
Chapter 2

The Geometry Of

Spacetime

2.1 Introduction

The presence of a massive object (compact or otherwise) would deform the ambi-

ent Minkowski geometry of spacetime in accordance with the Einstein equation.

The gravitational field is described by the metric tensor gµν of the manifold.

On any region of the manifold we can place a coordinate system (t, x1, x2, x3)

such that t is a timelike coordinate, and xi are spacelike for i = 1, 2, 3. The

metric tensor can then be written in the form

g = gttdt ⊗ dt+ gtidt⊗ dxi + gitdxi ⊗ dt + gijdxi ⊗ dxj . (2.1)

Here gµν = gνµ, and since t is a timelike coordinate, gtt < 0. At every point of

our manifold, the tangent space is isomorphic to Minkowiski space, in particular,

the timelike vectors are contained within the two lightcones. We can assign any

one of the lightcones as future directed. After having chosen the orientation of

the future cone at one point, one must extend this to every point of the manifold

in a continuous manner assigning light cones as future directed and past directed

consistently. It may not be possible to do this in general if the manifold has a

non-trivial topology. In the event that such a designation can be made, we say

that the manifold is time orientable. By going into a local Minkowiski tangent

frame at any point p of the manifold, we can easily see that any two distinct

causal (timelike or lightlike) vectors at p belong to the same light cone if and

only if their inner product is less than zero. In addition to time-orientability, if

the metric satisfies the Einstein equation for an appropriate energy momentum

tensor, the manifold is physically relevant and is a candidate spacetime.

The spacetime is determined by the gravitational interactions of all the mat-

ter and other causal fields in it. In turn, the geometry determines the motion

of all matter and the time evolution of the fields it contains. Therefore, it is

necessary to solve for the geometry and the fields (including matter) at the same
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12 CHAPTER 2. THE GEOMETRY OF SPACETIME

time. This is nearly an impossible task save for a few ideal, but very important,

examples. There is however a practical solution to this problem. Gravitation

is a very weak force. Consequently, it takes a large amount of energy and mo-

mentum to deform the geometry of spacetime. Thus, it is possible to introduce

the concept of a fixed ambient spacetime in which other particles and fields may

evolve. For example, in the absence of massive stars and black holes, we may

take the ambient geometry to be Minkowiski. This is the situation in special

relativity. The Minkowiski metric descibes perfect vacuua. However, we may

still talk about particles falling in it, and solve the twin paradox problem for

example. Our situation will be very similar. We will fix the ambient geometry

so that it describes the gravitational field of a rotating star or a black hole. In

chapter 15, we will consider the nature of electromagnetic fields and currents in

this fixed geometry.

2.2 Splitting Spacetime Into Space And Time

It will be convenient in our discussions to visualize spacetime as time-stacked

slices of absolute space. These spacelike slices are 3-dimensional manifolds whose

geometry, as we shall see, is described by the metric γij ≡ gij. In general, the
metric coefficients can be a function of time, in which case, the properties of

the absolute space also become time-dependent. For the case of a stationary

spacetime however, the metric coefficients are by definition time-independent.

Stationary spacetimes will be of great significance for us since it will be sufficient

in describing the ambient exterior geometry of stars and black holes. When this

happens, the nature of absolute space will not evolve with time and can therefore

be thought of as a curved space counterpart of the familiar Galilean notion of

space. We will rewrite eq. (2.1) in a form that will make the foliation of the

geometry into spacelike slices manifest, i.e., we shall give meaning to the various

components of the metric tensor gµν. The discussion here will be applicable in

general, and shall not require the stationarity of spacetime.

Consider a spacelike hypersurface Σt obtained by fixing the value of the

timelike coordinate t. Henceforth, such hypersurfaces will be referred to as

absolute space. The geometric nature of the various slices of absolute space will

in general evolve in time. Clearly,

T (Σt) = span{ ∂

∂xi
} . (2.2)

From eq. (2.1), we see that the induced metric on our 3d absolute space is given

by

γ̂ = gij dx
i ⊗ dxj ≡ γij dx

i ⊗ dxj (2.3)

since dt = 0 on Σt. Let t̃ denote the timelike vector field ∂/∂t and let n be the

unit normal vector field on Σt that points in the direction of increasing t (as

shown in Fig 1.1). We pick the time coordinate t such that t̃ is future pointing.

Consequently, n is timelike and future pointing and so g(n, t̃) < 0. By definition,
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Figure 2.1: Σt is a sample spacelike surface which may in general be curved and

evolve in time.

the component of t̃ in the direction of n is

α ≡ −g(t̃, n). (2.4)

To obtain the components of n, define a 3-dual vector in our absolute space by

β = βidx
i ≡ gtidxi . (2.5)

The corresponding tangent vector (which we also denote as β) is given by

β = βi
∂

∂xi
= γijβj

∂

∂xi
. (2.6)

We raise β by the induced metric γ̂ since it belongs to T (Σt). Vector fields

like β will be given a new life in our absolute space. We shall refer to vectors

belonging to T (Σt) as spatial vectors. They are, however, to be distinguished

from spacelike vectors. Spacelike vectors can have a component along t̃. Spatial

vectors are 3-dimensional. Since n is normal to T (Σt)

g(n,∂i) = 0 . (2.7)

In components, the above equation becomes

βjn
t + γijn

i = 0 . (2.8)

From eq. (2.4) we get

gttn
t + βin

i = −α (2.9)

and since n is a unit timelike vector

gtt(n
t)2 + 2βin

int + γijninj = −1 . (2.10)
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Eq. (2.8) - eq. (2.10) can be solved immediately to obtain

n =
1

α
(∂t − βi∂i) . (2.11)

Equivalently,

∂t = αn+ βi∂i . (2.12)

We now proceed to write the spacetime metric components in terms of α and

β.

gtt = g(t̃, t̃) = g(αn + β,αn+ β)

= −α2 + 2αg(n,β) + g(β, β)
Therefore, we get that

gtt = β2 − α2.
The spacetime metric eq. (2.1) can now be written in the form:

g = (β2 − α2)dt⊗ dt+ βi[dt⊗ dxi + dxi ⊗ dt] + γijdx
i ⊗ dxj . (2.13)

α is referred to as the lapse function, and β is the shift vector. Lowering the

index to obatin the one-form corresponding to nµ we see that

nµ =
1

α
(gtµ − gµiβi).

