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Abstract

In this paper we show that it is possible to derive the Kerr solution in an alternative, intuitive

way, based on physical reasoning and starting from an orthogonal metric ansatz having manifest

ellipsoidal space-time symmetry (ellipsoidal symmetry). This is possible because both flat metric

in oblate spheroidal (ellipsoidal) coordinates and Kerr metric in Boyer-Lindquist coordinates can

be rewritten in such a form that the difference between the two is only in the time-time and radial-

radial metric tensor components, just as is the case with Schwarzschild metric and flat metric in

spherical coordinates.
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I. INTRODUCTION

When introduced with the Kerr metric for the first time, students often have problems

with understanding how it is derived, because most textbooks on General Relativity do not

present the original derivation by Kerr1, which is complicated and unintuitive, or any other

derivation. However, students can refer to Chandrasekhar2, but this derivation starts from

an axisymmetric metric proposed with symmetry arguments, which introduces five unknown

functions to be found by solving the Einstein equations. Also, students may wonder why

these derivations are so different from Schwarzschild metric derivation and why there is no

“simple” derivation. On the other hand, there are elegant examples of derivation which uses

physical symmetry and gauge arguments such as the derivation by Deser and Franklin3, or

the derivation by Enderlein4 which makes use of the Lorentz-transformed basis of 1-forms

for a flat space—time in oblate spheroidal coordinates. One is then tempted and encouraged

to try to find an intuitive derivation, backed-up with physical arguments, in order to show to

students that a simple physical reasoning and observation of some features of Schwarzschild

and Kerr solutions can lead to a pedagogical introduction to Kerr metric, covering the

derivation. This paper aims to achieve that and may serve as a guideline for students.

Students are usually introduced with the Kerr metric in Boyer-Lindquist coordinates5:

ds2 =

(

1− 2Mr

ρ2

)

dt2 +
4Mra sin2 θ

ρ2
dtdφ

−ρ2

∆
dr2 − ρ2dθ2 −

(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θdφ2 (1)

where M and a are mass and angular momentum per unit mass, respectively, and

ρ2 = r2 + a2 cos2 θ (2)

∆ = r2 − 2Mr + a2 (3)

The metric tensor in these coordinates has the following components:

g00 = 1− 2Mr

ρ2

g03 =
4Mra sin2 θ

ρ2

g11 = −ρ2

∆

g22 = −ρ2

g33 = −
(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θ (4)
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Unlike the original derivation by Kerr1 and the derivation by Chandrasekhar2, we would like

to derive the Kerr metric in a similar manner as Schwarzschild derived the spherically sym-

metric solution. Schwarzschild derived his solution by proposing the spherically symmetric

ansatz:

ds2 = e2ρ(r)dt2 − e2σ(r)dr2 − r2dθ2 − r2 sin2 θdφ2 (5)

from which he obtained what is known as the Schwarzschild solution:

ds2 =

(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 (6)

where M is the mass parameter. This means that the symmetry of the Minkowski metric

in spherical coordinates:

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 (7)

is preserved for the space-time curved by a body of a mass M obeying spherical symmetry.

The only differences between Eq. (6) and Eq. (7) are in the time-time and radial-radial

metric tensor components.

In this paper we will follow the similar logic and ask for the solution to the Einstein

equations which manifestly preserves the symmetry of an empty ellipsoidal space-time6:

ds2 = dt2 − ρ2

r2 + a2
dr2 − ρ2dθ2 − (r2 + a2) sin2 θdφ2 (8)

On the other hand, we know that the Kerr solution possesses axial symmetry, which can be

seen from Eq. (1), and unlike the Schwarzschild solution given by Eq. (6), the Kerr metric (1)

has the cross term dtdφ, which is not present in Eq. (8) above. Therefore, regarding the form

of the metric tensor, we note three most important differences between the Kerr solution

given with the form of Eq. (1) and the Schwarzschild solution given by Eq. (6):

1. the reduction of the Kerr metric (1) to flat ellipsoidal space-time (8) by putting M = 0

in it, results in the change of all metric tensor components (except g22), of which one

vanishes (g03) — for the Schwarzschild solution (6) the corresponding change occurs

only in the time-time and radial-radial component,

2. the Kerr solution in the form (1) is not orthogonal, but it does have the same sym-

metry as the flat ellipsoidal space-time metric (8) which is orthogonal – in the case

of Schwarzschild solution, the metric (6) has kept its orthogonality feature of the flat

space-time counterpart (7),
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3. the product of time-time and radial-radial component of the Kerr solution in the

form (1) does not equal −1 — in the case of Schwarzschild solution (6), this product

does equal −1, just as is the case in the Minkowski metric in spherical coordinates (7).

The same difference is present between the flat metric in ellipsoidal (8) and spherical

coordinates (7).

