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Abstract

Modern cosmology successfully deals with the origin and the evolution of the Universe at large scales, but it is unable
to completely answer the question about the nature of the fundamental objects that it is describing. As a matter of
fact, about 95% of the constituents of the Universe is indeed completely unknown: it cannot be described in terms
of known particles. Despite intense efforts to shed light on this “literal” darkness by dark matter and dark energy
direct and indirect searches, not much progress has been made so far. In this work, we take a different perspective
by reviewing and elaborating an old idea of studying the mass-radius distribution of structures in the Universe in
relationship with the fundamental forces acting on them. As we will describe in detail, the distribution of the observed
structures in the Universe is not completely random, but it reflects the intimate features of the involved particles and
the nature of the fundamental interactions at play. The observed structures cluster in restricted regions of the mass-
radius diagram linked to known particles, with the remarkable exception of very large structures that seem to be linked
to an unknown particle in the sub-eV mass range. We conjecture that this new particle is a self-interacting dark matter
candidate.
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1. Introduction

What we know about the Universe comes from its visible matter component, accurately described by the Standard
Model of particle physics and by General Relativity (GR). However, large-scale structures show a compelling evidence
for a missing hidden component: only about 5% of the Universe energy content seems to be visible. The unknown
components can be divided, for their physical properties, in dark energy, representing about 70% of the energy budget
of the Universe, and dark matter (DM), contributing for about the 25% (for reviews see for instance [1, 2]). The
first is an unknown form of energy that affects the Universe dynamics at the largest scales. Its existence is mainly
inferred from Type Ia supernovae luminosity distance against red-shift measurements, showing an acceleration in the
Universe expansion [3]. The latter is a form of matter accounting for about 85% of the matter in the Universe. In
contrast with the visible component, it does not absorb, reflect or emit electromagnetic radiation (or at least those
processes are extremely suppressed), and therefore in this sense it is named “dark”. Although DM is invisible to the
observations based on electromagnetic interactions, it is anyway evident by several gravitational effects. Assuming
the validity of GR, with its weak field Newtonian force approximation, the DM seems to dominate the dynamics of
large gravitating objects, from small galaxies to galaxy clusters, and the structure formation since the early stages
of the post Big Bang epoch. Furthermore, the presence of this hidden form of matter is required to explain various
astrophysical observations including the cosmic microwave background (CMB) anisotropies [4, 5, 6], the gravitational
lensing produced by galaxies and cluster of galaxies [7] as well as the dynamics of group of galaxies and many other
indirect observations, see [8] for a review.

About the particle nature of the DM, many candidates have been proposed in years, often associated to extensions
of the Standard Model of particle physics, since the model itself does not include any suitable solution. Proposed
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candidates range from very light DM with mass . µeV, as axions [9, 10, 11, 12] and axion-like particles (see [13]
for a recent review), to primordial black holes (BHs) [14, 15] with mass up to 1021 g (see [16] for a review), passing
through sterile neutrinos in the keV–MeV mass range [17, 18], and the popular weakly-interacting massive particles
(WIMPs) with mass in the range ∼ 1 − 104 GeV [2]. The WIMP hypothesis has been for a long time the preferred
paradigm, because WIMPs emerge naturally from extensions of the Standard Model, as in the theoretical framework
of Supersymmetry [19].

Unfortunately, the identity of the DM particle is elusive to both indirect and direct searches. On the direct search
side, longstanding attempts of experimental detection through dedicated techniques in underground laboratories or
looking for hidden channel processes in relativistic accelerators have only produced null results (for a review see for
instance [20]). Being mainly based on gravitational effects, the astrophysical as well as the cosmological observations
can hardly help to distinguish between the various DM candidates. In addition, one of the most popular cosmological
model, known as the ΛCDM model, is recently facing a number of challenges at scales smaller than ∼ 1 Mpc [21].
Therefore, even if its gravitational effects are deeply investigated, the particle identity of DM is still unknown.

Instead of focusing on a particular DM model, we propose a different approach to the dark matter problem based
on an old idea of Weisskopf [22] and Carr and Rees [23] on how one can characterize the distribution of known
structures in the Universe in relationship with the fundamental forces acting on them. In particular, we analyze
the typical mass and length scales of several structures, ranging from nucleons to clusters of galaxies, showing that
their distribution in the mass-radius diagram is not randomly scattered, but clustered according to the fundamental
interactions at play. Moreover, structures describing different objects characterized by the same type of interaction
seem to be related by a simple rule. Remarkably, we will show how by the clusterization of macroscopic structures and
by building the corresponding connections, one can infer the approximate masses of the proton and of the electron.
These mass scales emerge as those of the basic constituents of ordinary matter. Upon extending the same approach to
large-scale structures, we put forward the hypothesis of a new mass scale in the sub-eV range, which could be related
to the DM sector.

Our work is organized as follows. In Sec. 2 we discuss the existence of relationships between various objects
in the Universe determined by the interactions between their fundamental components. In Sec. 3 we present the
general properties of the the mass-radius diagram. We discuss the extended structures of the Universe in Sec. 4 and
their relations to the microphysics. In particular, we identify the domain in which each fundamental interaction is
dominant. In Sec. 5 we dwell on very large structures and on how a very small mass scale emerges by a simple
extrapolation procedure. We also present a simple model that approximately reproduces the mass-radius relation of
galaxies. In Sec. 6 we use the matter distribution determined by our simple model to construct approximate rotation
curves for galaxies. Employing as fitting parameters the halo mass and radius, we obtain rotation curves in very good
agreement with observations. We draw our conclusions in Sec. 7.

2. Structures and their parameters

The classification of all objects in the Universe, from subatomic particles to the Universe itself, can be realized
by looking at some suitable physical observables in a multidimensional parameters space. In general, we expect that
the distribution of the observable objects is not random, because any physical object is realized by the interaction of
elementary constituents. In other words, we expect that objects having the same constituents, and whose equilibrium
is determined by the same fundamental forces, form clusters that are related among them by some simple rule. Within
a cluster the various elements can be distinguished by some parameter, however, if one is just interested in the rela-
tionship between clusters, such a distinction is unnecessary. The famous Hertzsprung-Russell diagram [24], where
magnitude versus temperature of stars is reported, is a neat example of this sort. The clustered structures in it help
astrophysicists to understand the stellar evolution, inspiring revolutionary intuitions.

