, 2e") from
 the set (5, 2) and consider the significance of what remains.

 In making this generalisation we have, of course, gone beyond the gravita-
 tional equations to others which contain them as a special case, and we must
 now discuss what changes have been induced in (5, 1) by this generalisation.

 Since the surface integrals are independent of the surfaces, their values will
 be functions of the time alone through the t's and their derivatives. There
 is therefore no loss of generality if we denote these integrals taken over the p

 surfaces enclosing the various singularities by 47rco(-), 47crm(r):

 4 f (y0ooI - 2AOn) cos (n .N) dS =co(T),
 (7 5) 4kr

 +-fkn2Amn COS (nuN) dS = Cm(T). 47r
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 With this notation we shall now prove that the following two sets of equations

 (7, 6), (7, 7) are equivalent in a certain sense which will be explained in the

 course of the proof:

 (7, 6) (7, 7)

 (a) 700188 = 2Aoo (a) 7o1,s = 2A00

 (b) 'YOn|ja = 2A0n X (b) 7yon |j = 2Aon X

 (C) 70010 - 'YOnIn = -Z {co/r,; (c') Aoo1o - AonIn = 0;
 k-=1

 (d) 7rnine = 2Amn (d) ymnlja = 2Amn,

 (e) EYmnI = cm/} (e') Amnin = 0.

 k

 Here r is the "distance" from xn to the k-singularity:

 (7, 8) r = [( - x- t

 We may introduce the surfaces enclosing the singularities as before and these
 equations will certainly have meaning outside them. The proof of their equiva-
 lence can here too be broken up into two parts and we shall only prove the
 equivalence for the (d) and (e) parts. Omitting the suffix m as before, we have

 (7, 9) (7, 10)

 (d) Ynlss = 2An, (d) Ynlaa = 2AnX

 (e) = - {k/ }i (e) Ann = 0,

 with the notation

 (7, 11) - f 2An cos(nN) dS = c

 We begin by proving that (7, 10) implies (7, 9) under certain conditions of con-
 tinuation. It is no longer possible to make an analytic continuation of An
 in such a way that (e') is everywhere satisfied since this would imply that the

 surface integral is necessarily zero. In fact, from (7, 11) we see, by Gauss'
 theorem, that the continuation must be such that

 (7, 12) i 2AnIn d = 2An cos (n N) dS = c

 It is simplest for our purposes to make the continuation in such a way that

 An and A,,,, are continuous at the surfaces, and that Anin has a constant sign
 inside each surface and satisfies (7, 12).
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 Such a continuation is possible for any surfaces surrounding the singularities
 and can be made in such a way that when these surfaces shrink to zero size the
 function Ann goes over to a sum of Dirac 6-functions:

 (7, 13) An- 47r ) 6 - ') 6(X2 - 2) 6(X - X3).
 k=l1

 From (7, 10d) we have now

 7n'ns= 2AnnLa

 so that

 (7, 14) -Y nfIAn((X) = -) dA',

 where the integral is to be taken over the whole domain of Xn and r(x, x') is the
 "distance" from Xn to x"':

 (7, 15) r(x, x') = [(I' - X")(x - Xa)I.

 Because of the validity of (7, 10e') outside the surfaces we may write (7, 14) as

 (7, 16) 1Yn(x) = Z k 2A ()v
 47rk= 1 Jr(x, x')

 the integrals being taken only over the interiors of the surfaces. On shrinking
 these surfaces we may regard r(x, x') as constants over the various domains
 of integration and write

 Ynt n(x) = _ t i@r(x)) f 2An1 n dv,

 and by (7, 12) this is

 YnIn - C(Z)Irk

 which is (7, 9e).
 We have therefore shown that with the analytic continuation used above the

 equations (7, 10) imply the equations (7, 9).
 To prove the converse we form from (7, 9) the relation

 (7, 17) (YnT - 'Ynl)s = 2An + c2

 If we now form the surface integrals of the "normal" components of the two
 sides of this equation for each of the surfaces enclosing the singularities in turn,
 the left hand side will give zero, as explained in 2, and we shall have left

 f 2An cos (n.N) dS = -f {c/r} cos (n.N) dS

 = -c f {1/r} cos (n-N) dS = 47rc(&)

 which is (7.11).
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 That the validity of (7, 10e') for the regular region is contained in (7, 9) is

 trivial, and the equivalence of (7, 6d, e) and (7, 7d, e') is therefore proved.

