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Concepts of Mathematics for Students of Physics and Engineering: A Dictionary 
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Glenn Research Center 
Cleveland, Ohio 44135 

 
 
Summary  
 
 A physicist with an engineering background, the au-
thor presents a mathematical dictionary containing 
material encountered over many years of study and 
professional work at NASA. This work is a compi-
lation of the author’s experience and progress in the 
field of study represented and consists of personal 
notes and observations that can be used by students in 
physics and engineering.  
 
 
Introduction 
 
 Mathematics is an endless field of study, and no one 
publication can encompass it or even begin to. 
Although the present book makes no such claims, the 
reader may ask, Why write such a mathematics 
dictionary at all when there are numerous ones on the 
market? The answer is that dictionaries differ: formal 
dictionaries function as research tools and reflect 
differences in approach depending upon the authors’ 
goals. Authors of formal dictionaries attempt to reach 
the widest audience. Personal dictionaries are not so 
constrained because they can be reorganized to reflect 
the authors’ progress in a field of study. They are 
compilations of personal notes and observations that 
can be used to provide material for future work and 
publications. 
 I have found that a useful way to keep notes and 
organize my thoughts is to compile them in a personal 
lexicon where I write the definitions and organize the 
materials as I understand them, a sort of journaling. 
For the past 30 years in the various fields of  
study attempted, journaling has facilitated organization 
and long-term retention; I was able to recognize  
that I needed to fill gaps in my knowledge and 
understanding. 

 
 The appendixes are a compendium of additional 
topics, the contents of which are too large to be 
included as individual citations. I have compiled 
compendia such as these ever since high school to 
enable me to rationally organize material from a 
variety of areas and to supplement missing 
information in published material. For example, the 
material in appendix H, Definitions and Theorems 
From Calculus, enabled me to see the actual lay of the 
land without worrying about the complex supporting 
arguments and proofs. The beauty in mathematical 
theorems can be seen most clearly when they are 
treated in this manner.  
  This mathematics dictionary is one of three that I 
compiled over the years and is the most complete, my 
intentions having been to publish it for two reasons: 
the first is that the material contained herein represents 
areas of knowledge I had to assimilate and apply when 
called upon. As a physicist with an engineering 
background, my work encompassed both fields. 
Therefore, this information should be of some use to 
students in these fields.  The second reason is that the 
organization of this dictionary reflects the working of 
one man’s mind and therefore serves as a model for 
others who wish to compile their own volumes.  
 
 
Logic and Reasoning 
 
induction. A process of reasoning in which a general 

conclusion is drawn from a set of particular 
premises. The premises are often based on 
experience or experimental evidence; the conclusion 
goes beyond the information contained in the 
premises and does not follow necessarily from them. 
An inductive argument may be highly probable but 
may lead from true premises to false conclusions: A 
large number of sightings might be used to 
inductively prove that all swans are white. 
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deduction. A process of reasoning in which a 
conclusion follows necessarily from given premises 
so that it cannot be false when the premises are true: 
All men are wise; Socrates is a man; therefore, 
Socrates is wise. 

argument. A process or instance of inductive or 
deductive reasoning that purports to show its 
conclusion to be true; an argument may consist of a 
sequence of statements, one of which is the 
conclusion and the rest of which are the premises. 

valid argument. One in which the truth of the 
premises ensures the truth of the conclusion. An 
inference is formally valid when it is justified by the 
form of the premises and the conclusion alone: Tom 
is a bachelor; therefore, Tom is unmarried (valid 
but not formally valid); Today is hot and dry; 
therefore, today is hot (formally valid). 

conclusion. A statement that purports to follow from 
another statement or other statements (the premises) 
by means of an argument or proof.  

proof. A sequence of statements, each of which is 
(1) either an axiom or an assumption, (2) is validly 
derived from those statements preceding it, or (3) is 
the conclusion, a statement whose truth is thereby 
established. 

direct proof. One that proceeds linearly from the 
premises to the conclusion. It may argue directly 
from an implication p ⇒ q or its contrapositive  
~p ⇒ ~q. An equivalency proof p ⇔ q must prove 
both p ⇒ q and q ⇒ p. 

indirect proof (reducio ad absurdum). One that 
assumes the falsehood of the desired conclusion and 
shows the assumption to be impossible, usually by 
arriving at a logical contradiction. 

axiom. A statement stipulated to be true for the 
purposes of constructing a mathematical system in 
which theorems may be derived by certain rules of 
inference. 

assumption. A statement taken to be true for the 
purposes of a particular argument and used as a 
premise to infer its consequences. 

premise. A statement from which a conclusion is 
drawn in a particular argument. It may be an axiom 
of the relevant theory or merely an assumption taken 
to be true for the purposes of discovering its 
consequences. 

theorem. A statement that can be deduced from the 
axioms of a mathematical system by a recursive 
application of certain rules of inference. 

lemma. A subsidiary result proved to simplify the 
proof of a required theorem. 

corollary. A proposition that follows directly from 
the statement or the proof of another proposition.  
A corollary is a subsidiary theorem. 

 
 
Sets 
 
set S. A collection of elements (more formally, 

points) s (members) with some defined property or 
properties. Given any candidate element s*, it may 
be determined from the properties of s* and the 
defined property or properties required for 
membership in S, whether s* is an element of S; e.g., 
let S = {(x,y)|x2 + y2 = 1}; then s* = (0,1) is a 
member of S but s* = (2,3) is not. A set may be 
represented in tabular form as S = {a,e,i,o,u} or in 
set builder notation as S = {x|x is even}, which reads 
“the set of all x such that x is even.” 

complement SC of a set S. The set of all elements not 
contained in S and represented as SC ≡ {x|x ∉ S}. 

universal set U. The union of any set S and its 
complement and represented as U = S ∪ SC and  
SC = U\S. 

null set or empty set Φ. A set that contains no 
elements. The set Φ is not to be confused with the 
set {Φ} that contains one element, Φ. 

equal sets. Two sets S and T that are equal if they 
contain the same elements. If a given element 
appears n times in a given set, it is counted only 
once as a unique element. Equal sets are represented 
as S = T ⇔ (S ⊂ T) ∧ (T ⊂ S): the sets {a,a,b,b,b} 
and {a,b} are considered equal.  

union S ∪ T of two sets S and T. The set that 
contains all the elements in S and all the elements in 
T and is represented as S ∪ T ≡ {x|x ∈ S or x ∈ T}. 
As a set operation, union is idempotent (i.e., A ∪ A = 
A), commutative, and associative. The null set is an 
identity element for set union (i.e., A ∪ Φ = A). Set 
union is distributive over set intersection. 

intersection S ∩ T of two sets S and T. The set that 
contains only those elements common to both sets. If 
the intersection of S and T is the null set, then S and 
T are called “disjoint” and are represented as S ∩ T 
≡ {x|x ∈ S and x ∈ T}. As a set operation, set 
intersection is idempotent, commutative, and 
associative. The null set is a zero element for set 
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intersection (i.e., A ∩ Φ = Φ). Set intersection is 
distributive over set union. 

difference S\T of two sets S and T. The set which 
includes all members of the first set that are not 
members of the second set, represented as S\T ≡ {x|x 
∈ S and x ∉ T}. 

symmetric difference S ∆ T of two sets S and T. The 
set of all elements that belong to either but not both 
of the sets and represented as S ∆ T ≡ {x|x ∈ (S ∪ 
T)\(S ∩ T)}. As a set operation, the symmetric 
difference is commutative and associative. The null 
set is a zero element for symmetric difference (i.e., S 
∆ S = Φ and S ∆ Φ = S). Additionally, S ∆ SC = U 
and S ∆ U = SC. Set intersection is distributive over 
symmetric difference. 

Cartesian product S × T of two sets S and T. The set 
of all ordered pairs (s,t), where s is an element from 
the first set in the product and t is an element from 
the second, represented as S × T ≡ {Ordered pairs 
(s,t)|(s ∈ S) and (t ∈ T)}: the real number spaces Rn 
are Cartesian products of R with itself n times. Thus, 
R = R1 (the real line); R × R = R2 (the Cartesian or 
complex planes); R × R × R = R3 (Euclidean or 
Cartesian three-space), etc. As a set operation, the 
Cartesian product is distributive over set union, set 
intersection, and set difference.  

subset of a set T. Any set S ⊂ T whose elements are 
also in S. The null set is a subset of every set, and 
every set is a subset of itself; i.e., for any set T, 
Φ ⊂ T and T ⊂ T. 

proper subset of a set T. Any subset of T other than 
T itself: if S ⊂ T and S ≠ T, then S is a proper subset 
of T or (S ⊂ T) ∧ (S ≠ T) ⇒ S is a proper subset of T. 

partition of a set S. Any collection of nonempty 
subsets of S such that every element of S belongs to 
exactly one of the subsets in the collection. Thus, S 
is the union of these subsets, and any two distinct 
subsets are disjoint. 

refinement of a partition. Another partition 
constructed by further subdividing the members of 
the original partition. 

interior of a set S. The largest open subset of S equal 
to the union of all the open subsets contained within 
S: if {Si} is the set of all open subsets of a set S, then 
the interior of S is the set Is defined by Is = n

i 1=∪  = 
Si, where n is the number of open subsets. 

superset of a set S. Any set that contains S as a 
subset. 

extension of a set S. A superset of S in which S, 
along with any operations defined on S, are 
contained (preserved) as a subset: the extension of 
the real numbers is the complex numbers; the 
extension of the vectors is the tensors. 

class C. A set whose elements are other sets having a 
specified property. 

power set 2S of a set S. The class of all subsets of S, 
including Φ and S: if S contains n-elements, then the 
power set of S contains 2n-elements. 

point. An element of a set (particularly in the 
topology of point sets). 

interior point of a set S. Any point in an open subset 
of S: 0.5 is an interior point of the interval [0,1] 
whereas 0 is not. 

boundary point of a set S. Any point common to 
both S and SC. 

exterior point of a set S. Any point that is neither an 
interior point nor a boundary point of S. 

neighborhood of a point s in a set S. A subset of S 
containing s. An open neighborhood is an open set; a 
closed neighborhood is a closed set; a punctured 
neighborhood is a neighborhood (open or closed) 
with s deleted. 

cluster point of a set S. A point for which any 
punctured open neighborhood contains other points 
of S. Equivalently, a cluster point of a set S is a point 
for which any open neighborhood has a nonempty 
intersection with S. A closed set contains all its 
cluster points. 

isolated point of a set S. Any point that is not a 
cluster point in S. An isolated point has at least one 
punctured neighborhood that does not intersect S. 

discrete set S. A set with no cluster points: every 
point is isolated; the integers are discrete, but the 
rationals are not since they are dense in the reals. 

closed set. A set consisting of interior points and 
boundary points. A set in a topology is closed if it 
contains all its limit points. The intersection of any 
number of closed sets is a closed set. The union of 
two (or a finite number of) closed sets is a closed 
set. 

closure of a set S. The smallest closed set containing 
S (equal to the intersection of all the closed sets 
containing S). The closure of the positive integers 
under subtraction is the set of all integers. 

exterior of a set. The complement of its closure or 
the interior of the complement of the set. 

boundary or frontier of a set. The set of points that 
are members of the closure of the given set and the 
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closure of its complement. Equivalently, the 
boundary of a set is the set of points in the closure 
but not in the interior of the set. The frontier of the 
half-open interval (0,1] is the set {0,1}; the frontier 
of the rationals is the set of all real numbers. 

open set. A set consisting solely of interior points. 
The intersection of two (or a finite number of) open 
sets is an open set. The union of any number of open 
sets is an open union. The complement of a closed 
set is an open set. The complement of an open set is 
a closed set. 

connected set. A set that cannot be partitioned into 
two nonempty open subsets, each of which has no 
points in common with the closure of the other. The 
rationals are not connected, but the reals are. 

connected set S of real numbers. A set that has any 
two elements a and b with the element c (also ∈ S) 
lying between them.  

disconnected sets. Two sets that are not connected. 
Any punctured neighborhood of the reals is 
disconnected as is the cut interval (−1,1)/{0}. 

separable set. A set that contains a countable, dense 
subset. Any Euclidean n-space is separable because 
it contains rational n-tuples that are countable and 
dense. 

separated sets. Two sets whose closures have a null 
intersection. 

dense-in-itself set. A set for which every point is a 
cluster point. 

dense set S. A set whose closure contains S. Given: 
two sets, S and T; S is dense in T if T is contained in 
the closure of S. Let S = {rationals} and T = {reals}; 
then S is dense in T since the reals are contained in 
the closure of the rationals.  

bounded set. A set with an upper and lower bound. 
An upper bound is a point (number) greater than all 
other points in the set. A lower bound is a point 
(number) less than all the other points in the set. 

compact set. A set that is closed and bounded. The 
interval [0,1] is compact; the interval (0,1) is not. 

one-to-one correspondence between two sets. A 
relation in which each element of the first set 
corresponds to one and only one element of the 
second, and each element of the second corresponds 
to one and only one element of the first. 

countable set. A set whose elements may be put into 
one-to-one correspondence with a subset of the 
natural numbers. 

finite set. A set whose elements can be put into a 
one-to-one correspondence with a bounded initial 
segment of the natural numbers; i.e., a set whose 
elements can be counted using a terminating 
sequence of natural numbers.  

infinite set. A set that can be put into one-to-one 
correspondence with a proper subset of itself. 

denumerable or countable but infinite set. An 
infinite set that can be put into one-to-one 
correspondence with the natural numbers. The 
rationals are denumerable. 

nondenumerable set. An infinite set that cannot be 
put into a one-to-one correspondence with the 
natural numbers. The reals are nondenumerable as is 
the closed interval [0,1]. 

ideal I. A nonempty family of subsets of U in which 
(S ∈ I) ∧ (T ⊂ S) ⇒ T ∈ I and (S ∈ I) ∧ (T ∈ I) ⇒ (S 
∪ T) ∈ I. The power set of any given set is an ideal. 

filter F. A nonempty family of subsets of U in which 
(S ∈ F) ∧ (S ⊂ T) ⇒ T ∈ F and (S ∈ F) ∧ (T ∈ F) ⇒ 
(S ∩ T) ∈ F. The family of all sets such that S ⊂ T ⊂ 
U is a filter. 

cover of a given set S. A collection of sets whose 
union completely contains S. An open (closed) cover 
is a cover that uses open (closed) covering sets. 

 
 
Logical Sentences and Truth Sets 
 
sentence. A logical statement in words or symbols. 
formula. A sequence of symbols involving at least 

one variable x, such as p(x) or q(x). 
variable. An expression with unspecified meaning:  

x = It is…or x = some number. 
value. An expression with specified meaning: x0 = It 

is raining or x0 = 2. 
statement. Any sentence in which the variable takes 

on a specific value, such as p(x0) or q(x0), and has a 
truth value, true or false. 

negation. A statement ~p(x0) that denies the truth of 
p(x0) and is of the form not p(x0). 

truth set or solution set for a formula p(x). The set  
P = {x|p(x) is true}. 

conjunction p ∧ q. Any statement of the form “p(x0) 
and q(x0).” The conjunction p ∧ q is true if p(x0) and 
q(x0) are both true; it is otherwise false. The truth set 
of p ∧ q is the set P ∩ Q (where Q is the truth set of 
q(x)). 
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disjunction p ∨ q. Any statement of the form “Either 
p(x0) or q(x0) or p(x0) and q(x0).” The disjunction  
p ∨ q is false if p(x0) and q(x0) are false; it is other-
wise true. The truth set of p ∨ q is the set P ∪ Q. 

implication p ⇒ q. Any statement of the form “p(x0) 
implies q(x0).” The implication p ⇒ q is false (or 
~(p ⇒ q) is true) if p(x0) is true but q(x0) is false; it 
is otherwise true. The truth set of an implication is  
P ⊂ Q. 

equivalence p ⇔ q or p if and only if q (p iff q). Any 
statement of the form “p(x0) implies q(x0) and q(x0) 
implies p(x0).” The equivalence p ⇔ q is true if 
either p(x0) and q(x0) are true or p(x0) and q(x0) are 
false; it is otherwise false. The truth set of an 
equivalence is P = Q. 

universal quantifier ∀. A statement that reads “For 
all…” In any statement of the form “∀x, p(x)” is a 
statement with a bound variable x, not a formula. 

existential quantifier ∃…∋…. A statement that reads 
“There exists…such that…” Any statement of the 
form “∃x ∋ p(x)” is a statement with a bound 
variable x, not a formula.  

bound variable. Any variable specified by a 
quantifier: In ∀x, p(x,y), x is bound, y is unbound. 

universal and existential statements. Statements 
involving the universal and/or existential quantifiers 
and bound variables, such as ∀x, p(x), or ∃x ∋ p(x). 

negation of a universal statement. An existential 
statement: ~[∀x, p(x)] ⇔ [∃x ∋ ~p(x)]. 

negation of an existential statement. A universal 
statement: ~[∃x ∋ p(x)] ⇔ [∀x, ~p(x)]. 

contrary of a universal statement. Another universal 
statement: ∀x, p(x) ⇒ q(x) and ∀x, p(x) ⇒ ~q(x) are 
contrary statements. 

contrary of an existential statement. Another exis-
tential statement: ∃x ∋ p(x) ∧ q(x) and ∃x ∋ p(x) ∧ 
~q(x) are contrary statements (or in some usages, 
subcontrary statements). 

contradiction of a universal statement. An exis-
tential statement: ∀x, p(x) ⇒ q(x) and ∃x ∋ p(x) ∧ 
~q(x) are contradictory statements (also, ∀x, p(x) ⇒ 
~q(x) and ∃x ∋ p(x) ∧ q(x)). 