At the microscopic level an example of clusterization is given by atoms. One may classify the chemical elements
by using various parameters, for instance their atomic number and some chemical property, such as their ionisation
energy, as in the Mendeleev table of elements. This classification is certainly useful in chemistry, however, in our
view the most important aspect is that the periodicity of the table reveals the existence of more elementary objects,
namely that atoms are made of interacting nucleons and electrons. For our purposes it is indeed sufficient to classify
the chemical elements as a cluster of objects made of nucleons and electrons interacting through the electromagnetic
force. We can then characterize the whole cluster by atomic mass and radius. The atomic mass ranges between mp
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and about 300mp, where mp is the proton mass, while the radius, of order 10−8cm, is dictated by the strength of the
electromagnetic interaction. A second relevant example is given by hadrons: the fundamental as well as the resonant
states can be classified for instance according to their mass and spin. Also in this case the periodicity of the hadronic
states reveals the existence of a substructure. In particular, baryons can be described as the arrangement of three
valence quarks whose interactions mediated by gluons is described by the Quantum Chromodynamics (QCD), see for
instance [25, 26]. Using mass and size, we have that all known baryons have a mass between mp and about 6mp (for
bottom baryons) and size of about 10−13cm, which is determined by the strength of the strong interaction. Therefore,
if one looks at the masses and typical length scales of atoms and baryons, one can easily see that they form two distinct
clusters. With logarithmic accuracy, atoms cluster at a mass of order 10 − 100 mp, and radius of order 10−8 cm, while
baryons have masses of the order of the proton mass and radii of order 10−13 cm. The most striking difference is the
typical length scale characterizing each cluster, indeed both atoms and baryons have a mass that is dictated by the
proton mass, therefore their masses are close, while the typical sizes are different: the atomic size is determined by
the electromagnetic interaction, while the baryonic size is determined by the strong interaction. Note that within each
cluster, one can distinguish the different elements by using a different parameter. For example, chemical elements
can be distinguished by their ionisation energy, which does not make any sense for baryons. Since in our approach
we deal with clusters and not with the single elements of the clusters, we will assume a coarse grained description of
matter in which only the mass and size matter, while any internal parameter differing from mass and size has been
integrated out.

For macroscopic structures one finds that clustering in terms of mass and size still holds. As an example, neutron
stars have masses of about 1.4M� and radii of about 10 km, while white dwarfs have similar masses, on a logarithmic
scale, but radii of order 103 km. Therefore, neutron stars and white dwarfs form two distinct clusters of objects
with similar masses but different radii. As in the previous example, the basic difference between the size of the
elements of the two clusters is determined by the different interaction at play. In the first case, it is the nucleon
degeneracy pressure and the nuclear forces that determine the hydrostatic equlibrium, while in the latter it is the
electron degeneracy pressure that plays the same role.

This approach can be extended to understand the clustering of all objects in the Universe, by using the simplest
parameters in common to all objects, namely their mass and radius (size). Extending the argument discussed above,
any other parameter, as spin, or charge that can be used to distinguish the elements within each cluster becomes
irrelevant in the coarse grained description we perform. Regarding the useful parameters for clusterizing objects, we
note that parameters as temperature, or luminosity, cannot be defined for atomic and subatomic structures and in any
case they depend on the kinematic state of the object; therefore, they are not universally comparable. For these reasons
we investigate exclusively the mass-radius parameter space.

We have already given a few examples of clustered structures, however one may think that an exhaustive classifi-
cation of all objects in the Universe by means of mass and radius would result in a completely random distribution. As
we will see, this is not the case. Clustered structures, with clear connection pattern, unequivocally appear, while wide
regions of the mass-radius parameter space remain completely empty. In other words, not all objects with whatever
mass and radius are realized in the Universe, due to the existence of a restricted number of fundamental constituents,
fundamental interactions, and formation mechanisms.

Far from believing that the existence of clustered structures is a mere coincidence, it is clear that intrinsic rules are
at play determining allowed regions and forbidden areas. However, the reason why some regions are populated could
be also contingent on a physical process that formed an object with a specific radius and mass. In other words, the
reason why an object does not exist could be the absence of a production mechanism rather than the instability of the
object itself.

This reasoning does not exclude, from a philosophical point of view, a drift towards some radical view as the
anthropic principle, where this kind of arguments actually arose at first [27]. Nevertheless, the use that we do of the
mass-radius diagram is rather pragmatic: we try to use it to connect the macro- and the micro-physics with the purpose
of shedding light on the origin of the missing mass of the Universe.

3. The mass-radius diagram

Weisskopf in 1975 [22] and Carr and Rees in 1979 [23] have shown how one can semi-quantitatively determine
the properties of very different structures starting from the masses of fundamental particles and the strengths of the
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fundamental interactions. Their aim was not to provide a detailed description of nature, but to show how the typical
properties of a number of objects emerge by a wise use of fundamental parameters. In the present study we build
on their works showing how the masses and the length scales of many structures present in the Universe depend on
fundamental constants. As in [22, 23], the goal is not to provide an accurate description of structures; therefore, an
approximation of one order of magnitude is considered acceptable.

In Fig. 1 we present a double logarithmic mass-length diagram showing a number of representative structures of
the Universe. The use of a log-log scale is due to the fact that we are not interested in the details of macroscopic
structures. In the diagram, we normalize masses to the proton mass, mp, as in [23], and the radius to the Compton
wavelength of the proton

λp =
h

mpc
' 1.3 × 10−13 cm , (1)

with h the Planck’s constant and c the light velocity in vacuum. The reason behind this particular normalization is
two-fold. First, we know that most of the matter in the visible Universe consists of baryons, therefore using the proton
mass and the typical proton wavelength is the most natural choice. Second, we are not interested in the subatomic
physics, meaning that any length scale below about 1 fermi is assumed to be integrated out. For this reason in our
analysis we will not consider exotic macroscopic objects emerging directly from QCD, such as strange stars [28] or
pion stars [29, 30, 31, 32].

As it is shown in Fig. 1, the structures of the Universe occupy only a few regions of the mass-length diagram,
showing interesting patterns: they tend to cluster in particular regions and the clusters seem to be simply connected
by straight lines. More in detail, in Fig. 1 we report a sample of 24 BHs from the recent Ligo-Virgo Catalogue [33]
as well as a representative point of supermassive BHs [34, 35]; the Crab Pulsar (neutron star); a number of asteroids
and planets from our solar system: Deimos, Phobos, 4 Vesta, Ceres, the Moon, the Earth, Mars, and Jupiter; an
exoplanet representation averaging a sample of about 2000 observations of available data [36] (the size of the point
approximately corresponds to one sigma of the distribution in mass and radius); a few stars ranging from white dwarfs
to red supergiants: Procyon B, Sirius B, Proxima Centauri, Altair, Procyon A, Zeta Ophiuchi, Sun, Rigel, Eta Carinae,
Betelgeuse, and Canis Majoris; globular clusters of stars, for them we use a geometric average of the virial mass and
tidal radius for 163 galactic clusters [37]; dwarf galaxies, galaxies, cluster of galaxies, and super-clusters of galaxies,
for them we use the average (virial) mass and size from [38, 39]; few nuclei up to the uranium nucleus; the hydrogen
and the uranium atoms. Finally, subatomic particles occupy the left bottom edge of the diagram. In particular, we have
reported the points corresponding to the proton and to the electron. The electron is a point-like particle, therefore we
have used as representative length scale its Compton wavelength. Actually any elementary particle can be considered
a point-like object; however, as far as we consider its interactions, the smallest meaningful quantum mechanical (QM)
length scale corresponds to its Compton wavelength.

The points shown in Fig. 1 do not clearly represent an exhaustive list of all the existing objects; however, as far
as we are interested in understanding the fundamental properties of matter, they are a representative sample of all
the observed objects in the Universe. As we will discuss and better clarify in the following, the objects that we have
not reported in Fig. 1 would cluster close to the points already depicted in the same figure or would lie close to the
lines joining clusters characterized by the same interaction. This is a consequence of the fact that the structures in the
Universe cannot have arbitrary mass and radius.

