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Andrzej Krasiński · Enric Verdaguer ·
Roy Patrick Kerr

Published online: 1 August 2009
© Springer Science+Business Media, LLC 2009

Keywords Einstein equations · Kerr solution · Kerr–Schild mertrics · Black holes ·
Golden Oldie

Part 1: Explanation of some details of derivation

By Andrzej Krasiński

The Kerr solution is today textbook material and a basic element of education in relativ-
ity. However, derivations of it are not easy to find in the literature—most textbooks and
monographs simply quote it as a given thing. There exist several uniqueness theorems
(see part 2 of this note) that refer to physical and geometrical properties of the Kerr
solution, but none of them gives a hint on how to derive it starting from the Einstein
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2470 A. Krasiński et al.

equations. Given the great physical and astrophysical significance of this solution,1

this is a rather frustrating situation. Therefore, we (the editors) decided to go back to
the historical origins. In Part 3 of this note, Roy Kerr gives a first-hand account on
how he arrived at his famous result. Here, some comments on the Kerr–Schild paper.

The original publication [3] reported only the final result and some of its basic
properties, but gave no hint on how to derive it. A derivation was published 2 years
later, in a volume of conference proceedings that has never been easily accessible, and
was not frequently referred to. This is the text reprinted here. The idea of the derivation
is mostly self-explanatory, but not the details. The authors warn the reader at one point
that the calculations are not simple, but even where they say that something follows
by “simple calculation”, the results are not necessarily easy to reproduce. This note is
meant to be a guide for those readers who wish to verify all the details.2 We will use
the following notation for the tetrad vectors:

{e1, e2, e3, e4} = {m, m, �, k} . (1)

The following auxiliary results are helpful in verifying the “simple direct calcula-
tion” at the beginning of Sect. 2:

The combinations

{
α

βγ

}
lβlγ ,

{
α

βγ

}
lαlγ and

{
α

βα

}
have the same value, no

matter whether gαβ or ηαβ is used to calculate the Christoffel symbols.
Then: {

α

βγ

}
lγ =

{
α

βγ

}
(η)lγ − 1

2
lρ

(
lαlβ

) ;ρ ,

(2){
α

βγ

}
lα =

{
α

βγ

}
(η)lα + 1

2
lρ

(
lβlγ

) ;ρ ,

where

{
α

βγ

}
are calculated from gαβ , and

{
α

βγ

}
(η) are calculated from ηαβ (remem-

ber: ηαβ is flat, but expressed in arbitrary coordinates, so in general

{
α

βγ

}
(η) �= 0).

Using these formulae in (2.1), after a lot of algebra, one is led to (2.2).
The other “simple calculation” mentioned before (2.8) is again not really simple. To

carry it out one needs to note that, in consequence of (2.6), Eqs. (2) above simplify to:{
α

βγ

}
kγ =

{
α

βγ

}
(η)kγ − kρ H,ρ kαkβ,

(3){
α

βγ

}
kα =

{
α

βγ

}
(η)kα + kρ H,ρ kβkγ

1 This is attested by the very large number of papers discussing its various astrophysical applications—see
Refs. [1] and [2].
2 According to the information from R. P. Kerr (see part 3 of this note), the Kerr–Schild paper is a text
specially adapted to deriving the Kerr metric. The derivation by the original method was published still
later, see Ref. [4].
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while the general Christoffel symbols of the two metrics are related by

{
α

βγ

}
=

{
α

βγ

}
(η) − kαkβ H,γ −Hkαkβ;γ − Hkα;γ kβ − H,β kαkγ

− Hkαkγ ;β − Hkα;β kγ + ηαρ H,ρ kβkγ + ηαρ Hkβ;ρkγ

+ ηαρ Hkβkγ ;ρ + 2Hkρ H,ρ kαkβkγ . (4)

To derive (3.9) one observes that R12 = 0 is equivalent to kρ H,ρ (z + z) +
H

(
z2 + z2) = 0, while z obeys kρz,ρ = −z2. This last equation is not trivial either.

To obtain it, one must take the Ricci identities for the vector field kα:

kα;βγ − kα;γβ = Rραβγ kρ (5)

and contract them first with kγ gαβ , obtaining an equation analogous to the
Raychaudhuri equation:

kγ θ,γ + σ 2 − ω2 + θ2 = −1

2
Rργ kρkγ , (6)

where

ω2 def= 1

2
k[α;β]kα;β (7)

θ
def= kα;α (8)

σ 2 def= 1

2
k(α;β)k

α;β − θ2 (9)

are the rotation, expansion and shear of the null geodesic k-congruence. Then one
contracts Eq. (5) with kγ

(
mαmβ − mβmα

)
and uses the fact that Rρ[αβ]γ kρkγ ≡ 0.