 The proof of the equivalence for the remaining equations of (7, 6), (7, 7) con-

 taining the suffix zero presents no essentially new problems and will be omitted.

 The whole point of our elaborate procedure in writing all the equations of

 the field in two equivalent forms is now clear since the present generalisation

 from (5, 1) to (7, 6) could not be made in a convincing manner without the

 aid of the parallelism with (5, 2) and (7, 7).

 Owing to the absence of the surface integral conditions in (7, 7), there is no
 longer any objection to the application of our method of approximation to the

 solution of this set of equations. The X's will cause a splitting of the equa-
 tions just as before, except that the surface integral conditions will be absent.

 However, at each stage we may write

 (7 18) f O ('O On - 2Aon) cos (n. N) dS =CO(r), (7, 18) 47r 21 1 21+1 21+1

 1 fk 2Amn cos (n-N) dS = CM(2 )
 4TJ 21 21

 and with this notation we have the result, in precisely the same manner as for

 (7, 6), (7, 7), that for each stage of the approximation the following sets of

 equations (7, 19), (7, 20) are equivalent:

 (7, 19) (7, 20)

 (a) oo, 8 = 2Aoo, (a) Yoo,8.. = 2Aoo,
 21 21 21 21

 (b) Yon, 88 = 2A0~n (b) ,on, 8 = 2AOn
 21+1 21+1 21+1 21+1

 (C) OO,O - 'Yon,n = -E co(T)/l}; | (c') Aooo - AOn n = 0;
 211 21+1 ko1 21+1 21 1 21+1

 (d) 7mn,88 = 2Amn X (d) Ymn,88 = 2AmnX
 21 21 21 21

 (e) 'ymn,n = -E {m(T)/r}, (et) Amn n = 0.
 21 k-1 21 21

 In the actual solving of the equations it is simpler to work with the sets

 (7, 19) rather than with (7, 20). At each stage we have to solve equations of
 the type y,,, = 2A and in order to make the whole solution unambiguous we
 must impose the conditions that the field shall be Galilean at infinity and that
 no harmonic functions of higher type than simple poles may be added to the

 partial solutions except insofar as their addition is forced by the coordinate
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 conditions (7, 19c), (7, 19e). Let us suppose we have been able to solve all

 the successive approximations. Then the quantities cor), Cm(r) are given by
 the relations

 (7, 21) c = ( Z) E C)
 1=1 21+1

 (7, 22) Cm (&) = Z Xcm(T)-
 1=1 21

 Our solution will not in general be a solution of the gravitational equations

 since (7, 6), (7, 7) are more general than those equations. However, if we
 now put

 (7, 23) CO(r) = 0, Cm(T) = 0

 we impose such conditions on the motions of the singularities that our solu-
 tions will indeed become the solutions of the gravitational equations we are

 actually interested in.

 The differential equations (7, 23) for the I's are really independent of X since

 they must be expressed in terms, not of the auxiliary time r but of the true
 time x0, and when this is done the X's will be necessarily reabsorbed.

 In practice, of course, it is impossible to carry the computation beyond the
 first few stages. Let us suppose, then, that we have been able to solve the
 successive approximations up to some stage 1 = q. In this case, if we put

 q '

 (7, 24) Z X21+o(1r) =0 0 2 X Cm(T) = 0,
 1=1 221+1 1=1 21

 we shall obtain solutions of the gravitational equations correct to terms of the
 order (2q + 1), and the equations (7, 24) will give the approximate equations
 of motion up to this order.

 8. The Zero Co6rdinate Condition. We show in this section that the solu-
 tion of our equations can always be made in such a way that

 (8, 1) co(T) = 0,
 21+1

 thus showing that the conditions

 (7, 21) co(r) = Z X2c?(T)
 1=1 21+1

 place no restriction on the motion of the singularities. This result is of signifi-
 cance because the conditions (7, 22) are alone sufficient to describe the motion
 completely and any further condition, if not redundant, would cause an over-
 determination of the motion.
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 We actually use (8, 1) as normalisation conditions for each stage of the
 approximation and they are essential for the uniqueness of the solution.