3.1. Boundaries

We first note that there exist natural boundaries in the mass-radius diagram. A left boundary is determined by GR
and it is named in Fig. 2 the “black hole” boundary. It is given by

RSch(m) =
2GNm

c2 , (2)

where GN is the gravitational constant. This boundary simply implies that any structure of mass m must have a radius
equal or larger than the Schwarzschild radius, RSch(m). Clearly, the selected BHs from the Ligo-Virgo Catalogue [33]
as well as the shown supermassive BHs [34, 35] are all grouped on the BH boundary line at large masses. Any other
BH that we have not reported in the mass-radius diagram would be on this line. Notice that we terminate the BH
boundary line at the Planck’s point (2rPl,MPl) corresponding to a state with a mass equal to the Planck’s mass, MPl,
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and a radius equal to the corresponding Schwarzschild radius. The Planck’s mass and radius are the only mass and
length scales that can be built from the fundamental constants GN , c and ~ = h/2π and are respectively given by

MPl =

√
~c
GN
' 2.2 × 10−8 kg , (3)

rPl =

√
G~
c3 ' 1.6 × 10−33 cm . (4)

The Planck’s mass is the largest fundamental mass scale, meaning that any known particle has a smaller mass,
therefore (2rPl,MPl) defines a limiting point on the mass-radius diagram, as shown in Fig. 2.

A second boundary can be defined requiring the localisability of elementary particles, corresponding to a length
scale equal to the Compton wavelength

RC(m) =
h

mc
, (5)

and it is named the “quantum mechanics” boundary in Fig. 2. Any particle, elementary as the electron, or composite
as the proton, lies on the QM boundary. For instance, the electron can be identified with the point: (re,me), where

mec2 ' 0.511 MeV and re =
h

mec
' 2.4 × 10−11cm , (6)

are the mass and the Compton wavelength of the electron, respectively. For extended structures, instead of the Comp-
ton wavelength we use the radius of the object. In this way, any object, from elementary particles to galaxies can be
placed within the BH and QM boundaries. Note that the two boundaries intersect at R =

√
2RPl, corresponding to

M = MPl/
√

2.

4. Extended structures

We will now dwell on the extended structures present in the mass-radius diagram. Since we are looking for a
connection between structures and fundamental interactions, let us first characterize the strength of the gravitational,
electromagnetic, weak and strong interactions by means of the corresponding fine structure constants, respectively
given by

αG =
GNm2

p

~c
' 5.9 × 10−39 , (7)

αe =
e2

~c
' 7.3 × 10−3 , (8)

αW =
GFm2

e

(c~)3 ' 3.0 × 10−6 , (9)

αs ' 0.1 , (10)

where e is the electron charge and GF is the electroweak coupling. Some comments are in order. The weak interactions
are mainly related with the time evolution of matter, for instance they determine the decay of some heavy elements
or the cooling properties of stars. For this reason they will not play a relevant role in the following discussion, we
will indeed assume that matter is catalized in a static or slowly evolving state. The reported strength of the strong
interaction can be obtained by comparing some typical strong and electromagnetic decay lifetimes, see for instance
[25], and it is therefore meant to be the effective coupling of the interaction mediated by mesons. More precisely, it
corresponds to the strength of the strong interaction at about the Z-boson mass scale, see [25, 40].

4.1. The gravity domain

Each fundamental interaction plays an important role in a certain region of the mass-radius diagram. We begin
with considering gravity, which is extremely strong near the BH boundary; as we have seen this boundary is indeed
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Figure 1: Logarithmic plot of mass and radius of different structures present in the Universe normalized to the proton mass and to the Compton
wavelength of the proton. For the fundamental particles the radius is given by the corresponding Compton wavelength. For some structures, as
nuclei, atoms, planets and stars, we use the measured radius. In few cases, as for the point marked as “man”, we use some typical length scale. For
very large structures we report the average values of virialized mass and radius.

completely determined by GR. The largest possible structure in which gravity is the only relevant interaction is the
whole Universe which corresponds to a limiting point on the mass-radius diagram. The mass of the visible Universe
can be written as MU ∼ 0.22mpα

−1
G r−1

p rU , while its radius is rU ∼ c/H0, being H0 the present day Hubble expansion
rate, and MU ∼ c3t/6πGN with t ∼ 1/H0 for a matter-dominated Universe. Hereafter, we will not include the Universe
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point in our discussions, since it only refers to the visible part of the whole Universe: its real size and mass are not
observable. For structures on the BH boundary, that is for BHs, there is no equilibrium between gravity and any other
force: their compactness is so large that gravity dominates. However, as we move to the right of the BH boundary the
compactness decreases and different interactions are at play to contrast gravity. The most compact objects are neutron
stars, in which the fermionic degeneracy pressure of neutrons and the nuclear short-range repulsive interaction balance
the gravitational attraction. However, there exists an empty region between the BH cluster and the neutron star cluster.
This is an extremely important point: in general, one cannot move with continuity between regions where different
interactions are at play. Regarding the BH line, the region very close to this boundary cannot be populated, indeed
objects with a compactness larger than the Buchdal’s limit m/r = 4/9 collapse to BHs [41]. For this reason, the region
4/9 < m/r < 1/2 must be empty: it corresponds to one of the forbidden regions in the mass-radius diagram. These
regions can in general be characterized by the fact that it is not possible to realize any sort of equilibrium between the
fundamental forces to form a stable object; in the considered case, there is no equation of state (EoS) of matter that
can sustain equilibrium for a structure with 4/9 < m/r < 1/2. A different way of looking at this result is that the BH
line has no smearing: no structure can exist sufficiently close to the BH boundary. The only exceptions are Kerr BHs,
which are slightly deformed by rotation, see for instance [42].

A second important general feature of the mass-radius diagram is that along lines determined by some specific
interaction there may be empty regions. Along the BH boundary line we have only observed BHs in restricted regions,
roughly around 10 − 100M�, for LIGO-Virgo detected BHs, see for instance [43], and 108 − 109M� for supermassive
BHS, see for instance [34, 35]. Very light BHs with mass M . 1015 g possibly created during inflation have so far
evaporated and it is unclear whether primordial BHs with masses below M� can be created. In any case, there is a
large BH mass range that does not seem to be populated. Presumably, there is no fundamental reason for that: it is
possible that there is no way in Nature of producing BHs in some mass ranges, or maybe we will observe these objects
in the future.

As we move to the right of the BH line we find less compact objects, where gravity becomes less important and
eventually becomes irrelevant while different interactions become dominant. As happening for the gravitationally
dominated structures, we expect the dominant interaction to provide the relevant mass and length scale.