The result is:

kγ
(
�4[12]

)
,γ +1

2

[
(�412)

2 − (�421)
2
]

= 0. (10)

But θ and ω are the real and the imaginary part of the same Ricci rotation coefficient
�412, which is another exercise for the reader (Eqs. (2.17) in the paper seem to have
misplaced indices). Knowing this, one can rewrite (10) as

kγ ω,γ + 2θω = 0, (11)

and then observe that (6) and (11) can be written as one complex equation:

kγ z,γ + z2 + σ 2 = −1

2
Rργ kρkγ ≡ −1

2
R44. (12)
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In the shearfree vacuum case this reduces to kρz,ρ = −z2, as stated above. Thus,
kρ H,ρ (z + z) + H

(
z2 + z2) = 0 is equivalent to kρ[H/(z + z)],ρ = 0, whose

solution is (3.9).
Deriving (3.11) is again tricky. The set (3.10) implies the integrability condition

P|12 − P|21 = P|m (�m
12 − �m

21) (from (2.21)), which reads explicitly

S
def= z

z2 Y,u mρz,ρ − z

z
mρY,uρ − z

z2 Y ,u mρz,ρ + z

z
mρY ,uρ

+
(

z

z
− z

z

)
Y,u Y ,u −�ρ P,ρ (z − z) = 0. (13)

Other useful formulae are:

mρz,ρ = (z − z)Y ,u , (14)

�ρz,ρ = Y,u Y ,u −H z2 + mρY ,uρ , (15)

and their complex conjugates. Also, it is important to note that R33 = R1
313+R2

323 ≡
2R1323 = 2R0

323. Although R33 must be real, the equation R1323 = R2313 does not
hold identically.3 Consequently, 2R2313 is not identically equal to R1323 + R2313. In
the equation R4

132 = 0 one must use the analogue of (2.23) for the full Riemann
tensor and all the other equations derived so far. The result is:

z�ρ
(

e3P
)

,ρ (z + z)+ 3H
z + z

z
Y,u Y ,u + 3ze3P mρY,uρ

− 3
z2

z
e3P mρY ,uρ + 3

z2

z2 e3P Y ,u mρz,ρ − 3
z

z
e3P Y,u mρz,ρ = 0. (16)

Taking the imaginary part of the above we obtain (z + z)S = 0, where S is the
expression defined in (13). Thus, the imaginary part of (16) vanishes by virtue of the
integrability condition of (3.10). Using now (13) in (16) to eliminate the mρY,uρ terms
and recalling that Y,u = �ρY,ρ , we obtain (3.11).

From here on, until the end of Sect. 4, the derivation is general and covariant, and
relatively easy to follow. The non-covariant arbitrary assumption is made at the begin-
ning of Sect. 5. What the authors say here is not strictly correct: Eq. (5.1) does not
result for any quadratic polynomial �(Y ). One must assume � = αY 2 + βY − α,
where α and β are arbitrary complex constants; only then can (5.1) be achieved by a
translation of ξ and u or of ξ and v.

3 The identities obeyed by the Riemann and Weyl tensors are deduced under the assumption that these
tensors arise from commutators of second derivatives of tensors. However, if the basic objects in the the-
ory are the Ricci rotation coefficients, like in the Newman–Penrose formalism, then the curvature tensors
are present in first-order equations, and not all the ‘identities’ will automatically be fulfilled (in fact, only
Ri jkl = −Ri jlk = −R jikl and Ci

jil = 0). Thus, some of those other ‘identities’ must be imposed as
equations to fulfill. The equation R1323 = R2313 holds by virtue of (13).
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Also (5.5) requires a comment: the equation F = 0 has two solutions for Y , the
other one follows from (5.5) by replacing ρ → −ρ. However, what then results in
(5.8) is a continuation of the Kerr metric to negative ρ, and is thus not a new solution.

Another instructive derivation of the Kerr metric can be found in the paper by Carter
[5].4 The Carter paper, and that of Boyer and Lindquist [6], are also good sources of
information about geometrical properties of the Kerr metric.

The Kerr–Schild paper reprinted here is at the same time an important early source
of knowledge on the, so-called today, Kerr–Schild metrics. That metric ansatz was
quite popular in its time. A good overview of the exact solutions obtained on the basis
of that ansatz is Chapter 32 in Ref. [7].5

Part 2: Later research stimulated by the Kerr solution

By Enric Verdaguer

The relevance of the Kerr solution in the development of general relativity during the
1970s cannot be overemphasized. On the one hand, it stimulated the search for solu-
tions describing spinning isolated bodies, both in the exterior as well as in the interior,
and also the development of new solution-generating techniques. On the other hand
the development of black hole physics, and the so called uniqueness or “no hair” theo-
rems, places the Kerr solution in a unique position as a key piece in our understanding
of gravitational theory. Let us briefly comment on those points.