 
 
Numbers 
 
natural number. One of a unique sequence of 

elements used for counting a collection of 

individuals: 1, 2, 3,… A natural number is defined 
as a cardinal number. Natural numbers are closed 
under addition and multiplication; they include an 
identity element for multiplication (i.e., 1, since 1 × 
n = n for any natural number n) but none for 
addition. Natural numbers also include the prime 
numbers, perfect numbers, amicable numbers, and 
other types. The set of natural numbers is denoted N. 

cardinal number. A measure of the size of a set that 
does not take into account the order of its members. 
The cardinal number of a set is the largest member 
of the sequence of natural numbers 1, 2, 3, … that 
corresponds member for member to the elements of 
the set. Two sets are equivalent if they have the 
same cardinal number. For example, the members of 
set {a,b,c} may be put into one-to-one 
correspondence with the members of set {1,2,3}. 
The two sets are therefore equivalent; the cardinal 
number of each is 3. Arithmetic may be defined in 
terms of cardinal numbers. 

ordinal number. A measure of a set that takes into 
account the order as well as the number of its 
members. The set {a1,a2,a3} is ordinally similar to 
the set {1,2,3}. 

 
Other number systems are derived by extension from 
the natural numbers: 

 
whole number. One that includes a natural 

number and the element zero: 0,1,2,3,… A 
whole number is closed under addition and 
multiplication; it includes an identity element for 
addition (i.e., 0, since 0 + n = n for any whole 
number n). The set of whole numbers is denoted 
W. 

integer. A number that includes the positive 
whole numbers and the negative whole numbers: 
−3, −2, −1, 0, 1, 2, 3,… An integer is closed 
under addition, multiplication, and subtraction 
but not division since 2 ÷ 3 is not an integer. The 
set of integers is denoted Z. 

rational number. One that includes the integers 
and integer ratios such as 1/2, 2/5,… A rational 
number is closed under addition, multiplication, 
subtraction, and division. All rational numbers 
are algebraic numbers in that they are all 
solutions to finite algebraic equations of the 
form a0 + a1x + a2x2 + … + anxn = 0 where the  
ai are rational coefficients and n is an integer. A 
rational number, however, is not algebraically 
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closed since the algebraic equation x2 − 2 = 0 
has no rational solution. The set of rational 
numbers is denoted Q. 

irrational number. One that includes all 
numbers which are not rational numbers, such  
as √2. The equation x2 − 2 = 0 has an  
irrational solution. Irrational numbers, there-
fore, include algebraic numbers but also include 
transcendental numbers. Transcendental num-
bers are numbers such as π and e (base of  
the Naperian logarithms) that are solutions to no 
finite algebraic equations of the form a0 + a1x 
 + a2x2 +…+ anxn = 0 with rational coefficients. 
Transcendental numbers are solutions of tran-
scendental equations such as sin(x) = 0 where  
x = nπ with n an integer, or ln(x) = 1 where  
x = e. But the algebraic representations of  
sin(x) and ln(x) are infinite series of the form  
a0 + a1x + a2x2 +…+ anxn +… with all ai rational. 
The set of irrational numbers is denoted Q′. 

Dedekind cut. A partition of a sequence into two 
disjoint subsequences, all the members of one 
being less than those of the other. The Dedekind 
cut may be used to define the irrational numbers 
in terms of rational-number-sequence pairs. For 
example, √ 2 is defined as the pair 
 

x x x x2 22 2 1> <L
NM

O
QP{ } { } b g,

 
 

real number. One that includes rational numbers 
and irrational numbers. A real number is not 
algebraically closed since the algebraic equation 
x2 + 2 = 0 has no real solution. A real number is 
represented as a point on the real line, number 
line, or continuum. The set of real numbers itself 
is also called the continuum. The set of real 
numbers is denoted R. 

complex number. One that includes the real 
numbers and all numbers which have √(−1) as a 
factor. A complex number is usually represented 
as z = x + jy with j = √(−1). The term x is called 
the real part of z, Re(z); the term y is called the 
imaginary part of z, Im(z). The complex number 
z may also be represented as z = ρejθ where  
ρ = (x2 + y2)1/2 and θ = arctan(y/x) are polar 
coordinates and ejθ = cos(θ) + j sin(θ). The term 
ρ is called the modulus of z; the term θ is called 
the amplitude of z. A complex number is 

algebraically closed and is represented as a point 
on a Cartesian plane called an Argand diagram 
or Gaussian plane in which z = (x,y) with  
x = Re(z) and y = Im(z). If polar coordinates are 
used, then z = (ρ,θ). The set of complex numbers 
is denoted C. 

transfinite number. A cardinal or ordinal 
number used in the comparison of infinite sets. 
The smallest transfinite cardinal is ℵ0 and the 
smallest transfinite ordinal is ω. A set has 
cardinality ℵ0 when its elements can be put into 
one-to-one correspondence with the set of 
natural numbers. A set with cardinality ℵ0 is a 
denumerable set. The sets of positive integers, of 
rationals, and of reals are each denumerable, but 
the set of reals (the continuum) is not. The 
continuum hypothesis states that the continuum 
has the smallest nondenumerable cardinality. 
This hypothesis is undecidable because both it 
and its negation are consistent with the standard 
axioms of set theory. The generalized continuum 
hypothesis states that for any infinite cardinal, 
the next greater cardinal is that of its power set. 

 
 
Primes and Factors 
 
composite number. One that may be uniquely 

written as a product of prime numbers: 15 = 3 × 5 
and 144 = 32 × 42. 

zero. A number that may not be a factor of any 
number other than itself since 0 × s = 0 for all s. 
Also, zero is not a unique factor since 0 = 02 = 03  
= … = 0n for all n; 1 is a factor of all natural 
numbers but is also not a unique factor since 1 = 12 
= 13 = … = 1n for all n. 

Euclid’s argument for the number of primes. Let 
p1… pn represent the first n prime numbers. Now, 
form the number 

 
( )1 2 1 2np p p× × +K  

 
None of the p1… pn can be factors of p1 × p2 ×… pn 
+ 1 since, upon division, they will all leave a 
remainder of one. Therefore, there must be either a 
prime factor of p1 × p2 ×…× pn + 1 which is > pn or 
the number p1 × p2 ×… × pn + 1 must itself be prime. 
In either case, whatever value of n is chosen, a prime 
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number larger than pn must exist. The number of 
primes is therefore infinite. 

Mersenne prime. Any prime number of the form  
2n − 1 where n is an integer. Define a number Mn  
= 2n −1. It may be shown that if n is composite, then 
Mn is composite; however, if Mn is prime, then n is 
prime (N.B., this argument uses the theorem of the 
contrapositive). Thus, n = prime is a necessary 
condition for Mn = prime. 

 
If n is composite (i.e., n = ab), then 2a −1 and 2b −1 
are factors of Mn. One may show that 2a − 1 is a 
factor of Mn by constructing a trial case and then 
generalizing. Begin by choosing b = 3. Then n = 3a 
and 

 

( )
3

22 1 2 2 1 3
2 1

a
a a

a
−

= + +
−  

 
The division is exact. This trial (and others like it) 
suggests the general solution: 

 

( ) ( )

( )

1 2

2

2 1 2 2
2 1

         ... 2 2 1 4

ab
b a b a

a

a a

− −−
= +

−

+ + + +  
 

which is also exact. A similar argument may be 
made for division by 2b − 1. 

perfect number. One whose divisors (including 1) 
add to give twice the number: 28 is a perfect number 
because its divisors 1, 2, 4, 7, 14, and 28 add to give 

 
( )1 2 4 7 14 28 56 2 28 5+ + + + + = = ×  

 
Any number of the form 2c(2c+1 − 1) is a perfect 
number if 2c+1 − 1 is a Mersenne prime. 

Fermat number. Any number of the form 2n + 1 
with n = 2t. If the number is prime, it is called a 
Fermat prime. Define a number Fn = 2n + 1. It may 
be shown that if n has an odd factor, then Fn is 
composite, but if 2n + 1 is prime, then n has no odd 
factors (n = 2t where t = any natural number). Thus, 
n = 2t is a necessary condition for 2n + 1 = prime.  

 
If n = ab and b is odd, then 2a + 1 is a factor of Fn. 
To ensure that b is odd, set b = 2k + 1. Then Fn  
= 2(2k+1)a + 1. As before, one may show that 2a + 1 is 

a factor of Fn by constructing a trial case and then 
generalizing. Begin by choosing k = 2. Then, Fn  
= 25a + 1 and 

 

( )
5

4 3 22 1 2 2 2 2 1 6
2 1

a
a a a a

a
+

= − + − +
+  

 
The division is exact. The trial case suggests the 
general solution: 

 
( ) ( )

( ) ( )

2 1
2 12

2 2

2 1 2 2
2 1

                     2 ... 2 1 7

k a
k aka

a

k a a

+
−

−

+
= −

+

+ − − +  
 

which is also exact. 
construction of regular polygon. Of n sides (using a 

compass and straightedge) possible if and only if  
 

( )1 2 32 ... 8a
tn p p p p=  

 
where a = any natural number and p1,…pt are Fermat 
primes (Gauss). 

Goldbach’s conjecture. Unproved theorem that 
every even number ≥ 6 is the sum of two primes and 
every odd number ≥ 9 is the sum of three primes.  

twin primes. Consecutive odd numbers that are both 
prime: (3,5), (5,7), (11,13). Mathematicians specu-
late but cannot prove that the number of such pairs  
is infinite. 

 
 
Intervals of the Real Line 
 
interval. A subset (neighborhood) of the real line 

containing all real numbers (points) between two 
given real numbers (a and b) called endpoints. A 
proper interval is any interval subset of the real line 
other than the real line itself. 

interior points of an interval. Those points lying 
strictly between the endpoints of the interval. 

closed interval [a,b]. The closed set {x|a ≤ x ≤ b}. 
open interval (a,b). The open set {x|a < x < b}. 
half-open or half-closed interval (a,b]. The set  

{x|a < x ≤ b}. 
half-open or half-closed interval [a,b). The set  

{x|a ≤ x < b}. 
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unbounded interval. A half-closed interval [a,∞) or 
an open interval (a,∞). The interval (−∞,∞) may be 
considered either open or closed. 

partition of an interval [a,b]. A finite sequence of 
points {xi} such that a = x1 < x2 < … < xn = b. 

completeness property of real numbers. A property 
which states that every nonempty set of real numbers 
is contained in a smallest closed interval of real 
numbers (table 1). 

 
 

TABLE 1.COMPLETENESS PROPERTY OF 
REAL NUMBERS 

Set A Smallest closed 
 interval containing A 
{a} [a,a] 
(−a,b) [−a,b] 
(−a,b] ∪ [c,d] (∋ −a < b < c < d) [−a,d] 
{Integers > 0} [1,+∞] 
{Rational numbers} [−∞,+∞] 
{1/n|n > 0} [0,1] 

 
disk. The extension of an interval to the Cartesian or 

complex plane. An open disk of radius ε centered at 
a point (s,t) is the set of points defined by the 
formula (x − s)2 + (y − t)2 < ε. A closed disk of 
radius ε centered at (s,t) is the set of points defined 
by (x − s)2 + (y − t)2 ≤ ε. 

ball. The extension of the disk to three-dimensional 
space. An open ball of radius ε centered at a point 
(s,t,u) is the set of points (x − s)2 + (y − t)2 + (z − u)2 
< ε. A closed ball of radius ε centered at a point 
(s,t,u) is the set of points (x − s)2 + (y − t)2 + (z − u)2 
≤ ε. The ball may be extended to higher dimensional 
spaces by analogy. Equivalently: A closed ball 
(closed disk) Bεs or B(s,ε) in topology is a set of 
points whose distance from a given point s is less 
than or equal to a given constant ε. An open ball 
(open disk, neighborhood) Nεs or N(s,ε) in topology 
is a set of points whose distance from a given point s 
is strictly less than a given constant ε. A closed ball 
is sometimes called a “sphere,” although the term 
sphere may also refer only to the frontier of the ball. 

 
 
Relations 
 
relation R from the set S to the set T. A rule that 

associates elements of T with elements of S to form a 
set (or sets) of ordered pairs {(s,t)|s ∈ S and t ∈ T}, 

which may be viewed as a subset of the Cartesian 
product S × T and represented as a relation from S to 
T denoted R:S → T or sRt. A relation from a set S to 
itself is called a relation on S. A relation on a set S is 
usually a binary relation on S, although the notion 
may be extended to involve more than two elements 
as in the relation aRb, c ≡ “a is between b and c.” 

 
A binary relation R is 

 
commutative or permutable. For any elements 

s and t if sRt = tRs. 
associative. For any elements s, t, and u if (sRt) 

Ru = sR (tRu). 
 
A binary relation R* is 
 

distributive over another binary relation R . For 
any elements s, t, and u, if sR*(tRu) = (sR*t) 
R(sR*u). 

 
A binary relation R is 

 
transitive. For any elements s, t, and u if sRt 

and tRu imply sRu. 
symmetric. For any elements s and t if sRt iff 

tRs. 
antisymmetric. For any elements s and t if sRt 

and tRs iff s = t. 
strict or proper. For any elements s and t if sRt 

iff s ≠ t. 
weak. For any elements s and t if sRt includes 

the possibility s = t. 
compact on a set S. For any elements s and t in 

S, if whenever sRt, there is some element γ in 
S such that sRγ  and γRt; e.g., less than < is 
compact on the rational numbers since for  
any pair of rationals s and t, there  is  another 
rational γ = 1/2(s + t) such that s < γ < t. 

 
domain of a relation R from S to T. The subset of S 

whose elements appear as first elements in the 
ordered pairs (s,t) of R; i.e., the domain of R is the 
set D = {s ∈ S|(s,t) ∈ R}. 

co-domain of a relation R from S to T. The entire set 
T. 

range of a relation R from S to T. The subset of T 
whose elements appear as second elements in the 
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ordered pairs (s,t) of R; i.e., the range of R is the set 
R = {t ∈ T|(s,t) ∈ R}. 

inverse of a relation R from S to T. The set R−1  
= {(t,s)|(s,t) ∈ R}. 

converse of a relation R. Another relation R* that 
holds between the elements of ordered pair (s,t) iff R 
holds between the elements in the ordered pair (t,s); 
e.g., for the domain of males, s is the father ot t iff t 
is the son of s. 

connected relation. One in which either the relation 
or its converse holds between any two members of 
the domain; e.g., for the reals, either a ≥ b or b ≥ a. 

 
 
Equivalence 
 
equivalence relation ~ on a set S. A binary relation 

that is reflexive, symmetric, and transitive. The 
elements in each ordered pair (s1,s2) of an equiv-
alence relation are equivalent: s1 ~ s2. 

equivalence class of an element s in S. The set of all 
other elements of S that are equivalent to it. If two 
equivalence classes have an element in common, the 
two classes as sets are equal. The collection of 
distinct equivalence classes having the property that 
every element of S belongs to exactly one of them is 
a partition or a quotient set of S denoted S/~. 

 
Theorem: Given a partition of a set S, an equivalence 

relation on S can be obtained by defining s1 
equivalent to s2 if s1 and s2 belong to the same subset 
in the partition. Conversely, from any equivalence 
relation on S, a partition of S may be obtained. 
 
The following is an example of an equivalence 
relation: Let S = I (the set of integers) and define a 
relation R on S with P(s,t) = “s is congruent to t 
modulo 3;” i.e., s − t = 3n, where n = any integer 
(denoted “s ≈ t mod 3”). The set of integers may be 
written in tabular form as 

 
{ } ( )..., 3, 2, 1,0, 1, 2, 3,... 9I = − − − + + +  

 
The relation s ≈ t mod 3 partitions I into three sets: 

 
{ } ( )1 ..., 9, 6, 3,0, 3, 6, 9,... 10aI = − − − + + +  
{ } ( )2 ..., 8, 5, 2, 1, 4, 7, 10,... 10bI = − − − + + + +  
{ } ( )3 ..., 7, 4, 1, 2, 5, 8, 11,... 10cI = − − − + + + +  

The relation R is seen to be an equivalence relation ~ 
since  
 

( )mod3 11as s≈  
( )mod3 only if mod3 11bs t t≈ ≈  

( )
mod3 and mod3

only if mod3 11c
s t t v

s v
≈ ≈

≈  
 

The sets I1, I2, and I3 are therefore equivalence 
classes (e.g., [−2] = I2). The partition or quotient set 
S/~ may be denoted {I1,I2,I3}. 