Therefore,

nt =
1

α
(gtt − gtiβi) = 1

α
(β2 − α2 − βiβi) = −α

and

nj =
1

α
(gtj − gjiβi) = 0.

That is

nµ = (−α, 0, 0, 0).
It is now easy to verify that in matrix form

gµν =

⎡⎢⎢⎣
β2 − α2 β1 β2 β3
β1
β2
β3

⎡⎣ γij

⎤⎦
⎤⎥⎥⎦ .

It is not too difficult to obtain a projection operator from T (M) → T (Σt).

The interested reader is referred to the footnote below. 1 A quick calculation

reveals that √− g ≡
0
− det(g) = α

0
det(γ̂) ≡ α

0
γ̂,

1Let X be any vector in T (M ). Then clearly, by an orthogonal decomposition

X = −g(X,n) n + χ
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where det(g), and det(γ̂) are the determinant of the matrix represetations of

g, and γ̂ (the induced spatial metric given in eq. (2.3)). It is important to

distinguish the tensor g from the square root of its absolute value of the deter-

minat
√− g (this rule applies to metric tensors of spacetime and the absolute

spaces). It should be clear to the reader by now that the absolute spaces are

hardly unique. They depend entirely on the time function t that was chosen.

It is common to give the invariant interval ds2 of a spacetime instead of the

metric tensor g. They are of course, closely related. Let α be any curve in our

spacetime parameterized by the variable τ as given in eq. (1.41). Then

ds2 ≡ g(α̇, α̇) dτ2 . (2.14)

Clearly, it is sufficient to given the expression for ds2 instead of the metric

tensor g. It will useful to briefly consider some simple examples from a 3 + 1

space and time point of view. As remarked earlier, far away from regions of

strong gravitation the Minkowski spacetime will be adequate in describing the

background geometry. Here

ds2 = −dt2 + dx2 + dy2 + dz2, (2.15)

where (t, x, y, z) are the spacetime coordinates. Here (as per the notation above)

α = 1, βi = 0 and γij = δij , where as usual δij = 1 if i = j, and 0 otherwise.

The absolute spaces are the usual Cartesian space _3 with coordinates (x, y, z)
endowed with the metric

γ̂ = dx2 + dy2 + dz2. (2.16)

It will be instructive to write the above metric using the familiar spherical

coordinate system. In this case

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2). (2.17)

The coordinates used are (t, r, θ,ϕ), where x = r sin θ cosϕ, y = r sin θ sinϕ,

and z = r cos θ. Once again α = 1, βi = 0, and the non-trivial components of γ̂

are γrr = 1, γθθ = r
2, and γϕϕ = r

2 sin2 θ. Since all we have done is a coordinate

for some unique χi∂i ∈ T (Σt), where g(n,χ) = 0 from eq. (2.7). But clearly,

Xµ = −g(X,n) nµ +Xµ + g(X, n) nµ = −g(X, n) nµ + (gµν + nµnν)Xν .

Therefore,

hµν = gµν + nµnν

is the projection operator we need. In components

hµν =

⎡⎢⎣ β2 β1 β2 β3

β1
β2
β3

^
γij

�⎤⎥⎦ .

As expected, the purely spatial components of the tensors g and h agree.
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change, the absolute spaces continues to be flat, and in spherical coordinates

(r, θ,ϕ), the spatial metric takes the form

γ̂ = dr2 + r2(dθ2 + sin2 θdϕ2). (2.18)

For the case of the Schwarzschild metric

ds2 = −(1− 2M
r
) dt2 + (1− 2M

r
)−1 dr2 + r2(dθ2 + sin2 θdϕ2). (2.19)

Since there aren’t any mixed time and space components in the metric, here

βi = 0, and α
2 = (1− 2M/r). The coordinate t is timelike when r > 2M, and

in this region, the absolute space is described by the metric

γ̂ = (1− 2M
r
)−1 dr2 + r2(dθ2 + sin2 θdϕ2). (2.20)

2.3 The Kerr Metric

Ever since its inception in 1963 [6], the Kerr solution is the only candidate met-

ric to describe the exterior gravitational field of massive, stationary, compact

objects. From a theoretical point of view, the Kerr solution has been supported

by uniqueness theorems of varying sophistication. But the physical relevancy

of the Kerr solution can only be discerned by careful astrophysical observa-

tions of rapidly rotating compact objects. The observational data has to be

then matched up with theoretical predications and calculations. Therefore, it

is crucial that we strive to do physics in a Kerr background. As a first step, in

this section, we will describe the salient properties of the Kerr solution. The

discussion here is merely functional. The penitent reader is referred to the ex-

haustive book on Kerr geometry by Barrett O’Neill [7]. However, the analysis

that follows is sufficient and self-contained.