4.2. The electromagnetic domain
Several structures can be described by means of the electromagnetic interaction, which depends on the coupling

constant αe, see Eq. (8). The lightest system is the hydrogen atom, with a mass mH ' mp and radius

rH ' a0 =
re

2παe
' 5.3 × 10−8cm , (11)

where a0 is the Bohr’s radius. Heavier atoms have mass of order ∼ Amp, where A is the atomic number, while their
radius has a non-monotonic dependence on A. Atoms have indeed a very peculiar mass-radius relation: within a group
of the periodic table the radius typically increases with increasing A, while it decreases within a period. However,
with good accuracy, we can say that atoms form a cluster in the mass-radius diagram with masses

matoms ' 1 ÷ 100 mp , (12)

and radii
ratoms ' 1 ÷ 4 a0 , (13)

where the ranges of values are empirically determined.
Moving to astronomical solid objects, such as planets with spherical symmetry, we take the simplifying assumption

that they are made by one single chemical component with atomic/molecular weight A. Since the electromagnetic
interaction is dominant, the matter density of the planet

ρplanet ∼
mpA

(ηa0)3 , (14)

is roughly uniform. Here ηa0 is the effective size for atoms/molecules with η a number weakly dependent on A, for
instance in [22] η ' 1.5A1/5. It follows that

M '
mpA

(ηa0)3 R3 , (15)
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therefore we have that

log
(

M
mp

)
' C + 3 log

(
R
λp

)
, (16)

with C a constant, corresponding to the dashed green line named “atomic density” in Fig. 2 with slope equal to 3. We
use the constant C as a fitting parameter; as we will see below, this parameter is linked to the microphysics.

The “atomic density” line describes very well a number of objects, however it cannot extend to arbitrary large
masses. With increasing mass, gravity comes into play and determines the stability of the planet. Semi-quantitatively,
the electromagnetic and the gravitational interactions can be characterized by their respective energy scales,

EG ∼
GN M2

R
and Ee.m. ∼ Nα2

emec2 , (17)

where N is the number of molecules and α2
emec2 is an estimate of the electromagnetic interaction energy per molecule.

Since
M ' NAmp , (18)

we obtain from Eq. (15) that R ∝ N1/3, meaning that EG ∝ A2N5/3, while Ee.m. ∝ N. This different scaling with N
reflects the fact that gravity is long-ranged, while the electromagnetic interaction is short-ranged. It follows that with
increasing N, gravity will eventually win. The equilibrium will be maintained for large N by decreasing A, and this is
indeed the reason why very massive planets, as Jupiter, are made of hydrogen and helium.

More in detail, assuming that EG ∼ Ee.m., upon using (14) and thus estimating the number of molecules as the total
volume divided by the effective volume N ∼ (R/ηa0)3, we have that the radius and mass of a planet can be written in
terms of fundamental constants as

R ∼ 1.3
(
αe

αG

)1/2 a0

A
η3/2 , (19)

M ∼ 2.2
(
αe

αG

)3/2 mp

A2 η
3/2 , (20)

where αG is defined in Eq. (7). It follows that in the equilibrium configurations the mass and the radius increase
with decreasing A. For very light elements mass and radius reach a maximum value of order 1030 g and 1010 cm
respectively, close to the Jupiter’s mass and radius. In other words, using only the electromagnetic interaction one can
obtain objects in equilibrium with gravity with a maximum mass comparable to that of Jupiter: objects with larger
masses must be sustained by the strong interaction or by the quantum degeneracy pressure. Qualitatively, this can
also be seen as follows: if one could replace in the previous equations αe with αs, then one could obtain equilibrium
configurations with larger masses and radii.

Turning back to Eqs. (19) and (20), we can use them to estimate the masses and radii of sufficiently massive
planets. For planets consisting of SiO2 we find that R ' 8× 108 cm and M ' 8.6× 1027 g. This standard rocky planet
is shown in Fig. 2 and it lies indeed on the “atomic density” dashed green line. The mass and radius of the standard
rocky planet are very close to the Earth’s mass and radius, namely M⊕ = 6 × 1027 g and R⊕ = 6.4 × 108 cm, indeed
from [44, 45] we can estimate an average A ∼ 33 for the Earth. In this case from Eqs. (19) and (20) we determine
M ∼ 2.4 × 1027 g and R = 1.2 × 109 cm. Therefore, such simplistic arguments give a result which is in agreement
with measurements within a factor of 10.

The simple Eq. (16) seems to correspond to the universal relation between the mass and radius of any planet:
even exoplanets lie along the atomic density line. However, unlike the BH line, the atomic density line shows some
smearing, meaning that there are objects with similar masses but different radii. We have already mentioned the
peculiar dependence of atoms’ radii on the atomic number. In order to estimate the smearing of the planet distribution,
we follow a reasoning similar to the one presented in [22, 23, 27] to estimate how deformed can be a rocky object. In
particular, we will determine the maximum height of a mountain by comparing the typical electromagnetic force with
the gravitational force at the planet’s surface. The surface gravity of an object of mass M and radius R is g = GN M/R2,
upon using Eq. (15) and (18), we have that

gplanet '
GN NAmp

N2/3(ηa0)3 , (21)
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is the surface acceleration due to gravity for a planet composed of N molecules with atomic number A. The maximum
size of a mountain, hmax, can be estimated by [22]

mpAgplanethmax = εα2
emec2, (22)

where the left hand side corresponds to the gravitational energy and the right hand side to the energy required to avoid
that the solid material sinks into the underneath surface. The small parameter ε ∼ 10−2 gives the scale factor needed
to obtain the right order for the energy to break hydrogen or Van der Waals bonds. Solving for hmax, Eq. (22) gives

hmax ∼ εη
2 αe

αG

a0

A5/3

(mp

M

)1/3
∼ 30 ÷ 60 km , (23)

where we have used A = 30 ÷ 60 and M = M⊕ in the numerical estimate. This result shows that we have obtained
the right answer for the maximum height of mountains on the Earth within a factor less than 10. In general, for any
irregular solid object, the above expression of hmax gives its maximum size deformation. Asteroids such as Ceres and
4 Vesta are compatible with this limit, as shown in Fig. 2.

A remarkable fact is that the “atomic density” line intersects the quantum mechanical boundary at m ' 0.4 MeV,
close to the electron mass. The mass scale obtained in this way depends on the parameter C of Eq. (16), which
is determined by a best fit of the distribution of stars, planets and atoms. In other words, from the astrophysical
knowledge of the masses and radii of stars, planets and atoms, we can estimate the electron mass. The reason is that
the size of these structures is dictated by the electromagnetic interaction of electrons, which plays a dominant role.
Any other scale, for instance related to the internal structure of nuclei, is irrelevant for the equilibrium properties of
these objects.