 The significant equations for the present argument are

 (7, 19a) yoo0 2Aoo=
 21 21

 (7, 19b) YOn,ss =2AOn
 21+1 21+1

 (7, 19c) Yooo - YOn,n = -E O(T)/ ,
 21 1 21+1 k=1 21+1

 where the A's are known from the solutions of the previous approximations, and
 we shall suppose that we have a solution of these equations. If we introduce

 k

 the quantities F(r) by means of the equation

 k k
 (8, 2) ro(r) = Co(T)

 21 1 21+1

 we may write (7, 19c) in the form

 7Y00,O - 'YOn,n =r- T-'/~ r 1(irY
 21 1 21+1 k=1 21 .0 21 /0

 (8, 3) 1 1
 P fkj\ (ck kk\

 =-ZE L'/r + (r t /r
 k=1 21 0 21 1 n

 where t = d{
 dT

 From (7, 19a), (7, 19b) we see that yoo and 'Yon are arbitrary to the extent of
 21 21+1

 additive harmonic functions and we may therefore add simple poles to them
 to form the new quantities

 ' r k1

 (8, 4) Yoo = 70 + E /r ,
 21 21 k-1 21

 1 P ~k k
 (8, 5) 'Yon = 'Yon - E Ir t /r}.

 21+1 21+1 ke1 21,

 These new y's however, while still satisfying (7, 19a), (7, 19b) will be such that

 (8, 6) a0o.o - = o.
 21 1 21+1

 Since the co's now vanish, the surface integrals will also be zero and thus the
 zero coordinate condition will not affect the motion. This theorem and our
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 previous results show us that the equations which must form the basis of the
 actual calculation of the field and the equations of motion of the singularities are:

 (8, 7a) YooO.ss = 2Ao00
 21 21

 (8, 7b) 7On,ss = 2A0~n
 21+1 21+1

 (8, 7c) ooo - 'YOn,n = 0;
 21 1 21+1

 (8, 7d) 'Ymn,ss = 2Am,,,
 21 21

 and

 (8, 7e) = -Z {E r(T)/l}r
 2 1 k-- 1 2

 with

 (8, 8) C.m(T) = - f 2Amn cOs (n-N) dS.
 21 47 21

 The approximate equations of motion for the stage 1 = q are given by

 (8, 9) E n X ^(T) = 0.
 1=1 21

 II. APPLICATION OF THE GENERAL THEORY

 Note. In the first part of this paper we developed the general theory of a
 new method for solving the equations of gravitation by successive approxima-
 tion and for obtaining the equations of motion, in principle to any desired
 degree of accuracy. In the present part we deal with the actual application of
 this method, carrying the calculation to such a stage that the main deviation
 from the Newtonian laws of motion is determined.

 Unfortunately, as the work proceeds, the calculations become more and more
 extensive involving a great amount of technical detail which can have no
 intrinsic interest. To give all these calculations explicitly here would be quite
 impracticable and we are obliged to confine ourselves to stressing the general
 ideas of the work and merely announcing the actual results. For the con-
 venience of anyone who may be interested in the details of the calculation,
 however, the entire computation of this part of our paper has been deposited
 with the Institute for Advanced Study so as to be available for reference.'0

 9. The Approximation 1 = 1. The approximation 1 = 0 is trivial, leading to
 the Galilean case, and we proceed at once to the next approximation I = 1.

 10 c/o Secretary of the School of Mathematies, Institute for Advanced Study, Princeton,
 N. J. (U. S. A.).
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 Since the quantities A0O, AOn , and, Amn are all zero and, as explained in 3,
 2 3 2

 the Ymn are also zero, we have left from all the equations (8.7a), . . . , (8.7e),
 2

 merely

 (9.1) YOOs88 0,
 2

 (9.2) 'On,8s = 0
 3

 (9.3) Yoo, - YOn,n = 0
 2 1 3

 The character of our whole solution will depend essentially upon the choice
 of the harmonic function we take as the solution of (9.1). We shall assume
 that the particles we are interested in have spherical symmetry and that the
 field is Galilean at infinity. In this case the solution of (9.1) is unique since
 each singularity in yoo must now, by (9.1) be a simple pole. We therefore

 2

 have for Yoo the solution
 2

 (9.4) yoo = 2o, so = E {-2/, k = [( - - )]
 2 k=l

 k

 where the p quantities m are independent of the spatial coordinates x8, and
 can depend at most only on the time.