Because of these differences, it seems highly unlikely that it is possible to use the same

reasoning as Schwarzschild did and to ask for the “ellipsoidally symmetric” solution to the

Einstein equations based on the metric (8). We shall see shortly, that one could be convinced

otherwise. These three differences vanish immediately when the Kerr metric in the form of

Eq. (1) is rewritten in the orthogonal form just by rearranging the terms to get:

ds2 =
∆

ρ2
(

dt− a sin2 θdφ
)2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2)2 sin2 θ

ρ2

(

dφ− a

r2 + a2
dt

)2

(9)

which is almost the same form as the one that can be found in Ref. (2) and Ref. (4) and also

in the textbook by O'Neil8, which he refers to as “Boyer-Lindquist in orthonormal frame”,

but with slightly regrouped last term:

ds2 =
∆

ρ2
(

dt− a sin2 θdφ
)2 − ρ2

∆
dr2 − ρ2dθ2 − sin2 θ

ρ2
(

(r2 + a2)dφ− adt
)2

(10)

This form can also be found in the heuristic derivation of Kerr metric by Enderlein4 as a

resulting metric form. We stress the importance of the Kerr solution given in the form (9)

and we will be referring to that form in this paper.

The idea of derivation presented in the following sections is to ask for an ellipsoidally

symmetric vacuum solution to the Einstein equations which doesn’t possess the above stated

differences with Schwarzschild solution. In other words, one searches for the metric that

“looks like” the Schwarzschild metric (6) but for a rotating body. It turns out that one can, in

principle, obtain such a solution just by proposing an orthogonal metric ansatz possessing the

symmetry of ellipsoid of revolution and the same reciprocal relation between the time-time

and radial-radial component found in Schwarzschild solution (6). The derivation proceeds

with the use of orthonormal tetrad basis and Cartan calculus, which can be found for example

in the book Mathematical Theory Of Black Holes by Chandrasekhar2. The result should be

the Kerr metric in the form (9), but in this paper we only state the obtained second-order

partial differential equations for the Ricci tensor in orthonormal tetrad frame and leave their

final solution for a future study.
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II. THE ANSATZ FOR THE METRIC OF THE ROTATING BODY

A student can start the search for the metric of a rotating body by asking “What happens

to the shape of gravitational potential surfaces of a spherically symmetric non-rotating body

of mass M if it starts rotating?”. Due to the centrifugal force, which is strongest along

the directions of θ = 90 deg (if the rotational axis is aligned with z—axis), the spherically

symmetric body would deform to a rotational ellipsoid. Then the gravitational field potential

in the vicinity of this body would possess an ellipsoidal symmetry. Taking the argument to

the General Relativity language, this means that the metric of curved space-time around

such a body would possess ellipsoidal symmetry. Therefore, a student could ask for the

solution to the Einstein equations for vacuum which possesses the ellipsoidal symmetry

described by the term:

− ρ2dθ2 − (r2 + a2) sin2 θdφ2 (11)

from the Eq. (8) unchanged and proceed in analogy to Eq. (5) with similar arguments

as Schwarzschild used to find spherically symmetric solution. However, this would not be

correct, because one knows that the metric of the rotating space-time would have explicitly

a cross term dtdφ, whereas the Minkowski metric in ellipsoidal coordinates (8) does not

have such a term, even though both metrics have the parameter a which one connects to

the deformation of a sphere. It seems that axial symmetry of Eq. (8) is not manifest and

exactly this fact forbids one to follow Schwarzschild’s logic. Furthermore, this means that t

and φ are orthogonal to each other in Eq. (8), but not in Kerr metric (1), even though they

do possess the same symmetry. Therefore, we need to get around this problem somehow,

because we would like to have an unchanged manifest ellipsoidal symmetry when considering

metric (8) in the presence of mass, just as in the case with the spherically symmetric part

in the Schwarzschild solution. The clue for this lies in the fact that this cross term dtdφ is

hidden in the squared brackets in the orthogonal metric (9). Keeping this in mind, we can

give Minkowski flat ellipsoidal metric (8) the possibility of possessing the cross term dtdφ

without changing its symmetry, just by hiding it by some coordinate transformation of t and

φ coordinate. This will “set the stage” for the requested ansatz for the metric of a rotating

body.

One can simply guess the needed form of the new ellipsoidal flat metric by putting M = 0

in Eq. (10), but because the students “do not yet know the solution”, this can formally be
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achieved by a certain coordinate transformation in the metric (8):

dt → dT = hdt− fdφ

(12)

dφ → dΦ = kdφ− gdt

where h, f, k, g are all functions of coordinates to be determined. Let us now write down

the Minkowski metric in the “new” ellipsoidal coordinates, with the new metric tensor G′
µν :

ds2 = G′
00(hdt− fdφ)2 +G′

11dr
2 +G′

22dθ
2 +G′

33(kdφ− gdt)2 (13)

where G′
11 = −ρ2/(r2 + a2) and G′

22 = −ρ2 remained unchanged. Squaring out the brackets

and grouping the terms to get Eq. (8), one gets:

ds2 = (G′
00h

2 +G′
33g

2)dt2 − 2(G′
00hf +G′

33kg)dtdφ

+G′
11dr

2 +G′
22dθ

2 + (G′
00f

2 +G′
33k

2)dφ2 (14)