4.3. The nuclear interaction domain
As we have seen, above Jupiter’s mass the gravitational attraction will eventually become stronger than the electro-

magnetic repulsion: nuclear processes must come into play to provide the pressure necessary to maintain equilibrium.
Moreover, fermionic matter is so closely packed that the degenerate fermionic pressure becomes sizeable. The strong
interaction between a pair of nucleons is described by the Yukawa potential: Us = −

αs
r e−r/λs with αs the strong inter-

action coupling constant, see Eq. (10), and λs ∼ 1.4 × 10−13 cm the typical range of the strong interaction determined
by the inverse pion mass. This length scale is related to the fundamental quantities defined so far by, λs ' α

−1
s λp/2π,

where λp is the Compton wavelength of the proton, see Eq.(1).
The typical nuclear density can be written as

ρs ∼
mp

λ3
s
∼ 2 × 1014g cm−3 , (24)

which is of the order of the nuclear saturation density. Since nuclear matter has a low compressibility, the mass-length
relationship involving the nuclear interaction can be written as

M ∼
(
αs

λp

)3

mpR3 , (25)

and should roughly characterize any structure in which the nuclear interaction plays a fundamental role. Similarly to
the case of structures dominated by the electromagnetic interaction we have that at least for small masses

log
(

M
mp

)
' C′ + 3 log

(
R
λp

)
, (26)

where C′ is a fitting constant. In fact, as can be seen from Fig. 2, the M ∝ R3 behavior actually connects nuclei with
neutron stars in the mass-length diagram. Roughly speaking, a neutron star is a collection of non-relativistic particles
(mostly neutrons) in equilibrium between the inward pressure due to the gravitational attraction and the outward
pressure due to the degenerate fermionic pressure (the so-called exchange force) and the strong repulsive interaction.
The short range strong repulsion combined with the quantum exchange forces produce neutron stars with masses 1÷2
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Figure 2: Logarithmic plot of the mass and radius of different structures in the Universe as in Fig. 1 with boundaries and lines determined in
the present work. The “black hole” boundary and the “quantum mechanics” boundary are determined by Eqs. (2) and (5), respectively. The
“nuclear density” line connects structures in which the nuclear interaction is dominant. The “atomic density” line connects structures in which the
electromagnetic interaction dominates. See the text for more details.

M�, see for instance [42, 46]. As we will see, if one does not include the short range strong repulsion only neutron
stars with masses of the order of M� are stable: more massive neutron stars would collapse. Although neglecting the
strong interaction is unsatisfactory: neutron stars with masses M ' 2M� have indeed been observed [47, 48, 49], the
exchange interaction and the strong interaction are comparable. Therefore, for our semi-quantitative purposes it is
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sufficient to consider the effect of the exchange forces. In passing, we note that exchange forces between electrons
are the dominant repulsive interaction in white dwarfs, which indeed have masses of about M�. Fermions in a region
of volume V exert a degeneracy pressure

P =
2
5
εFn

(
1 + O

(
T
εF

))
, (27)

where n = N/V is the average particle density and

εF =
~2

2m
(6π2n)2/3 , (28)

is the Fermi energy, see for instance [50], with m the mass of the fermion. Since neutron stars are composed by
baryons, the Fermi energy is of the order of GeV, while the temperature few seconds after the neutron star birth is
expected to be of the order of keV. For this reasons we can safely neglect any temperature dependence. In this case,
the degeneracy pressure can be approximated with

P0 =
2
5
~2

2m
(6π2)2/3n5/3 , (29)

where the 0 index stands for zero temperature. Neglecting the strong interaction, the spherical star with mass M
and radius R is in hydrostatic equilibrium when the fermionic degenerate pressure equals the gravitational pressure,
corresponding to [50, 24]:

P0 =
κ

4π
GM2

R4 , (30)

where κ is a number of order unity depending on the mass distribution inside the star. For our numerical estimate we
will take κ = 3/5 corresponding to a homogeneous star. Neglecting any nuclear and gravitational binding, we can
approximate M ' Nmp and thus the relationship in (30) can be recast to obtain the radius with respect to the mass:

R ' 3.7 λpα
−1
G

(
M
mp

)−1/3

, (31)

where the numerical prefactor is obtained assuming an homogeneous mass distribution, while λp and αG are given
in Eqs. (1) and (7), respectively. The above relation shows that for nuclear matter M ∝ R3, which is basically a
realization of the fact that nuclear matter at any density has a very low compressibility. Upon substituting R ∼ 10 km
in Eq. (25) we obtain M ' M�, simply meaning that a neutron star can be thought of as a system of closely packed
nucleons. The location in the mass-radius plane determined by Eq. (31) is reported in Fig. 2 for M = M�, showing
indeed that neutron stars and nuclear matter are connected by the dashed red line labeled “nuclear density” with
slope 3. Extrapolating this line to the quantum mechanical boundary we obtain a mass value m ' 600 MeV, close
to the proton mass. In other words, starting from the observed neutron star and nuclear matter masses and radii we
may infer an approximate value of the proton mass. One important remark is that nuclear matter and neutron stars
are disconnected: there is no continuous equilibrium path that connects standard nuclear matter with neutron stars.
neutron stars cannot be built adiabatically piling up neutrons and protons. The reason is that in this process one would
need to construct nuclei with very large atomic number, which in standard conditions are beta unstable. To build a
neutron star it is indeed needed a quick and violent compression process, as produced during a core collapse before the
supernova explosion. Nevertheless, nuclei and neutron stars are in equilibrium in conditions dictated by the nuclear
and exchange forces and this is the reason why they are connected by the “nuclear density” line in Fig. 2.

4.4. Stars

To complete the description of the mass-radius diagram, we now discuss the stellar structures, marked with red
star dots in Fig. 2. Although approximately lying on the “atomic density” line, stars have a large smeared distribution,
as compared to the other objects: there exist stars with very different masses and radii. A semi-quantitative estimate
of such a smearing has been given in [23]; here we briefly report their results. Stars can be approximated as a non-
relativistic neutral ensemble of N electrons and N protons in which gravity is balanced by the radiation pressure,
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the kinetic pressure and the electron degeneracy pressure. Therefore unlike the objects discussed so far in stars
different processes are at work: The kinetic energy is provided by nuclear fusion processes, while the electromagnetic
interaction determines the scattering of photons on charged particles. The stellar equilibrium is therefore determined
by a combination of nuclear, electromagnetic, and weak interactions. The latter drives the conversion of protons into
neutrons. To roughly address this problem one can use the virial theorem, which implies that for the collapsing matter
the time-averaged energy of the system equals one-half the time-averaged gravitational energy [23]:

T +
h2

2mer2 ∼
1
2

GN Mmp

R
=

1
2r
αGN2/3 , (32)

where T is the temperature of the collapsing matter (approximated uniform) and R is its radius. In Eq. (32) we
have used R = N1/3r, being r the average distance between particles, and we have neglected the degeneracy energy
of protons because mp � me. As a function of the particle distance, the temperature reaches the maximum when
r = 2h2/meαGN2/3 corresponding to

Tmax ∼ 0.2α2
GN4/3me , (33)

which should be of the order of 1 keV to ignite proton-proton fusion. It follows from Eq. (33) that the ensemble of
particles becomes a star when α2

GN4/3 ≥ 0.06 me, meaning that N ≥ 0.12α−3/2
G ∼ 1056. A maximum mass can be

obtained by requiring that the star’s pressure is not dominated by the radiation pressure; it is indeed known that any
relativistic gas makes stars unstable [46]. Therefore, at equilibrium the photon gas pressure pγ = π2

45 T 4, is less than
the matter pressure, pmat ∼ NT . By equating these quantities one obtains the upper bound on the maximum number
of particles, which reaches N ∼ 32α−3/2

G ∼ 1059. It follows that the approximate stellar mass range is 0.2 ÷ 100 M�,
while the radii, taking R = N1/3r, are within 104 − 106 km. These values are in agreement with the distribution of the
sample of stars shown in Figs. 1 and 2, ranging between red dwarfs and blue giants.