The Kerr metric describes the time-independent, axis-symmetric gravita-

tional field of a collapsed object that has retained its angular momentum. All

matter having collapsed, the Kerr metric (were defined) satisfies the vacuum

Einstein equation:

Rµν = 0 . (2.21)

Here Rµν is the Ricci tensor defined in eq. (4.69). In Boyer-Lindquist coodinate

system (t, r, θ,ϕ), the Kerr metric takes the form:

ds2 = gttdt
2 + 2βϕdtdϕ+ γrrdr

2 + γθθdθ
2 + γϕϕdϕ

2. (2.22)

Here

gtt = −1 + 2Mr
ρ2

, gtϕ ≡ βϕ =
−2Mra sin2 θ

ρ2
, γrr =

ρ2

∆
,

γθθ = ρ2, γϕϕ =
Σ2 sin2 θ

ρ2
, (2.23)
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where

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2,
and

Σ2 = (r2 + a2)2 −∆ a2 sin2 θ.
Additionally

α2 =
ρ2∆

Σ2
, β2 =

β2ϕ

γϕϕ

and 0
γ̂ =

5
ρ2Σ2

∆
sin θ, and

√−g = ρ2 sin θ .

Here, M can be interpreted as the mass, and aM the angular momentum of

the black hole. It is convenient to pick the time orientation of the Kerr metric

consistently so that as r → ∞, t̃ is future directed. The metric coefficient

functions are independent of t and ϕ as expected from the assumed symmetry.

When a→ 0, the Kerr metric reduces to the Schwarzschild metric given by eq.

(1.46). The Schwarzschild metric is both static and spherically symmetric, and

consequently describes the end product of a non-rotating spherically symmetric

collapse. The contravariant form of the Kerr metric tensor is given by:

g = − Σ2

ρ2∆
∂t ⊗ ∂t − 2aMr

ρ2∆
∂t ⊗ ∂ϕ − 2aMr

ρ2∆
∂ϕ ⊗ ∂t + ∆

ρ2
∂r ⊗ ∂r

+
1

ρ2
∂θ ⊗ ∂θ + (∆− a

2 sin2 θ)

ρ2∆ sin2 θ
∂ϕ ⊗ ∂ϕ . (2.24)

We will find the following relationships obeyed by the components of the Kerr

metric in Boyer-Lindquist coordinates useful. Since they can be easily verified

by algebraic manipulation, we state them without proof:

a sin2 θgtt + gtϕ = −a sin2 θ, (2.25)

(r2 + a2)gtϕ + aγϕϕ = a sin
2 θ∆, (2.26)

(r2 + a2)gtt + agtϕ = −∆, (2.27)

and

a sin2 θgtϕ + γϕϕ = (r
2 + a2) sin2 θ. (2.28)

It is clear that the Kerr metric is singular at ρ2 = 0. This is a ture singularity

of the geometry and cannot be removed away by a coordinate transformation

as can be verified by computing scalar quantities at ρ2 = 0 which do not change

with coordinate systems. In particular the contraction of the Riemann tensor

with itself is not well defined at ρ2 = 0. Explicitly, RµναβR
µναβ →∞ as ρ2 → 0.

The singularity at ρ2 = r2 + a2 cos2 θ = 0, has an additional interesting feature

in that it happens only when θ = π/2. For an excellent description and the

consequences of the Kerr singularity and related matters see Chandrashekar [8].
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On the other hand, the singularity when ∆ = 0 in the contravariant form

of the Kerr metric is unphysical. These apparent singularities are located at

r = r±, where
r± =M ±

0
M2 − a2 (2.29)

are the roots to the equation ∆ = 0. To understand the properties of these

surfaces and the region bounded by them, we will have to rewrite the Kerr

metric in a coordinate system that is well behaved at r = r±. We will get to
these matters shortly.

2.3.1 The Geodesic Equation and its Integrability in Kerr

Geometry

The nature of the Kerr geodesics will play a vital role in understanding the

process of energy extraction from black holes. Energy extraction from rotating

black holes will be our chief concern in the chapters to follow. In a four dimen-

sional spacetime we would need four constants along geodesics to successfully

integrate the geodesic equation. It is clear that we should expect at least three

such quantities:

1. The speed of a geodesic is a conserved quantity. In particular, the geodesic

tangent vector u satisfies u2 = q2 where q2 = −1 and q2 = 0 for timelike
and null geodesics respectively.

2. Since the Kerr metric is time-independent, we would expect a conserved

quantity that is related to the energy of the particle.

3. Owing to the axial-symmetry of the geometry, or equivalently ϕ inde-

pendence of the metric functions, the angular momentum of the particle

corresponding to the geodesic would remain a constant.

Indeed, a fourth conserved quantity exists [9], and as such has enabled a

complete geometric analysis of the Kerr spacetime. But, before we embark on

deriving the fourth Carter’s constant (as it is called), lets quantify the remaining

two items above. Let u denote the tangent vector of a proper time parameterized

geodesic, i.e.,

u(τ) = ṫ∂t + ṙ∂r + θ̇∂θ + ϕ̇∂ϕ . (2.30)

Here, (as always) the dot refers to derivative with respect to proper time τ . The

symmetry properties of the Kerr geometry is reflected in its Killing vectors. A

vector field ξ is Killing if it satisfies the following equation:

∇µξν +∇νξµ = 0 . (2.31)

It is not difficult to see that along any geodesic, g(ξ, u) = const, where u is the

geodesic tangent:

ug(ξ, u) = g(uµ∇µξ, u) + g(ξ,∇uu) = 0 .
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In the above equation

uµuν∇µξν = 0
since the symmetric sum of an anti-symmetric object in trivial. Since the metric

coefficients in the Kerr geometry are independent of t, t̃ is a Killing vector field.

To check this, we see if t̃ satisfies the Killing equation, note that

∇µt̃ν +∇ν t̃µ = gνγ∇µ t̃γ + gµγ∇ν t̃γ . (2.32)

But,

gνγ∇µ t̃γ = gνγΓγµα t̃α = gνγΓγµt =
1

2
gνγg

γα(∂µgαt + ∂tgµα − ∂αgµt)

=
1

2
(∂µgνt − ∂νgµt) .

Substituting the above into eq. (2.32) we find

∇µ t̃ν +∇ν t̃µ = 1

2
(∂µgνt − ∂νgµt + ∂νgµt − ∂µgνt) = 0,

i.e., t̃ satisfies the Killing equation eq. (2.31).