 From (9.2) we see that yon is also a harmonic function, and to determine it
 3

 more exactly we must use the coordinate (9.3). From (9.3), (9.4) we have

 YOn,=n = E (-4m/r 0
 3 2 1 k-l

 4m/( r )~n - Z r/
 k=1 {}n keel

 This equation canl be solved without introducing new singularities only if
 kk
 m = 0. In other words, the quantities A, which actually measure the masses
 of the point singularities, are necessarily constants. It is now evident that,
 under our general restricting conditions, 'Yon is uniquely determined:

 3

 (9.5) 'on= E 4m/r}
 3 k:=1

 In all that follows we shall limit our considerations to the case of only two
 particles. This places no essential restriction on the results as far as the end
 of 15, their generalisation to p particles being trivial, and it permits a useful
 simplification of the rather inconvenient notation used for the general case.
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 For the case of two particles we shall write:

 (a) -2m/r = t' 2m2 =

 (9.6) (b) v =+ x;

 1 2

 (c) 48 = S 8 =

 Our results (9.4), (9.5) may thus be written in the form

 (a) yoo = 2Vp = 2t + 2x,

 (9.7) (b) 2YOn = - - .
 From (1.18) we now also have

 (a) hoo = 5 = + x,
 2

 (9.8) (b) hon = -2 -,n- 2xt
 3

 (c) hmn = b'mn'P V mn(46 + x).
 2

 This shows that the approximation 1 = 1 has a Newtonian character but,

 owing to the vanishing of cm, places no restriction on the motion.
 2

 10. Calculation of the A's for 1 = 2. The first step in the calculation of the
 A's for 1 = 2 is the determination of the ho,.

 Using the method explained in 4, we can calculate the expansions of the h't
 to any desired degree of approximation. We find, for 1 = 1,

 (10.1) hOO = -hoo = ,
 2 2

 (10.2) hOn = hOn = YOn,
 3 3 3

 (10.3) h"n = _ hmn = -bmn(P.
 2 2

 We next have to calculate for 1 = 2 the quantities 2L, defined in (1.15), (1.16),
 (1.17).

 In 2 Loo the linear terms give
 4

 (P.00

 Of the non-linear terms, only three can give a contribution. They are

 -2{h [0?2 r]} = 0 (since ,88 = 0),

 -2[00, s][OS, 2 A.a P.a,

 -2[00, r][rs, s] =
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 GRAVITATIONAL EQUATIONS AND PROBLEM OF MOTION 91

 where [rs, p] are Christoffel symbols. Thus

 (10.4) 2Loo = (poo + p,(p,8
 4

 Similar but rather more tiresome calculations lead to the further results

 (10.5) 2L0n =p, sq ho, . - (p,snho8 -3 , o (p, 7
 5 3 3

 (10.6) 2Lmn = -hGm,On- h0n,i,0r + Stmn(P,OO- 2(ApO,nn - (P,m'P,n - 6tmn(P,s(P,.-
 4 3 3

 Therefore, by (1.30), ..., (1.35), we have

 (a) yoo,ss = 2Aoo =-(P,8 , X
 4 4

 (10.7) (b) 'Yon,ss = 2Acn = (P,s'YOs,n - ',snYOs-3jooVn (10.7) 5 ~~~5 3 3

 (C) 'Ymn,ss = 2Amn = -7Om,On - 'YOnOm + 26mnp,o00 - 25p~A,mn - (P,m(P,n
 4 4 3 3

 + Vcmn (P,a P.J -

 As explained in 7, 8, these equations (10.7), together with the corresponding
 coordinate conditions

 (a) 'YOOo - 'YOn,n = 0
 4 1 5

 (10.8) (22
 (b) ymn, n = - - y
 4 /

 are the equations which determine the field in the next approximation.