 
 
Ordering 
 
strict ordering. An ordering relation (such as < ) that 

excludes the possibility of equality between pairs of 
elements. 

weak ordering. An ordering relation (such as ≤ ) that 
permits the possibility of equality between pairs of 
elements. 

total ordering. An ordering on a set such that every 
element is related to every other by the relation or its 
converse (i.e., a relation R such that sRt or tRs); e.g., 
the relation less than < is a total ordering on the 
reals. 

dense ordering. An ordering on a set in which there 
exists between any two comparable elements of S 
another element of S; e.g., the rational numbers are 
dense since, for any rational numbers a and b, the 
rational number 1/2(a + b) lies between. 

connected ordering. An ordering on a set in which 
every element is related to every other by the 
relation or its converse. 

complete ordering. An ordering on a set in which 
some of the elements are related to others either by 
the ordering relation or its converse, whereas the 
remaining elements are not related either way 
(ambiguous usage). 

partial ordering. An ordering on a set in which some 
of the elements are related to others either by the 
ordering relation or its converse, whereas the 
remaining elements are not related either way; e.g., 
the relation of set inclusion is a partial ordering:  
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{ } { } { } { }
{ } { } ( )

2,3 1,2,3,4 but 2,3,4 1,2,3

and   1,2,3 2,3,4 12

⊂ ⊄

⊄  
 

A partially ordered set is Dedekind complete if every 
subset has a supremum and an infimum; e.g., the 
reals are not complete, but the interval [0,1] is. 

linear ordering. An ordering on a set in which some 
of the elements are related to others so that (1) every 
element is related to itself (aRa); (2) if any two 
elements share the ordering relation and its converse, 
then they are the same element (aRb and bRa ⇔ a 
and b are the same element); (3) if any two elements 
share the ordering relation and one of them shares 
the relation with another, then the first also shares 
the relation with the other (aRb and bRc ⇒ aRc); 
and (4) any two elements share the ordering relation 
in at least one direction (aRb or bRa). This complex 
definition is usually reduced to read: a linear 
ordering is any ordering on a set that is reflexive, 
antisymmetric, transitive, and connected (complete); 
e.g., the weak inequality ≤ on the set of integers is a 
linear ordering: 

 
reflexive. For any integer a, it is true that a = a. 
antisymmetric. For any integers a and b, it is 
true that a ≤ b and b ≤ a implies a = b. 
transitive. For any integers a, b, and c, it is true 
that a ≤ b and b ≤ c implies a ≤ c. 
connected. For any integers a and b, either  
a ≤ b or a ≥ b. 

 
well-ordered set. A linearly ordered set in which 

every subset has a least element; e.g., the relation 
less than < is well ordered on the integers but not on 
the reals, since an open set has no least member. 

inductive ordering. An ordering on a set such that 
every subset has at least one minimal element. A 
well-ordered set is inductively ordered. 

 
For any ordered set, the element that is less than (or 
equal to) every other element in the set is the first or 
smallest element of the set. The element that is 
greater than (or equal to) every other element in the 
set is the last or largest element of the set. The first 
or smallest element precedes the other elements of 
the set. The last or largest element follows the other 
elements of the set. 

 
 

An element in a set S is  
 

upper bound. If it follows every element of S. 
That element is a supremum or least upper 
bound if it is an  upper bound and precedes 
every other upper bound of S.  

lower bound. If it precedes every element of S. 
That element is an infimum or greatest lower 
bound if it is a  lower bound and follows every 
other lower bound of S. If S has an upper 
bound, it is bounded above.  If  S   has   a lower 
bound, it is bounded below. A set is bounded 
if it is bounded above and below. Any 
nonempty  set that  is bounded above has a 
supremum, and any nonempty set that is  
bounded below has an infimum.  An unbounded set 
is any set that is not bounded. 

maximal. If it is followed by no other element 
than itself. 

minimal. If it is preceded by no other element 
than itself. 

 
 Minimal and maximal elements do not have to 
be the unique least or greatest element unless the 
ordering is  total. 

 
maximum. If it is the largest element of the set; 

e.g., the negative numbers have no maximum, 
but the  nonpositive numbers have a maximum 
0. Both sets have 0 as a supremum. 

minimum. If it is the least element in the set; 
e.g., the positive numbers have no minimum, 
but the  nonnegative  numbers have a minimum 
0. Both sets have 0 as an infimum. 

 
closed interval [s,t]. An interval that has both a 

minimum and an infimum s and a maximum and a 
supremum t in the interval. The intervals [s,∞) and 
(−∞,s] may be regarded as closed. 

open interval (s,t). An interval that is bounded with 
infimum s and supremum t. The open interval is an 
open set. The intervals (x,∞) and (−∞,x) may be 
considered open intervals. The real line R1 may also 
be considered an open interval. 

half-open intervals [s,t) and (s,t]. Intervals that are 
bounded with an infimum s and a supremum t but 
only [s,t) has a minimum and (s,t] has a maximum. 
The half intervals are not open sets since neither 
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contains the neighborhood of the closed-end 
endpoint. 

 
Mapping 
 
mapping f from S to T where S and T are nonempty 

sets (or classes or spaces). A rule that assigns to 
each element of S a unique element of T. A mapping 
is a specific type of relation R from S to T in which 
each element of S appears only once as a first 
element in the ordered pairs (s,t). The mapping f 
from S to T is denoted f:S → T; if s is a member of S 
and f(s) is the corresponding member of T, the 
mapping may be denoted f:s → f(s). The term f(s) is 
called the image of s under f. 

continuous mapping f:S → T. One in which for any 
element t in T with open neighborhood V (arbitrarily 
small), there is a corresponding element s in S with 
open neighborhood U so that every element s* in U 
is carried to an element t* in V. 

one-to-one or injective mapping f:S → T. One that 
associates a unique member f(s) in T with every 
member s of S.  

onto or surjective mapping f:S → T. One that 
associates with every element t of T at least one 
element of S such that t = f(s).  

bijective mapping f:S → T. One that is both one to 
one and onto.  

closed mapping f:S → T. One that sends closed sets 
in S to closed sets in T. 

open mapping. One that sends open sets in S to open 
sets in T. 

inverse mapping f −1 from T to S (also a bijection). 
One for which an element t in T has a unique image  
f −1(t) in S. If (s,f(s)) belongs to f and (f −1(t),t) 
belongs to f −1, then (s,f(s)) = (f −1(t),t). 

restriction of mapping f:S → T. Another mapping 
g:S1 → T1, denoted g = f|S1 where S1 ⊆ S, T1 ⊆ T, and 
g(s1) = f(s1) for all s1 in S1.  

equality of mappings f:S → T and g:S → T. Two 
mappings that have the same domain S and f(s)  
= g(s) for every s in S.  

 
Two sets A and B are equivalent (A ~ B) if there 
exists a bijective mapping f:A → B. A set is infinite 
if it is equivalent to a proper subset of itself; 
otherwise, it is finite. 

 

graph of a mapping f:S → T. The subset of ordered 
pairs {(s,f(s)) ∈ S × T }. The graph of a mapping has 
the unique property that for each s in S, there is a 
unique element (s,f(s)) in the graph. 

domain or essential domain of a mapping f:S → T. 
The subset of S whose elements appear as first 
elements in the ordered pairs (s,t) of f; i.e., the 
domain of R is the set D = {s ∈ S|(s,f(s)) ∈ f}. 

co-domain of a mapping f:S → T. The entire set T. 
range of a mapping f:S → T. The subset of T 

consisting of just those elements f(s) that are images 
of s in S under f; i.e., the range of f is the set  
R = {f(s) ∈ T|(s, f(s)) ∈ f}. 

composition of two mappings f:S → T and g: T → U. 
Another mapping g f:S → U defined by (g × f)(s)  
= g(f(s)) for s in S. The mapping g × f:S → U exists 
if and only if the co-domain of f equals the domain 
of g. The composition of mappings is associative; 
thus, if f:S → T, g:T → U, and h:U → V are 
mappings, then h × (g × f) = (h × g) × f with domain 
S and co-domain V. 

identity mapping on a set S. A mapping iS:S → S 
defined by iS(s) = s for all s in S. Identity mappings 
have the property that if f:S → T is a mapping, then  
f × iS = f and iT × f = f; e.g., the inverse mapping  
f −1: T → S  is a bijection with the property that  
f × f −1 = iT and f −1 × f = iS. 

 
 
Transformations 
 
transformation. A one-to-one mapping from S to S. 

If S is the set of points in the plane, then an 
important set of transformations in the plane is the 
linear transformations that (in Cartesian coordinates 
with origin O) can be represented by linear 
equations. Examples for a fixed origin O include 
rotations about O, reflections in lines through O,  
and dilatations from O. Translations are linear trans-
formations in which O is not a fixed point. 

rotation. A transformation in which a coordinate 
system is turned in some direction around a fixed 
origin. 

reflection. A transformation in which the direction 
of one (or more) coordinate axis is reversed. 

dilatation. A transformation in which a coordinate 
system is stretched or shrunk around a fixed origin. 
Thus, a point x is mapped to a new point kx where 



NASA/TP—2003-212088 12

 k is a scale factor. A dilatation is a direction 
preserving similarity. 

translation. A transformation in which the origin of 
a coordinate system is moved from one position to 
another with the new axes parallel to the old. 

affine transformation. A mapping that preserves co-
linearity and, hence, parallelism and straightness, 
but may vary distances between points and angles 
between lines. Translation, rotation, and reflection in 
an axis are all affinities. 

similarity transformation in Euclidean geometry. A 
mapping that preserves similarity and is some 
combination of a translation, a rotation, and/or a 
homothety.  

homothety. A linear transformation that involves no 
rotation but does involve both a translation and a 
dilatation (i.e., is a composition of a translation and 
a dilatation).  

similitude. A homothety that leaves the origin fixed. 
In vector terms, a similitude has the form x → kx 
where k is the ratio of similitude, and the origin is 
the center of similitude.  

morphism. A transformation that preserves some 
structure on a set. 

homomorphism. A mapping θ between two abstract 
algebras in which the structural properties of the 
domain are preserved in the range; i.e., if ∗ is the 
operation on the domain and × is the operation on 
the range, then θ (a ∗ b) = θ(a) × θ(b). Refer, also, to 
entry under Abstract Algebra.  

monomorphism. An injective homomorphism. 
epimorphism. A surjective homomorphism. 
isomorphism. A bijective homomorphism; e.g,, the 

group of complex numbers 1, −1, i, −i is isomorphic 
to the group of elements 0, 1, 2, 3 with addition 
modulo 4. 

automorphism. An isomorphism in which the 
domain and the range are identical; e.g., the 
permutations on a set are an automorphism. 

deformation. A transformation whose effect is to 
change the shape of a figure by stretching but not 
tearing. 

homotopy. A continuous deformation of one 
function or curve into another. 

homeomorphism. A mapping between sets that is 
one to one and onto, so that both the function and its 
inverse are continuous. Homeomorphism is an 
equivalence relation that preserves topological 

properties; e.g., in the case of a geometric figure, a 
deformation is a homeomorphism. 

isometry. An automorphism or a homeomorphism 
that preserves metric relations. 

 
 
Functions 
 
Real Functions 
 
real function f. A mapping from the set R of real 

numbers (or a subset of R) to R. Thus, for every real 
number x in the domain, a real number f(x) is 
defined. In analysis, a function f:S → R is often 
defined by giving a formula for f(x) without 
specifying the domain S. In this case, it is usual to 
assume that the domain is the largest possible subset 
S of R. If the domain of a function f is Rn, then f  
is called a function on Rn. If the range of a function f 
is a subset of R1, then the function is called a scalar-
valued function. If the range of a function f is a 
subset of Rs where s > 1, then f is called a vector-
valued function; e.g., f(x,y,z) = (u,v) is a vector-
valued function on R3 with components u and v. 

 
If a real function f:S → T is a bijection, then an 
inverse function f −1 from T to S may be defined as 
one for which an element y in T has a unique image  
f −1(y) in S. If (x, f(x)) belongs to f and (f −1(y),y) 
belongs to f −1, then (x,f(x)) = (f−1(y),y). If the domain 
S is an interval I and f is strictly increasing or strictly 
decreasing on I, then an inverse function certainly 
exists. In general, when an inverse function is 
required for a given function f, it may be necessary 
to restrict the domain and obtain instead the inverse 
for this restriction of f. When the inverse function 
exists, the graphs of y = f(x) and x = f −1(y) are 
reflections of one another in the line y = x.  

 
The limit of a real function f(x) as x tends to some 
value c in the domain is a number L, provided that 
f(x) gets arbitrarily close to L when x gets arbitrarily 
close to c. 
 
A real function f(x) is continuous 

 
at x = c. If and only if f(c) exists and the  

limit of f(x) as x approaches c is f(c) (i.e., limx→c 
f(x) = f(c)). 
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in an open interval (a,b) with a < b. If it is 
continuous at every point in the interval. 

on a closed interval [a,b]. If it is continuous  
on the open interval (a,b) and if the limit as x 
approaches  a  or  b      from within the interval 
equals f(a) or f(b), respectively (i.e., limx↓a f(x) 
= f(a) or limx↑b f(x) = f(b)). 

 
A real function is 

 
increasing in or on an interval I. If f(x2) ≥ f(x1) 

whenever x2 and x1 are in I with x2 > x1. Also, f 
is strictly  increasing if f(x2) > f(x1) whenever  
x2 > x1.  

decreasing in or on an interval I. If f(x2) ≤ f(x1) 
whenever x2 and x1 are in I with x2 > x1. Also, f 
is  strictly  decreasing if f(x2) < f(x1) whenever  
x2 > x1.  

monotonic over an interval I. If it is either 
increasing or decreasing on I. Also, a real 
function is strictly  monotonic over an interval I 
if it is either strictly increasing or strictly 
decreasing on I. 

bounded. If there is a number M such that for 
all numbers x in the domain of f, |f(x)| < M. 

 
Theorem: If f is continuous on the closed interval 
   [a,b], then it is bounded on [a,b]. 
 
Theorem: If f is continuous on the closed interval 
   [a,b], then there are numbers A and B such that  
 f([a,b]) = [A,B]. 
 

Algebraic Functions  
 
algebraic function f. A mapping involving a finite 

number of algebraic operations (×, /, +, −) from the 
complex domain C (or a subset of C) to C. Thus, for 
every complex number z in the complex plane, 
another complex number f(z) is defined. Since R2 ⊂ 
C, algebraic functions include mappings from and/or 
to R2. Some examples of algebraic functions include 

 

constant function. A real function f such that 
f(z) = c0 for all z in C, where c0, the value of f, 
is a fixed complex number. 

linear function. A real function f such that  
f(z) = az + b for all z in C, where a and b are 
real numbers with normally a ≠ 0. 

polynomial function. A real function f such that 
f(z) = a0 + a1z + a2z2 + … + anzn for all z in C. 
The numbers a0,…, an (with an ≠ 0) are real 
number coefficients, and n is an integer equal to 
the degree of the polynomial. 

rational function. A function f such that for z in 
the domain f(z) = g(z)/h(z), where g(z) and h(z) 
are polynomials that may be assumed to have 
no common factor with degree greater then or 
equal to 1. The domain is usually taken to be 
the whole of C with any zeros of h(z) omitted. 

 
transcendental function. Any function of a complex 

variable that is not algebraic is transcendental. 
Algebraic functions correspond to classical 
geometric constructions that can be completed in a 
finite number of steps; transcendental functions 
correspond to classical geometrical constructions 
that require an infinite number of steps to complete, 
such as, for example, obtaining a circle by 
repeatedly subdividing the sides of a polygon. 
Solutions to transcendental equations involve 
transcendental numbers. Examples of transcendental 
functions include infinite series and such defined 
functions as log(x), sin(x), ex. 

 
Set Functions 
 
set function. A mapping from one class S of sets 

onto another class T of sets. Thus, a set function is 
any function whose domain consists of sets and 
whose co-domain also consists of sets. 

real-valued set function. A set function whose 
domain consists of sets and whose co-domain 
consists of the set of real numbers. 

characteristic function of a set S in some universe  
of discourse U.   The real-valued function fS:U → 
{1,0} defined by fS(s) = 1 if s is an element of S and 
fS(s) = 0 if s is not an element of S. 

choice function of a set S. A function that maps any 
class of nonempty subsets of S into S in such a way 
that the image of each subset in S is an element of 
that subset.  