5. The large-scale structures and dark matter

So far we have not discussed very large structures, such as globular clusters, galaxies, galaxy clusters and super-
clusters. Each of the corresponding points shown in Fig. 1 is obtained by an average over a large sample of such
structures. These points seem to pertain neither to the “nuclear density” nor to the “atomic density” lines, nevertheless
they seem to be aligned. As discussed above, the “nuclear density” and “atomic density” lines are determined by the
relevant interactions that operate on protons and electrons, respectively. As we have already noted, one can estimate
the mass of the fundamental particles by the intersection of the “nuclear density” and “atomic density” lines with the
QM boundary. In this way we have indeed obtained values close to the proton mass and electron mass, respectively.
As shown in Fig. 2, a line named “dark-matter” can be drawn through the very large structures. It crosses the QM
boundary at rχ ' 1.6 × 10−3 cm and mχ ' 10 meV. This point, highlighted with the letter χ, could be interpreted as
a new fundamental particle relevant for the very large structures. Due to the extrapolation procedure in the log-log
scale, the mass cannot be accurately pinned down. We estimate the mass of this particle to be in the 1 ÷ 100 meV
range. More precisely, the intersection of the “dark-matter” line with the QM boundary in Fig. 2 represents a lower
limit for the mass of a hypothetical DM structure. If DM is an elementary particle, then its mass should be determined
by the intersection of the “dark-matter” line with the QM boundary, giving a mass in the 1 ÷ 100 meV range. On
the other hand, if DM is an extended solitonic-like object, its mass could be larger: the corresponding point could be
anywhere along the “dark-matter” line of Fig. 2. In the present work we do not discuss the latter possibility; we only
elaborate on the existence of a DM elementary particle with mass mχ ' 1 ÷ 100 meV.

The hypothesis that DM consists of light particles is not new, for a review see [51]; it has been put forward with
the idea to address open issues on astrophysics and DM distribution. Moreover, it has been proposed as a means to
improve the agreement between observations and theoretical calculations of white dwarfs luminosity function, see for
instance [52]. However, we point out that our argument disfavors ultra-light particles, say below 1 meV. Although the
nature of this DM particle is immaterial for our semi-quantitative discussion, we note that such low-mass particle can
hardly be a fermion [53].

In our approach, the low mass scale of the DM particle does not arise from the need of solving any astrophysical
problem. It arises from an extrapolation of the observed very large structures to the quantum level in analogy with
the atomic and nuclear cases. The slope of the “dark-matter” line in the log-log plot is approximately 3 meaning that
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this hypotetical state of matter should have a low compressibility. This is exactly the same behavior that we found for
atomic and nuclear matter and that was based on the fact that there are regions in which one fundamental interaction is
dominant and sufficiently strong to force the M ∝ R3 behavior. To be more precise, the best fit of the slope of the “dark
matter” line obtained fitting the large structures with the exception of superclusters and globular clusters is about 3.1.
Upon including these two structures the best fit has a smaller slope, of about 2. However, we believe that a different
dynamics characterizes these structures. The dynamics of superclusters is related to the Hubble expansion and that
of stars clusters to the initial process of galaxy formation. Therefore, we may interpret superclusters and globular
clusters as structures in which various mechanisms are responsible of their mass and radius. Similarly to what we
discussed in Sec. 4.4 for stars, in this case a simple power law relation between mass and radius is not sufficient to
characterize the whole ensemble of large structures. For this reason we focus on structures which, we believe, are
in a steady-state dynamic phase dictated by a single interaction. In other words, the extrapolation from very large
structures to the quantum boundary reported here is to be interpreted as follows: it is possible to infer the value of the
DM mass only for the large astrophysical structures that are dominated by DM, being the latter at least a factor 5 in
average bigger than the baryonic matter. In this case, indeed, their mass-radius relationship is basically dominated by
the DM mass, self-interactions and gravitational interaction, similarly to structures determined by the electromagnetic
and nuclear interactions.

Alternatively, one may adopt a slightly different perspective. Irrespective of any consideration on the fundamental
forces at work, from the analysis of the distribution of points in Fig. 1, one can infer that nuclear matter and neutron
stars are connected by the log(m) = C + 3 log(r) law, while atomic matter, planets and stars are connected by the
log(m) = C′ + 3 log(r) law, where C and C′ are two different parameters which are linked to the masses of the
fundamental microscopic particle that determines these structures. These lines are reported in Fig. 2 with the labels
“nuclear density” and “atomic density”; they intersect the quantum mechanics boundary at the mass scales ∼ 600
MeV and ∼ 0.4 MeV, close to the proton mass and to the electron mass, respectively. Some smearing around these
lines can be related to the fact that besides their masses and radii the various structures reported in Figs. 1 and 2 are
determined by some internal parameters. If one assumes a similar reasoning for very large structures, meaning that
they are described by the log(m) = C′′ + 3 log(r) law, one finds that one can choose the parameter C′′ to appropriately
describe the average values of dwarf galaxies, galaxies and clusters of galaxies. Globular clusters and superclusters
are objects slightly off this line, therefore some internal parameter determines their deviation from the “dark matter”
line. The parameter C′′ can then be linked to the mass of the fundamental microscopic particle: the intersection of the
“dark matter” line with the quantum mechanics boundary gives a mass of the order of mχ = 10 meV.

DM candidates with mass . 1 eV belongs to the so-called ultra-light DM models. If not interacting, such a kind
of matter would become non relativistic too late after the Big Bang, making it impossible the structure formation
according to the well established ΛCMD paradigm. In some way, those particles should be produced already “cold”
through self-interaction mechanisms, as e.g. for the misalignment of axions. The self-interaction is a property already
implicit in our argument, as we will see in details in the following subsections.

5.1. The dark matter density profile in galaxies

To gain insight on the DM mass distribution, we have to solve the appropriate equilibrium equations. We focus on
dwarf galaxies, galaxies and clusters of galaxies assuming a negligible visible matter contribution and a spherically
symmetric halo of DM. These assumptions break down close to the galactic center, where the visible matter contribu-
tion is sizable. For a detailed description of the matter distribution it would be indeed necessary to include the visible
matter contribution. On the other hand, in dwarf galaxies, galaxies and clusters of galaxies the total contribution of
the visible matter is negligible. Therefore, for the evaluation of the the total mass and radius, as well as for estimating
the matter distribution at large distances from the galactic centre, one can assume that the dark matter contribution is
dominant. In this case, their nonrelativistic hydrostatic equilibrium is approximately described by

dm
dr

= 4πρr2 , (34)

dP
dr

= −
ρm
r2 , (35)
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where P is the pressure and ρ is the DM matter density, while m(r) is the mass within the radius r. The boundary
conditions are

ρ(0) = ρc m(0) = 0 , (36)

where ρc is the central DM density and we are assuming that there is no mass singularity at the center. The solution
of this Cauchy problem requires the knowledge of the EoS of DM, which relates pressure and matter density. For
simplicity, we consider a polytropic EoS