 11. The Newtonian Equations of Motion. We must now evaluate the sur-
 face integrals

 k 1 fk
 (11.1) Cm() = 2Amn cOs (n N) dS, k = 1, 2.

 4 4r 4

 According to the general theory of part I, these integrals will be independent
 of the particular shapes of the surfaces of integration since the divergences of
 their integrands must vanish on a consequence of the field equations belonging
 to the previous approximation. We shall show here by actual calculation that
 this is the case with the 2Amn given in (10.7c).

 4

 Since p and 'YOn are harmonic functions, we have
 3

 2Amn,n = -YOn,Omn + 2vp,oom
 4 3

 which is zero, as can easily be seen from (9.3) and (9.7a).
 In the actual calculation of the surface integrals we evaluate the separate

 contributions of the different terms in 2Amn. Since the value of a whole
 4
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 integral is independent of the shape of its surface of integration, by taking this
 surface to be of finite size and always a finite distance from its singularity, we
 see that the whole integral cannot be infinite. Now the individual terms of
 2A1mn have not the property that their divergences vanish, and so we must

 4

 fix the surfaces of integration quite definitely before we begin the calculations.
 It is most convenient to take definite, infinitesimally small spheres whose
 centers are at the singularities, but in this case infinities of the types

 Lim const./r', n a positive integer,
 r -o

 can occur in the values of the partial integrals. Since these must cancel, how-
 ever, in the final result, we may merely ignore them throughout the calculation
 of the surface integrals.

 We shall consider the integral taken around the first singularity. Owing to
 the infinitesimal size of the surface of integration, the only terms which can

 give results different from zero or infinity are those of the order of (1/r2).
 The first term in 2Amn is -YOm,On , and, by (8.7b), this may be written as

 4 3

 O=- t4ts + 2)Jn1m - 2X, n~t8 + 2xn4n.
 3

 The only term we need consider is the second, and so we have

 1 f (-omOn) cos (n.N) dS = i! f24tniimcos(n N) dS

 (11.2) (4mvm) lf| {(fln - nl)(Xn -n)/r

 -(4m ) +- f { } }

 In a similar manner we find that

 (11.3) - J (-0nOnm) cos (n.N) dS = Tm?,.
 The fourth term, (-2(P, p., n) , requires slightly different treatment. The only
 part that can be of interest is

 -24,,mn X

 and in order to evaluate the corresponding contribution to the surface integral
 we must expand x as a power series in the neighborhood of the first singularity,
 writing

 (11.4) x + (x -1 )X.. +

 where

 (11.5) X= X(X)X X,8 = X,.(Gin), etc.
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 Introducing this expansion for x we see that the only term in the integrand
 which can give a finite result is

 (11.6) -24,mn(X - )is

 The determination of the surface integral of this term depends on the calcula-
 tion of

 f (X8- 8) Onmn COS (n.N) dS.

 We have

 (X8- O) ,rnn COS (n/N)

 =2(x - v) {-3(x - v )(X, - n)/1 + 1a /3} ( - n)/

 = -4m(x1 - _I) ($" - 11) 14

 Therefore

 4 f (x8 -X ) ,nn COS (n N) dS = _ f(x'-" )(x3- r)/ dS
 (11.7) 1

 4m
 = -- 6 mes

 and so the surface integral of the term (11.6) is

 (11.8) m

 which is thus also the value of the surface integral for the whole of the term

 (-Wpp,mn).
 In a somewhat similar way we obtain, for the surface integrals of the re-

 maining terms, the values

 1

 26mmn , O 4M ..mn
 3

 (11.9) _
 -Pon (P, n -- 8 x M) Hymn ,nP, > 2mX m.

 Hence we have

 (11.101 1
 (11.10) Cm& = - 2Amn COS (n.N) dS = 4mji + Im}.