 
 
Sequences 
 
sequence. A set of terms {a1,a2,a3,…} that are 

functions from the integers (or some subset of the 
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integers) to the real numbers. The terms of the 
sequence may be represented as ordered pairs 
{(1,a1), (2,a2), (3,a3),…}, emphasizing the functional 
relationship. Because the terms are paired with the 
integers 1, 2, 3,…, one may speak of the first term 
a1, the second term a2, and so on. The terms of a 
sequence need not be distinct; e.g., let {an} with  
n > 0 be the sequence {1,1,1,0,1,0 1,…} in which  
an = 1 if n is prime (or 1) and 0 otherwise.  

finite sequence. One that consists of a finite number 
of terms {a1,a2,a3,…,an}, where n is the length of the 
sequence. 

infinite sequence. One that consists of a denumer-
able infinity of terms {a1,a2,a3,…} corresponding to 
each of the positive integers. 

monotonic sequence {a1,a2,a3,…}. One that is either 
increasing (an ≤ an+1 for all n) or decreasing  
(an ≥ an+1 for all n). 

strictly monotonic sequence. One that is either 
strictly increasing (an < an+1 for all n) or strictly 
decreasing (an > an+1 for all n). 

bounded sequence {a1,a2,a3,…}. A sequence for 
which there is a number M > 0 such that for all n,  
|an| < M. 

 
 A sequence may be defined by any rule that assigns 

a real number an to a positive integer n: 
 

recursion formula. Defines by specifying the 
first term and then stating a recursion formula 
that tells how to find each remaining term from 
the term that precedes it; e.g., let {an} be the 
sequence in which a1 = 1 and an = 3an−1 − 1 for 
n > 1. 

arithmetic formula. Defines by specifying an 
arithmetic formula for the general term an; e.g., 
let {an} be the sequence in which an = 2n + 1 
for n > 0. 

inference from given terms. Defines by 
specifying a sufficient number of initial  
terms from which the general pattern may be 
inferred; e.g., let {an} be the sequence 
{1,1/2,1/3,1/4,1/5,…}. 

 
random sequence. A sequence that exhibits no 

apparent rule (no matter how many terms are 
considered) for which the next cannot be predicted 
with certainty. 

doubling sequence. A sequence such as 
{1,2,4,8,16,…} for which the first term is 1 and for 
which an+1 = 2an. 

Fibonacci sequence. A recursive sequence 
{1,1,2,3,5,8,13,21,…} where starting with the first 
two terms as 1,1, each new term is made by adding 
the previous two terms. 

Lucas sequence. Another recursive sequence 
{1,3,4,7,11,18,…} where starting with the first two 
terms as 1,3, each new term is made by adding the 
previous two terms. 

arithmetic progression. Any sequence in which the 
difference (an+1 − an) between successive terms is a 
constant. 

geometric progression. Any sequence in which the 
ratio (an+1/an) between successive terms is a 
constant. 

 
The limit of an infinite sequence {a1,a2,a3,…} is a 
number L provided that an becomes arbitrarily close 
to L as n approaches infinity. The usual notation is 
limn↑∞an = L or simply an → L; e.g., the sequence 
{0,1/2,3/4,15/16,…} has the limit an → 1. 
 
Sequences that have no limit may be classified as 

 
1. an → ∞, for any positive number K (however 

large), if there is an integer S (which depends 
on K) such that for all n > S, an > K; e.g., the 
sequence {0,1,4,9,16,…} has the limit an → ∞. 

2. an → −∞, for any negative number K (however 
small), if there is an integer S (which depends 
on K) such that for all n > S, an < K. 

3. A sequence that does not have a limit but  
is bounded is said to oscillate finitely; e.g.,  
the sequence {1/2,−3/4,4/5,−5/6…} oscillates 
finitely. 

4. A sequence that is not bounded and for which 
it is not the case that an → ±∞ is said to 
oscillate infinitely; e.g., the sequence 
{1,2,1,4,1,8,1,16,…} oscillates infinitely. 

 
convergent sequence. One that has a limit; e.g., an 

unending decimal is a convergent sequence. 
Consider the fraction 25/33 = 0.7575757575… 
This decimal corresponds to the sequence 
{0.7,0.75,0.757,0.7575,0.75757,…} that converges 
to 25/33 in the limit as n approaches infinity. 
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infinite sequence {a1,a2,a3,…}. One that has a limit 
if the difference an+k − an approaches zero as n and k 
independently approach infinity. Any sequence that 
has this property is called a Cauchy sequence or a 
fundamental sequence. Notice that Cauchy’s 
condition makes no reference to the value of the 
limit itself. 

 
Theorem: If a sequence converges, it is bounded (or if 

a sequence is not bounded, it does not converge). 
 

Theorem: A monotonic sequence converges if and 
only if it is bounded. The limit of an increasing 
sequence is its least upper bound, and the limit of a 
decreasing sequence is its greatest lower bound. 

 
divergent sequence. A sequence that does not 

converge. 
accumulation point of a sequence. Any point P 

where there is an infinite number of terms in any 
neighborhood of P; e.g., the sequence 
{1,1/2,1,1/3,1,1/4,1,1/5,…} has two accumulation 
points: one at 1 and the other at 0. Every bounded 
infinite sequence of real numbers contains at least 
one accumulation point. 

 
For real number sequences, the largest accumulation 
point is called the limit superior, and the smallest 
accumulation point is called the limit inferior. The 
limit superior and limit inferior do not necessarily 
correspond to least upper and greatest lower bounds 
of the sequence; e.g., the limit superior and limit 
inferior of the sequence {2,−3/2,4/3,−5/4,6/5,−7/6,…} 
are +1 and −1, respectively, whereas the upper and 
lower bounds are 2 and −3/2, respectively. The limit 
superior and limit inferior of any sequence {an} are 
denoted respectively by limn→∞supan and 
limn→∞infan. When these two limits are the same, the 
sequence has a limit. 

 
nested sequence of intervals I1,I2,I3,…,In,… A 

sequence of intervals in which each is contained in 
the preceding: I1 ⊃ I2 ⊃ I3 ⊃… ⊃ In ⊃… It is 
sometimes required that the lengths of the intervals 
approach zero as n approaches infinity.  

 
For any sequence of nested intervals, each of which 
is bounded and closed, there is at least one point that 
belongs to all the intervals. 

A collection of sets is nested if for any two 
members, one is contained in the other. A nested 
collection of sets is also called a nest, a tower, or a 
chain. 
 

Theorem: In a complete metric space, any nested 
sequence of sets whose diameters tend to zero 
contains a unique point of intersection. 

 
 
Curves, Surfaces, and Regions 
 
curve (or path) between two points. A continuous 

deformation f of the closed interval [0,1] in which 
the images of the endpoints f(0) and f(1) are the two 
given points. 

closed curve. One that has no endpoints and 
completely encloses a finite area. It is a continuous 
deformation f of the closed interval [0,1] for which 
f(0) = f(1). A closed curve is simple if it does not 
intersect with itself. 

 
The Jordan Curve Theorem states that any simple 
closed curve has an interior and an exterior; i.e., the 
plane is divisible into two, open, disjoint regions, 
each with the curve as its closure. 

 
bounded surface without holes. A continuous defor-

mation of the closed unit disk (x − s)2 + (y − t)2 ≤ 1 
in which the boundary of the surface is the image of 
the unit circle (x − s)2 + (y − t)2 = 1. A bounded 
surface with m holes is a continuous deformation of 
the closed unit disk with m open regions removed 
from its interior. 

 
A bounded surface is simply connected if every 
simple closed curve drawn on it may be continuously 
contracted to a point without leaving the surface.  
A bounded surface is n-tuply connected if it has  
m = n − 1 holes or, equivalently, if at most n − 1 cuts 
are required to make it homeomorphic to a closed 
unit disk. 

closed surface without holes. One that has no 
boundary and completely encloses a finite volume. It 
is a continuous deformation of the closed unit disk 
for which the disk boundary is mapped into a single 
point of the surface. A closed surface with m holes is 
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a continuous deformation of the closed unit disk 
with m open regions removed from its interior. 
 
A closed surface is simply connected if every simple 
closed curve drawn on it may be continuously 
contracted to a point without leaving the surface; 
e.g., a disk and a sphere are simply connected, but an 
annulus is not. A closed surface is n-tuply connected 
if at most n − 1 cuts may be made in it without 
dividing it into two parts. 

 
A region in three-space, bounded by a surface, is a 
continuous deformation of the closed unit ball  
(x − s)2 + (y − t)2 + (z − u)2 ≤ 1, in which the surface 
is the image of the unit sphere (x − s)2 + (y − t )2  
+ (z − u)2 = 1. 

 
A region in three-space is simply connected if every 
closed curve in the region bounds a surface that is 
simply connected; e.g., the interior of a sphere is 
simply connected, but the interior of a torus is not. 
 
The Jordan-Brouwer Separation Theorem proves 
that a topological (n − 1)-sphere separates n- 
dimensional Euclidean space into two open, disjoint 
parts, each with the (n − 1)-sphere as its closure. 

 
 
Mathematical Spaces 
 
point. Any element in a metric space, a Euclidean 

space, a topological space, or a vector space. 
real line. An infinite line on which points are taken 

to represent the real numbers by their distance from 
a fixed origin. 

mathematical space. A set of elements, called 
points, endowed with a structure defined by 
specifying a set of axioms to be satisfied by the 
elements; e.g., metric space, vector space, normed 
space, Euclidean space, n-space, topological space. 
A subspace is any subset of a space that is itself a 
space, esp. one that has the essential properties of 
the including space. 

metric space. A set S in which for all pairs of 
elements a and b, there is a nonnegative real number 
M (distance from a to b) that satisfies the following 
conditions: M = 0 if a and b are the same point; M 
from a to b equals M from b to a; and for c also in S, 
M from a to b plus M from b to c is greater than or 

equal to M from a to c (triangle inequality). Any 
function M that satisfies these conditions is called a 
metric for S. 

open set S in a metric space. One in which every 
point has an open neighborhood lying entirely within 
S; i.e., each point of S is an interior point. 
Equivalently, an open set in a metric space is a set in 
which every point is in an open ball lying within the 
set. An open set is the complement of a closed set. 
Note: The null set Φ is an open set since there is no 
point in the empty set that is not an interior point: 
On the real number line the open interval (a,b), 
where a and b are real numbers, is an open set in R1. 
In the plane, the open disk with center at (α,β) and 
radius δ > 0 defined by (x − α)2 + (y − β)2 < δ 2 is 
an open set in R2. 

open neighborhood (or simply, a neighborhood) 
N(ε,s) of a point s in a metric space S. The set of 
all points whose distance from s is strictly less than 
some arbitrarily small value ε, called the “radius.” 
An open neighborhood is also called an open ball or 
open sphere.  

closed neighborhood of a point s in S. The set of  
all points whose distance from s is less than or equal 
to ε. 

punctured neighborhood of a point s in S. A 
neighborhood from which the point s itself has been 
deleted; i.e., a punctured neighborhood of s is the set 
difference N(ε,s)\{s}. 

vector space. A set S, which is an Abelian group 
(defined over a field F) together with their 
individual associated operations. The elements s in S 
are referred to as “vectors,” and the elements φ in F 
are referred to as “scalars.” Another operation is 
defined so that the product of a vector and a scalar is 
another vector. This operation distributes over the 
addition of both scalars and vectors and is 
associative with the multiplication of scalars. In 
analysis, the field F is usually the set of real or 
complex numbers. 

normed space. A vector space endowed with a norm. 
A norm is the length of a vector, a nonnegative real 
number, independent of the sense of the vector, 
defined so that for some scalar φ in the field F, the 
norm of the product of φ and a vector is the product 
of |φ| and the norm of the vector. For two vectors, 
the norm of their [vector] sum is less than or equal to 
the sum of their norms. In a Hilbert space, an inner 
product between vectors is defined so that the inner 
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product of a vector with itself is the square of the 
norm of that vector.  

Euclidean space. Any finite dimensional vector 
space possessing an inner product so that a 
Euclidean distance may be imposed. An n-
dimensional Euclidean space may be generated as 
the n-fold Cartesian product of the real or complex 
fields. More generally, a Euclidean space is any 
finite or infinite dimensional inner product space. 

n-space. Any mathematical space with n-
dimensions; a mathematical space in which n-
independent coordinates are required to locate a 
point in the space. 

topological space. Any set S in which a class of open 
subsets has been chosen having the properties that 
the class includes, as two of its members, both the 
empty set and the set S itself and is closed under the 
operations of set union and set intersection. 

 
A topological space is 
 

connected. If it cannot be partitioned into two 
nonempty open subsets, each of which has no 
points in common  with the closure of the other. 
The rationals are not connected, although the 
reals are. 

separated. If for two open sets in the space, 
neither intersects the closure of the other. A 
topological space is  connected if and only if it 
cannot be written as the union of two nonempty 
separated sets. 

compact. If every sequence in the space 
contains a subsequence that converges to a 
point in the space. Thus,  the interval [0,1] on 
the real line is compact, whereas the interval 
(0,1) is not. The subsequence 1/2,1/3,1/4, 
1/5,… converges to 0, which is a member of 
[0,1] but is not a member of (0,1). 

 
Theorem: A subset of a Euclidean space is bounded 

and closed if and only if it is compact. 
 
manifold. An n-dimensional topological space that is 

locally Euclidean; a space in which for every point, 
there is a neighborhood that is homeomorphic to the 
interior of a sphere in Euclidean n-space. 

affine manifold. A vector subspace that permits 
affine transformations. A nontrivial affine manifold 
in three-space must be a point, a line, or a plane. 

 

Abstract Algebra 
 
operation on a set S. A rule that associates with 

some number of elements of S a resulting element. 
An operation that associates with one element of S a 
resulting element is called a unary operation; one 
that associates with two elements of S a resulting 
element is called a binary operation: Logical 
negation is a unary operation; addition and 
multiplication are binary operations. 
A set S is 

 
open under an operation. If it fails to contain all 

the members of the set S* produced by the 
operation acting on its members; e.g., the 
integers are closed under addition and 
subtraction but not under division, since for any 
positive integer m, m/0 is not an integer (m/0 is 
undefined). 

closed under an operation. If it contains all the 
members of the set S* produced by the 
operation acting on its members; e.g., the 
positive integers are closed under addition but 
not under subtraction, since for any positive 
integers m and n with m ≠ n, (n + m) is a 
positive integer, but either (m − n) or (n − m) is 
not. 

 
closure of a set under an operation. The smallest 

closed set containing the given set and all the 
elements produced by the operation acting upon the 
set; e.g., the closure of the positive integers under 
the operation subtraction is the set of all integers. 

algebraic closure of a set. The extension of a given 
set or field to one that contains all the roots of all the 
polynomials whose coefficients are members of the 
given set. A set is algebraically closed if it coincides 
with its algebraic closure: Neither the rationals nor 
the reals are algebraically closed since they do not 
contain roots of the polynomial x2 + 1 = 0. The 
complex field is algebraically closed and is the 
closure of both subfields. 

group. Any set S that is closed under a binary 
associative operation ⊕ in which there is an identity 
element e⊕ such that for any a in S, a ⊕ e⊕ = e⊕ ⊕ a 
= a and in which for any a in S, there is an inverse 
element a−1 in S such that a ⊕ a−1 = a−1 ⊕ a = e⊕: 
The integers are a group under addition but not 
under multiplication. If all the elements of the set 
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are commutative under ⊕, then the group is a 
commutative or Abelian group; e.g., all cyclic 
groups, such as integers under addition modulo n, 
are Abelian. A subgroup is any subset of a group that 
is itself a group relative to the same operation: The 
integers are a subgroup of the reals under addition, 
but the integers modulo n is not, since addition 
modulo n is differently defined. 