Solution-generating techniques

The Kerr–Schild ansatz and the Kerr solution played an inspiring role in the develop-
ment of the powerful solution-generating techniques that were introduced into general
relativity in the late 1970s in order to solve Einstein equations in the stationary and
axisymmetric context. Thus Maison [8] proved that Einstein equations in vacuum for
stationary and axisymmetric spacetimes are an integrable system. At about the same
time Belinski and Zakharov [9,10] extended the inverse scattering method (ISM),
which had been developed to solve some nonlinear wave equations in fluid dynamics,
to general relativity under certain symmetry assumptions. They showed that the ISM
could be applied to solve Einstein equations in spacetimes with two commuting Killing
vector fields that admit the existence of 2-surfaces orthogonal to the group orbits, i.e.
spacetimes that admit an orthogonally transitive two-parameter group of isometries.
This includes the stationary axisymmetric spacetimes when one of the Killing fields is
timelike (stationary) and the second Killing field generates closed curves and vanishes
on the symmetry axis (axial symmetry).

4 The Carter paper will also be reprinted in the Oldies series.
5 J. Ehlers tells me that one remark should be added to the account in Ref. [7]: all the vacuum solutions
obtained via the Kerr–Schild ansatz have nontrivial isometry groups that are subgroups of the Poincaré
group.
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In the stationary and axisymmetric context the ISM is closely related to other solu-
tion-generating techniques such as different Bäcklund transformations, like
Harrison’s [11,12] and Neugebauer’s Bäcklund transformations [13,14], Kinnersley–
Chitre transformations [15–17], or the Hauser–Ernst formalism [18,19]. All these
techniques provide algorithms to obtain new solutions starting from some known
solutions. Repeated applications of these transformations to a given solution leads to
a large class of new solutions with an increasing number of parameters. Generally
these solution-generating techniques can also be extended to the Einstein–Maxwell
equations.

As an example, and to be specific, let us summarize briefly the soliton transforma-
tion of the ISM. In the stationary axisymmetric context it is convenient to write the
metric in coordinates adapted to the Killing vector fields, ∂t and ∂ϕ , in the form:

ds2 = f (ρ, z)(dρ2 + dz2) + gab(ρ, z)dxadxb, (17)

where a, b = 0, 1 with x0 = t, x1 = ϕ. We can impose on the 2 × 2 matrix g the
condition that

det g = −ρ2, (18)

so that ρ and z are Weyl coordinates. The Einstein equations in vacuum for this metric
separate in two sets of equations. The first set determines the matrix g,

(
ρg,ρg−1

)
,ρ

+
(
ρg,zg−1

)
,z

= 0, (19)

and the second set determines f , once g is known. The ISM focuses on the nonlin-
ear equation (19), the integration of the second set to determine f is rather simple
once g has been obtained. The idea is to associate to the nonlinear system (19) some
“spectral equations” (a set of two linear equations involving g and its derivatives) for
a “generating matrix” ψ(λ, ρ, z) in such a way that the Einstein equations (19) are the
integrability conditions of the spectral equations. The matrix g is then given in terms
of the generating matrix when the “spectral” paramater λ is zero:

g(ρ, z) = ψ(0, ρ, z). (20)

The procedure for the integration of the spectral equations is to assume a particular
solution g0 and then to find, by integration, the corresponding solution ψ0(λ, ρ, z).
This is the only non algebraic step in the procedure, which is made easier by assum-
ing a simple “background” solution g0. A particularly simple and useful choice is the
Minkowski metric, for which f0 = 1 and g0 = diag (−1, ρ2), in the Weyl coordinates.
The generating matrix is in this case

ψ0 = diag (−1, ρ2 − 2zλ − λ2). (21)
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Next one looks for solutions of ψ of the form ψ = χψ0, and the spectral equa-
tions become equations for the “dressing matrix” χ(λ, ρ, z). The fact that g must be
symmetric and real imposes some restrictions on χ .