Exercise 3.1 Show that m = ∂ϕ is a Killing vector field of the Kerr geometry.

Since Killing vectors give rise to conserved quantities, we are now able to define

the constants of motion arising from t̃ and m.

Definition 2.1 The energy E of the geodesic is given by

E = −g(t̃, u) = −(gttṫ+ gtϕϕ̇) . (2.33)

Definition 2.2 The angular momentum L of the geodesic with four-velocity u is

given by

L = g(m, u) = (gtϕṫ + γϕϕϕ̇) . (2.34)

Clearly, E and L are constant along each geodesic. There is a slight abuse

of terminology here. For the case of particles with mass, since our timelike

geodesics are of unit speed, the quantities E and L defined above corresponds

to the energy and angular momentum per unit mass of the particle. It should be

clear that the definitions above will determine the time evolution of the geodesic

coordinates t and ϕ. The geodesic equations for t and ϕ in eq. (2.30) are

ṫ =
Σ2E − 2aMrL

ρ2∆
, (2.35)
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and

ϕ̇ =
2aMrE sin2 θ + (ρ2 − 2Mr)L

ρ2∆ sin2 θ
. (2.36)

This can be see by substituting expressions in eq. (2.23) for the metric coeffi-

cients in eq. (2.33). The energy of the geodesic is given by

−E = (−1 + 2Mr
ρ2

) ṫ− 2aMr sin
2 θ

ρ2
ϕ̇ . (2.37)

Similarly, from eq. (2.23) and eq. (2.34) we see that

L = −2aMr sin
2 θ

ρ2
ṫ+

Σ2 sin2 θ

ρ2
ϕ̇ . (2.38)

The above two equations can be inverted to obtain eq. (2.35) and eq. (2.36).

The promised fourth conserved quantity along Kerr geodesics is not so imme-

diately obtained. The most efficient way of deriving the remaining constant

of motion is by recalling that the geodesic equation is implied by an Euler-

Lagrange set of equations. Having a Lagrangian in our possession lends itself

to the sometimes very powerful set of equations of the Hamilton-Jacobi theory.

Carter [9] was able to show that the action is indeed completely separable in

this case and the conserved quatities can be accordingly obtained. With this in

mind, we proceed along with our analysis of the geodesics.

The lagrangian for geodesic motion is given by eq. (1.36)

L(xµ, ẋµ, τ) =
1

2
gµν ẋ

µẋν . (2.39)

Here, xµ are the coordinates, and can therefore in our case take on values t, r, θ

and ϕ. In relativity theory, the proper time parameter τ takes on the usual role

of time. To pass from a Lagrangian formalism to Hamilton’s method, we must

first obtain the conjugate momenta. By definition

Pµ =
∂L

∂ẋµ
= gµν ẋ

ν , (2.40)

where Pµ are the generalized momenta. Therefore, the Hamiltonian H ≡
H(xµ,Pµ, τ) becomes

H = Pµẋ
µ −L = 1

2
gµνPµPν . (2.41)

The Hamiltonian here is not an explicit function of τ and therefore is a conserved

quantity. Clearly, H = q2/2. To utilize the Hamilton-Jacobi method we must

introduce a function S such that it is a function of τ , the old coordinates t, r, θ,ϕ
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and the new set of conserved quantities of geodesic motion: q2, E,L,K. Here,

K will turn out to be Carter’s constant. That is

S = S(τ, t, r, θ,ϕ, q2,E, L,K) . (2.42)

In addition, S is related to the conjugate momenta of the old coordinates as

follows.

∂tS = Pt , ∂rS = Pr , ∂θS = Pθ ,& ∂ϕS = Pϕ . (2.43)

From eq. (2.41) and eq. (2.43) we get that

H =
1

2
gµν∂µS∂νS . (2.44)

The Hamilton-Jacobi equation ∂τS +H = 0 can now be written in the form

∂τS +
1

2
gµν∂µS∂νS = 0 . (2.45)

From eq. (2.24) and eq. (2.45) we have

2∂τS =
Σ2

ρ2∆
(∂tS)

2 +
4aMr

ρ2∆
∂tS∂ϕS − ∆

ρ2
(∂rS)

2 − 1

ρ2
(∂θS)

2

−(∆− a
2 sin2 θ)

ρ2∆ sin2 θ
(∂ϕS)

2 . (2.46)

Assuming separability, let us try to write S in the form

S = −1
2
q2τ − Et+Lϕ+ Sr(r) + Sθ(θ) . (2.47)

As suggested Sr is only dependent on r and Sθ only on θ. Here the τ dependence

of S was chosen so that

∂τS = −1
2
q2 = −1

2
gµνPµPν = −H

as required by the Hamilton-Jacobi equation. From eq. (2.46) and eq. (2.47) we

get

[∆(
dSr

dr
)2 − C

2

∆
− q2r2] + [(dSθ

dθ
)2 +

D2

sin2 θ
− q2a2 cos2 θ] = 0 . (2.48)

Here,

C = C(r) = (r2 + a2)E − aL and D =D(θ) = L− aE sin2 θ . (2.49)

The terms in the first square bracket above are functions of r alone, while in the

second square bracket they are functions of only θ. This gives us the necessary

separation constant K. Set

∆(
dSr

dr
)2 − C

2

∆
− q2r2 = −K , (2.50)
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and

(
dSθ

dθ
)2 +

D2

sin2 θ
− q2a2 cos2 θ = K . (2.51)

Define functions R(r) and Θ(θ) by

R(r) ≡ C2 +∆(q2r2 −K), (2.52)

and

Θ(θ) ≡ K + q2a2 cos2 θ − D2

sin2 θ
. (2.53)

Therefore, modulo an irrelevant additive constant we get the following ex-

pression for S.