 4 4~r J 4
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 Let us assume for the moment that we are not going any further with the
 approximation. In this case our approximate equations of motion would be
 of the form

 (11.11) X{m + 2X,} = 0

 for each particle. It is of interest to note that this form of the equations of
 motion is actually independent of the variables x8. For we have, by (11.5),

 (9.6),
 (11.12) X.8 = X,.8(), X = 2M/r.

 of2 For our present argument we may take x as any function of r. Equations
 (11.12) show that to form j,., we must first differentiate x with respect to x8
 and then replace x8 by 18. But the result will be the same if we first replace
 x8 by q8 and later differentiate with respect either to 8 or to ( _8). Thus

 (11.13) = Ax(r) a ax(r)

 where r denotes the "distance" between 8 and P':

 (11.14) r = [(87 - r)(X7 -r)]

 We can therefore think of our equations of motion as involving the differentia-
 tion of functions depending only on the positions of the singularities, as is
 characteristic of theories based on the concept of action at a distance.

 Writing (11.11) more explicitly in vector notation as

 (11.15) m= V(A /r)

 we see that (11.11) gives precisely the Newtonian law of motion."
 We have therefore obtained the Newtonian equations of motion from the

 field equations alone, without extra assumption such as was hitherto believed
 to be necessary and was supplied by the law of geodetic lines, or by a special
 choice of an energy impulse tensor.

 From the above derivation of the Newtonian equations of motion, the general
 mechanism becomes apparent by which the Lorentz equations for the motion
 of electric particles can be obtained. In this case we have to consider the
 gravitational equations in which the Maxwell energy-momentum tensor appears
 on the right, and also the Maxwell field equations, and treat the whole set of
 equations by our approximation method. It is necessary, now, to give each
 singularity an electric charge e in addition to its mass m. We may safely
 ignore the contribution arising from the products of gravitational potentials in

 I' Equation (11.11) and (11.15) are written in terms of the auxiliary time and the auxiliary
 masses. We shall return to this point in 17.
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 the new field equations. For this omission has the effect of destroying the
 second term of (11.11), while the inclusion of the Maxwell tensor leads to the
 appearance, on the right of (11.11), of a corresponding surface integral giving
 the electrostatic force acting on the particle. In the next approximation we
 obtain the full Lorentz force together with the relativistic correction to the mass.

 So long as we are dealing with singularities, we have no basis within the
 theory for excluding negative masses; in other words, for excluding gravita-
 tional repulsions between particles. If, however, we decide always to take mass
 positive, then the sign with which the Maxwell energy-momentum tensor enters
 the field equations determines whether like charges shall attract or repel each
 other. This also reveals the limitations of any theory based upon the existence
 of singularities.

 12. Normalisation of Too. The value of Y0o determined from (10.7a) is
 4 4

 arbitrary to within an added harmonic function, and this function is to be deter-
 mined from the relations (8.4), (8.2), together with our basic requirement that
 higher harmonic functions than simple poles are, as far as possible, to be avoided.

 From (10.7a) and the fact that p is harmonic, we have at once

 (12.1) Too= -34 nS + a0oo + gooX,
 4

 where we have written the additive functions of (8.4) in a different form more
 in accordance with our present notation, aoo, Boo being functions of r alone
 through -q and r and their derivatives. The quantities aoo, Ioo can be deter-
 mined from the condition that

 (12.2) 4 f {Y00On-2Aon} cos (nuN) dS = 0.

 The value of aoo is found by taking this integral over a small sphere having
 its center at the first singularity, and from calculations similar to those of 3, we
 find, after making use of the equations of motion of the first order:

 (12.3) aoo = {I I" + 2X}.

 Similarly, by integrating over a small sphere around the second singularity,
 we find

 (12.4) /0o= {r8rJ+4i,

 where

 x= x(X),
 (12.5)=
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 These results show clearly the physical significance of the particular normalisa-

 tion required by the conditions (8.4), (8.2). For we now have

 (12.6) X2 To + X4e00 = X2 {(1 + IX2aoo) 2i/' + (1 + X2) 2 3X2
 2 4

 and we see from (12.3), (12.4) that m(l + P!aoo) m( 2 + 2,oo) involve the
 first relativistic corrections to the masses.

 The calculations up to this stage correspond to those of Droste, De Sitter, and

 Levi-Civita, cited in the introduction.