The “n-soliton transformation” of the ISM corresponds to the presence of n pole
singularities of the dressing matrix in the complex plane of the spectral parameter λ.
That is, when χ takes the form:

χ = I +
n∑

k=1

Rk

λ − μk
, (22)

where I is the unit matrix and Rk are 2 × 2 matrices independent of λ. The spectral
equation for χ and the restriction that it must satisfy completely determine the so
called “pole trajectories” μk(ρ, z) and the matrices Rk(ρ, z). The pole trajectories are

μk = wk − z ±
√

(wk − z)2 + ρ2, (23)

where wk are arbitrary, generally complex, constants. The matrices Rk have the form

(Rk)ab = n(k)
a m(k)

b , (24)

where the two-component vectors m(k)
a are given by

m(k)
a = m(k)

0b

[
ψ−1

0 [μk, ρ, z)
]

ba
(25)

with arbitrary constants m(k)
0b , and the vectors n(k)

a are solutions of the algebraic equa-
tions,

n∑
l=1

�kln
(l)
a = μ−1

k m(k)
c (g0)ca, (26)

where the symmetric matrix �kl is defined by

�kl = m(k)
c (g0)cbm(l)

b (ρ2 + μkμl)
−1. (27)

All this leads to the following “n-soliton solution” of the nonlinear equations (19):

g = ψ(0) = χ(0)ψ0(0) =
(

I −
n∑

k=1

Rkμ
−1
k

)
g0. (28)

This matrix g satisfies Eq. (19) but not the condition (18) and therefore is not a solution
of the Einstein equations. However, a simple normalization procedure, which involves
the use of the differential equation satisfied by det g, shows that the matrix
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g(ph) = ρ−n

(
n∏

k=1

μk

)
g, (29)

where g is given by (28) satisfies Eqs. (18) and (19). It corresponds to the n-soliton
solution of Einstein equations. An important property of the soliton transformation is
that each pole trajectory changes the sign of det g so that if we start from a physical
background the number of pole trajectories must be even. Furthermore, if a pole tra-
jectory is complex its complex conjugate must also be included to ensure that the final
solution is real.

So far we have ignored the metric coefficient f (ρ, z) but the differential equation
for f is easily integrated when the n-soliton solutions for g are known. The final
coefficient, see [9,10] for the details, is given by the following algebraic expression:

f (ph) = f0ρ
−n2/2

(
n∏

k=1

μk

)n+1 [
n∏

k>l=1

(μk − μl)
−2

]
det �kl , (30)

where the second product above is equal to 1 for n = 1.

The Kerr metric and some generalizations

That the Kerr solution could describe the exterior gravitational field of a spinning
mass was already noticed in Kerr original paper [3], where it was shown that the two
parameters of the solution represented the mass and the angular momentum with no
higher order multipole moments, and that it reduced to the Schwarzschild solution
when the angular momentum vanished. This by itself was an important achievement
since we had for the first time a solution describing the exterior field of stationary
rotating isolated sources. The search for a matching interior solution soon began but,
so far, this search has been unsuccessful.

The Kerr solution has some important generalizations. One of them is the Kerr-
NUT solution and its extensions [7]. The Kerr-NUT solution is not asymptotically flat
but it reduces to the Kerr solution when the NUT parameter vanishes.

We may now use the soliton transformation of the ISM sketched above to derive
explicitly the Kerr-NUT solution as a 2-soliton transformation on the Minkowski back-
ground. Since the pole trajectories come in pairs, this is the simplest solution we can
obtain from the Minkowski background. Thus, let us take μ1 and μ2 with the wk

parameters in Eq. (23) written as

w1 = z1 + σ, w2 = z2 − σ, (31)

where we assume that the new parameters z1 and σ are both real, which means that
the pole trajectories are real. Instead of Weyl’s coordinates ρ and z it is convenient to
introduce Boyer–Lindquist coordinates r and θ as

ρ =
√

(r − m)2 − σ 2 sin θ, z − z1 = (r − m) cos θ, (32)
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where m is a new parameter whose value will be specified below. The pole trajectories
take now the form

μ1 = 2(r − m + σ) sin2(θ/2), μ2 = 2(r − m − σ) sin2(θ/2), (33)

where we have chosen the plus signs in front of the square roots of (23) for the two
pole trajectories.