Comparing Eq. (14) with Eq. (8), the following system of equations should hold:

G′
00h

2 +G′
33g

2= 1

G′
00hf +G′

33kg= 0 (15)

G′
00f

2 +G′
33k

2= −(r2 + a2) sin2 θ

This system of equations has six unknowns and only three equations, so we have three free

choices. Two of them can be obtained by choosing the specific transformation (12) to be

simpler:

dt → dT = dt− fdφ

(16)

dφ → dΦ = dφ− gdt

or, in other words, we choose h = k = 1, and the Jacobian of this transformation is

J = 1− fg (17)

This means that we want our new coordinates to be just a “correction” of the old ones—we

are actually letting the change of t coordinate influence the φ coordinate and vice versa, but
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with demand the orthogonality is preserved in the new metric. We are then left with one

more degree of freedom which is the key one for the derivation of the Kerr metric in this

paper. It seems that of the four unknowns f, g, G′
00, G

′
33, we can choose any to constrain, but

we do not know how. However, we choose to constrain G′
00 from pure aesthetic reasons—

because we want to erase the difference #3 from page 4 between the Minkowski metric

in ellipsoidal and spherical coordinates. This choice is based on the assumption that the

metric (8) can be rewritten in the form where the product of the new time-time and radial-

radial component equals −1:

G′
00G

′
11 = −1 ⇒ G′

00 = − 1

G′
11

= −r2 + a2

ρ2
(18)

Therefore, by doing this, one actually demands the analogous relation that holds for the

Minkowski metric in spherical coordinates and for the Schwarzschild metric. After the

constraints, the system of equations (15) becomes:

− r2 + a2

ρ2
+G′

33g
2= 1

−r2 + a2

ρ2
f +G′

33kg= 0 (19)

−r2 + a2

ρ2
f 2 +G′

33 = −(r2 + a2) sin2 θ

with exactly three unknowns, and the solutions are:

f = ±a sin2 θ

g = ± a

r2 + a2
(20)

G′
33 = −(r2 + a2)2 sin2 θ

ρ2

where ± in f and g are correlated. Finally, the Minkowski metric in the “new” ellipsoidal

coordinates reads:

ds2 =
r2 + a2

ρ2
dT 2 − ρ2

r2 + a2
dr2 − ρ2dθ2 − (r2 + a2)2 sin2 θ

ρ2
dΦ2

=
r2 + a2

ρ2
(

dt− a sin2 θdφ
)2 − ρ2

r2 + a2
dr2 −

ρ2dθ2 − (r2 + a2)2 sin2 θ

ρ2

(

dφ− a

r2 + a2
dt

)2

(21)

The Eq. (21) possesses a nice manifest connection between parameter a and new coordinates

(T,Φ), which can be seen when one puts a = 0 in Eq. (21) above and spherically symmetric
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flat metric is restored. One can now interpret the stated connection as a proper way of in-

troducing rotation (or manifest axial symmetry) into flat space-time metric—by introducing

the change of both t and φ coordinate, not just φ. At this point one can observe the power

of this coordinate transformation. Firstly, one demands that new coordinates T and Φ are

orthogonal to each other. Secondly, one demands that dimension of T coordinate is the same

as dimension of t coordinate (time) and the same demand is put on Φ coordinate (dimension

of an angle), which provides a physical argument for introducing the coordinate transforma-

tion in the form of (16). Thirdly, one demands the new metric to be orthogonal and employs

a rather aesthetic and “Schwarzschild metric look-like” argument for the constrain on G′
00,

by demanding reciprocity relation (18) to hold for the new metric tensor elements. This

“aesthetic” argument actually has its roots in an interesting feature of vacuum solutions,

which says that for the 4-velocity of radial null curve kµ, the energy—momentum tensor

satisfies Tµνk
µkν = 0, which is explained in a paper by Jacobson9. One could equivalently

have a requirement that radially in-falling photon does not feel acceleration and then the

reciprocity relation (18) also follows, as pointed by Dadhich10 and Jacobson9. The latter

requirement is physically more intuitive for a student to observe. As a result, one comes

at the metric of ellipsoidal space-time (21) which, when compared to Eq. (9), differs only

in the “new” time-time and radial-radial metric tensor components, just as is the case with

spherically symmetric analogues. Therefore, one can say that the fact that Kerr metric can

be written in the form of (10) or (9) is a consequence of the existence of a coordinate trans-

formation (16) which naturally introduces rotation in flat space-time by “generating” the

cross term dtdφ. This cross term vanishes in flat space, when the brackets in Eq. (21) are

squared. But what if we wanted to find the solution to the Einstein equations for vacuum

which has the same manifest symmetry as Eq. (21)? We actually want to find a metric of the

space-time curved by the same mass M as in Schwarzschild metric, but which is rotating.