P = Kρ1+1/n , (37)

where K is a constant and n is called the poytropic index. Upon parametrizing the matter density as

ρ = ρcθ
n , (38)

where θ is a function of the radial coordinate, the hydrostatic equilibrium equation can be written in a compact form
as a Lane-Emden’s differential equation

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
= −θn , (39)

where we have rescaled the radius as r = cnξ, with

cn =

√
(n + 1)Pc

4πρ2
c

= Lnρ
1−n
2n

c , (40)

where
Pc = Kρ1+1/n

c , (41)

is the central pressure.
For polytropes there exists a simple scaling relation between mass and radius, see for instance [46], given by

M = CnRα , (42)

where
α =

3 − n
1 − n

, (43)

and
Cn = −

4π

L2n/(1−n)
n ξ(1+n)/(1−n)

1

∂θ

∂ξ

∣∣∣∣∣
ξ1

, (44)

with ξ1 the rescaled stellar radius. Upon requiring that the mass of the structure does not decrease with increasing
central densities, we have that n ≤ 3; moreover, since any hydrostatically stable configuration should have a matter
density that decreases towards the surface, one has from Eq. (38) that n ≥ 0. Combining these two results, for non
relativistic structures described by one single polytropic EoS, it turns out that

0 ≤ n ≤ 3 . (45)

The value of n determines whether the object is bound by cohesive forces (hereafter self-bound object) or it is gravi-
tationally bound. The two regimes are characterized by two different behaviors of the radius. In gravitationally bound
objects the radius decreases with increasing mass, while in self-bound objects the radius increases with increasing
mass. Then, we have that 0 ≤ n ≤ 1 self-bound objects

1 ≤ n ≤ 3 gravitationally-bound objects
(46)

Since we find M ∼ R3.1, i.e. α > 3, it follows that 0 ≤ n ≤ 1, suggesting that DM is a form of self-interacting dark
matter (SIDM), which seems to be self-bound (see [54] for a review). The SIDM model was introduced to solve (or
alleviate) the core-cusp problem in the DM distribution as well as the missing satellite problems, see for instance [55].
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In Fig. 3 we report a few mass density profiles obtained solving the hydrostatic equilibrium equations for different
values of α close to the value obtained by the large scale structure fit in the mass-radius plot. The matter distribution
is basically constant for r < R and quickly decreases close to R; a behavior typical of self-bound objects. Note that if
DM is self-bound it means that diluted clumps of any size are possible. If DM were the only form of matter, this would
imply that along the “dark matter” line of Fig. 2 one should find different structures in between the large structures
and the quantum mechanics boundary. In this case, the behavior would be similar to the one found along the “atomic
density” line. However, in the presence of visible matter it is not clear what happens to these small clumps of DM. If
they exist, they will probably be captured by other visible structures.

The inferred mass scale (< 0.1 eV) matches the expected region of the neutrino masses, even though a fermion
of such mass scale can hardly be accepted as a DM candidate [53]. The coincidence is anyway surprising. Such a
fermionic candidate would presumably represent a hot dark matter component that cannot form halo structures around
galaxies, being presumably relativistic. This picture could change if DM has a behavior similar to quark matter at
high baryonic densities. In that case it is possible that fermionic matter forms strange stars [28], a form of self-bound
and cold quark matter expected to have an extremely small compressibility. Indeed, these stars have a typical M ∝ R3

behavior.
A different and somehow more conventional possibility is that DM consists of bosons with a strong repulsive

interaction. Also in this case, thanks to the strong interaction, the compressibility would be extremely small. Bosons
at low temperatures are expected to form a Bose-Einstein condensate (BEC); various realizations of DM as a BEC
have been proposed [56, 57] even within a relativistic implementation, see [58]. In our case, in order to have a M ∝ R3

behavior one should have an interaction coupling which is strongly dependent on the matter density. Indeed if DM
forms a superfluid gas with a point-like interaction it may be described by the Gross-Pitaevskii equation, which gives
a pressure

p =
ρ2g
2m2 , (47)

where g is the coupling constant. This means that if g is constant, the GP equation gives a polytropic EoS with n = 1.
A density dependent interaction or some other modification of the Gross-Pitaevskii equation, see for instance [59],
may produce a stiffer EoS.

To briefly summarize our results, we can say that by assuming that DM is described at any scale by a single poly-
tropic EoS it emerges a picture of the dark matter halo as a gas of particles characterized by a small compressibility.
This means that DM particles are presumably self-bound. We will now apply this model to the rotation curves of
galaxies.

6. Rotation curves of galaxies

Astrophysical observations show a clear absence of a Keplerian fall in the rotation curves of disk galaxies: the
radial profiles of the stars velocities v(r) at large radii do not show the expected behavior proportional to 1/

√
r by

visible matter observations. The observed velocity profile is almost constant at large radii, especially for the smaller
and less luminous galaxies (see [60] for a review). The simplest explanation is identified in the presence of an
additional invisible dark mass component distributed in a spherically symmetric halo. The rotation velocity of stars is
obtained assuming that the centrifugal force equates the gravitational pull, that is

v2(r) =
GNmtot(r)

r
, (48)

where mtot(r) is the sum of the visible and dark masses within the radius r. Therefore, in order to exactly solve
the problem, one should know the matter density profile of dark and visible matter. In the previous section we
approximately determined the DM distribution, neglecting visible matter. To approximately take into account the
contribution of visible matter, we assume that it contributes in quadrature to the total velocity, thus the total radial
velocity can be written as

v2(r) = v2
d(r) + v2

h(r) , (49)

where v2
d(r) is the visible disk contribution, whereas v2

h(r) is the DM halo contribution. For disk galaxies, the visible
contribution has an exponential density profile [61], thus the visible contribution to the stellar rotation velocity turns
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Figure 3: Dark matter density profiles obtained solving the hydrostatic equilibrium equations (34) and (35) using a polytropic EoS, see Eq. (37).
The radial distance has been normalized distance to total radius of the galactic halo. The different curves correspond to different values of α, see
Eq. (43).

to be
v2

d(x) =
1
2

GN Md

R3
d

r2(I0K0 − I1K1), (50)

where Md is the galaxy visible mass, related to the radius, Rd, through the density Σ(r) = Md/(2πR2
D)e−r/Rd and In,Kn

are the modified Bessel functions computed at r/2Rd. The dark component velocity contribution, assuming that DM
is spherically distributed, is computed as

v2
h(r) =

GN

r

∫ r

0
4πρh(r′)r′2dr′ =

GN Mh

r

∫ r/Rh

0 ρh(r′)r′2dr′∫ 1
0 ρh(r′)r′2dr′

, (51)

where r′ = r/Rh is the rescaled radial distance and Mh and Rh are the total mass and radius of the halo, respectively.
The halo mass distribution, ρh(r) is determined by solving Eqs. (34) and (35) with the polytropic EoS in Eq. (37) with
n ' 0.05 corresponding to α = 3.1. For definiteness we will assume that α = 3.1, as from the fit of the mass-radius
large scale structures.