Since the generating matrix ψ0 for the Minkowski background is given by (21) we
get from (25) the following components for the vectors m(k)

a :

m(k)
0 = C (k)

0 , m(k)
1 = C (k)

1 μ−1
k , (34)

where now k = 1, 2 and C (k)
0 and C (k)

1 are arbitrary constants. Without loss of gener-
ality we can impose the following two conditions on these constants

C (1)
1 C (2)

0 − C (1)
0 C (2)

1 = σ, C (1)
1 C (2)

0 + C (1)
0 C (2)

1 = −m. (35)

The first equation is possible because there is a normalization freedom on these con-
stants: C (k)

a → ζ (k)C (k)
a . The second condition is the definition of m. We can also

introduce two new arbitrary constants a and b, defined by

C (1)
1 C (2)

1 − C (1)
0 C (2)

0 = −b, C (1)
1 C (2)

1 + C (1)
0 C (2)

0 = a. (36)

It follows from (35) and (36) that

σ 2 = m2 − a2 + b2. (37)

Finally, we can substitute the above expressions for the vectors m(k)
a and the pole

trajectories μk into (27), solve (26) for n(k)
a and find the metric coefficients g(ph)

ab from
(28) and (29). The coefficient f of the metric (17) is easily obtained from equation
(30). The resulting expressions for the metric contain only those combinations of the
constants C (k)

a which are expressible through the three independent arbitrary param-
eters m, a and b according to (35)–(37). One also needs to write the line element
dρ2 + dz2 in the new r and θ variables and the result is,

ds2 = ω(�−1dr2 + dθ2) − ω−1(� − a2 sin2 θ)(dt + 2adϕ)2

+ω−1[4�b cos θ − 4a sin2 θ(mr + b2)](dt + 2adϕ)dϕ

−ω−1[�(a sin2 θ + 2b cos θ)2 − sin2 θ(r2 + b2 + a2)2]dϕ2, (38)

where ω and � are defined as

ω = r2 + (b − a cos θ)2, � = r2 − 2mr + a2 − b2. (39)

These formulas are the standard expression for the Kerr-NUT solution in the Boyer–
Lindquist coordinates if we take t + 2aϕ as the new time variable.
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Since σ is real m2 + b2 > a2 which corresponds to the usual Kerr-NUT solution
with an event horizon. Note that if one uses complex conjugate poles, μ1 = μ�

2 this
is equivalent to assume that σ in equation (31) is pure imaginary and one obtains
m2 + b2 < a2, which corresponds to the Kerr-NUT solution with naked singularities.
Note also that if opposite signs in front of the square roots in (23) are taken for the two
pole trajectories, the final solution is equivalent to that obtained here; provided appro-
priate relations are written between the constants C (k)

a and the parameters σ , m a and
b. When b = 0 the metric (38) is the Kerr metric. The metric (38) is not asymptotically
flat in the presence of the NUT parameter b, when b �= 0. When a = 0 the metric
(38) is the Taub-NUT metric. Of course, b = a = 0 corresponds to the Schwarzschild
metric, and b = 0 and a = m corresponds to the “extreme” Kerr solution.

Another important generalization is the Tomimatsu–Sato solution [20] and some
extensions. The Tomimatsu–Sato family of solutions are asymptotically flat and
include an arbitrary real “deformation parameter”, δ, that may be related to the quad-
rupole moment of a massive isolated source. The solutions for integer deformation
parameters may be obtained as the n-soliton transformation on the Minkowski back-
ground and a limiting procedure of pole fusion. When n = 4 this procedure leads to
the extended Tomimatsu–Sato metric with five arbitrary parameters that was obtained
by Kinnersley and Chitre [15,16]. It includes the original two parameter Tomimatsu–
Sato solution with deformation parammeter δ = 2: after two of the five parameters are
taken to be zero and two other parameters are combined to impose asymptotic flatness
of the metric. Therefore the Tomimatsu–Sato solution corresponds to an overlap of two
identical Kerr solutions centered at the same point. The same limiting procedure can
be made to obtain an overlap of n/2 identical Kerr solutions. The distorsion parameter
is then δ = n/2 and the solution can be made asymptotically flat, with a suitable
choice of parameters.

Many of the generalizations of the Kerr metric obtained by the solution-generat-
ing techniques derived from a search for stationary asymmetric solutions with higher
multipole moments, which could describe the exterior gravitational field of realis-
tic rotating bodies. Unlike the case of spherical symmetry, where Birkhoff’s theo-
rem guarantees that the exterior solution is uniquely described by the Schwarzschild
metric, one expects that a rotating axisymmetric body should contain an arbitrary
number of multipole moments.

The Kerr solution and black holes

The Kerr solution, however, acquired a new and unique significance with black hole
physics. In particular, from a new understanding of black holes as describing the
spacetime geometry resulting from the gravitational collapse of isolated bodies. The
great importance of the Kerr metric is not only that it describes the entire spacetime
geometry of a spinning black hole but that it describes, in some sense, the most general
final state of an uncharged black hole. This is the result of work by several authors
such as Price, Israel, Carter, Robinson and Hawking among others, which lead to the
formulation of the uniqueness theorems. In fact, one would expect that a black hole
formed by gravitational collapse would settle down to a stationary final state. The

123



Editorial note to: R. P. Kerr and A. Schild, A new class of vacuum solutions 2479

uniqueness theorems then conclude that a stationary vacuum black hole is uniquely
described by the Kerr metric.