 
Summary of Group Operations 
 
 If S is a group and a,b,c ∈ S, then 
 

 1. a ⊕ b ∈ S 
 2. (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) 
 3. ∀ a ∈ S, ∃ e⊕ ∈ S ∋ a ⊕ e⊕ = e⊕ ⊕ a = a 

(identity element) 
 4. ∀ a ∈ S, ∃ (−a) ∈ S ∋ a ⊕ (−a) = (−a) ⊕ a = e⊕ 

(inverse element) 
 
also 
 
 5. ∀ a,b ∈ S, a ⊕ b = b ⊕ a ⇒ S is a commutative 
group 
 
topological group. An abstract group (also a topo-

logical space) with continuous group operations. 
Continuous group operations means that if a and  
b ∈ S, then 

 
 1. ∀ neighborhoods W of a ⊕ b, ∃ individual 

neighborhoods U and V of a and b ∋ ∀ u ∈ U 
and v ∈ V, u ⊕ v ∈ W 

 2. ∀ neighborhoods V of a−1, ∃ neighborhoods U 
of a ∋ ∀ u ∈ U, u−1 ∈ V 

 
The set of all real numbers is a topological group. 

 
ring. Any set S that is closed under two binary 

operations (⊕ and ⊗), of which ⊕ forms a 
commutative group with the set and ⊗ is associative 
over the set and distributive with respect to ⊕. 

commutative ring. A ring whose elements are also 
commutative under ⊗; the even integers form a 
commutative ring. 

commutative ring with identity. A ring possessing 
an identity element e⊗ (in S) such that for any a in S, 
a ⊗ e⊗ = e⊗ ⊗ a = a, then the ring is a commutative 

ring with identity; the integers are a commutative 
ring with identity, but the even integers are not. 

subring. Any subset of a ring that is itself a ring 
relative to the same operations: The set of integers is 
a subring of the real numbers, and the set of all even 
integers is a subring of the integers. 

 
Summary of Ring Operations 
 
 If S is a ring and a,b,c ∈ S, then 
 

 1. a ⊕ b ∈ S 
 2. (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) 
 3. ∀ a ∈ S, ∃ e⊕ ∈ S ∋ a ⊕ e⊕ = e⊕ + a = a 

(identity element for ⊕) 
 4. ∀ a ∈ S, ∃ (−a) ∈ S ∋ a ⊕ (−a) = (−a) ⊕ a = e⊕ 

(inverse element for ⊕) 
 5. ∀ a,b ∈ S, a ⊕ b = b ⊕ a 
 6. a ⊗ b ∈ S 
 7. (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) 
 8. a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) 
 9. (b ⊕ c) ⊗ a = (b ⊗ a) ⊕ (c ⊗ a) 

 
also 
 

 10. [∀ a,b ∈ S, a ⊗ b = b ⊗ a] ⇒ S is a 
commutative ring 

 
and 
 
 11. [∀ a ∈ S ∃ e⊗ ∈ S ∋ a ⊗ e⊗ = e⊗ ⊗ a = a] ⇒ S  
           is a commutative ring with identity 
 
zero ring. A commutative ring with identity 

consisting of only a single element 0 with 
multiplication and addition defined by 0 ⊕ 0 = 0 = 0 
⊗ 0. 

module M over a ring R (also R-module). A 
commutative group endowed with an exterior 
multiplication (either on the left or on the right) that 
is associative and distributive and multiplies group 
elements by ring elements (called “scalars”) to 
produce group elements. Every commutative group 
may be viewed as a module over the integers. A 
vector space is a module in which R is a field. Every 
ring R may be viewed as an R-module over itself, 
and an ideal in R is an R-module. 
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homomorphism θ. A mapping from one algebraic 
structure to another under which the structural 
properties of the domain are preserved in the range: 
if ∗ is the operation on the domain, and × is the 
operation on the range, then θ(s ∗ t) = θ(s) × θ(t).  

group homomorphism. A mapping θ such that both 
the domain and the range are groups, and θ(st) = 
θ(s)θ(t) for all s and t in the domain. 

ring homomorphism. A mapping θ from one ring to 
another such that θ(s + t) = θ(s) + θ(t) and θ(st) = 
θ(s)θ(t) for all s and t in the domain.  

module homomorphism. A mapping such that  
θ(s + t) = θ(s) + θ(t) and θ(ρs) = ρθ(s) for all s and t 
in the R-module and ρ in the ring R. If R is a field, 
then θ is a linear mapping. 

 
In group theory, homomorphisms are surjective 
unless otherwise noted. 

 
integral domain. A set S that is a commutative ring 

with multiplicative identity and contains no pair of 
elements whose product is e⊕ unless either a = e⊕, b 
= e⊕, or both. Thus, for any a and b in S, a ⊗ b  
= b ⊗ a = e⊕ implies that either a = e⊕, b = e⊕, or  
a = b = e⊕; e.g., the integers under the operations of 
addition and multiplication are an integral domain, 
as are the integers modulo n, provided that n is 
prime. 

 
Equivalent definition: An integral domain is a 
commutative ring that contains no proper divisor 
equal to e⊕. Thus, a = b whenever a ⊗ c = b ⊗ c and 
c ≠ e⊕. 

 
Summary of Integral Domain Operations 
 
 If S is an integral domain, then in addition to 
conditions 1 to 11 above, the following condition must 
be added: 
 

 12. [∀ a,b ∈ S, a ⊗ b = 0] ⇒ (a = 0) ∨ (b = 0)  
 
field. A set S that is an integral domain with a 

multiplicative inverse for every element. Thus, for 
every a in S, there is an a−1 in S such that a ⊗ a−1  
= a−1 ⊗ a = e⊗; e.g., the rationals and the reals are 
fields, but the integers are not. 

 

subfield. A subset of a field that itself forms a field 
relative to the same operations. 

 
Summary of Field Operations 
 
 If S is a field, then, in addition to conditions 1 to 12 
above, the following condition must be added: 
 
  13. ∀ a (≠0) ∈ S ∃ a−1 ∋ a ⊗ a−1 = a−1 ⊗ a = e⊗ 
 
topology τ on a set S.  Any class of open subsets of S 

closed under the set operations of union and 
intersection. The choice of subsets in a given 
topology is not unique; many different topologies 
are possible. 

finer and coarser topologies. A topology τ2 that is 
finer (larger) than another topology τ1 if τ2 strictly 
contains τ1. Conversely, τ1 is said to be coarser 
(smaller) than τ2. 

discrete topology. A topology that consists of the 
entire power set. 

indiscrete topology. A topology that consists only of 
the empty set and the original set S itself. 

finest and coarsest topologies. On any given set, the 
topology that is discrete is the finest topology, and 
the topology that is indiscrete is the coarsest. 

comparable topologies. When one of two topologies 
on a set is finer than the other; conversely, if neither 
is finer than the other, they are not comparable. 

usual topology on R1. A topology formed on R1 by 
the set of all open intervals on the real line R1, along 
with R1 itself and the empty set Φ. 

usual topology on R2. A topology formed on R2 by 
the set of all open disks in the plane R2, along with 
R2 itself and the empty set Φ. 

topological space. A set S with a topology τ defined 
on it. A topological space is denoted X = (S,τ), and 
the members of τ are referred to as “τ-open sets” or 
“open sets.” Let the set S = {a,b,c,d} with τ1  
= {{a,b,c,d}, {a,b}, {c,d}, {Φ}}, and τ2 = {{a}, {b}, 
{c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, 
{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d}, {Φ}} 
(the power set of S). Then τ2 ⊃ τ1 and is therefore a 
finer topology on S than τ1. 
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Appendix A 

 
Ideas From Various Mathematical Disciplines 

 
Archimede’s Axiom 
 
Archimede’s axiom. That if x is any real number, 
then there exists an integer n such that n > x.  
 
Remark: Archimede’s axiom is an ordering principle 
on the real numbers. It asserts that for any real number, 
it is possible to find a next larger integer. 
 
Euclid’s Axioms in Classical Geometry 
 
Euclid’s axioms  
 
 1. A straight line may be drawn from any point to 

any other point. 
 2. A finite straight line may be extended 

continuously in a straight line. 
 3. A circle may be described with any center and any 

radius. 
 4. All right angles are equal to one another. 
 5. If a straight line meets two other straight lines so 
 as to make the sum of the two interior angles on one 
 side of the transversal less than two right angles, the 
 two other straight lines, extended indefinitely, will 
 meet on that side of the transversal. 
 

Equivalently, the fifth axiom may be replaced by 
Playfair’s axiom: 

 
 5(a). Through a point not on a given line, there is 
 one and only one parallel to the given line. 
 
Remark: The fifth axiom was regarded as self-evident 
until the 19th century when non-Euclidean geometries 
were devised, retaining the first four of Euclid’s 
axioms but not the fifth, which was omitted in favor of 
other possibilities (esp., in elliptic geometry, “Through 
a point outside a given line, there are no parallels to 
the given line.” or in hyperbolic geometry, “Through a 
point outside a given line, there are at least two 
parallels to the given line.”). Since the non-Euclidean 
geometries are consistent, the fifth axiom of Euclid 
must be independent of the other four. 

Euclid’s Prime Number Proof 
 
Euclid’s prime number proof. Demonstrates the 

infinity of primes: let p1, p2,…, pn be any finite list 
of primes. Form the number N = 1 + p1p2…pn. N is 
not divisible by any of the primes p1, p2,…, pn in the 
list, for the remainder 1 is always left over. Also, N 
is obviously greater than 1 and must be either prime 
itself or divisible by a prime not in the given list. 
Either way, there exists yet another prime that is not 
in the original list; therefore, the set of primes 
cannot be contained in any finite list.  

 
Peano’s Axioms in Number Theory 
 
Peano’s axioms  
 

1. 0 is a natural number. 
2. Every number x has another natural number as its 
successor (often denoted S(x) or x′). 
3. For all x, 0 ≠ S(x). 
4. If S(x) = S(y), then x = y. 

 5. If P(n) is a proposition associated with each 
 number n, P(1) is true and for all k, P(k) implies  
 P(k +1) is true, then P(n) is true for all numbers. 
 
Remark: This last axiom is known as the principle of 
induction. P(1) is the base clause, and P(k) implies 
that P(k +1) is the recursion clause. Induction may be 
used to prove such statements as the sum of the first n 
natural numbers Σn = 1 + 2 +…+ n = 1/2 n(n + 1). The 
base clause is obviously true for n = 1. The recursion 
clause requires that one show Σn+1 = 1 + 2 +…+ n  
+ (n + 1) = Σn + (n + 1). By hypothesis, Σn = 1/2 n 
(n + 1), so that Σn + (n + 1) = 1/2 n(n + 1) + (n + 1)  
= 1/2 (n + 1)(n + 2).  
 
Goldbach’s Conjecture in Number Theory 
 
Goldbach’s conjecture. That every even number 

greater than or equal to 6 may be represented as the 
sum of two odd primes. 
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Remark: Goldbach also conjectured that all odd 
numbers are the sum of three odd primes. 
Vinogradov’s theorem shows that this conjecture is 
true of all but a finite number of odds. 
 
Fermat’s Last Theorem in Number Theory 
 
Fermat’s last theorem. That the equation xn + yn = zn 

has no solutions in whole numbers for x, y, and z if n 
is greater than 2, and x, y, z > 1. 

 
Axiom of Choice in Set Theory 
 
axiom of choice. That for any set S, there is a 

function (choice or selection function) f such that for 
any nonempty subset X of S, f(X) ∈ X. 

 
Remark: The set of values of f is called a choice set. A 
choice function for S may be regarded as selecting a 
member from each nonempty subset of S; e.g., if S  
= {1,2}, the nonempty subsets of S are X1 = {1}, X2  
= {2}, X3 = {1,2}. The choice functions for S may then 
be defined: f1(X1) = 1, f1(X2) = 2, f1(X3) = 1, f2(X1) = 1, 
f2(X2) = 2, and f2(X3) = 2. Zermelo used this axiom to 
prove that every ordered set can be well ordered. 
 
Fundamental Theorems of Mathematics 
 
fundamental theorem of arithmetic. That every 

positive integer has a unique canonical (simplest 
form) decomposition as a product of its prime 
factors. 

fundamental theorem of algebra. That a complex 
polynomial of degree n has precisely n complex 
roots, counting multiplicity. Therefore, the complex 
numbers are algebraically closed; i.e., the roots of all 
polynomials with complex coefficients are included 
in the set of complex numbers; the reals and the 
rationals are not algebraically closed since neither 
set contains the roots of x2 + 1 = 0. 

fundamental theorem of calculus. That if the 
derivative f(x) of F(x) is integrable (or if the function 
F(x) is continuously differentiable) so that F(x) is an 

indefinite integral of f(x), then f x ds
a

b b gz = F(b)  

− F(a). Conversely, if F(x) is defined as the integral 
of f(x) from a to x for all x in [a,b], then f(x) is the 
derivative of F(x) at every point of the interval at 
which f(x) is continuous. 

fundamental theorem of projective geometry. That 
three distinct, corresponding pairs of points uniquely 
determine a projectivity (projective transformation). 

fundamental theorem of space curves. That the 
Frenet formulas for a space curve which recaptures 
the unit tangent T, normal N, and binormal B from 
the curvature κ and the torsion τ of the curve are 

 

( )

, ,

and 13

dN dBT B N
ds ds

dT N
ds

κ τ τ

κ

= − + = −

=
 

 
where s is the arc length. 

Gödel’s proof. That any formal arithmetical system 
is incomplete in the sense that, given any consistent 
set of arithmetic axioms, there are true statements in 
the resulting arithmetical system which cannot be 
derived from these axioms. 

Cantor’s diagonal theorem. That the elements of the 
power set of any given set S, finite or infinite, cannot 
be put into one-to-one correspondence with the 
elements of S itself without remainder elements; i.e., 
any set has more subsets than it has elements. 

diagonal process. The construction of a new 
member of a set S from a list of the given members 
of S by making the nth term of the new member differ 
from the nth term of the nth element in the list. The 
new member is therefore distinct from every member 
in the list. The set that contains the new member 
must have a cardinality strictly larger than that of the 
original set S. The diagonal process was used by 
Cantor to prove the diagonal theorem and to show 
the uncountability of any proper interval on the real 
line. 

 
Cardinal Arithmetic 
 
 Let σ and τ be the cardinal numbers of disjoint sets S 
and T, respectively. Then σ + τ is the cardinal number 
of S ∪ T and στ is the cardinal number of S × T. 
 
Theorem: The operations of addition and multi-

plication of cardinal numbers are associative and 
commutative, and addition distributes over 
multiplication. For cardinal numbers σ, τ, and γ, 

 
 Associative:  (σ + τ) + γ = σ + (τ + γ) and   (στ)γ  
= σ (τγ) 
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 Commutative:  σ + τ = τ + σ and   στ = τσ 
 Distributive:  σ(τ + γ) = στ + σγ 

 
 The difference between two numbers σ and τ may be 
defined in terms of their sum in cardinal arithmetic. A 
number δ is the difference between σ and τ iff σ is the 
sum of τ and δ: σ − τ = δ ⇔ σ = τ + δ. 
 The quotient between two numbers σ and τ may be 
defined in terms of their product in cardinal arithmetic. 
A number δ is the quotient of σ and τ iff σ is the 
product of τ and δ: σ/τ = δ ⇔ σ = τδ. 



NASA/TP—2003-212088 25

Appendix B 
 

Divisibility of Integers in Base 10 (Integer10) 
 

 
 Any integer represented in base 10 has the general 
form I = a0 + 10a1 + 100a2 + 1000a3 +…where the ai 
are themselves integers and are members of the set 
{0, ±1, ±2, ±3, ±4, ±5, ±6, ±7, ±8, ±9}. Thus, |ai| ≤ 9. 
 An integer I1 is divisible by another integer I2 if 
there is an integer λ such that I1 = λI2. I2 is called a 
“divisor” or “factor” of I1 and I1 is called a “multiple” 
of I2. The number λ is called a “quotient.” 
 
Divisibility by 2 
 
 Every even number is divisible by 2 since every 
even integer Ieven has the form Ieven = 2k where k is 
itself any integer. 
 
Divisibility by 3 
 
 Any integer for which the sum a0 + a1 + a2 + a3 
+…is divisible by 3 is itself divisible by 3 since 
 

( ) ( ) ( )
( )

( )

0 1

0 1 2 3

0 1 2 3 1 2 3

1 2 3

10 100 2 1000 3
9 1 99 1 999 1

9 99 999
and

9 99 999 14

I a a a a
a a a a

a a a a a a a

a a a

+ + + +

+

=

= + + + + + + +

= + + + + + + +

+ + +

K

K

K

K

K  
 
is already divisible by 3. 
 
Divisibility by 4 
 
 Any integer for which a0 + 10a1 is divisible by 4 is 
itself divisible by 4 since 
 

( )
0 1 2 3

2 3

10 100 1000
and 100 1000 15
I a a a a

a a
= + + + +

+ +

K

K   
 
is already divisible by 4. 
 
 
 

Divisibility by 5 
 
 Any integer for which a0 equals ±1 or ±5 is itself 
divisible by 5 since 

( )
0 1 2 3 0

1 2 3

10 100 1000 9

and 10 100 1000 16

I a a a a a

a a a

= + + + + ≤

+ + +

K

K  
 
is already divisible by 5. 
 
Divisibility by 6 
 
 Any integer that is evenly divisible by 2 and by 3 is 
itself divisible by 6 since (1/6)I = (1/2)(1/3)I. 
 