S = −1
2
q2τ − Et+Lϕ+

8 √
R

∆
dr +

8 √
Θ dθ . (2.54)

The result we need is obtained from the requirement

∂S

∂q2
= 0 = −1

2
τ +

8
1

2
√
R∆

∂R

∂q2
dr +

8
1

2
√
Θ

∂Θ

∂q2
dθ , (2.55)

and
∂S

∂K
= 0 =

8
1

2
√
R∆

∂R

∂K
dr +

8
1

2
√
Θ

∂Θ

∂K
dθ . (2.56)

Taking the derivative with respect to proper time after substituting the explicit

form of R in eq. (2.55) we get

1 =
r2√
R
ṙ +

a2 cos2 θ√
Θ

θ̇ , (2.57)

Similarly, from eq. (2.56) we see that

ṙ√
R
=

θ̇√
Θ
. (2.58)

Therefore, the geodesic equations for r and θ in eq. (2.30) for the Kerr Geometry

are given by

ρ4ṙ2 = R(r) , (2.59)

and

ρ4θ̇2 = Θ(θ) . (2.60)

Here, the Carter constant K brought about a separation of variables thus per-

mitting the integrability of Kerr geodesic equations eq. (2.59) and eq. (2.60).

Null geodesics that stay on a constant value of θ will be important to our

analysis. For null geodesics q2 = 0. Here, we will also set K = 0, E = 1, and

L = a sin2 θ. When this happens, from eq. (2.53) we see that θ̇ = 0 as required,
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for only then is L = a sin2 θ is a constant of motion. Consequently, from the

above derived equations of motion, we see that the components of the geodesic

tangent vectors takes the simple form

ṫ =
r2 + a2

∆
, ṙ = ±1 , θ̇ = 0 & ϕ̇ =

a

∆
.

Definition 2.3 It will be convenient to define the following two null geodesic

tangent vectors

l+ =
1

∆
((r2 + a2)∂t +∆∂r + a∂ϕ), (2.61)

and

l− =
1

∆
((r2 + a2)∂t −∆∂r + a∂ϕ). (2.62)

Here l+ is outgoing (ṙ > 0), and l− is infalling (ṙ < 0).

As was mentioned before, the Boyer-Lindquist coordinates fail at r = r+.

Even the null geodesics defined above are not valid when ∆ = 0. In order for

our analysis to be valid beyond this value of r, we must be able to transform

all the relevent quantities to a coordinate system that is well defined across this

region. This is the central purpose of the Kerr-Schild coordinate system that

we will discuss in the following section.

2.3.2 The Kerr Metric in Kerr-Schild Coordinates

As expected, the coordinate transformation will be singular at r = r+ if the new

coordinates are to remove the existing unphysical singularity. Clearly, this is

the case below. The Kerr-Schild coordinates are t̄, r̄, θ̄, and ϕ̄. They are related

to the Boyer-Lindquist coordinates by the following relations:

r̄ = r , θ̄ = θ , dt̄ = dt+
2Mr

∆
dr , & dϕ̄ = dϕ+

a

∆
dr. (2.63)

The “bar” is placed on r and θ so that no confusions arise while performing

coordinate tranformations. We will have plenty of opportunities to compare

various components of tensors in the Boyer-Lindquist and Kerr-Schild coordi-

nates. Therefore, it will be crucial to estabilish the transformation properties

as early as possible. Clearly,⎡⎢⎢⎣
dt̄

dr̄

dθ̄

dϕ̄

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 G 0 0

0 1 0 0

0 0 1 0

0 H 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
dt

dr

dθ

dϕ

⎤⎥⎥⎦ , (2.64)

where

G =
2Mr

∆
& H =

a

∆
. (2.65)
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We can write the above equation as

dx̄µ = Aµνdx
ν . (2.66)

Here, as will be the case always, “bar” quantities refer to the Kerr-Schild objects,

and the “unbarred” objects are the equivalent Boyer-Lindquist objects. Also,

Aµν is the transformation matrix defined in eq. (2.64). For a 1-form X

X̄µdx̄
µ = X̄µA

µ
νdx

ν ≡ Xνdx
ν , (2.67)

i.e, in component form

Xν = A
µ
ν X̄µ . (2.68)

Taking the inverse of Aµν we find

X̄µ = (A
−1)νµXν , (2.69)

where

(A−1)νµ =

⎡⎢⎢⎣
1 −G 0 0

0 1 0 0

0 0 1 0

0 −H 0 1

⎤⎥⎥⎦ . (2.70)

It is now a trivial matter to work out the transformation properties of vectors.

dx̄µ(
∂

∂x̄ν
) = δµν , (2.71)

where δµν is the Kronecker-delta. Let

∂

∂x̄ν
= Bβν

∂

∂xβ
. (2.72)

Then using eq. (2.66), eq. (2.71) becomes

Aµαdx
α(Bβν

∂

∂xβ
) = δµν . (2.73)

Therefore

AµαB
α
ν = δµν , (2.74)

i.e.,

Bαν = (A
−1)αν . (2.75)

Therefore from eq. (2.72) and the above equation we get the transformation

properties for the components of a vector Y .

Ȳ α = AαβY
β. (2.76)

Eq. (2.69) and eq. (2.76) can be used to transform general tensors. We are now

in a position to compute the metric tensor in the Kerr-Schild coordinate system.

Various metric identities listed in eqs. (2.25)-(2.28) will be required to simplify
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the expressions. To illustrate the nature of the simplifications, will carry out

the calculation of ḡr̄r̄ explicitly, leaving the others to the reader to verify.

ḡr̄r̄ = B
α
1B

β
1 gαβ = [G

2gtt +GHgtϕ] + [GHgtϕ +H
2γϕϕ] + γrr. (2.77)

But,

[G2gtt +GHgtϕ] =
G

∆
[2Mrgtt + agtϕ] =

G

∆
[(r2 + a2)gtt + agtϕ −∆gtt].

