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Dark matter (DM) may have its origin in a pre-big-bang epoch, the cosmic inflation. Here, we consider
for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an
equilibrium between its classical and quantum dynamics in a characteristic timescale during inflation and
sources the DM density. The study gives the abundance and perturbation spectrum of any DM component
sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure
formation, allowing one to test models where DM interacts with matter only gravitationally.
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Dark matter (DM) may have its origin in a pre-big-bang
epoch. It may have been produced, for example, by decays
or annihilations of particles during the big bang, i.e., by the
so-called “freeze-in” [1–3] mechanism, or by, e.g., the
misalignment mechanism which generated a nonzero DM
abundance during cosmic inflation (see, e.g., Ref. [4]). In
all such cases, it is crucial to assess not only if enough DM
was produced but also that perturbations in DM energy
density overlap with those in radiation at large scales to a
high precision, i.e., that the so-called DM isocurvature
perturbations are within the stringent limits obtained from
the cosmic microwave background radiation (CMB) [5].
In this Letter, we study the requirements for fulfilling

the above criteria in scenarios where the DM resides in a
hidden sector which also contains a scalar field. As scalar
fields are typically abundant in extensions of the standard
model [4,6,7], their dynamics during inflation is expected
to provide the generic initial conditions for nonthermal
production of DM after inflation. Another possibility is that
the scalar field(s) themselves constitute all or part of the
observed DM abundance.
Here, we consider for the first time a class of scenarios

where a scalar field acting as or sourcing the DM is a
massive free field which attained an equilibrium between
the classical drift and stochastic quantum fluctuations
during inflation. We also make a detailed comparison with
the case where the dynamics of the field was determined
by the misalignment mechanism and, in both cases, pay
particular attention to isocurvature perturbations, evaluat-
ing the conditions under which the cosmological con-
straints on them are avoided.
Similar ideas have recently been studied in the literature,

including, e.g., self-interacting [8–12] or nonminimally
coupled DM [13–15], DM coupled to the inflaton [16], or
axion DM [17–20]. In this Letter, we show for the first time
that even in the simplest possible case the scalar field can
successfully constitute all DM without being in conflict
with the CMB data. In particular, we show that the scenario

does not require a specific initial misalignment but under
suitable conditions the scalar field can start at the minimum
(or, in fact, at any value) and it will reach an equilibrium
state which determines the final DM abundance. We
generalize our results by discussing also scenarios where
the scalar field sources only a part of the DM density and
evaluate the resulting perturbation spectrum also in that
case. Finally, we present a novel finding that this class of
scenarios generically predicts enhanced structure forma-
tion, allowing one to test models where DM interacts with
matter only gravitationally. We also discuss how to rule out
the present model.
As a benchmark scenario, we consider the simplest

possible DM Lagrangian

LDM ¼ 1

2
∂μχ∂μχ −

1

2
m2χ2; ð1Þ

where χ is a scalar field. We assume that χ is decoupled
from radiation and minimally coupled to gravity [21]. We
assume standard cosmological history and that inflation
was driven by something other than χ, which we assume
was energetically subdominant during inflation. We assume
the field responsible for inflation was also responsible for
generating the initial curvature perturbation and reheating
the Universe after inflation.
Assuming the field χ was light during inflation,

m=H� < 1, it was displaced from its low energy minimum
and gained a nonzero expectation value χ2� ≡ hχ2i in our
observable Hubble patch (see, e.g., Ref. [22]). Therefore, at
the end of inflation there was an effective scalar condensate
with a nonzero energy density, which together with the
corresponding fluctuation spectrum provides the initial
conditions for postinflationary dynamics. However, as
we will show, not all values of χ� are preferred nor accepted
by inflationary dynamics and cosmological constraints.
The equation of motion for the field describing its

postinflationary dynamics is
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χ̈ þ 3H _χ þm2χ ¼ 0; ð2Þ

which is solved for

χðtÞ ¼ 21=4Γ
�
5

4

�
χ�

J1=4ðmtÞ
ðmtÞ1=4 ; ð3Þ

where Jν is the Bessel function of rank ν. Throughout this
Letter, we assume that the Universe was radiation domi-
nated from the end of inflation, so that H ¼ 1=ð2tÞ. At late
times, the solution (3) oscillates rapidly with an amplitude