This means that flat metric (21) would change in such a way to produce the non-vanishing

cross term dtdφ. Phenomenologically speaking only, this can only be achieved with the

change of either G′
00 or G′

33 (or both) to some new functions GTT and GΦΦ so that the

corresponding cross terms do not cancel. In this way, by searching for the new functions

GTT or GΦΦ (or both) as solutions to the Einstein equations one actually searches for a

mathematically valid way of introducing rotation into metric (8) and obtaining the metric
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of a rotating body. Now, we could proceed in two ways. One is to use an ansatz:

ds2 = e2ν(r,θ)(dt− a sin2 θdφ)2 + e2σ(r,θ)dr2 −

(r2 + a2 cos2 θ)dθ2 − (r2 + a2)2 sin2 θ

ρ2

(

dφ− a

r2 + a2
dt

)2

(22)

which would be analogous to what Schwarzschild did to get spherically symmetric solution.

This ansatz is set with the requirement that the presence of a rotating mass preserves

ellipsoidal symmetry described by the following term:

− (r2 + a2 cos2 θ)dθ2 − (r2 + a2)2 sin2 θ

ρ2

(

dφ− a

r2 + a2
dt

)2

(23)

It would be interesting to check whether it is possible to derive the Kerr metric from the

ansatz (22), but we leave that for some future paper. Instead, we will treat all of the “new”

metric tensor components as general functions and simply search for the solution starting

from an ansatz:

ds2 = e2ν(dt− a sin2 θdφ)2 − e2µ
(

dφ− a

r2 + a2
dt

)2

− e−2νdr2 − e2λdθ2 (24)

where ν, λ, µ are all functions of r and θ. We have used the following demands to form an

ansatz (24) for the rotating body:

• the reciprocity relation (18), because we want to search for the solution that does not

have the difference #3 on page 4 with Schwarzschild solution

• we have used the coordinate transformation (16) because we want to search for the so-

lution that—as in the case of Schwarzschild solution—features the orthogonality of the

flat space-time counterpart (21), where the new coordinates and metric tensor com-

ponents have the same dimension as the old ones and thereby erasing the differences

#1 and #2 on page 3 with Schwarzschild solution.

In this way, all of the differences between the yet to be found Kerr metric form and

Schwarzschild metric (6) stated in the introduction would be removed. Therefore, we force

the ansatz to obey the same characteristics as the Schwarzschild metric, by using one degree

of gauge freedom as the reciprocity relation (18) and then try to solve Einstein equations

for vacuum to find the solution. Moreover, we are left with only three unknown functions

e2ν , e2λ and e2µ to find.
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III. EMPLOYING CARTAN CALCULUS TO FIND THE RIEMANN AND RICCI

TENSOR

We use Cartan calculus of differential forms (presented for example in Ref. (2), p. 10—40)

to find the Ricci tensor for the ansatz (24). First, we will introduce the notation:

dx0 = dt dx1 = dφ dx2 = dr dx3 = dθ (25)

and also:

f ≡ a sin2 θ g ≡ a

r2 + a2
(26)

Based on this and the ansatz (24), we have the transformation to the orthonormal tetrad

basis:

ω0 = eν(dx0 − fdx1)

ω1 = eµ(dx1 − gdx0)

ω2 = e−νdx2

ω3 = eλdx3 (27)

with the metric ηab = diag(1,−1,−1,−1) for rising/lowering indices. We are going to need

the inverse transformation also:

dx0 = X(e−νω0 + fe−µω1)

dx1 = X(e−µω1 + ge−νω0)

dx2 = eνω2

dx3 = e−λω3 (28)

where X ≡ J−1 is the inverse of Jacobian (17). In order to find the Ricci tensor, one first has

to find the Riemann tensor and this is accomplished by the use of the first Cartan equation

(Ref. 2, eq. 137, p. 22):

dωa = −ωa
b ∧ ωb (29)

where ωa
b are connection 1—forms and the second Cartan equation (Ref. 2, eq. 148, p. 23):

1

2
Ra

bcdω
c ∧ ωd = dωa

b + ωa
c ∧ ωc

b ≡ Ωa
b (30)
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where Ra
bcd is Riemann tensor in orthonormal tetrad basis. First we make an exterior

differentiation of 1-forms (27), with the help of (28):

dω0 = d
[

eν(dx0 − fdx1)
]

= −eν (ν,2 − fgν,2 − gf,2)Xω0 ∧ ω2 − e−λ (ν,3 − fgν,3 − gf,3)Xω0 ∧ ω3

+f,2e
2ν−µXω1 ∧ ω2 + f,3e

ν−λ−µXω1 ∧ ω3 (31)

dω1 = d
[

eµ(dx1 − gdx0)
]