Using eq. (2.27), the above equation gives

[G2gtt +GHgtϕ] = −G[1 + gtt] (2.78)

Similary, using eq. (2.26) we find

[GHgtϕ +H
2γϕϕ] =H[a sin

2 θ − gtϕ]. (2.79)

Placing eq. (2.78) and eq. (2.79) in eq. (2.77) we get

ḡr̄r̄ = 1 +
2Mr

ρ2
.

In a similar manner, we find that in Kerr-Schild coordinates, the metric com-

ponents in the basis {t̄, r̄, θ̄, ϕ̄} become

ḡµν =

⎡⎢⎢⎣
z − 1 z 0 −za sin2 θ
z 1 + z 0 −a sin2 θ(1 + z)
0 0 ρ2 0

−za sin2 θ −a sin2 θ(1 + z) 0 Σ2 sin2 θ/ρ2

⎤⎥⎥⎦ , (2.80)

where z = 2Mr/ρ2. As required, the metric above is not singular when ∆ = 0.

In going to a 3+1 space and global time formalism, we must remember that,

here we have different foliations of space. Spacelike slices in the two coordinate

systems are not equivalent. On spacelike slices dt̄ = 0, the 3-metric in a basis

{r̄, θ̄, ϕ̄} become

γ̄ij =

⎡⎣ 1 + z 0 −a sin2 θ(1 + z)
0 ρ2 0

−a sin2 θ(1 + z) 0 Σ2 sin2 θ/ρ2

⎤⎦ . (2.81)

Also

ᾱ = 1/
√
1 + z & β̄ = zdr̄ − za sin2 θdϕ̄. (2.82)

Lowering the above 1-form β using eq. (2.81), the shift vector becomes

β̄ =
z

1 + z

∂

∂r̄
. (2.83)

Having removed the coordinate singularity at∆ = 0, we are able to meaningfully

extend our analysis beyond the r = r+ mark.
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2.3.3 The Ergosphere

The causal character of the coordinate function t changes even outside the event

horizon. To see this explicitly, lets locate the set of points such that gtt = 0.

This is given by the surface

rerg(θ) =M +
0
M2 − a2 cos2 θ. (2.84)

gtt > 0 in the region

r+ < r < rerg(θ), (2.85)

and consequently t̃ ≡ ∂t becomes spacelike in the above region. We shall refer

to the region defined by eq. (2.85) as the ergosphere. Outside the ergosphere t̃

is timelike and future directed (as per our choice of time orientation). Inside

the ergosphere we can no longer use t̃ as our candidate future pointing timelike

vector. Therefore, the nature of the futurecones inside the ergosphere becomes

unclear. The same problem exists beyond r = r+ (as we shall see below, this

region brings about other interesting features). Both of these issues can now

be handled in one stroke. To this end, let us write the null geodesic l− in the
Kerr-Schild coordinate system. We will denote the corresponding Kerr-Schild

vector as l̄. Using the transformations listed above we get from eq. (2.62) that

l̄− = ∂t̄ − ∂r̄ . (2.86)

The above vector-field is well defined so long as the Kerr-Schild coordinate

system is. As r →∞we have that g(l̄−, t̃)→−1. Therefore, l̄− is asymptotically
future pointing. But, since l̄− is nowhere vanishing, for consistency reasons l̄− is
future pointing everywhere. Therefore, we shall take the timecone containing l̄−
as the futurecone at every point in the region defined by r− < r since the Kerr-
Schild coordinates is single valued and well defined in this region. In particular,

l̄− prescibes the futurecone in the ergosphere.

Even though t̃ is not timelike in the ergosphere, the coordinate function t

does increase for observers in the ergosphere. To see this, note that eq. (2.24)

implies that

gµν∇µt∇νt = gµν∇µt∇νt = gtt < 0 . (2.87)

Therefore, ∇µt is timelike in the ergosphere. Since l̄− is future pointing,

gµν l̄
µ∇νt = l̄µ∇µt = l0 = r2 + a2

∆
> 0 (2.88)

implies that ∇µt is past-directed timelike in the ergosphere. Consequently, for
an observer with future pointing four velocity u

0 < gµνu
µ∇νt = uµ∇µt = ṫ. (2.89)

Therefore, for an observer in the ergosphere with four velocity u(τ) = (ṫ, ṙ, θ̇, ϕ̇)

ṫ > 0 . (2.90)
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As always, the dot corresponds to derivative with respect to propertime τ . In

the ergosphere, since t̃ is spacelike, an observer cannot remain static. A static

observer is one whose curve traced out in the spacetime has a fixed value of r, θ,

and ϕ. The required rotation of an observer in the ergosphere can be thought

of as an extreme case of frame dragging. At best, all we can have are stationary

observers. Stationary observers move along constant values of r and θ. More

precisely, as an object with mass falls into the ergosphere, it starts to rotate

along with the black hole. This can be seen as follows:

Let α(τ) be the curve traced out the by a stationary observer. The four-velocity

of the observer then takes the form

α̇ = u(τ) = (ṫ, 0, 0, ϕ̇).

We also require that

−1 = u2 = [(β2 − α2)ṫ2 + γϕϕϕ̇
2 + 2βϕṫϕ̇] . (2.91)

If such an observer is to be static, ϕ̇ must vanish. Inside the ergosphere, all but

the last term on the right hand side of eq. (2.91) is positive. Therefore, for eq.

(2.91) to hold true

βϕ ϕ̇ < 0

for timelike curves, since ṫ > 0 even in the ergosphere. From eq. (2.23) the

above inequality remains true only when

a ϕ̇ > 0.

In particular, there are no static observers in the ergosphere for the observer is

forced to rotate along with the black hole.