χ0ðtÞ ¼
2Γð5

4
Þffiffiffi

π
p χ�

ðmtÞ3=4 ; mt ≫ 1; ð4Þ

and the field has associated energy density

ρχ ¼
1

2
m2χ20 ≃

Γ2ð5
4
Þ

π

ffiffiffiffi
m

p
χ2�H

3=2
�

a3
; ð5Þ

where we have fixed the scale factor a� ¼ 1 at the end of
inflation. The result agrees very well with the approxima-
tion that the field was initially frozen at χ� and the
oscillations started when the field became massive
at m ≃ 1.5Hosc.
As shown by Eq. (5), at late times the field χ acts

effectively as a cold dark matter component. Its contribu-
tion to the total DM abundance at the present day is thus
given by

Ωχh2

0.12
¼ 3.5 × 1017g−1=4� ðHoscÞ

�
χ�
MP

�
2

ffiffiffiffiffiffiffiffiffiffi
m

GeV

r
; ð6Þ

where MP is the reduced Planck mass and g�ðHoscÞ is
the effective number of entropy degrees of freedom at
Hosc, for which we will use the standard model value
g�ðT ≫ 100 GeVÞ ¼ 106.75 for simplicity. Thus, for suit-
able values of χ� and m, the field can constitute all of the
observed DM.
Because the field is assumed to be decoupled from

radiation, fluctuations in the local scalar field value
necessarily generate isocurvature perturbations between
the DM and radiation energy densities. The isocurvature
perturbation is defined in the usual way as

Srχ ≡ 3H

�
δρr
_ρr

−
δρχ
_ρχ

�
; ð7Þ

where perturbations are defined as deviations from the
background, δρi ≡ ρi=hρii − 1. Because the fluids are
assumed to be decoupled from each other, we obtain
−Hδρχ= _ρχ ¼ δρi=½3ð1þ wiÞρi�≡ δi=½3ð1þ wiÞ�, where
δi is the density contrast of the fluid i ¼ r, χ and

wi ≡ pi=ρi is the equation of state parameter which relates
the pressure of the fluid to its energy density. For the
scalar field pχ ¼ ð_χ2 −m2χ2Þ=2 and ρχ ¼ ð_χ2 þm2χ2Þ=2.
Because the fluids are decoupled, isocurvature is conserved
on superhorizon scales, _Srχ ¼ 0 [23].
To highlight the differences between the usual treatment

and the novel results presented below, we will first consider
a scenario where the field dynamics during inflation is
assumed to be dominated by slow roll. This case corre-
sponds to the usual misalignment mechanism. If m < H�,
the field acquired small fluctuations around its mean
value χ�. Assuming that the potential and the associated
density perturbation can be expanded linearly in the field,
the isocurvature perturbation becomes [24]

Srχ ¼ −δχ ¼ −2
δχ�
χ�

; ð8Þ

which gives the primordial isocurvature power spectrum
as [22]

PS ¼
�
2

χ�

�
2

Pδχ ≃
�
2

χ�

�
2
�
H
2π

�
2
�

k
aH

�
2ηχ−2ϵ

; ð9Þ

where the result is valid to first order in 3ηχ ≡m2=H2 and
ϵ ¼ − _H=H2 is the usual slow-roll parameter characterizing
change in the expansion rate during inflation. We assume
ϵ ≪ 1, which is the case for, e.g., a large class of plateau
models which are in perfect agreement with the most recent
Planck data [5]. Therefore, in all the cases we consider,
we take H ¼ H� during inflation. Thus, the isocurvature
power spectrum becomes

PS ≈Asr

�
k
k�

�
nδ−1

; ð10Þ

where

Asr ¼
1

π2

�
H�
χ�

�
2

e−N�ðnδ−1Þ;

nδ ¼ 1þ 4

3

m2

H2
; ð11Þ

and

N� ≃ 59þ 1

2
ln

�
H�

8 × 1013 GeV

�
ð12Þ

is the number of e folds from the horizon exit of the pivot
scale k� ¼ 0.002 Mpc−1 and the end of inflation. From
Eq. (11) we see that the fluctuation spectrum can be
strongly blue tilted, nδ > 1, for large m.
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The Planck satellite mission placed stringent constraints
on DM isocurvature [5]. In particular, for the uncorrelated
DM isocurvature considered in this Letter, nonobservation
of primordial isocurvature in the CMB places a constraint

PS ≲ βPRðk�Þ; ð13Þ

where PRðk�Þ ≃ 2.1 × 10−9 is the observed amplitude of
the curvature power spectrum and β ≤ 0.011 [5]. We find
that for m2=H2� ≪ 1, the present model avoids the iso-
curvature constraint for the initial field value