= −eν (µ,2 − fgµ,2 − fg,2)Xω1 ∧ ω2 − e−λ (µ,3 − fgµ,3 − fg,3)Xω1 ∧ ω3

+g,2e
µXω0 ∧ ω2 + g,3e

µ−λ−νXω0 ∧ ω3 (32)

dω2 = d
(

e−νdx2
)

= ν,3e
−λω2 ∧ ω3 (33)

dω3 = d
(

eλdx3
)

= −λ,3e
νω3 ∧ ω1 (34)

where we use the notation F,i for the partial derivative of any function F = ν, µ, f, g w.r.t.

i—th coordinate. Then we use first Cartan equation (29) to identify the connection 1-forms

ωa
b:

ω0
2 = eν (ν,2 − fgν,2 − gf,2)Xω0 − f,2e

2ν−µXω1 (35)

ω0
3 = e−λ (ν,3 − fgν,3 − gf,3)Xω0 − f,3e

ν−λ−µXω1 (36)

ω1
2 = eν (µ,2 − fgµ,2 − fg,2)Xω1 − g,2e

µXω0 (37)

ω1
3 = e−λ (µ,3 − fgµ,3 − fg,3)Xω1 − g,3e

µ−λ−νXω0 (38)

ω2
3 = −ν,3e

−λω2 − λ,2e
νω3 (39)

Differentiation of the above connection one-forms leads us to:

dω0
2 = d

[

eν (ν,2 − fgν,2 − gf,2)Xω0 − f,2e
2ν−µXω1

]

=
{

[

e2ν (fν,2 + f,2)
]

,2
g −

(

e2νν,2
)

,2

}

Xω0 ∧ ω2

+
{

e−(λ+ν)
[

e2ν (fν,2 + f,2)
]

,3
g − e−(λ+ν)

(

e2νν,2
)

,3

}

Xω0 ∧ ω3

+
{

eν−µ
[

e2ν (fν,2 + f,2)
]

,2
− eν−µ

(

e2νν,2
)

,2
f
}

Xω1 ∧ ω2

+
{

e−(λ+µ)
[

e2ν (fν,2 + f,2)
]

,3
− e−(λ+µ)

(

e2νν,2
)

,3
f
}

Xω1 ∧ ω3 (40)
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dω0
3 = d

[

e−λ (ν,3 − fgν,3 − gf,3)Xω0 − f,3e
ν−λ−µXω1

]

=
{

[

eν−λ (fν,3 + f,3)
]

,2
g −

(

eν−λν,3
)

,2

}

Xω0 ∧ ω2

+
{

e−(λ+ν)
[

eν−λ (fν,3 + f,3)
]

,3
g − e−(λ+ν)

(

eν−λν,3
)

,3

}

Xω0 ∧ ω3

+
{

eν−µ
[

eν−λ (fν,3 + f,3)
]

,2
− eν−µ

(

eν−λν,3
)

,2
f
}

Xω1 ∧ ω2

+
{

e−(λ+µ)
[

eν−λ (fν,3 + f,3)
]

,3
− e−(λ+µ)

(

eν−λν,3
)

,3
f
}

Xω1 ∧ ω3 (41)

dω1
2 = d

[

eν (µ,2 − fgµ,2 − fg,2)Xω1 − g,2e
µXω0

]

=
{

[

eν+µ (gµ,2 + g,2)
]

,2
−

(

eν+µµ,2

)

,2
g
}

Xω0 ∧ ω2

+
{

e−(λ+ν)
[

eν+µ (gµ,2 + g,2)
]

,3
− e−(λ+ν)

(

eν+µµ,2

)

,3
g
}

Xω0 ∧ ω3

+
{

eν−µ
[

eν+µ (gµ,2 + g,2)
]

,2
f − eν−µ

(

eν+µµ,2

)

,2

}

Xω1 ∧ ω2

+
{

e−(λ+µ)
[

eν+µ (gµ,2 + g,2)
]

,3
f − e−(λ+µ)

(

eν+µµ,2

)

,3

}

Xω1 ∧ ω3 (42)

dω1
3 = d

[

e−λ (µ,3 − fgµ,3 − fg,3)Xω1 − g,3e
µ−λ−nuXω0

]

=
{

[

eµ−λ (gµ,3 + g,3)
]

,2
−

(

eµ−λµ,3

)

,2
g
}

Xω0 ∧ ω2

+
{

e−(λ+ν)
[

eµ−λ (gµ,3 + g,3)
]

,3
− e−(λ+ν)

(

eµ−λµ,3

)

,3
g
}

Xω0 ∧ ω3

+
{

eν−µ
[

eµ−λ (gµ,3 + g,3)
]

,2
f − eν−µ

(

eµ−λµ,3

)

,2

}

Xω1 ∧ ω2

+
{

e−(λ+µ)
[

eµ−λ (gµ,3 + g,3)
]