Divisibility by 8 
 
 Any integer for which a0 + 10a1 + 100a2 is 
divisible by 8 is itself divisible by 8 since 
 

( )
0 1 2 3

3

10 100 1000
and 1000 17
I a a a a

a
= + + + +

+

K

K  
 
is already divisible by 8. 
 
Divisibility by 9 
 
 Any integer for which the sum a0 + a1 + a2 + a3 
+…is divisible by 9 is itself divisible by 9 since 
 

( ) ( ) ( )
( )

( )

0 1 2 3

0 1 2 3

0 1 2 3 1 2

3

1 2 3

10 100 1000
9 1 99 1 999 1

9 99
 999

and 9 99 999 18

I a a a a
a a a a

a a a a a a
a

a a a

+ + + +

+

=

= + + + + + + +

= + + + + + +

+

+ + +

K

K

K

K

K  
 
is already divisible by 9. 
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Divisibility by 10 
 
 Any integer for which a0 = 0 is itself divisible by 
10 since 
 

( )
0 1 2 3 0

1 2 3

10 100 1000 9

and 10 100 1000 19

I a a a a a

a a a

= + + + + ≤

+ + +

K

K  
 
is already divisible by 10. 
 
Divisibility by 11 
 
 Any integer I for which a0 − a1 + a2 − a3 +…is 
divisible by 11 is itself divisible by 11 since 
 

( ) ( ) ( )
( )

( )

0 1 2 3

0 1 2 3

0 1 2 3 1 2 3

1 2 3

10 100 1000
11 1 99 1 1001 1

11 99 1001

and 11 99 1001 20

I a a a a
a a a a

a a a a a a a

a a a

+ + + +=

= + − + + + − +

= − + − + + + + +

+ + +

K

K

K K

K  
 
is already divisible by 11. 
 
Remark: Following the pattern begun here, the rules 
for divisibility by any integer may similarly be 
developed. 

 
The Divisor Function 
 
divisor function d(n). In number theory, a function 

that counts the number of divisors of a number n, 
including 1 and n. When p is prime, d(pa) = a + 1. 
Since d(n) is multiplicative (i.e., d(n1,n2)  
= d(n1)d(n2)), the value for any argument may be 
easily computed from its prime factorization; e.g., 
let n = 12 = 22 × 3 so that d(12) = d(22) × d(3)  
= (2 + 1) × (1 + 1) = 6. The six divisors of 12 are  
1, 2, 3, 4, 6, and 12. 

 
The Sigma Function 
 
sigma function σ(n). In number theory, a function 

that sums the distinct divisors of a number n, 
including 1 and n. The sum of the proper factors of 
n (all the factors of n including 1 but excluding n) 
is therefore σ(n) − n. When p is prime, σ(n)  
= (p(n+1) − 1)/(p − 1). Since σ(n) is multiplicative, 
the value for any argument may be computed from 
its prime factorization. (In terms of this function, a 
perfect number is one with σ(n) = 2n, and a pair of 
amicable numbers a and b have σ(a) − a = b and 
σ(b) − b = a, or equivalently, σ(a) = σ(b)  
= (a + b.); e.g., let n = 12. The factors of 12 are 1, 
2, 3, 4, 6, and 12. The sum of these factors is 28. 
Now, σ(12) = σ(22) × σ(3) = {(2(2+1) − 1)/(2 − 1)}  
× {(3(1+1) − 1)/(3 − 1)} = 7 × 4 = 28. 
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Appendix C 
 

Implications and Equivalences 
 
 
English Equivalents 
 
p ⇒ q is read 
 
 If p(x0) then q(x0) 
 If p(x0), q(x0) 
  p(x0) implies q(x0) 
  p(x0) only if q(x0) 
  p(x0) is a sufficient condition for q(x0) 
  p(x0) is sufficient for q(x0) 
  p(x0) only on the condition that q(x0) 
 Whenever p(x0), q(x0) 
 If p(x0), q(x0) 
 Given that p(x0), q(x0) 
 In case p(x0), q(x0) 
 q(x0) is implied by p(x0) 
 q(x0) if p(x0) 
 q(x0) is a necessary condition for p(x0) 
 q(x0) is necessary for p(x0) 
 q(x0) on the condition that p(x0) 
 q(x0) provided that p(x0) 
 
p ⇔ q is read 
 
 p(x0) is equivalent to q(x0) 
 p(x0) and q(x0) are equivalent  
 p(x0) implies and is implied by q(x0)  
 p(x0) if and only if q(x0) [p(x0) iff q(x0)]  
 p(x0) is a necessary and sufficient condition for  
               q(x0) 
 p(x0) is necessary and sufficient for q(x0) 
 p(x0) just in case q(x0) 

 
Truth Values 
 
p ⇒ q is true if  
 
 [p(x0) is true and q(x0) is true] or 
 [p(x0) is false and q(x0) is true] or 
 [p(x0) is false and q(x0) is false] 
 
p ⇒ q is false (i.e., ~(p ⇒ q) is true) if 
  
 [p(x0) is true and q(x0) is false]  
 
p ⇔ q is true if 
 
 [p(x0) is true and q(x0) is true] or 
  [p(x0) is false and q(x0) is false] 
 
p ⇔ q is false (i.e., ~(p ⇔ q) is true) if 
 
 [p(x0) is true and q(x0) is false] or 
 [p(x0) is false and q(x0) is true] 
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Appendix D 
 

Conjunctions and Disjunctions 
 
 

English Equivalents 
 
p ∧ q is read 
 
 p(x0) and q(x0) 
 p(x0), also q(x0) 
 p(x0), but q(x0) 
 p(x0), although q(x0) 
 p(x0) as well as q(x0) 
 Both p(x0) and q(x0) 
 Though p(x0), q(x0) 
 
p ∨ q is read 
 
 p(x0) or q(x0) 
 Either p(x0) or q(x0) 
 p(x0) unless q(x0)  
      [Also ~q ⇒ p is translated “p unless q”] 
 
~(p ∨ q) is read 
 
 Neither p(x0) nor q(x0) 
 

 
Truth Values 
 
p ∧ q is true if 
 
 [p(x0) is true and q(x0) is true] 
 
p ∧ q is false if 
 
 [p(x0) is true and q(x0) is false] or  
 [p(x0) is false and q(x0) is true] or 
 [p(x0) is false and q(x0) is false] 
 
p ∨ q is true if 
 
 [p(x0) is true and q(x0) is true] or 
 [p(x0) is true and q(x0) is false] or 
 [p(x0) is false and q(x0) is true] 
 
p ∨ q is false if 
 
 [p(x0) is false and q(x0) is false] 
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Appendix E 
 

Laws and Theorems of Logic 

 
Law of Identity 
   p ⇔ p 
 
Laws of Idempotence 
  p ⇔ p ∧ p 
    p ⇔ p ∨ p 
 
Law of Double Negation 
  p ⇔ ~~p 
 
Law of the Excluded Middle 
 p ∨ ~p = true 
 
Law of Contradiction 
  p ∧ ~p = false 
 
Laws of Simplification 
  p ∧ q ⇒ p 
    p ∧ q ⇒ q 
 
Law of Absurdity 
 [p ⇒ (q ∧ ~q)] ⇒ ~p 
(also impossible antecedent) 
 
Law of Addition 
  p ⇒ p ∨ q 
 
Law of the True Consequent 
 q ⇒ (p ⇒ q) 
 
Law of the False Antecedent 
 p ⇒ (~p ⇒ q) (also Law of Duns Scotus) 
 
Law of Equivalence 
  [(p ∧ q) ∨ (~p ∧ ~q)] ⇔ (p ⇔ q) 
 
Law of Negation 
  ~(p ⇒ q) ⇔ (p ∧ ~q) 
 
 Remark:  
(p ∧ ~q) ⇒ (p ⇔ ~q) 
    ~(p ⇔ q) ⇔ [(p ∧ ~q) ∨ (~p ∧ q)]  

   
 Remark:  
[(p ∧ ~q) ∨ (~p ∧ q)] ⇔ [(p ⇔ ~q) ∨ (~p ⇔ q)] 
 
Laws of Contraposition 
  (p ⇒ q) ⇔ (~q ⇒ ~p) 
    (p ⇔ q) ⇔ (~q ⇔ ~p) 
 
Law of Exportation  
 [(p ∧ q) ⇒ r] ⇒ [p ⇒ (q ⇒ r)] 
 
Law of Importation  
[p ⇒ (q ⇒ r)] ⇒ [(p ∧ q) ⇒ r] 
 
Law of Absorption  
  (p ⇒ q) ⇒ [p ⇒ (p ∧ q)] 
 
Commutative Laws 
  (p ∨ q) ⇔ (q ∨ p) 
    (p ∧ q) ⇔ (q ∧ p) 
    (p ⇔ q) ⇔ (q ⇔ p) 
 
Associative Laws 
  (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) 
    (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) 
 
Distributive Laws 
  p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) 
    p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) 
 
De Morgan’s Laws 
  ~(p ∨ q) ⇒ ~p ∧ ~q 
    ~(p ∧ q) ⇒ ~p ∨ ~q 
 
Pierce’s Law 
   [(p ⇒ q) ⇒ p] ⇒ p  
 
Modus Ponendo Ponens 
 (p ⇒ q) ∧ p ⇒ q 
(also affirming the antecedent or rule of detachment) 
 
Modus Ponendo Tollens 
  ~(p ∧ q) ∧ p ⇒ ~q 
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Modus Tollendo Ponens 
  (p ∨ q) ∧ ~p ⇒ q 
(also disjunctive syllogism) 
 
Modus Tollendo Tollens 
  (p ⇒ q) ∧ ~q ⇒ ~p 
(also denying the consequent) 
 
Equivalence Ponens  
  (p ⇔ q) ∧ p ⇒ q (or (p ⇔ q) ∧ q ⇒ p) 
 
Equivalence Tollens  
  (p ⇔ q) ∧ ~p ⇒ ~q (or (p ⇔ q) ∧ ~q ⇒ ~p) 
 
Hypothetical Syllogism 
  (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r) 
 
Disjunctive Syllogism 
  (p ∨ q) ∧ ~p ⇒ q 
(also modus tollendo ponens) 

 
Simple Constructive Dilemma  
 [(p ⇒ q) ∧ (r ⇒ q)] ∧ (p ∨ r) ⇒ q 
 
Complex Constructive Dilemma  
 [(p ⇒ q) ∧ (r ⇒ s)] ∧ (p ∨ r) ⇒ q ∨ s 
 
Simple Destructive Dilemma  
 [(p ⇒ q) ∧ (p ⇒ r)] ∧ (~q ∨ ~r) ⇒ ~p 
 
Complex Destructive Dilemma  
 [(p ⇒ q) ∧ (r ⇒ s)] ∧ (~q ∨ ~s) ⇒ ~p ∨ ~r 
 
Special Dilemma 
 (p ⇒ q) ∧ (~p ⇒ q) ⇒ q 
 
Conjunction Introduction 
 p,q ⇒ p ∧ q 
 
Disjunction Introduction 
 p ⇒ (p ∨ q) 
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Appendix F 
 

Laws and Theorems of Set Algebra 
 
 
Idempotent 
A ∪ A = A 
A ∩ A = A 
 
Associative 
A ∪ (B ∪ C) = (A ∪ B) ∪ C  
A ∩ (B ∩ C) = (A ∩ B) ∩ C 
A ∆ (B ∆ C) = (A ∆ B) ∆ C 
 
Commutative 
A ∪ B = B ∪ A 
A ∩ B = B ∩ A 
A ∆ B = B ∆ A 
 
Distributive 
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 
A ∩ (B ∆ C) = (A ∩ B) ∆ (A ∩ C) 
A × (B ∪ C) = (A × B) ∪ (A × C) 
A × (B ∩ C) = (A × B) ∩ (A × C) 
A × (B \ C) = (A × B) \ (A × C) 
 
Identity 
A ∪ Φ = A 
A ∩ U = A 
A ∪ U = U 
A ∩ Φ = Φ 
A ∆ A = Φ 
A ∆ Φ = A 

 
Adjunction 
A ∪ (A ∩ B) = A 
A ∩ (A ∪ B) = A 
 
Power sets 
2A ∩ 2B = 2A ∩ B 
2A ∪ 2B ⊂ 2A ∪ B 
 
Complement 
(AC)C = A 
UC = Φ 
ΦC = U 
A ⊂ B ⇔ BC ⊂ AC 
A ∪ AC = U 
A ∩ AC = Φ 
A ∆ AC = U 
A ∆ U = AC 
A ∆ B = (A ∪ B) ∩ (AC ∪ BC) 
 
De Morgan’s  laws 
(A ∪ B)C = AC ∩ BC 
(A ∩ B)C = AC ∪ BC 
 
Theorem: S ⊂ T ⇒ S ∩ T = S 
Theorem: S ⊂ T ⇒ S ∪ T = T 
Theorem: S ⊂ T ⇒ T ′ ⊂ S ′ 
Theorem: S ⊂ T ⇒ S ∪ (T \ S) = T 
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Appendix G 
 

Properties of Continuous Functions 
 
 
 1. The sum of two continuous functions is 
continuous. 
 2. The product of two continuous functions is 
continuous. 
 3. The quotient of two continuous functions is 
continuous at any point or in any interval where the 
denominator is not zero. 
 4. If f(x) is continuous at x = a with f(a) = α and g(y) 
is continuous at y = α, then h(x) = (g × f)(x) = g[f(x)] is 
continuous at x = a. 
 5. The constant function f(x) = c0 for all x and the 
linear function f(x) = ax + b for all x are continuous at 
any point or in any interval. Also, any polynomial 
function is continuous, and any rational function is 
continuous at any point or in any interval where the 
denominator is not zero. 

 
 6. If f is continuous on a closed interval [a,b] and if 
η is any real number between f(a) and f(b), then for 
some c in the open interval (a,b), f(c) = η (called the 
Intermediate Value Theorem or Property). 
 7. If f is continuous on a closed interval [a,b], then  
f is bounded on [a,b]. Furthermore, if S is the set  
of values f(x) for x in [a,b] and M = sup S, then there is 
an ξ in [a,b] such that f(ξ) = M (and similarly for  
m = inf S).  
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Appendix H 
 

Definitions and Theorems From Calculus 
 
Limits 
 
Definition:  The equation limx→a f(x) = A means that  

for each neighborhood NpA = (A − p, A + p) there  
exists a punctured neighborhood N ar

*  = (a − r,a) ∪  

(a,a + r) such that f N ar
*e j  ⊆ NpA. 

 
Definition:  The equation limx↑a f(x) = A (limit from the 

left or limit from below) means that for each 
neighborhood NpA there exists a left neighborhood 
Lra = (a − r,a) such that f(Lra) ⊆ NpA. 

 
Definition:  The equation limx↓a f(x) = A (limit from the 

right or limit from above) means that for each 
neighborhood NpA there exists a right neighborhood 
Rra = (a,a + r) such that f(Rra) ⊆ NpA. 

 
Definition:  The function f is continuous at x = a if 

limx→a f(x) = f(a). Formally, f is continuous at a if  
to each Np f(a) there corresponds an Nra such that 
f(NrA) ⊆ Npf(a). 

 
Theorem:  limx→a f(x) = A iff limx↓a f(x) = limx↑a f(x)  

= A. 
 
Theorem:  Suppose that for each number x in some 

punctured neighborhood of a point a, the number 
g(x) is between f(x) and h(x) and suppose that 
 limx→a f(x) = A and limx→a h(x) = A. Then limx→a g(x) 
= A. 

 
Theorem:  If limx→a f(x) = A and limx→a g(x) = B, then 

limx→a[f(x) + g(x)] = A + B. 
 
Theorem:  If the function g is continuous at the point L 

and if limx→a f(x) = L, then limx→a g[f(x)] = g(L). 
 
Theorem:  The equations limx→a f(x) = A and limx→a 

[f(x) − A] = 0 are equivalent. 
 
Theorem:  If limx→a f(x) = A and limx→a g(x) = B, then 

limx→a f(x) × g(x) = AB. 

 
Theorem:  If limx→a f(x) = A and limx→a g(x) = B ≠ 0, 

then limx→a f(x)/limx→a g(x) = A/B. 
 
The Derivative 
 
Definition:  If x is a number in the domain of a function 
for which the following limit exists, 
 

( ) ( ){ } ( )0lim 21h
f x h f x

h→
+ −

 
 

then the limit is called the “derivative” of f(x) at x 
and is denoted df(x)/dx. 

 
Definition:  If df(x)/dx exists at a particular point x, 

then f(x) is said to be differentiable at that point. 
 
Theorem:  If f is differentiable at x, then f is continuous 

at x. 
 