χ�
H�

≳ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2βPRðk�Þ

p ≃ 7 × 104: ð14Þ

Note that during and also long after inflation the energy
density of χ was still subdominant to the total energy
density for small enough m. An example of the model
parameter space where the scalar field simultaneously
constitutes all DM and evades the isocurvature bound
(13) is shown in Fig. 1 for varying H�. The shown
parameter space is relevant for the “fuzzy DM” scenario
[25]. For non-negligible m the perturbation amplitude (11)
is even smaller at the pivot scale due to the blue tilt, and the
correct DM abundance is obtained for a large variety of
masses and initial field values.
However, for large m=H� the field will quickly reach

a regime where the classical drift responsible for slow
roll and the stochastic quantum fluctuations are in

equilibrium. Following the method in Ref. [29] (see also
Refs. [16,19,30]), one can show that for a quadratic
potential the distribution of field values in patches the size
of the horizon at the end of inflation is Gaussian with zero
mean and a variance given by

hχ2i ¼ 3H4�
8π2m2

: ð15Þ

Therefore, in this case there is no mean field over the
observable Universe but a large distribution of values
described by the equilibrium distribution. The equilibrium
is naturally attained in N ≃H2�=m2 e folds regardless of
the initial field value [31]. Thus, in this case χ� is not a
free parameter and, consequently, we will use the typical
field value χ� ¼

ffiffiffiffiffiffiffiffiffi
hχ2i

p
when evaluating the DM energy

density (6).
Fluctuations in the scalar field energy density are in this

case characterized by the power spectrum [30]

Pδχ ¼ Asto

�
k
k�

�
nδ−1

; ð16Þ

where

Asto ≈ 2ðnδ − 1Þe−N�ðnδ−1Þ; ð17Þ

and nδ − 1 and N� are given by Eqs. (11) and (12),
respectively. Because also in this case S ¼ −δχ , we obtain
PS ¼ Pδχ and can again straightforwardly apply the con-
straint (13) [32]. Figure 2 shows the region of the model
parameter space where the scenario simultaneously
explains all DM (along the red curve) and avoids the
DM isocurvature constraints (blue region). We see that
the observed DM abundance is obtained for H� ∼m∼
2 × 108 GeV or m=H� <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3βPRðk�Þ=8

p
≃ 3 × 10−6. In

the former case the requirement for the initial field value
is only χ� ≃ 0.1H�, in contrast to χ� ≳ 7 × 104H� in the
classical slow-roll–misalignment scenario, whereas the
energy scale of inflation is fixed to V1=4 ¼ ð3H2�M2

PÞ1=4≃
3 × 1013 GeV, which in the case of single-field inflation
corresponds to a small value of the tensor-to-scalar ratio,
r ∼ 10−12. While such a value is beyond the reach of any
foreseeable cosmological mission, it does not require
elaborate modifications to the simplest inflationary models
compatible with data [33–35]. In the latter case above, the
constraints are satisfied for any m ≤ 0.4 GeV when H� ≲
105 GeV (corresponding to V1=4 ≲ 1012 GeV). Note that
for fixed cosmological parameters, namely H�, this DM
model contains only one parameter m, as in the stochastic
case the initial value χ� is not a free parameter but
determined by the equilibrium distribution. Therefore, this
scenario constitutes the simplest possible DM model with-
out being sensitive to initial conditions [36].

FIG. 1. The parameter space relevant for the “fuzzy DM”
scenario [25]. Contours show the value of H� required for χ to
constitute all DM. The regions below the horizontal red dashed
line and between the dotted green lines are in tension with
observations of the Lyman-α forest [26] and the recent Event
Horizon Telescope data due to the black hole superradiance
mechanism [27], respectively. See also Ref. [28] which placed
tentative constraints excluding the entire region shown here.
The lower limit for x axis, χ�=H� ≃ 7 × 104, is given by the
isocurvature constraint (14).
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The analysis conducted above can be easily modified to
accommodate also other cosmological histories or models
where the DM sector has a richer structure. For example, if
the scalar field decayed after inflation into relativistic
hidden sector particles ψ which never entered into thermal
equilibrium with radiation, their contribution to the present
DM abundance is given by

Ωψh2

0.12
¼ 1.2 × 109g−1=4� ðHoscÞ

�
m
Γχ

�
3=8

�
χ�
MP

�
3=2

�
mψ

GeV

�
;