,3
f − e−(λ+µ)

(

eµ−λµ,3

)

,3

}

Xω1 ∧ ω3 (43)

dω2
3 = −d

(

ν,3e
−λω2 + λ,2e

νω3
)

=
{

(

eν+λλ,2

)

,2
−
(

e−(ν+λ)ν,3
)

,3

}

ω3 ∧ ω2 (44)

Using Eqns. (40)— (44) in the right hand side of the second Cartan equation (30), one is

able to read the components of the Riemann tensor Ra
bcd:

R0
101 = e2ν [X (gf,2µ,2 + fg,2ν,2 − g,2f,2)− µ,2ν,2]

+ e−2λ [X (gf,3µ,3 + fg,3ν,3 − g,3f,3)− µ,3ν,3] (45)

R0
202 =

{

[

e2ν (fν,2 + f,2)
]

,2
g −

(

e2νν,2
)

,2
+ ν,3e

−2λ (ν,3 − fgν,3 − gf,3)
}

X (46)

R0
212 = eν−µ

{

[

e2ν (fν,2 + f,2)
]

,2
−
(

e2νν,2
)

,2
f − f,3ν,3e

−2λ
}

X (47)

R0
203 = e−λ+ν

{

[

e2ν (fν,2 + f,2)
]

,3
g −

(

e2νν,2
)

,3
+ λ,2e

2ν (ν,3 − fgν,3 − gf,3)
}

X (48)

R0
213 = e−(λ+µ)

{

[

e2ν (fν,2 + f,2)
]

,3
−
(

e2νν,2
)

,3
f − f,3λ,3e

2ν
}

X (49)
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R0
302 =

{

[

eν−λ (fν,3 + f,3)
]

,2
g

−
(

eν−λν,3
)

,2
− ν,3e

ν−λ (ν,2 − fgν,2 − gf,2)
}

X (50)

R0
312 = eν−µ

{

[

eν−λ (fν,3 + f,3)
]

,2
−

(

eν−λν,3
)

,2
f + f,2ν,3e

ν−λ
}

X (51)

R0
303 = e−(λ+ν)

{

[

eν−λ (fν,3 + f,3)
]

,3
g −

(

eν−λν,3
)

,3

−λ,2e
2ν (ν,2 − fgν,2 − gf,2)

}

X (52)

R0
313 = e−(λ+µ)

{

[

eν−λ (fν,3 + f,3)
]

,3
−

(

eν−λν,3
)

,3
f + f,2λ,2e

2ν
}

X (53)

R1
202 =

{

[

eν+µ (gµ,2 + g,2)
]

,2
−
(

eν+µµ,2

)

,2
g − g,3ν,3e

µ−λ−ν
}

X (54)

R1
212 = eν−µ

{

[

eν+µ (gµ,2 + g,2)
]

,2
f −

(

eν+µµ,2

)

,2

+ν,3e
µ−ν−2λ (µ,3 − fgµ,3 − fg,3)

}

X (55)

R1
203 = e−(λ+ν)

{

[

eν+µ (gµ,2 + g,2)
]

,3
−
(

eν+µµ,2

)

,3
g − g,3λ,2e

ν+µ
}

X (56)

R1
213 = e−(ν+µ)

{

[

eν+µ (gµ,2 + g,2)
]

,3
f −

(

eν+µµ,2

)

,3

+λ,2e
2ν (µ,3 − fgµ,3 − fg,3)

}

X (57)

R1
302 =

{

[

eµ−λ (gµ,3 + g,3)
]

,2
−
(

eµ−λµ,3

)

,2
g + g,2ν,3e

ν−λ
}

X (58)

R1
312 = eν−µ

{

[

eµ−λ (gµ,3 + g,3)
]

,2
f −

(

eµ−λµ,3

)

,2

−ν,3e
µ−λ (µ,2 − fgµ,2 − fg,2)

}

X (59)

R1
303 = e−(λ+ν)

{

[

eµ−λ (gµ,3 + g,3)
]

,3
−

(

eµ−λµ,3

)

,3
g + g,2λ,2e

µ+λ
}

X (60)

R1
313 = e−(λ+µ)

{

[

eµ−λ (gµ,3 + g,3)
]

,3
f −

(

eµ−λµ,3

)

,3

−λ,2e
2ν+λ+µ (µ,2 − fgµ,2 − fg,2)

}

X (61)

R2
323 = −eν−λ

{

[

eν
(

eλ
)

,2

]

,2
+
[

e−λ (eν),3

]

,3

}

(62)

R2
301 = eµ−λ {(g,2µ,3 − g,3µ,2) + eν (f,3ν,2 − f,2ν,3)}X (63)

We have arrived at the equations for 19 components of the Riemann tensor, but they are

not all independent, because of the symmetry reasons and some identities. For example,

Jacobi identity gives us the following relation:

R0
123 +R0

231 +R0
312 = 0 (64)
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Now, the component R0
312 is present in Eq. (50) and we can derive the remaining two based

on symmetry and antisymmetry of the Riemann tensor:

R0
213 = −R0

231 (65)

R2
301 = −R0

123 (66)

so the Jacobi identity becomes:

− R2
301 −R0

213 +R0
312 = 0 (67)

which could be useful relation. Also, there are three more relations:

R0
212 = −R1

202 (68)

R0
313 = −R1

303 (69)

R1
213 = R1

312 (70)

which further reduce the number of independent components of Riemann tensor to 13. Fi-

nally, Ricci tensor is derived by contracting the Riemann tensor (we also use some symmetry

relations of the Riemann tensor):

R00 = Ra
0a0 = R1

010 +R2
020 +R3

030 = −
(

R1
010 +R2

020 +R3
030

)

(71)

R11 = Ra
1a1 = R0

101 +R2
121 +R3

131 (72)

R22 = Ra
2a2 = R0

202 +R1
212 +R3

232 = R0
202 +R1

212 +R2
323 (73)

R33 = Ra
3a3 = R0

303 +R1
313 +R2

323 (74)

R01 = Ra
0a1 = R0

212 +R0
313 (75)

R23 = Ra
2a3 = R0

203 +R1
213 (76)

Setting the Einstein equations for the vacuum:

Rab −
1

2
ηabR = 0 (77)

it follows that R = 0 and Rab = 0. Then one finally has the equations for Ricci tensor:

− R00 = e2ν [X (gf,2µ,2 + fg,2ν,2 − g,2f,2)− µ,2ν,2]

+e−2λ [X (gf,3µ,3 + fg,3ν,3 − g,3f,3)− µ,3ν,3]

+
{

[

e2ν (fν,2 + f,2)
]

,2
g −

(

e2νν,2
)

,
2 + ν,3e

−2λ (ν,3 − fgν,3 − gf,3)
}

+e−(λ+ν)
{

[

eν−λ (fν,3 + f,3)
]

,3
g −

(

eν−λν,3
)

,3

−λ,2e
2ν (ν,2 − fgν,2 − gf,2)

}

X = 0 (78)
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R11 = e2ν [X (gf,2µ,2 + fg,2ν,2 − g,2f,2)− µ,2ν,2]

+e−2λ [X (gf,3µ,3 + fg,3ν,3 − g,3f,3)− µ,3ν,3]

+eν−µ
{

[

eν+µ (gµ,2 + g,2)
]

,2
f −

(

eν+µµ,2

)

,2

+ν,3e
µ−nu−2λ (µ,3 − fgµ,3 − fg,3)

}

X

+e−(λ+µ)
{

[

eµ−λ (gµ,3 + g,3)
]

,3
f −

(

eµ−λµ,3

)

,3

−λ,2e
2ν+λ+µ (µ,2 − fgµ,2 − fg,2)

}

X = 0 (79)

R22 =
{

[

e2ν (fν,2 + f,2)
]

,2
g −

(

e2νν,2
)

,2
+ ν,3e

−2λ (ν,3 − fgν,3 − gf,3)
}

X

+eν−µ
{

[

eν+µ (gµ,2 + g,2)
]

,2
f −

(

eν+muµ,2

)

,2

+ν,3e
µ−ν−2λ (ν,3− fgµ,3 − fg,3)

}

X

−eν−λ

{

[

eν
(

eλ
)

,2

]

,2
+
[

e−λ (eν),3

]

,3

}

= 0 (80)

R33 = e−(λ+ν)
{

[

eν−λ (fν,3 + f,3)
]

,3
g −

(

eν−λν,3
)

,3
− λ,2e

2ν (ν,2 − fgν,2 − gf,2)
}

X

+e−(λ+ν)
{

[

eµ−λ (gµ,3 + g,3)
]

,3
f −

(

eµ−λµ,3

)

,3

−λ,2e
2ν+µ+λ (µ,2 − fgµ,2 − fg,2)

}

X

−eν−λ

{

[

eν
(

eλ
)

,2

]

,2
+
[

e−λ (eν),3

]

,3

}

= 0 (81)

R01 = eν−µ
{

[

e2ν (fν,2 + f,2)
]

,2
−
(

e2νν,2
)

,2
f − f,3ν,3e

−2λ
}

X

+e−(λ+µ)
{

[

eν−λ (fν,3 + f,3)
]

,3
−

(

eν−λν,3
)

,3
f + f,2λ,2e

2ν
}

X = 0 (82)

R23 = e−(λ+ν)
{

[

e2ν (fν,2 + f,2)
]

,3
g − (eνν,2),3 + λ,2e

2ν (ν,3 − fgν,3 − gf,3)
}

X

+e−(µ+ν)
{

[

eµ+ν (gµ,2 + g,2)
]

,3
f −

(

eµ+νµ,2

)

,3

+λ,2e
2ν (µ,3 − fgµ,3 − fg,3)

}

X = 0 (83)

These equations could be solved in some future paper. One bears in mind that the functions

f and g are known from Eq. (26) and that there are only three unknown functions which

have to be found: e2ν , e2λ and e2µ. Also, since we are trying to find the solution which we

want to be reduced to the Schwarzschild solution when the body stops rotating, then one
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can use the following limits too:

lim
a→0

e2ν =
r2 − 2Mr

r2

lim
a→0

e2λ = r2 (84)

lim
a→0

e2µ = r2 sin2 θ

One could also demand that in the limit of flat space-time, the solution reduces to Eq. (21).