Theorem:  If f is differentiable in an interval I and  

df/dx ≠ 0 for each x ∈ I, then f −1 exists and is a 
differentiable function. Specifically, 

 
( )

( )
( )1

1 22
d f x

dx f y

dy

−

   =
 
 

 
 
Theorem:  Chain rule: If f(x) and g(x) are differentiable 

functions, then 
 

( ) ( ){ }
( )

( ) ( )23
d f g xdf g x dg x

dx dxd g x

      =
    

 
Theorem:  If f and g are differentiable functions, then 
 

( ) ( )24a
d f g df dg

dx dx dx
+

= +
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( ) ( )24b
d fg dg dff g

dx dx dx
   = +   
     

 

( )provided that 0 24c

f df dgd g f
g dx dx

dx g
g

      −            =

≠  
 

( ) ( )24d
d f g df dg

dx dx dx
α β

α β
+    = +   

     
 
where α and β are numbers. 
 
Definition:  If f and df/dx are differentiable functions, 

then the function d2f/dx2 is the derivative of df/dx 
and is called the “second derivative” of f. 

 
Definition:  A function is continuous on an interval if  

it is continuous at every point of the interval. 
 
Theorem:  If f is continuous on [a,b], then there are 

numbers A and B such that f([a,b]) = [A,B]. 
 
Theorem:  Suppose that the greatest or least value of a 

function f in (a,b) is f(m) where m ∈ (a,b)  
and suppose that f is differentiable at m, then 
(df/dx)|m = 0. 

 
Rolle’s theorem: If f is differentiable in (a,b) and 

continuous on [a,b] and if f(a) = f(b), then there 
exists at least one number m ∈ (a,b) such that 
(df/dx)|m = 0. 

 
Theorem of the mean: If f is differentiable in (a,b) and 

continuous on [a,b] and if b ≠ a, then there is a 
number m ∈ (a,b) such that 

 
( ) ( )
( ) ( )25

m

f b f a df
b a dx

 −    =  −    
 
Extended theorem of the mean: If f and g are 

differentiable in (a,b) and are continuous on [a,b] 
and if dg/dx ≠ 0 for x ∈(a,b), then there exists a 
point m ∈ (a,b) such that 

 

( ) ( )
( ) ( )

( )26

m

df
f b f a dx

dgg b g a
dx

 
 −    =  
 −     

   
 
Theorem:  Let f and g be differentiable in some interval 

I and suppose that at each x ∈ I, df/dx = dg/dx, then 
there exists a number C (independent of x) such that 
for each x ∈ I, f(x) = g(x) + C. 

 
Theorem:  Suppose that f is continuous on the interval 

I. If df/dx > 0 at every interior point x of I, then f is 
increasing in I. If df/dx < 0 at every interior point  
x of I, then f is decreasing in I. 

 
Theorem:  If d2f/dx2 > 0 at every interior point of an 

interval I, then the graph of f is concave up in I. 
 If d2f/dx2 < 0 at every interior point of an interval I, 

then the graph of f is concave down in I. 
 
The Partial Derivative 
 
Definition:  If the domain of a function is Rn, then f is 

called a “function on Rn.” 
 If the range of a function on Rn is a subset of R1, then 

the function is called a “scalar-valued function.” 
If the range of f is a subset of Rs where s > 1, then f 
is called a “vector-valued function.” 
f(x,y,z) = (u,v) is a vector-valued function on R3 with 
(vector) components u and v. 

 
Definition:  If r is a positive number, then the 
neighborhood Nra of radius r about the point a ∈ Rn is 
the set 
 

{ } ( ), 27n
rN a x x R x a r= ∈ − <

 
 

Since |x − a| stands for the distance between the 
points x and a, Nra is the set of points of Rn that are 
less than r units from a; i.e., Nra is the interior of an 
n-dimensional sphere. 

 
Definition: In Rn, the equation limx→a f(x) = A means 

that for each neighborhood NpA, there exists a 
punctured neighborhood N ar

*  such that f N ar
*e j   

⊆ NpA. 
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Definition:  If f(x,y) is a scalar-valued function on R2, 
two (first-order) partial derivatives ∂f(x,y)/∂x and 
∂f(x,y)/∂y may be defined by the equations 

 
( )

( ) ( )
( )0

,

lim , ,
  28ah

f x y
x

f x h y f x y
h

→

∂
=

∂
 + − 

 
 

( )

( ) ( )
( )0

,

lim , ,
28bh

f x y
y

f x y h f x y
h

→

∂
=

∂

 + − 
 

 
Definition:  Second (and higher)-order derivatives may 
 also be defined: 
 

( ) ( )
2

2
,

29a
f x y

x

∂

∂  
 

( ) ( )
2 ,

29b
f x y
x y

∂
∂ ∂  

 
( ) ( )

2

2
,

29c
f x y

y

∂

∂  
 

( ) ( )
2 ,

29d
f x y
y x

∂
∂ ∂  

 
Theorem:  If ∂2f(x,y)/∂x∂y and ∂2f(x,y)/∂y∂x are 

 continuous at a point (x,y), then ∂2f(x,y)/∂x∂y  
=  ∂2f(x,y)/∂y∂x 

 
Theorem:  Chain rule: Suppose that f is a scalar-valued 

function on R2 whose domain is a vector-valued 
function G on R1. Let G(x) = [g(x),h(x)] = G(u,v) 
where u = g(x) and v = h(x). Define w = w(x)  
= f(G) = f(u,v). Then 

 

( )30dw w du w dv
dx u dx v dx

∂ ∂   = +   ∂ ∂     
 
Theorem:  Chain rule: Suppose that f is a scalar-valued 

function on R2 whose domain is a vector-valued 

function G on R2. Let G(x,y) = [g(x,y),h(x,y)]  
= G(u,v) and define w = w(x,y) = f(G) = f(u,v). Then 

 

( )31w w u w v
x u dx v x

∂ ∂ ∂ ∂ ∂   = +   ∂ ∂ ∂ ∂     
 

and    
 

( )32w w u w v
y u dy v y

∂ ∂ ∂ ∂ ∂   = +   ∂ ∂ ∂ ∂     
 
The Integral 
 
Definition: Let [a,b] be a closed interval. A set of  

n + 1 points, x0, x1, x2,…,xn such that a = x0 < x1  
< x2 < …< xn = b, is called a “partition” of [a,b].  
Let ∆xi = xi − xi−1 for each value of i. Then the value 
u = max(∆xi) is called the “norm” of the partition. 

 
Definition: Let xi

*∈ [xi−1,xi ]. Then for some function 

f(x), the sum s f x xii
n

i=
=∑ *e j1

∆ approximates the 

area under the graph of f(x) over [a,b]. 
 
Definition: Define by S(u) the set of all the sums 

s f x xii
n

i=
=∑ *e j1

∆  for all partitions of a given norm 

u and all possible choices of xi
*  for each partition: 

( ) ( ){ }*
1 for partition of norm .n

i iiS u s s f x x u
=

= = ∆∑
 

 
Note: Any subinterval [xi−1,xi] may be chosen as a 
norm of the partition, and the value x j

*  may be 
placed anywhere within the jth subinterval. The 
equation 

S u s s f x x uii
n

ib g e j= =RST
UVW=∑ * for partition of norm

1
∆

defines a set-valued function with domain (0,b − a] 
(since 0 < u ≤ (b − a)) and range, a family of sets 
{S(u)}. One thus has a rule that pairs with each of 
the numbers u in the domain one of the sets S(u) in 
the range. 

 
Definition: Let f be a function whose domain contains 

an interval [a,b], and define a set-valued function 
S(u) as above. Then, if limu↓0 S(u) exists, f is said to 



NASA/TP—2003-212088 40

be integrable on [a,b]. The limit, called the “integral 

of f over [a,b]” is denoted f x dx
a

b b gz . 

 
Theorem:  If f is integrable on [a,b] and if f(x) > 0 for 

 each x ∈ [a,b], then f x dx
a

b b gz  ≥ 0. 

 
Definition: For any function f whose domain consists 

 of a (single) point a, f x dx
a

a b gz  = 0. 

 
Definition: If a < b and if f is integrable on [a,b], then 

 f x dx
a

b b gz  = −z f x
b

a b g dx. 

 
Definition: The measure of a finite interval is its 

length. 
 The measure of a set containing a finite number of 

points is zero. 
 The union and intersection of two sets of measure 

zero have measure zero. 
 Every subset of a set of measure zero has measure 

zero. 
 
Definition: A function f is bounded above on [a,b] if 

there exists a number M such that M ≥ f(x) for every 
x ∈ [a,b]. A function f is bounded below on [a,b] if 
there exists a number M such that M ≤ f(x) for every 
x ∈ [a,b]. A function f is bounded on [a,b] if it is 
bounded above and below. 

 

Theorem:  Existence of f x dx
a

b b gz : A function f that is 

bounded on [a,b] is integrable on [a,b] if and only if 
the set of points in [a,b] at which f is discontinuous 
has measure zero. In particular, a bounded function 
is integrable on an interval if it has only a finite 
number of points of discontinuity. If f is unbounded 
on [a,b], then it is not integrable on [a,b]. 

 
Theorem: If f is integrable on [a,b] and c is a given 
 number, then 
 

( ) ( ) ( )33a
b b

a a
cf x dx c f x dx=∫ ∫  

 

( ) ( )

( ) ( ) ( )33b

b

a
b b

a a

f x g x dx

f x dx g x dx

 + 

= +

∫

∫ ∫  
 
Theorem:  Mean value theorem for integrals: If f is 

continuous on [a,b], then there exists a number m  

∈ [a,b] such that (b − a)f(m) = f x dx
a

b b gz . 

 
Theorem:  Let a, b, and c be three points of an interval 

that is contained in the domain of a function f. Then, 
if any two of the following integrals exists, so does 
the third, and 

 

( ) ( ) ( ) ( )34
c b c

a a b
f x dx f x dx f x dx= +∫ ∫ ∫  

 
 The Fundamental theorem of calculus: If a function f 

is integrable on [a,b] and if F is a function that is 
continuous on [a,b] such that dF(x)/dx = f(x) for 
each x ∈ [a,b], then 

 

( ) ( ) ( ) ( )35a
b

a
f x dx F b F a= −∫  

 
also denoted     

 

( ) ( ) ( )35b
b b

aa
f x dx F x=∫  

 
Definition:  If f is integrable on an interval that 

contains a point c, then a function F(x) may be 
defined as 

 

( ) ( ) ( )36
x

c
F x f t dt= ∫  

 
Theorem: If f is integrable on an interval I that 

contains a point c, then the function defined by  

F(x) = f t dt
c

x b gz  is continuous on I. 

 
Theorem: Suppose that f is integrable on an interval I 

that contains a point c, and F is the function defined 

by the equation F(x) = f t dt
c

x b gz . Then if f is 

continuous at a point x ∈ I, F is differentiable at x 
and 
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( ) ( ) ( )37
dF x

f x
dx

=
 

 
 or 
 

( )
( ) ( )38

x

c
d f t dt

f x
dx

 
   =
∫

 
 
 provided that f is continuous at x. 
 
The Multiple Integral 
 
Definition:  Let f(x1, x2,…xn) be a function on Rn and let 
 the domain of f contain an n-dimensional region 
 

( ){
} ( )

1 2 1

2

, , ,

, , 39
n

n

R x x x x

x x

= α ≤ ≤ β

γ ≤ ≤ δ µ ≤ ≤ ν

K

K  
 

where α, β,…, ν may be constants or functions of 
the coordinates. Call R the “region of integration.” 
Partition R by dividing it into q differential 
subregions ∆Vi = ∆x1i∆x2i …∆xni, i ∈ {1, 2,…, q} and 
define the norm of the partition to be the value  
u = max(∆Vi). Let the point x x xi i ni1 2

* * *, ,...,e j∈ ∆Vi. 

Form the sum 
 

( ) ( )* * *
1 21 , ,..., 40q
i i ni iiS f x x x V

=
= ∆∑  

 
Now, for all partitions of a given norm u and all 
possible choices of x x xi i ni1 2

* * *, ,...,e j  for each 

partition, define 

 

( ) { ( )
} ( )

* * *
1 21 , ,...,

for a partition of norm 41

q
i i ni iiS u s s f x x x V

u
=

= = ∆∑
 

 
Then if limu↓0 S(u) exists, f is said to be integrable 
on R. The limit, called the “integral of f over R” is 
denoted  

 

( )

( )

1 2 1 2... , ,... ...

... 42

n n

R

f x x x dx dx dx

fdV

β δ ν

α γ µ

≡

∫ ∫ ∫
∫∫ ∫

 
Some of the most important properties of single 
integrals are shared by multiple integrals; for 
example, 

 
Theorem: If f and g are integrable on a region R and if 
 m and n are any numbers, then 
 

( )

( ) ( ) ( )

...

... ... 43

R

R R

mf ng dV

m fdV n gdV

+

= +

∫∫ ∫
∫∫ ∫ ∫∫ ∫  

 
Theorem: If f is integrable on a region R and if R may 

be divided into two non-overlapping subregions R1 
and R2 such that R = R1 ∪ R2 and Φ = R1 ∩ R2, then 

 
( )

1 2
      ... ... ... 44

R R R
fdV fdV fdV= +∫∫ ∫ ∫∫ ∫ ∫∫ ∫
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Appendix I 
 

Real-Valued Functions as a Vector Space 
 
 
Definition: A vector space V is a set of elements 

(called “vectors”) defined over a field. The field 
elements are called “scalars.” A vector space is 
closed with respect to a binary operation + between 
any two vectors and the binary operation • between 
any vector and any member of the field. In the 
following expansion, x and y represent vectors and α 
and β represent members of the field:  

 
 1. x + y exists and is a unique member of V. 
 2. α • x exists and is a unique member of V. 
 3. Commutative laws: x + y = y + x and α • x  
        = x • α. 
 4. Distributive laws: α • (x + y) = α • x + α • y 
 and (α + β) • x = α • x + β • x. 
 5. Associative law: (α•β) • x = α • (β• x). 
 6. For α = 1, 1• x = x • 1 = x. 

 
The set of all real-valued functions (here represented 
by f(x) and g(x)) forms a vector space V over the 
field of real numbers (here represented by α and β) 
since for any two functions f and g with the same 
domain, 

 
 1. f(x) + g(x) exists and is a member of V.  
 2. α • f(x) exists and is a unique member of V.  
 3. Commutative laws: f(x) + g(x) = g(x) + f(x) and 
 α • [f(x)] = [f(x)] • α. 
 4. Distributive laws: α • [f(x) + g(x)] = α • f(x) 
 + α • g(x) and (α + β) • f(x) = α • f(x) + β • f(x). 
 5. Associative law: (α• β) • f(x) = α • [β• f(x)].  
 6. For α = 1, α • [f(x)] = [f(x)] • α = f(x). 
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Appendix J 
 

Logical Puzzles and Paradoxes
 
 

 

Epiminides paradox. Involves two philosophers who 
encounter a third along the way. The first 
philosopher states that everything the second says is 
true. The second asserts that the first is lying. 
Therefore, if the first is telling the truth, then he 
must be lying. But if he is lying, then he must be 
telling the truth. 

Zeno’s (Zeno of Elea, ca. 490 B.C.) paradoxes. A 
collection of paradoxes regarding time, motion, and 
plurality. The four best known are dichotomy, 
Achilles’ paradox, the arrow paradox, and the 
stadium paradox. 

 
dichotomy paradox. That motion can never be 
initiated. Before a runner can traverse a distance, he 
must complete the first half of the distance, and 
before that, the first quarter, and so on, so that the 
runner cannot start until he has made the last in this 
infinite sequence of steps. 

 
Achilles’ paradox (also, the race course paradox). 
That motion can never be completed. Achilles and a 
tortoise engage in a race in which the tortoise is 
given a head start. Before Achilles can overtake the 
tortoise, he must first reach its initial position. But 
by then, the tortoise has advanced farther along. The 
argument repeats indefinitely with the result that 
Achilles can never overtake the tortoise since to do 
so, he must cover an infinite number of distinct 
distances. 
 
arrow paradox. That motion is illusory. An object 
in flight always occupies a space equal to itself, but 
that which occupies a space equal to itself cannot be 
moving. Therefore the arrow must always be at rest. 
 
stadium paradox. That there can be no smallest 
unit (subdivision) of space or time. Two runners 
move from a given point in a stadium and proceed in 
opposite directions at a constant rate for one unit of 
time. In that one unit of time, they each move one 
unit of space, but relative to each other, they move 
two units of space. Therefore, relative to each other, 

they move one unit of space in one-half unit of time, 
and so there must always be a unit smaller than the 
supposed unit. 
 

paradox of the heap. That there can be no such thing 
as a heap. One grain of sand is not a heap. If 
something is not a heap, then the addition of another 
single grain of sand will not make it a heap, i.e., by 
starting with a single grain, and adding to it one 
grain at a time, we will never make a heap. But then, 
nothing can be a heap, for if what we generate by the 
one-grain-at-a-time method is not a heap, then 
nothing like it arrived at by any other method can be 
a heap. Therefore, there are no heaps. Similarly, 
given a person who is not bald, plucking one hair 
from his/her head will not make the person bald. So, 
if we started plucking one hair at a time, we could 
never make a person bald. There can be no bald 
people. 