The chain of theorems leading to this result may be summarized as follows. It
begins with Hawking demonstration that the event horizon of a stationary black hole
has S2 topology, or more precisely, that the intersection of the horizon with a Cauchy
surface has the topology of a two-sphere. This is followed by the result also proved
by Hawking [21] that the event horizon of a stationary asymptotically flat spacetime
is a Killing horizon, both in vacuum and in Einstein–Maxwell; see Hawking and Ellis
book [22] for a complete exposition of these results. The corresponding Killing vector
field may be normal to the horizon or not. When it is normal the spacetime is static
and thus spherically symmetric and, consequently, it is described by the Schwarzschild
solution. When it is not normal the spacetime is axisymmetric.

The chain is finally closed with theorems due to Carter [23] and Robinson [24]; see
Chandrasekhar’s book [25] for a detailed demonstration of Robinson’s version. This
theorem establishes that a stationary and axisymmetric vacuum solution of Einstein
equations with a regular convex event horizon which is asymptotically flat and not
singular outside the horizon is uniquely specified by two parameters which correspond
to the mass and the angular momentum. Since the Kerr metric satisfies the conditions
of this theorem it provides a unique specification of a stationary black hole.

It is interesting that, in recent years, research in string theory has stimulated the
search for black hole solutions in higher dimensions, and that solution-generating
techniques such as the ISM are playing and important role in this search. Thus, in five
dimensions the analog of the Kerr solution was found by Myers and Perry [26]. It is a
vacuum stationary axisymmetric and asymptotically flat metric representing a rotating
five dimensional black hole with an event horizon of topology S3. Remarkably the
uniqueness of the four dimensional Kerr black hole is somewhat relaxed in higher
dimensions, thus Emparan and Reall [27] discovered a black ring solution: a vacuum
stationary axisymmetric and asymptotically flat solution in five dimensions that has
an event horizon of topology S1 × S2. The black ring rotates along the direction of the
S1. Both, the rotating five dimensional black hole and the rotating black ring solutions
have been recently generated and generalized by the ISM [28,29].

Part 3: a brief history of the discovery of the Kerr solution and the Kerr–Schild
metrics

By Roy Patrick Kerr

The motivation for my study of algebraically special (AS) was very simple. The only
known physically significant solution of the Einstein equations was Schwarzschild.
The Weyl solutions generalised this but were still static and added little to our under-
standing of stellar structures. Relativists had been searching for a stationary rotating
solution for decades but had found nothing. The Schwarzschild metric is AS but
static, so it was possible that there were interesting stationary AS metrics which were
asymptotically flat (like Schwarzschild) but necessarily rotating.
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When I realised that one previous attempt to find all rotating AS spaces had foun-
dered and another seemed to have stopped at the static ones, I rushed headlong into the
search for solutions that fit the conditions of the previous paragraph, found the now
standard coordinates for algebraically special metrics in spring 1963, solved the easy
field equations and then calculated the remaining hard ones. Since these were impos-
sibly difficult, I then “solved Killing’s equation”, looking for all possible symmetries.
There are two distinct types of Killing vectors with very simple canonical forms,
d/dφ and Pd/du. I was fairly sure that if there were two commuting symmetries one
of which was asymptotically timelike then canonical coordinates could be chosen for
which each of the above vectors is a symmetry. Instead of wasting time proving this
conjecture, I assumed it to be true and forged ahead. The complete solution with these
conditions contains four parameters. These are m, a, the NUT parameter and a further
garbage parameter. Since the metric was not asymptotically flat when either of the last
two parameters is nonzero, I discarded them, kept m and a and the rest is history.

This metric was originally found in a rather nasty coordinate system, but it did
have a visible Kerr–Schild structure. I was able to transform the flat space part to
dx2 + dy2 + dz2 − dt2, giving a final metric that was asymptotically flat. At this
point I told Alfred that I was about to calculate its angular momentum. He came to my
office and sat smoking his pipe while I compared its asymptotic expansion with the
well-known linear approximation for any slow moving body (time independent in our
case). When I found that the angular momentum is nonzero he was even more excited
than myself.