The Riemann tensor components then tend to zero and the unknown functions tend to

metric tensor components in Eq. (21):

lim
a→0

e2ν =
r2 + a2

r2 + a2 cos2 θ

lim
a→0

e2λ = r2 + a2 cos2 θ (85)

lim
a→0

e2µ =
(r2 + a2)2 sin2 θ

r2 + a2 cos2 θ

This could maybe be useful when trying to solve the equations of Ricci tensor. Finally, one

should be able to get the metric:

ds2 =
r2 − 2Mr + a2

ρ2
(

dt− a sin2 θdφ
)2 − ρ2

r2 − 2Mr + a2
dr2

−ρ2dθ2 − (r2 + a2)2 sin2 θ

ρ2

(

dφ− a

r2 + a2
dt

)2

(86)

IV. CONCLUDING REMARKS

We have shown that it is possible at least in principle to derive the Kerr solution in

the form (9) following some intuitive, physical arguments. Starting from an ellipsoidally

symmetric flat space-time (8), we used transformation (16) from coordinates (t, φ, r, θ) to

coordinates (T,Φ, r, θ) with the same dimension, along with an argument of reciprocity of

two of the metric tensor components (18) to get the flat metric (21) in which the cross term

dtdφ can arise if new metric tensor components G′
00 or G′

33 (or both) are changed in the

presence of mass. We then used this metric to propose an ansatz from which we searched

for the solution to the Einstein equations in an orthogonal metric form that resembles

Schwarzschild solution (6). We have done this by demanding that time-time and radial-

radial metric tensor components obey the same reciprocity relation (18) as Schwarzschild

metric, and at the same time that the metric manifestly possesses the ellipsoidal symmetry

of flat ellipsoidal space-time (21). It is interesting that the Kerr metric (1) can be rewritten
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exactly in these coordinates, which results in orthogonal form of the Kerr metric. The

derivation of orthogonal Kerr metric form (9) could be of pedagogical use, because this

derivation is more intuitive than textbook derivations. Also, some of its features are more

obvious in the form (9). For example, setting the outer event horizon11

r+ = M +
√
M2 − a2 (87)

in metric (9), the Black Hole angular velocity11 becomes then manifest in the dΦ coordinate:

ΩH =
a

r2+ + a2
(88)

The motivation for this derivation emerged from the comparison of the metric tensor compo-

nents of Schwarzschild solution (6), flat spherically symmetric space-time (7), flat ellipsoidal

space-time in the form (21) and Kerr metric in the form (9), which is presented here in the

table (I) below. When one compares the corresponding metric tensor components, the most

striking feature is the pattern of differences (and similarities) between the metric tensor

components of different space-times within the columns of table (I). It would be interest-

ing to check if full analogy is present between the ansatz (5) and (22). Does one get the

same result that e2ν(r,θ)(−e2σ(r,θ)) = −1 for this metric while solving the Einstein equations?

If this is the case, then coordinates (T,Φ, r, θ) have a special role in rotating space-times.

For the ellipsoidal space-time, these coordinates naturally give the possibility for rotation

when one considers a rotating body with such a symmetry (ellipsoid of revolution). This

connection between the reciprocity of time-time and radial-radial metric tensor components,

rotation and orthogonality of the metric could maybe be an important one for some other

axially-symmetric space-times too.
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TABLE I. Comparison of metric tensor components of several metric forms used in paper. In

brackets are given the coordinates to which the new metric tensor components of the Kerr metric

correspond.

dt2(dT 2) dr2 dθ2 dφ2(dΦ2)

flat spherical 1 −1 −r2 −r2 sin2 θ

Schwarzschild
r2 − 2Mr

r2
− r2

r2−2Mr
−r2 −r2 sin2 θ

flat ellipsoidal
r2 + a2

r2 + a2 cos2 θ
−r2 + a2 cos2 θ

r2 + a2
−(r2 + a2 cos2 θ) −(r2 + a2)2 sin2 θ

r2 + a2 cos2 θ

Kerr
r2 − 2Mr + a2

r2 + a2 cos2 θ
− r2 + a2 cos2 θ

r2 − 2Mr + a2
−(r2 + a2 cos2 θ) −(r2 + a2)2 sin2 θ

r2 + a2 cos2 θ
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