Galileo’s paradox. For infinite sets, the whole can 
be made equal to a part. Consider the unending 
sequence of positive integers 1, 2, 3, 4,… These 
integers may be put into a one-to-one 
correspondence with the sequence 2, 4, 6, 8,… by 
simply doubling each integer in the original 
sequence, or they may be put into a one-to-one 
correspondence with the sequence 1, 4, 9, 16,… by 
squaring each integer in the original sequence. But 
both derived sequences, 2, 4, 6, 8,… and 1, 4, 9, 
16,… are apparently already contained in the 
original sequence 1, 2, 3, 4,… 

dilemma of the crocodile. Involves a crocodile 
stealing a child and saying that he will return the 
child if the father can guess correctly whether or not 
he will do so. The father guesses that he will not. 
Therefore, if the crocodile does not return the child, 
the father is correct and he must return the child. But 
if the crocodile returns the child, then the father is 
not correct and the crocodile may keep the child. 

paradox of identity. Based upon the statement, “If α 
is identical to β, then α and β have exactly the same 
properties (attributes).” From this statement, it is 
possible to conclude that no individual persists 



NASA/TP—2003-212088 46

through time. Any individual who is alive at a time t 
has a certain age n. At a later moment, say t*  
= t + ∆t, the individual will have another age, n + ∆t. 
But, if age is a property (attribute) of an individual, 
then the individual who was alive at time t cannot be 
the same individual who was alive at time t*. Thus, 
no individual can persist through time. 

Paradox of the surprise 1-hour examination. That a 
surprise 1-hour examination will be given sometime 
next week is announced by the professor of a certain 
course at the end of class on Friday. A student 
reasons that the surprise exam cannot be given next 
Friday, since if it had not been given up until then, 
he would know after Thursday’s class that the exam 
must be on Friday, and the element of surprise 
would be gone. Similarly, the exam cannot be given 
on Thursday because if it had not been given up 
until then, he would know after Wednesday’s class 
that the exam must be on Thursday. And so on, 
working back to Monday. Therefore, since all the 
other days have now been eliminated, the surprise 
exam cannot be given on Monday without losing the 
element of surprise. Therefore, there can be no 
surprise exam. 

prisoner’s dilemma. A classic situation in which 
two prisoners are separated and each is told that if 
he confesses but the other does not, he will be 
released and receive a reward. If neither confesses, 
they will both have to be released without further 
penalty. If both confess, both will be convicted of a 
charge carrying an intermediate penalty. Each player 
has a dominant strategy (confess) which if used 
simultaneously, is worse for both than if one selects 
a nondominant (dominated) strategy (say nothing). 
The arms race may be viewed as a prisoner’s 
dilemma. Two countries have nuclear armaments. 
Either may launch an attack and overpower the other 
(dominant strategy), but if both do so 
simultaneously, both will be destroyed. The 
dominated strategy is to not launch an attack but 
rather to maintain armed parity (i.e., a condition of 
mutually assured destruction). 

Newcomb’s problem. Involves a game show host 
with two boxes. Box A is transparent and is filled 
with $100 bills. Box B is opaque. The guest is told 
that box A contains $10,000 and that box B contains 
either $1 million or nothing. The guest is given the 
choice between taking only what is in box B or what 
is in both boxes. Before being allowed to choose, 

however, the guest is also told that on the basis of a 
detailed personality profile obtained before the 
show, the host has made a prediction about what 
choice will be made. The contents of box B are 
based upon this prediction. If the prediction was that 
the guest would take both boxes, then nothing was 
put into box B. If the prediction was that the guest 
would take only box B, then $1 million was put into 
it. The host claims to have made correct predictions 
99.9 percent of the time he has played this game in 
the past. What should the guest do? 

Goodman’s paradox of induction. That induction 
from past experience provides identically strong 
evidence for incompatible predictions. Let grue be 
the quality of being green until a specified future 
time t0, and then of being blue for all time afterward. 
Then everything that is or has been green is also 
grue. Past greenness provides grounds for predicting 
future greenness. But past gruenness provides 
grounds for predicting future blueness. 

Hemple’s paradox of induction. That logically 
equivalent statements are not equivalent for the 
purposes of confirmation by experience. Every 
sighting of a black raven confirms the hypothesis 
that all ravens are black or, equivalently, that all 
nonblack things are nonravens (law of contra-
position). Both statements have the same universal 
affirmative form (i.e., all α are β). Therefore, each 
statement should be individually supported by 
observations that instantiate both its subject and its 
predicate. Also, because of their equivalence, 
whatever tends to confirm one statement must 
equally tend to confirm the other. Hence, 
observations of nonblack nonravens (such as white 
shirts) should tend to confirm the second statement 
and so also the first. But this situation is absurd. The 
paradox is resolved by using a restricted quantifier 
which says that ravens are all black, not that for  
all X if X is a raven then X is black.  

Berry’s paradox. A semantic paradox that results 
from classifying the positive integers in terms of the 
smallest number of English syllables needed to 
describe them. For example, 3, 628, 800 is 
describable in 5 syllables as “factorial 10.” Now, 
there must be a least integer not describable in  
less that 19 syllables. However, the description, 
“The least integer not describable in less than  
19 syllables,” describes that same integer in only 18 
syllables, thereby contradicting itself.  
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Richard’s paradox. Generated by supposing that it is 

possible to list all the real numbers between 0 and 1 
that can be defined by a finite condition (i.e., one 
that may be described in a finite number of words). 
Now, it is possible by a diagonal process to define a 
number that differs from every number on any such 
list. However, the diagonal process is itself a finite 
condition. Therefore, any number so generated 
belongs in the list, and it is not possible ever to 
complete the list. 

Grelling’s paradox. Deals with adjectives that 
describe themselves. For example, “short” describes 
itself, as does “polysyllabic.” But “long” does not 
describe itself, and neither does “monosyllabic.” The 
adjective “autological” means “self-describing.” The 
adjective “heterological” means “not self-
describing.” Is the adjective “heterological” itself 
heterological or autological? 

 
barber paradox. Involves a barber in a village who 

shaves only those members of the village who do not 
shave themselves. Who shaves the barber? If the 
barber does, then he does not, but if he does not, 
then he does. 

Russell’s paradox in set theory. One that may be 
stated in terms of books which are catalogs of books. 
Type 1 catalogs (catalogs of classical literature or 
poetry) do not list themselves. Type 2 catalogs 
(catalogs of catalogs) do list themselves. It is desired 
to make up a catalog that lists the titles of all type 1 
catalogs (and none of type 2). Should the new 
catalog include itself? If “yes,” then it must be type 2 
and therefore should not include itself. If “no,” then 
it must be a type 1 and therefore cannot be complete 
unless it does include itself. 
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Appendix K 
 

Basics of Aristotelian Logic 
 
 
Definition by Genus and Species 
 
 A genus is a specific class that is divisible into other 
(sub)classes called species. Aristotle’s definition of a 
given term by genus and species first specifies a 
characteristic belonging to the genus of the term being 
defined. A second characteristic, the “differentia,” is 
then added to indicate the species. The characteristic 
supplied by the differentia distinguishes the term being 
defined from all other terms belonging to the same 
genus. For example, man is a rational animal. The 
genus is predicated of the species but not conversely: 
we do not say, “A rational animal is man.” The species 
term contains more information than the genus term.  
 
 
Propositions 
 
 A proposition is an assertion that proposes or denies 
something and is capable of being judged true or false. 
Three types of propositions used in logic are 
categorical, hypothetical, and disjunctive. The propo-
sitions of classical Aristotelian logic are categorical.  
A categorical proposition consists of a subject term 
and a predicate term connected by the copula “is.” The 
predicate affirms or denies something about the 
subject. If S stands for subject and P for predicate, the 
general categorical schema is (some or all of) S is (or 
is not) P. A hypothetical proposition consists of an 
antecedent (hypothesis) and a consequent (conclusion) 
connected by the copula “If…then…” If these terms 
are represented, respectively, as H and C, the general 
hypothetical schema is “If H, then C.” The disjunctive 
proposition consists of two disjuncts connected by the 
copula “Either…or…” If P and Q are the disjuncts, the 
general disjunctive schema is “either P or Q.” 
 

 
Categorical Propositions 
  
categorical proposition. Any proposition consisting 

of a subject, a predicate, and a quantifier (e.g., “For 
all…,” or “There exists…,” or “All…,” or 
“Some…”). 

subject. That about which the proposition speaks. 
predicate. That which is said (predicated) of the 

subject (see table 2 for types of predicates). 
term. The subject and/or the predicate in a 

categorical proposition. 
 

TABLE 2.EXAMPLES OF PREDICATION 
Predicate type Example 
Genus Animal 
Differentia Rational 
Species Man (rational animal) 
Property Ability to solve problems 
Accident Eye or hair color 

 
inference. A form of argument from which 

conclusions are drawn from premises accepted as 
true. 

immediate inference. A form of argument that 
comprises only a single categorical proposition; also, 
inferential argument without a middle (mediate) 
term (for comparison, see the entry “mediate 
inference”). 

moods of categorical propositions. The four moods 
of categorical propositions: universal affirmation 
(usually represented as A), universal negative 
(usually represented as E), particular affirmation 
(usually represented as I), and particular negative 
(usually represented as O). Table 3 gives examples 
of each. 

 
TABLE 3.MOODSa OF 

CATEGORICAL PROPOSITIONS 
Prepositionb Mood 
A: All S are P. Universal affirmation 
E: No S are P. Universal negative 
I: Some S are P. Particular affirmation 
O: Some S are not P. Particular negative 

aIn some texts, “type” is the same as “mood.” 
bA, universal affirmation; E, universal negative; I, 
particular affirmation; O, particular negative. 
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square of opposition. A graphical construction 

showing the relationship between the four types or 
moods of immediate inference. These relationships 
may be stated as 

 
1. If all S are P, then some S must be P. Thus, 

“Some S are P” is a lower alternative or 
subaltern to “All S are P.” 

2. If all S are P, then it is false that no S are P. 
Thus, “All S are P” and “No S are P” are 
contrary (literally, the opposite) statements. 

3. If no S are P, then some S must be “not P.” 
Thus, “Some S are not P” is a subaltern to 
“No S are P.” 

4. If all S are P, then it is false that some S are 
not P. Thus, “Some S are not P” is a 
contradiction (literally, speaking against) of 
“All S are P.” 

5. If no S are P, then it is false that some S are 
P. Thus, “Some S are P” is a contradiction 
of “No S are P.” 

 
These five relationships are shown graphically in 

figure 1.  
 
 

All S
are P.

Some S
are P.

Some S are
not P.

Contraries

Subcontraries

Contradictories
Subalternates/
superalternates

Subalternates/
superalternates

Figure 1.—Square of opposition.

No S
are P.

 
 
 

truth value. The truth (T) or falsity (F) of a 
particular proposition. 

 
truth table. A tabular construction showing all 

possible truth values for a proposition, given all 
possible truth values of its premise(s) and its 
conclusion(s); also, a tabular construction showing 
all possible truth values for certain propositions in 
an argument, given the truth value of other 
propositions in the argument. The example (table 4) 
shows the truth values of the categorical 
propositions (A, E, I, O) introduced above, given the 
truth value of one or two of them. 

 
1. If A is true, then E must be false, I must be 

true, and O must be false. 
2. If A is false, then E must be true, I must be 

false, and O must be true. 
3. If A and E are both false, then I and O must 

both be true. 
 

 
TABLE 4.TRUTH TABLE FOR CATE-

GORICAL PROPOSITIONS 
Proposition 

A E I O 
T F T F 
F T F T 
F F T T 

 
Table 5 shows the truth values of the same categorical 
propositions assuming the truth or falsity of each of A, 
E, I, and O sequentially: 
 
converse. The converse of a categorical proposition 

is another categorical proposition in which the 
premise and conclusion are interchanged: “All S are 
P;” the converse is “All P are S.”  

 
 

TABLE 5.INFERENCES DERIVED FROM ASSERTING THE TRUTH 
OR FALSITY OF A PARTICULAR CATEGORICAL PROPOSITION 

Proposition Inference 
If A is true  E is false I is true O is false 
If E is true A is false I is false O is true 
If I is true A is undetermined E is false O is undetermined 
If O is true A is false E is undetermined I is undetermined 
If A is false E is undetermined I is undetermined O is true 
If E is false A is undetermined I is true O is undetermined 
If I is false A is false E is true O is true 
If O is false A is true E is false I is true 
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TABLE 6.CONVERSE, OBVERSE, CONTRAPOSITIVE, AND INVERSE OF CATEGORICAL PROPOSITIONSa 

Proposition Converse Obverse Contrapositive Inversea 
All S are P. All P are S. No S are non-P. All non-P are non-S. All non-S are non-P. 
No S are P. No P are S. All S are non-P. All non-P are not non-S. No non-S are non-P. 
Some S are P. Some P are S. Some S are not non-P. Some non-P are non-S. Some non-S are non-P. 
Some S are not P. Some non-P are S. Some S are not non-not P. Some non-not P are non-S. Some non-S are non-not P. 
aF, full; P, partial. 

 
 
obverse. The obverse of a categorical proposition is 

another categorical proposition that denies the 
opposite of the original proposition: “All S are P;” 
the opposite is “No S are P;” the obverse is “No S 
are not-P.” 

contrapositive. The contrapositive of a categorical 
proposition is another categorical proposition in 
which the premise and the conclusion are denied and 
interchanged: “All S are P;” the contrapositive is 
“All non-P are non-S.” 

inverse. The inverse of a categorical proposition is 
another categorical proposition in which the premise 
and the conclusion are denied: “All S are P;” the 
inverse is “All non-S are non-P.” Table 6 presents 
these concepts. 

 
Please note that such terms as “non-not P” are 
identical with P. 
 
 
Categorical Syllogisms 
 
syllogism. A form of mediate inference consisting of 

three categorical propositions: two premises (a 
major and a minor) and a conclusion. One term, the 
mediate (middle) term, must be common to both 
premises. The mediate term does not appear in the 
conclusion. 

mediate inference. A form of argument that requires 
two or more premises; also, inference with a middle 
(mediate) term. 

major premise. In a syllogism, the premise that 
contains the predicate of the conclusion. 

 
minor premise. In a syllogism, the premise that 

contains the subject of the conclusion. 
four figures of a syllogism. The particular 

distribution of subject, predicate, and middle term 
across the three premises of a syllogism; table 7 
shows the four figures: 

 
TABLE 7.THE FOUR FIGURESa 

First Second Third Fourth 
MP PM MP PM 
SM SM MS MS 
SP SP SP SP 

a S, subject term; P, predicate term; M, middle term. 
 
distributed terms. Those terms in a proposition that 

refer to every member of the class being represented 
by the term. Table 8 shows the distribution of terms 
in the four moods of categorical propositions. 

  
 

TABLE 8.DISTRIBUTION OF TERMSa 
IN FOUR CATEGORICAL MOODS 

Categorical mood Distribution 
A: All S are P. The subject term is distributed; the 
  predicate term is undistributed. 
E: No S are P. The subject and predicate terms 
  are both distributed. 
I: Some S are P. The subject and predicate terms 
  are both undistributed. 
O: Some S are not P. The subject term is undistributed; 
  the predicate term is distributed. 
aS, subject term; P, predicate term; M, middle term. 
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Figure 2 shows the same information in Venn diagram 
form: 
 

Some S are not P.

Some S are P.

Figure 2.—Distribution of terms in four
   categorical moods, shown as class
   diagrams.

No S are P.

All S are P.

S
PP

~S

~P

~P

~P

S

S S

S
S

P

P

P

Categorical mood

⇔

⇔

⇔

 
 

 
valid syllogisms. Each of the three categorical 

propositions in a syllogism must possess one of the 
four moods (A, E, I, and O). There are 43 = 64 
possible arrangements of these four moods over the 
three premises, but only 32 of these arrangements 
form valid syllogisms; the 32 arrangements are 
shown in table 9, arranged according to the four 
figures. For any given figure, there are only six valid 
arrangements of the four moods: 

 
 

TABLE 9.TWENTY-FOUR  
VALID SYLLOGISMS  

Figure 
First Second Third Fourth 
AAA AEE AAI AAI 
AAI AEO AII AEE 
AII AOO EAO AEO 

EAE EAE EIO IAI 
EAO EAO IAI EAO 
EIO EIO OAO EIO 
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