When this solution was first found it was clear to everyone that it must have an event
horizon for small a since it was a generalisation of Schwarzschild. For this the light
cones at r = m are tilted inwards. A small perturbation of the metric, a = 10−3 m
say, could not change this. Physicists knew that a spherically symmetric body that
collapsed had to fall inside the event horizon and quickly become singular. However,
it had not been known what would happen if the body had spin. Some thought that this
would stop the formation of a horizon and the collapse to a singularity. After 1963 we
knew that this did not happen for small angular momentum at least.

The first Texas Symposium was held in Dallas on 18 December 1963, a few months
after the Kerr metric was found. Before I went I calculated the geodesics up and down
the axis of rotation and found that there were two distinct horizons. I also attempted to
calculate these off the axis, but I made a mistake and got the wrong surfaces, perhaps
because I was in a rush and K–S coordinates are not the ones to use. This attempt was
published in Kerr [30]. I stated there that the two horizons are the roots of the equation
r4 + a2z2 = 2mr3, instead of the correct equation r4 + a2r2 = 2mr3.

Although I did not discuss the topology in Kerr [3], I did point out in Kerr [30] that
the points on the axial ring x2 + y2 = a2, z = a are the branch points of the metric,
and that the disc bounded by this ring is the corresponding branch cut. The two branch
sheets are each asymptotically flat. The mass is positive on one branch and negative
on the other, and the two event horizons are both in the first sheet.

One morning in autumn, 1963, I looked to see if there were more general situations
where an AS metric splits in the same way as the Kerr metric does into two parts,
ds2

o +mok2, where ds2
o is itself an Einstein space (but not necessarily Lorentzian) and

mo is an arbitrary constant, i.e. where a first-order approximation is actually exact.
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The final result appeared to be that ds2
o is necessarily Lorentzian and the second term

contains an arbitrary function of a complex variable. I did not check this result, just
put the calculations aside.

Sometime after Christmas, 1963, Jerzy Plebański visited Austin. Alfred held a party
for him during which I heard him talking to Jerzy about metrics of the K–S type. I
said “This may be rubbish because it was a fairly rough calculation, but I think I know
of a generalisation of spinning Schwarzschild with an extra function of a complex
variable”.

Alfred was quite excited so he and I went into his office and calculated the connexion
and the easy curvature components for a metric of K–S type. The simplest equation,
Rabkakb = 0, reduced to “k is geodesic”.6 We then calculated those components of
the Riemann tensor which determine whether the metrics were AS. Bingo! They were!
This meant that even if I had made a mistake, we could soon find all (diverging) K–S
metrics. We redid my previous calculations next day and found that they were correct.

Since the work on algebraically special spaces had not been published, we then
worked everything out from first principles. This was a much better treatment anyway,
one that could be extended to Einstein–Maxwell fields. The original derivation was
published much later in Debney et al. [4].

Sometime in early 1964 I added an electromagnetic field to the Kerr–Schild ansatz.
The analysis for this is given in Debney et al. [4]. The first stumbling block was that
I could not prove that the special null vector was geodesic (and still cannot). I there-
fore took this as an additional assumption. The “easy” equations then showed that the
Einstein–Maxwell field depends on three functions, M, A and γ , all constant along
the rays and restricted by the “hard” field equations. I could not solve the latter unless
γ = 0 so I temporarily took this as an additional assumption and continued. This led
to the complete charged Kerr–Schild metrics including, of course, charged Kerr. The
null congruence for the latter is the same as the Kerr congruence but the EM field
depends on an arbitrary function of a complex variable. If this is a constant, e + ib,
then e is the charge and b the magnetic charge. If it is a more complicated function
then the EM field will probably be singular.7

At that point I turned the problem over to G.C. Debney, who had just completed
his prelims for a Ph.D., to see if he could solve the problem when γ �= 0. Naturally,
it took some time for him to get up to speed, but in the end it became clear that the
three of us could not solve the general problem. George then shifted to “Symmetries
in Algebraically Special Spaces”, extending the analysis that was used to find the Kerr
metric to cover all possible symmetry groups [33]. This became the basis for his Ph.D.
thesis.

Each year the American Mathematics Society holds a symposium on applied math-
ematics. The XVII one, held in New York on 20–23 April 1964, included two talks on
relativity, one by A. Lichnerowicz and one by myself, but written by Alfred, on alge-
braically degenerate solutions of the Einstein equations [32]. This was to an audience
of applied mathematicians and emphasised the K–S metrics. The manuscript had to

6 This does not work for charged K–S.
7 In Kerr and Wilson [34] it is proved that the only K–S metric that is nonsingular at infinity is Kerr. I
suspect the same is true for charged K–S and that the proof is very simple, but I have not tried to prove it.
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be written before the conference and so anything in it was discovered by early April
at the latest. It included the following sentence:

Together with their graduate student, Mr. George Debney, the authors have exam-
ined solutions of the nonvacuum Einstein–Maxwell equations where the metric has
the form (2.1).8 Most of the results above apply to this more general case. This work
is continuing.