2.3.4 The Event Horizon

In the region r− < r < r+, ∆ < 0, i.e., ∂r is timelike. Since ∆ changes sign in

this region, −∂r is necessarily timelike. We will now show that −∂r is contained
in the same timecone as l−. Or equivalently we need that

g(−∂r, l−) < 0. (2.92)

Using the transformation matrix constructed above we see that

− ∂

∂r
= −G ∂

∂t̄
− ∂

∂r̄
−H ∂

∂ϕ̄
. (2.93)

Therefore,

g(−∂r , l−) = −[G(ḡt̄t̄ − ḡt̄r̄)] +H[(ḡt̄ϕ̄ − ḡϕ̄r̄)]− (ḡt̄r̄ − γ̄r̄r̄)) = ρ2

∆
. (2.94)
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Figure 2.2: r± locate the horizons of the Kerr geometry. The shaded region is
the ergosphere.

Since ∆ < 0 in the region of interest, we have the necessary result. Of course,

the above inner product in not defined at r = r+ since r is not a good coordinate

function there. Consequently, −∂r is future pointing and timelike when r− <
r < r+.

This claim leads to a very important result in general relativity. If a particle

(massless or otherwise) enters the region r < r+, it will have necessarily have

to move along decreasing values of r until it is thrown into the region r < r−
where ∆ is positive and −∂r is no longer timelike. Therefore r = r+ forms

a one-way membrane. Particles entering it may never escape, thus r = r+ is

referred to as the event horizon and it forms the bounday of the black hole region.

Consequently, what happens beyond r = r− will never effect physics (and indeed
life) in our region of spacetime, since particles in the region r < r− may never
enter the region r > r−. For this reason, r = r− is called the Cauchy horizon.
The region of spacetime beyond this is outside our domain of dependence.

2.4 The Penrose Process

As early as 1969, Roger Penrose [10] pointed out the possibility of extracting

energy from rotating black holes. As we shall see, such an extraction of energy

is possible only due to the existence of the Ergosphere.

We begin our analysis with a few preliminaries. Outside the ergosphere t̃ is

future pointing and timelike. Therefore, for a particle (regardless of its mass)

moving along a geodesic outside the ergosphere we have that

g(u, t̃) < 0. (2.95)
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From definition 2.1, we have that the energy E of such an object must be greater

than zero. Positivity of energy is however not a requirement for geodesics in the

ergosphere (since t̃ is noteven timelike here). Clearly, such an object will not

be able to escape the ergosphere into the asymptotically flat region since the

energy there must be greater than zero, for the 4-velocity of the particle to be

future pointing, as stated above. For future pointing causal four velocity u we

need ṫ > 0 and ϕ̇ > 0 in the ergosphere. From eq. (2.35) and eq. (2.36), we see

that this is possible for geodesics so long as

Σ2E > 2aMrL (2.96)

and

2aMrE sin2 θ > (∆− a2 sin2 θ)L. (2.97)

As usual, here E and L are the energy and angular momentum of the geodesics

as measured by an observer at infinity. Clearly, if we want orbits with E < 0,

we must also have that L < 0. We shall see below that the above relations

will place a restriction on the amount of energy that can be extracted from the

black hole. Thus, we see that geodesics in the ergosphere are permitted to have

“negative” values of energy E. Such “negative-energy” particles can be used

for energy extraction from Kerr black holes. It is important to note that these

particles are never observed in regions outside r > rerg(θ).

Lets consider the simplest example put forth by Penrose in some detail. Our

presentation of the Penrose process leans heavily on [8]. To extract energy from

the black hole we would send an object with four momentum p0 toward the

hole via a timelike geodesic. Inside the ergosphere, this object is set to decay

into two photons. One photon with negative energy will fall into the black hole,

whereas the other photon would escape from the ergosphere into regions of large

r. Conservation of energy would then imply that the photon emerging from the

ergosphere will have a greater total energy than initial particle with mass. To

see how this would happen let us set up the necessary notation:

1. The four-momentum of the initial infalling particle (along a timelike geo-

desic):

p0 =m (ṫ0, ṙ0, θ̇0, ϕ̇0) (2.98)

2. The four-momentum of the decayed photon with negative energy (along

a lightlike geodesic) that falls into the hole:

p1 = (ṫ1, ṙ1, θ̇1, ϕ̇1) (2.99)

3. The four-momentum of the decayed photon that escape into regions of

large r (along a lightlike geodesic):

p2 = (ṫ2, ṙ2, θ̇2, ϕ̇2) (2.100)

At the point of decay r = rd (for r+ < rd < rerg(θ)), conservation of momentum

would imply

p0 = p1 + p2. (2.101)
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For simplicity, we would want all these geodesics to lie in the θ = π/2 plane.

Now, its just a matter of calculating the various geodesics constants for the

three particle to make sure that all of what we want can be consistently done.

To this end, lets recall the results of eq.(2.59) and eq.(2.60) and specialize it to

the θ = π/2 plane. The r and θ coordinates of all the geodesics above must

satisfy

ρ4ṙ2 = R(r) ≡ C2 +∆(q2r2 −K), (2.102)

and

ρ4θ̇2 = Θ(θ) ≡ K + q2a2 cos2 θ − D2

sin2 θ
, (2.103)

where

C = C(r) = (r2 + a2)E − aL ,& D = D(θ) = L− aE sin2 θ.
As before, here, K is the Carter’s constant. Since we want all geodesics to

be in the θ = π/2 plane, following eq. (2.103), we set

K0 = D
2
0 , K1 = D

2
1 & K2 = D

2
2 . (2.104)

The subscripts on all quantities refer to the particle labels as given in eq. (2.98 -

2.100). We will also pick the initial object to have unit mass, and we will drop

it from rest at infinity, i.e.,

m = 1 & E0 = 1. (2.105)

At r = rd, contracting the four-momentum conservation equation eq. (2.101)

with the Killing vectors of the Kerr geometry, we get the conservation of energy

and angular momentum relations, i.e.,

1 = E1 + E2 & L0 = L1 +L2. (2.106)

The above equations will not uniquely specify the remaining constants. One

way to insist on eq. (2.101), and a safe return of our energetic photon is to

require that r = rd is the only turning point of all the three geodesics. That

is we require that at r = rd we have that ṙ0 = ṙ1 = ṙ2 = 0. Then clearly, eq.