 13. Solution of the Field Equations for 1 = 2. Since our ultimate aim is to

 determine the equations of motion up to the next approximation, we are in-
 terested only in those expressions which give a contribution to the corresponding
 surface integrals. We shall state dogmatically what is needed for these calcula-

 tions for the justification of our statement can not be given without exposing the
 details of our actual calculation.

 1. The calculation of ym. and yom in the neighborhood of the singularities.
 4 5

 We do not need to care in Ymn about those terms which do not go to infinity
 4

 if r -+ 0.

 2. The calculation of -y, in the whole space.
 4

 The expression 2Amn in (10, 7) can be divided into two parts, one containing
 4

 the linear terms together with all other terms not involving interactions between
 the two particles, and the other containing all the interaction terms. We

 denote these two groups of terms respectively by Xmn and Ymn,. The integra-
 tion of the equations

 (13.1) 'ymnea = Xmn
 4

 presents no difficulties, but the equations

 (13.2) iYmns = Ymn
 4

 cannot, apparently, be integrated in an elementary manner and we are obliged
 to introduce a simplification. Since we need to know the values of 7mn mainly

 4

 in order to evaluate the surface integrals cm about, say, the first particle, we may
 6

 introduce power series expansions for x in the neighborhood of this point and
 so obtain a solution for Ymn which is also in the form of such an expansion.

 4
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 We find, actually, from (13.1), (13.2), the following expressions for -y'n and -yin
 4 4

 IYmn = gt4(Xn - ) + (Xm - m - - n)48] ,

 and

 (13.4) y$,7 = -Im(7 - - )X
 4

 where we have included in (13.4) only those terms which ultimately have im-

 portance for the evaluation of the surface integrals Cm.
 8

 The value of 7mn is given by
 4

 (13 .5) Ymn =Yrnn + Ymn + atmn a}
 4 4 4

 where aen is a function of time to be determined from the coordinate conditions
 In a similar way, we may calculate the values of yOn in two parts. We find,

 6

 on including only relevant terms for the surface integrals m Xin the integrands

 ofThic vuOf eYntr onlygivneary,

 4

 (13.6) z~m = -.m= P m rY8 + amn

 SY~n = -3(X - v -{X _ (Xm _-7)I

 The value of yYon is given by

 5~~~~~~~~~~~~~~~~~

 6~~~~~~~~~~~~~~~~~~~

 712 11 3"m

 (13.8) 'omn = on + m'On + 4On 4d

 5 5 5

 where a0n is a function of time to be determined from the normalisation con~
 dition.

 It remains only to calculate -r in the whole space. From (1O.7c) we have

 (13.9) Yrr ,8 = 2qpXoo + A Is P,8,
 4
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 therefore

 1 1 2 200+,2 X (13.10) Yrr -2mr oo - 2mroo + VP + a# + 3x
 4

 where a and # are functions of time to be determined in such a way that Yrr
 4

 in (13.10) would agree with Er determined from (13.5) near to the singularities.
 4

 14. Determination of amn and ao,. In order to find ann,,, ao, from the condi-

 tions (8.7e), (8.7c) we must make use of the values of Cm found in 3. The
 4

 result is up to the desired order

 (14.1) amn = n2X7Y + amnXj

 and

 (14.2) aOn = -,)87)8, + XR - Rtn.

 Finally from our last remark in 13 follows:

 (14.3) a = 2vS" + lx; d 2tS S + j+

 15. Calculation of Ann . In the calculation of Amn for our present purposes,
 6 6

 we may assume that cm is zero, as we shall now show.
 4

 After we have evaluated the surface integrals cm, we may write the approxi-
 6

 mate equations of motion in the form

 (15.1) X4Cm + X6C m .
 4 6

 But this shows that when the motion is in accordance with (15.1) the quantities
 X4cm and X6cm will be of the same order of magnitude. It is evident, however,
 4 6

 that X4Cm can enter X6Amn only in combination with a quantity of the type
 4 6

 X20. It will therefore enter only in terms which actually belong to the order
 2

 8or higher, and since we do not propose to go beyond the order X6 in the calcu-
 lation of the equations of motion, we may neglect all terms in Amn in which cm