This tells me that the charged metrics were known by the end of March since they
were discovered before George joined the project, and that was before the Symposium
paper was written. Later that year, Newman went ahead and published his own version,
in which he considered the simplified problem where the background metric is Kerr
and the electric field is generated by a real constant rather than an arbitrary complex
function.
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Golden Oldie Editor’s comment: Professor Kerr gave his permission to announce
the following (this is a quotation from his email to A.K.):

“Fulvio Melia and I are writing a book ‘Cracking the Einstein Code’ which will
probably be published by Farrar Straus and Giroux. It will give the history of Black
holes from early last century to the present, with several chapters on the events of
the 60’s. It will be a popular book (we hope) for the general public, rather than for
physicists.”

Roy Patrick Kerr: a brief biography

By Andrzej Krasiński, compiled from Refs. [35] and [36].9

Roy Kerr was born on May 16, 1934, in Kurow, New Zealand.
He received his M.S. in 1954 from the New Zealand University (now dissolved)

and his Ph.D. in 1960 at the Cambridge University.
Kerr’s colleague (see Ref. [35]) describes his early years as follows: “His under-

graduate career was not given wholly to mathematics and science; he admits to having
played a lot of billiards, and in 1952 represented his College in boxing at the Easter
Tournament, as a light-welterweight. I recall W.W. Sawyer, then a lecturer at Canter-
bury, expressing alarm and dismay over Roy’s pugilism, on the ground that he didn’t
want the best brain he’d encountered in a student scrambled by a well-thrown punch;
but history seems to confirm that Roy came to no lasting harm over it.

In 1955 he received a M.Sc with first class honours, and went to Cambridge with
a Sir Arthur Sims Empire Scholarship. He was awarded a Ph.D. in 1960, for a thesis
on the equations-of-motion problem in general relativity. This work appeared in a

8 The usual Kerr–Schild form.
9 Repeated attempts by the Editor of this series to get a first-hand autobiography of Roy Kerr were unsuc-
cessful.
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series of three . . . papers in Nuovo Cimento, and although later overshadowed by the
Kerr metric, was extensively cited. He went on to a post-doctoral post at Syracuse
University, and then to work with a US Air Force relativity group at Wright-Patterson
Field, in Ohio. The USAF were interested in antigravity devices; one of the tasks of the
relativity group was to assess and report on such devices proposed to it by inventors.”

In 1962 Kerr joined the relativity group at the University of Texas in Austin. He
found the famous Kerr solution in his first year there. The solution was publicly pre-
sented in 1963, during the First Texas Symposium on Relativistic Astrophysics in
Austin, but did not seem to be properly appreciated by the public. Universal recogni-
tion came later. S. Chandrasekhar, in his Ryerson Lecture of 1978, said: “In my entire
scientific life, extending over forty-five years, the most shattering experience has been
the realization that an exact solution of Einstein’s equations of general relativity, dis-
covered by the New Zealand mathematician Roy Kerr, provides the absolutely exact
representation of untold numbers of massive black holes that populate the universe.”
(quotation after Ref. [35]).

Kerr returned to New Zealand in 1971. In 1983 he became the head of the Depart-
ment. His colleague describes his activities so: “Roy’s style as HOD was at once
uncompromising and dashing; in a series of moves which affronted some of our col-
leagues in other departments, who had grown comfortable with the traditional Can-
terbury view that Mathematics should be a low-cost department devoted to service
teaching, he contrived to reduce student–staff ratios, encourage research, and equip
the department with a computer system at the sort of cost hitherto associated with
spectrographs. Morale rose markedly. In many respects Roy was an unusual figure in
University administration; he had very little patience for the practice of wrapping self-
interest up in politically correct pieties, and was perfectly willing to offend entrenched
privilege. But he was successful, and we are the better for his efforts, and we love him
for them.” [35]

Roy Kerr retired from his position as Professor of Mathematics at the University
of Canterbury in February 1993.

He received many awards, culminating in the Hughes Medal of the Royal Society
of London in 1984.

Roy Kerr’s extra-scientific activities are described in some detail in Ref. [37]. The
most notable of them is his long career as “a national representative and champion
bridge player”.

A biography of Alfred Schild was published by Lawrence Shepley in Gen. Relativ.
Gravit 8, 955 (1977), shortly after his death. See also Amanda Oren, http://www.tsha.
utexas.edu/handbook/online/articles/SS/fsc48.html.
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