(2.106) will ensure that

(ṫ0, 0, 0, ϕ̇0) = (ṫ1, 0, 0, ϕ̇1) + (ṫ2, 0, 0, ϕ̇2), (2.107)

since ṫ and ϕ̇ are given by eq. (2.35) and eq. (2.36). Imposing the turning point

condition, from eq. (2.102), setting ṙ0 = 0 at r = rd for E0 = 1 and q
2 = −1,

we can solve for L0. This gives

L0 =
1

2M − rd [2aM −
0
2Mrd ∆rd]. (2.108)

Here r = 2M locates the outer boundary of the ergosphere in the θ = π/2 plane,

and ∆rd = ∆(r = rd). For rd close to the event horizon, ∆ ≈ 0 and so L0 > 0
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(we picked the appropriate root for the quadratic equation for L0 in eq. (2.102)

so that this happens). Similarly, from eq. (2.102), setting ṙ1 = 0 at r = rd for

as yet arbitrary but negative E1 gives:

L1 =
1

2M − rd [2aM + rd
0
∆rd ]E1. (2.109)

Here, we set q2 = 0, since this geodesic describes a photon. Clearly, when E1
is less than zero, so is L1. Finally, for photon number 2 we get get in a similar

manner that

L2 =
1

2M − rd [2aM − rd
0
∆rd ]E2. (2.110)

With little difficulty we obtain from eq. (2.106), eq. (2.108), eq. (2.109) and eq.

(2.110) the values for the photon energies:

E1 = −1
2
(

5
2M

rd
− 1) and E2 =

1

2
(

5
2M

rd
+ 1). (2.111)

Indeed, the gain in energy in this process is given by

∆E = E2 −E0 = E2 − 1 = 1

2
(

5
2M

rd
− 1) = −E1 (2.112)

as expected. This is the Penrose process.

As we have seen, negative energy particles in the ergosphere have negative

angular momentum. As the black hole swallows such particles, the mass and the

angular momentum of the black hole decreases. This will also lead to a decrease

in the ergosphere region. Once the ergosphere vanishes, we cannot continue

further with the extraction process. This places a natural limit on the amount

of energy we can extract from the black hole. We now proceed to calculate this

limit.

Consider the geodesic that describes the negative energy photon (or any

other particle in general) that falls into the hole. From remarks made earlier,

we know that for such a geodesic, in the ergosphere ṫ ≥ 0 and ϕ̇ ≥ 0. Therefore,
at the event horizon, as the particle enters the black hole, from eq. (2.96) and

eq. (2.97) we get the single condition

E ≥ ΩHL. (2.113)

Here, eq. (2.96) and eq. (2.97) were evaluated at r = r+ (i.e., ∆ = 0), and

ΩH =
a

r2+ + a
2
=

a

2Mr+
. (2.114)

ΩH is usually referred to as the angular velocity of the event horizon. After the

negative energy particle falls into the black hole, it suffers a mass and angular

momentum decrease subject to the condition

δM ≥ ΩH δJ. (2.115)
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Here, J = aM is the angular momentum of the black hole. To consider the time

evolution of the Kerr black hole which is subject to energy extraction, let us

assume that this process is done in a very slow manner so that we may employ

the adiabatic approximation. That is, the black hole metric is still given by the

Kerr metric with its new value of M and J , i.e.,

M →M + δM and J → J + δJ. (2.116)

Of course δJ = δ(aM) = M δa + a δM . Christodoulou [11] defines the irre-

ducible mass of the black hole to be

M2
irr =

1

2
[M2 +

0
M4 − J2] = 1

2
M [M +

0
M2 − a2]. (2.117)

To obtain the utility and the meaning of the above expression, lets compute the

variation of the irreducible mass. We will do this in the usual manner by taking

its variational derivative. Consider variations of the type

M →M + λ δM and a→ a+ λ δa. (2.118)

Here λ is the variational parameter. By definition

δM2
irr =

dM2
irr

dλ
|λ=0

=
1

2
δM(M +

0
M2 − a2) + 1

2
M( δM +

2M δM − 2a δa
2
√
M2 − a2 )

=
1

2
√
M2 − a2 [(2Mr+ − a

2) δM − aM δa]. (2.119)

But from eq. (2.115)

(2Mr+ − a2) δM > a δJ − a2 δM = aM δa. (2.120)

The above two equations imply that

δM2
irr > 0 .

Therefore, the irreducible mass of a black hole cannot decrease as it expels

energy and angular momentum. Eq. (2.117) can be inverted to give:

M2 =M2
irr +

J2

4M2
irr

. (2.121)

Now consider a Kerr black hole with some initial value of mass and angular

momentum Mi and Ji. We can at best extract energy from the hole such that

δM2
irr = 0 (the theoretical ideal). At the end of the energy extraction process,

the mass of the black hole has now been reduced to the valueM =Mirr(Mi, Ji).
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From the above equation we see that this happens when the new J = 0, i.e.,

the ergosphere has disappeared. Consequently, the term

J2

4M2
irr

(2.122)

can be thought of as the extractable rotational energy of the black hole. Since

J2i = M
2
i for a maximally rotating Kerr black hole, the percent of energy that

can be extracted from the hole is given by

(1− Mirr

Mi
)× 100% = (1− 1√

2
)× 100% ≈ 29%. (2.123)

Thus we see that the astrophysical black hole has little in common with its

proverbial counterpart.
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