 6 4

 appears. Even if we make use of this fact, however, the calculations are still
 quite tedious, and there are actually forty-one different types of term in the
 expansion of Amn. We find:

 6
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 2Amn = -7Om,On - 'YOn,Om + 6mnYOO,00 + 'Ymn,0O - (PY00,mn - PY88,mn - (P,mnY700
 6 5 5 4 4 4 4 4

 - (P,mnY788 + (P,m87Yns + (P,nseYms - b5mn (P8,r77r - 2'p,s8mn,8 + 4(PsYms,n
 4 4 4 4 4 4

 1 1 1 1
 + (Ps ns,m - 2';o,m7Y88,n - 2(PAnYasm - 2(pnYOO,m - 2(,mrYOO,n
 4 4 4 4 4

 + 36mn'P,sorr,8 + f3mn(P,87Y00,8 - 70W70n,ms - 70YOxm,ns + 270o8e7O.,mn

 (15.2) 4 4 3 3 3 3 3 3
 + 25mn7Y0s,r7Y0r,8 -ffmn'Y0s,r7Y0,r + 7O8,mYOs,n + 70m,870n8 - (P,on7Yom

 3 3 3 3 3 3 3 3 3

 - (,Om7YOn + 23mn(P,08O08 - (P,O7Om,n - (P,OYOn,m - (AnY0m,0 - (P,mYOn,0
 3 3 3 3 3 3

 + 2(7yomon + 2VP7onom - 26mn(P(P,00 + 2 (p (p(p,mn - (P(P,m(P,n
 3 3

 + 6mn(P(P,9(P,a + 16mn(PO(P,0-

 The condition that Amn,n must be zero affords a valuable test of the correct-
 ff

 ness of the above formula. We have worked out the divergence of the Amn
 6

 given in (15.2) and have found that it does indeed vanish.

 16. The Surface integrals for I = 3. In order to find the principal deviation
 from the Newtonian laws of motion, all that essentially remains is to calculate
 the values of the surface integrals cm. To do this we must first insert in (15.2)

 6

 the values previously found for 700, 7mn and yon and then it is a matter of calcu-
 4 4 5

 lating the contributions of the resulting terms one by one and adding the
 expressions obtained. The general technique is similar to that used in 11 for
 the evaluation of cm but considerably more complicated.

 4

 On making use of our right to take cm to be zero, we may express the result
 4

 in the form

 Cm = 2Amn COS (n * N) dS
 6 4J m

 (16.1) -4mm = + 2? - 4 8 4 - r rJ 8nr)

 [4.8(gm - 4m) + 3."m 8 - 4?8tm] 8 (r) + 2 anna7 7r } ()'I r 2 a77 f.
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 17. The Main Deviation from the Newtonian Equations of Motion. In order
 to obtain the equations of motion belonging to this stage of our approximation,
 we must write

 (17.1) X cm + X cm = 0 k = 1,2
 4 6

 and then must reabsorb the X's by going over to the old time x0 instead of the
 auxiliary time r = Xx0 and by introducing a corresponding change in mass
 from m to M, where M = X2m. There will be no confusion if we keep the old

 notation for the new quantities so that now = dt/dxo instead of dt/dT, and
 m is written for the new mass M. And with this convention we may write
 the equations of motion (17.1), by means of (11.10) and (16.1), in the form

 M 2 8(1/r) = 2 -24a? a4r 1
 r r

 (17.2) 3*~(/)+1 &
 [4~`(ff - ~?f) + 3, 8- 2 8 t8lir 0/rm )

 The equations of motion for the other particle are obtained by replacing m, mY

 n, Vbymy my,, 77.
 These equations, giving the relativistic motion of two massive gravitating

 bodies, constitute the main result of our calculations from the point of view of
 practical application.

 These equations have since been integrated by H. P. Robertson, whose results
 are given in the following note on "The Two Body Problem in General Rel-
 ativity," Math. Ann. 39, p. 101 (1938).

 We should like to thank Professor Robertson for the very kind interest he
 took in this problem and for his help.

 THE INSTITUTE FOR ADVANCED STUDY.
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