Upon explicitly considering the dependence of the velocities on the macroscopic parameters, the total circular
velocity can be written as

v2(r; Md,Rd,Mh,Rh) = v2
d(r; Md,R) + v2

h(r; Mh,Rh) (52)

where the visible mass ans radii can be estimated by observations, while we will use the halo mass and radius as fitting
parameters.

The halo mass and radius depend on the particular considered structure. As a first application of our model, we
consider in Fig. 4 the rotation curve of the spiral galaxy NGC 3198 [66]. Spiral galaxies typically show rotation
curves which rapidly increase at short distances and then become flat far from the galactic center, meaning that they
are expected to have large and massive halos [67]. The rotation curves are considered as one of the best means to infer
their mass [67]. The spiral galaxy NGC 3198 exhibits a steeply rising velocity profile close to the galactic centre and
a wide flat velocity profile from 5 to 30 kpc. The mass density distribution of this galaxy should be approximately
constant below 5 kpc and then declining, reducing by about an order of magnitude at 30 kpc. The estimated visible
mass of this galaxy is about 1010M�, while the total mass at 30 kpc is M ∼ 5 ÷ 11 × 1010 M�, see for instance [68]
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Figure 4: Rotation curve of the galaxy NGC3198. Data from [62, 63, 64], see also [65]. The red curve represents the visible contribution, obtained
with Eq. (50), while the blue curve represents the dark matter contribution, obtained with Eq. (51). The contribution of the dark matter halo is
obtained using as fit parameters the halo mass and radius; the obtained values are 9.2 × 1010 M� and 26.2 kpc respectively.

and [69]. In our approach the two fitting parameters are the halo mass and radius. We find that Mh ' 9.2 × 1010M�,
consistent with the estimate of [69]. The fitted radius of the halo is instead 26.2 kpc. Given the fact that our model is
just a simple polytropic EoS with two fitting parameters, the agreement with the estimated halo mass and the with the
observed velocity profile is quite promising.

For this reason we extended the analysis to rotation curves of different galaxies [70, 71] whose estimated visible
masses range from Md ∼ 108.5M� to Md ∼ 1011.5M�. In Fig. 5 we report some results obtained fitting the values of
Mh and Rh for galaxies of different sizes: the red and the blue curves represent the visible and the halo components,
respectively. In spite of the simplification of the model, it can appropriately reproduce the rotation velocity profiles
with the appropriate choice of a suitable halo size and mass. The sharp discontinuity in the halo component, visible
especially for lighter galaxies, is due to the fast transition of the DM distribution from a constant density to zero. In
other words, the kink in the rotation curves is determined by the fact that in our model DM is self bound. In a more
refined description, one should determine ρh(r) including in the hydrostatic equilibrium equation (35) the contribution
of the visible matter, which would certainly reduce the effect of the kink in the DM distribution.

7. Conclusions

The standard cold DM model made of WIMPs exhibits several issues not yet completely solved, as the cusp-
core, the diversity, the missing galaxy satellites, and the too-big-to-fail problems [72, 21], all related to the galactic
structures with DM cores. Many different methods have been introduced to address these problems: among them
self-interacting dark matter models seem to be viable candidates to solve or at least mitigate them [55]. In these
approaches the DM mass and its self-interactions are introduced by hand and are properly tuned to produce the
desired DM distribution in galaxies.

We have presented a novel semi-quantitative approach to DM based on the analogy between the observed behavior
of matter at different scales, revisiting and extending the mass-length diagram proposed in [23]. In terms of funda-
mental parameters, such as mp, me, αe, αG, αW and αs we have given an approximate justification of the mass-radius
relationship for most of the observed structures in the Universe. In particular, we have shown that from existing mea-
surements of masses and radii of stars and planets one may infer the mass of the electron by properly extrapolations
at small scales. As a matter of fact, the intersection point of the “atomic density” line with the quantum mechanics
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Figure 5: Rotation curves for various galaxies. The dots are obtained by modelling the corresponding sample uncertainty by so-called Universal
Rotation Curves (URC). The red curve represents the visible contribution, obtained with Eq. (50), while the blue curve represents the dark matter
contribution, obtained with Eq. (51). The dark matter contributions are obtained by fitting the masses and the radii of the dark matter halos. From
left to right, top to bottom, the estimated visible masses are Md ' (109.4, 1010.4, 1011.0, 1011.5)M�, respectively, see [70, 71]. With our model, the
fitting values of the halo masses and radii are (1.61, 5.46, 11.7, 21.6) × 1010 M� and (7.16, 14.1, 31.6, 32.8) kpc, respectively.

boundary, see Fig 2, corresponds to a mass scale of about 0.4 MeV, close to the electron mass. Similarly, from masses
and radii observations of neutron stars and nuclear matter, one may infer a mass scale of about 600 MeV, close to
the proton mass. Using the same argument, but applied to galaxies, we have inferred that if the DM halos consists of
a single type of elementary particle, its mass should be of the order of mχ ' 1–100 meV. Moreover, from the slope
of the line connecting the various considered galaxies, it seems that the dark-matter EoS can be approximated by a
polytrope with a small polytropic index, characteristic of strongly self-interacting matter.

We do not put forward any hypothesis about the origin of this new mass scale and the connection with extensions of
the Standard Model of particle physics. We only observe that if the mass-radius of very large structures is determined
by a dark-matter particle its mass could be of the order of 1–100 meV. Moreover, given the low compressibility of the
EoS that describes DM in these galaxies, the interaction strength should be sizeable, possibly comparable with that of
nuclear matter, see [54] for a similar result.

Using the obtained EoS we have shown that the mass distribution in galaxies is such that their observed rotation
velocities seem to be qualitatively well described. Given the simplicity of the model, in which the visible matter
is approximately included and DM at any scale is described by one single polytrope, the obtained results are quite
promising. Since the proposed DM is self-bound, it has a rather uniform mass distribution, which more or less abruptly
ends (depending on the polytropic index used).

The present analysis can be improved considering different levels of complexity. The visible and dark matters
should be described together with a common Tolman-Oppenheimer-Volkoff equation [73, 74], this would yield an ac-
curate total mass distribution. In analogy with the atomic and nuclear lines, another possibility is to study the smearing
of the galactic distribution around the “dark matter” line, due to internal dynamics and formation mechanisms.

Finally, it is worth pointing out that the star distribution makes an exception in the mass-radius diagram: the
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presence of several interaction processes produces a sizable deviation with respect to the the atomic alignment, see
Fig. 2. A similar behaviour is observable for the globular clusters that deviate on the left of the “dark matter” line.
This seems to suggest that there could be a transition region connecting stars to galaxies passing through globular
clusters. In other words, in this region the Standard Model interaction and the DM interaction may have a comparable
strength. Such behavior could be similar to the one observed on the left of the stars’ distribution. Although neutron
stars, white dwarfs and standard stars form three distinct clusters, we observe a kind of continuous mass distribution
linking these three clusters. The white dwarfs are indeed located just in between the neutron stars and the red dwarfs,
corresponding to the region in which nuclear, electromagnetic and exchange interactions are at play.

In summary, the proposed semi-quantitative method of clustering structures in the mass-radius diagram seems to
be an excellent tool for global descriptions linking the micro- and macro-physics shedding light on how fundamental
interactions work, including the DM contribution.
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