ð18Þ

where Γχ is the decay width of χ and we assumed the ψ
particles thermalized with themselves immediately upon
the decay of χ at Hdec ¼ Γ, attaining a temperature
T4
ψ ðHdecÞ ¼ ð30=π2ÞρχðHdecÞ, and became nonrelativistic

at Tψ ¼ mψ . If the ψ particles were nonrelativistic from the
beginning, the final DM abundance is given by Eq. (6). In
both cases, the perturbation spectrum is given either by
Eq. (10) or (16), depending on whether the field χ attained
equilibrium between the classical drift and quantum fluc-
tuations during inflation or not.
Other production mechanisms for DM, such as freeze-in,

provide an additional contribution to the yield studied in
this Letter and the final DM abundance is essentially a
sum of the individual contributions [37]. In such cases, the
final DM isocurvature perturbation depends on the pertur-
bation spectra of the sources and the ratio of their con-
tributions as [9]

Src ¼
ρχc

ρχc þ ρrc
Srχ ; ð19Þ

where ρic is the part of cold DM sourced by the fluid i ¼ χ,
r, and Srχ is defined as in Eq. (7). Note that Eq. (19) applies
independently of the scalar potential.
Finally, we make an important remark about structure

formation. Because in the above scenarios the DM field χ
is a genuine isocurvature component, one can expect
enhanced structure formation especially at small scales.
The curvature perturbation on the uniform total energy
density hypersurface is given by [23]

ζ ¼
4
3
ρrζr þ ρcζc
4
3
ρr þ ρc

; ð20Þ

where ζi ≡ −Φþ δi=½3ð1þ wiÞ� is the curvature perturba-
tion of the fluid i on the uniform energy density hyper-
surface of fluid i and Φ is the gravitational potential in the
longitudinal gauge. The isocurvature perturbation can then
be expressed as Src ¼ 3ðζr − ζcÞ. At early times ζ ≃ ζr,
whereas at the time of photon decoupling

ζ ≃ ζr þ
zeq=zdec

4þ 3zeq=zdec
jSrcj; ð21Þ

where zeq is the redshift to the matter-radiation equality and
zdec is the redshift to the CMB. Thus, in the presence of DM
isocurvature, the final curvature perturbation is larger than
in scenarios with purely adiabatic (Src ¼ 0) perturbations.
The more blue tilted the DM energy density spectrum is,
the more small scale structure can be expected to form.
However, as perturbations at different scales start evolving
upon their horizon entry, in practice the curvature pertur-
bation spectrum can be expected to peak at some inter-
mediate scale whose exact location depends on details of
the underlying scenario. This was recently studied in the
context of nonminimally coupled scalar field DM in
Ref. [15]; see also Ref. [38] for the case of vector DM.
Thus, we conclude that enhancement in small scale

structure formation is a generic prediction of models where
DM resides in a decoupled sector which also contains
scalar fields. As the result (21) is independent of the origin
of the DM perturbation spectrum (e.g., misalignment, large
mass, DM self-interaction, coupling to the inflaton or
gravity) our work generalizes the earlier findings in the
literature and shows that all such cases predict character-
istic enhancement in small scale structure formation. This is
likely to allow one to test models where DM interacts with
matter feebly or only gravitationally. Also, it is clear that
the present model cannot accommodate sizable DM self-
interactions which may be observable in the future [39].
Thus, a detection would rule out the simplest scenario
considered in this Letter and provide for a way to

FIG. 2. The region of the model parameter space where the
scalar simultaneously constitutes all DM (along the red curve)
and avoids the DM isocurvature constraints (blue region). Also
the region m ≤ 0.4 GeV, H� ≲ 105 GeV in the lower left corner
is allowed. The result is not sensitive to the exact value of β.
Above the blue region, m > H�, the scalar fluctuations during
inflation are strongly suppressed.
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distinguish it from models which predict similar structure
growth but exhibit sizable self-interactions.
In this Letter, we have considered the simplest possible

DM Lagrangian and evaluated the criteria for the scalar
field χ to constitute or source all or part of the observed
DM.We considered two scenarios: the usual case where the
field dynamics was dominated by slow roll during inflation
(the misalignment mechanism), and for the first time a
scenario where the field attained equilibrium between the
classical drift and stochastic quantum fluctuations. As in all
such cases the DM constitutes a genuine isocurvature
component (without, however, being in conflict with the
CMB data), we found that this class of scenarios generi-
cally predicts enhancement in formation of structures at
different scales. We plan to investigate the consequences of
this in more detail in forthcoming publications.
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