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We report on the possibility that the Dark Matter particle is a stable, neutral, as-yet-undiscovered hadron in
the standard model. We show that the existence of a compact color-flavor-spin singlet uuddss (Sexaquark, S)
with mass of order 2mp is compatible with current knowledge and that, if it exists, the S is a very attractive DM
candidate. The S interacts with baryons primarily via a Yukawa interaction of coupling strength αSN , mediated
by exchange of the flavor-singlet superposition of the ω and φ vector mesons, denoted V , having mass≈ 1 GeV.
We emphasize the need to distinguish between S-nucleon scattering amplitudes which are of a hadronic scale,
and S breakup amplitudes which are dynamically suppressed and many orders of magnitude smaller, akin to the
weak interaction level. We use SNOlab and other data to obtain the most stringent constraints on the effective
vertex for breakup, g̃, from the stability of DM and nuclei. The relic abundance of S Dark Matter (SDM) is
established when the Universe transitions from the quark-gluon plasma to the hadronic phase at ≈ 150 MeV
and is in remarkable agreement with the observed ΩDM/Ωb = 5.3 ± 0.1; this is a no-free-parameters result
because the relevant parameters are known from QCD. Survival of this relic abundance to low temperature
requires g̃ . 2× 10−6, comfortably compatible with theory expectations and observational bounds. To analyze
bounds on SDM we must solve the Schroedinger equation to determine the cross section, σA, for S scattering on
nucleusA. Depending on αSN , the true cross section can be orders of magnitude larger or smaller than given by
Born approximation; this requires a reanalysis of observational limits. We use direct detection experiments and
cosmological constraints to determine the allowed region of αSN for the mass range relevant to SDM. If the S-
nucleon interaction is attractive and strong enough, DM-nucleus bound states will form. For a range of allowed
values of αSN , we predict exotic nuclear isotopes at a detectable level with mass offset ≈ 2 amu. Dedicated
study of this mass-offset range, for a wide range of elements, is warranted. We argue that the neutron-star
equation of state and SN1987a cooling are not constraining at this time, but could become so in the future when
better understood. Finally, we discuss strategies for detecting the sexaquark in accelerator experiments. This is
surprisingly difficult and experiments to date would not have discovered it. The most promising approaches we
identify are to search for a long-interaction-length neutral particle component in the central region of relativistic
heavy ion collisions or using a beam-dump setup, and to search for evidence of missing particle production
characterized by unbalanced baryon number and strangeness using Belle-II or possibly GLUEX at J-Lab.

I. INTRODUCTION

A successful model for dark matter (DM) must predict the
observed relic DM density and ideally also provide a natural
explanation for the observed DM to baryon ratio, ΩDM/Ωb=
5.3±0.1 [1]. It must be compatible with cosmological and
astrophysical constraints on structure formation and DM in-
teractions and not alter or interfere with the successful pre-
dictions of primordial nucleosynthesis. The DM interactions
with normal matter must also satisfy direct detection bounds
and constraints from laboratory and geophysical experiments,
and must be compatible with observed properties of galaxies,
neutron stars, white dwarfs, supernovae, and other astrophys-
ical objects.

We show here that the sexaquark S – a conjectured neu-
tral, color-flavor-spin-singlet bound state of six light quarks
uuddss with mass mS ≈ 2mp – satisfies or is compatible
with all of the above criteria given present limits to our under-
standing. For mS < mD +me the S is absolutely stable and
formS . 2 GeV its lifetime is greater than the age of the Uni-
verse. The potential existence of this state and its compatibil-
ity with accelerator experiments was discussed in [2], where
it was called sexaquark, adopting the Latinate prefix to dis-
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tinguish it from the relatively loosely bound H-dibaryon pro-
posed by Jaffe [3] and the term hexaquark which is a generic
term for a 6-quark or (qq̄)3 state; S is also a reminder that it
is a strange, scalar, flavor singlet.

The relic abundance of sexaquark DM (SDM) follows from
general arguments of statistical physics and known standard
model parameters – the quark masses and the temperature of
the transition from quark-gluon to hadronic phases – and is
predicted to be ΩDM/Ωb ≈ 5 [4], in remarkable agreement
with the observed value ΩDM/Ωb = 5.3± 0.1 [5]. Preserva-
tion of this abundance ratio as the Universe cools requires that
the rate for breaking up S’s in hadronic collisions be less than
the expansion rate of the Universe. This condition is satis-
fied if the effective Yukawa vertex for breakup g̃ . few 10−6

[4]; this small value naturally follows from the low probabil-
ity of fluctuation between di-baryon and sexaquark configura-
tions [6] as discussed further in Sec. IV. For future reference,
the mean number density of SDM is about 2.5 times that of
baryons, since mS ≈ 2mp.

The organization of this paper is the following. In Sec. II
we briefly review the particle physics of the proposed S. Then
in Sec. III we give the DM abundance analysis predicting
ΩDM/Ωb ≈ 5 in the SDM scenario at freezeout. In Sec.
IV we discuss theoretical estimates of the breakup amplitude
g̃, and provide improved observational limits as a function
of sexaquark mass based on deuteron and sexaquark stability
and other constraints. With these basics in place, we proceed
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to the other requirements of a successful DM model starting
with SDM-matter interactions. The primary coupling of the
S to other hadrons is through exchange of the flavor-singlet
superposition of the nonet vector mesons, whose mass is of
order 1 GeV. The resulting Yukawa interaction between SDM
and baryons is non-perturbative over important parts of the
relevant parameter range, so the Schroedinger equation must
be solved numerically to find the cross sections; this is dis-
cussed in Sec. V. Using the exact non-perturbative treatment,
in Sec. VI we derive the constraints on the Yukawa interac-
tion strength αSN implied by direct detection experiments,
cosmology and astrophysics. The limits are drastically dif-
ferent than would be deduced using Born approximation. In
Sec. VII we investigate the self-interactions of SDM and show
that the maximum SIDM cross section is σ/m ≈ 0.2 which is
lower than generally considered astrophysically useful. Next,
in Sec. VIII, we discuss the possible formation of exotic iso-
topes in which a sexaquark binds to a nucleus, and the con-
straints which can be placed on the parameter space from
those considerations. We find that for an interesting range of
currently-allowed parameters there can be a sufficient density
of exotic isotopes to be detectable, albeit requiring a new, ded-
icated search because previous limits are not sensitive to the
≈ 2 amu splitting. Section IX discusses ways to search for
sexaquarks in accelerator experiments. Sec. X gives a concise
summary of the results of the paper, and we close with conclu-
sions in Sec XI. The Supplemental Material provide additional
information on secondary topics.

II. STABLE SEXAQUARK HYPOTHESIS

The stable sexaquark hypothesis [2] postulates that the
Q=0, B=+2, uuddss flavor-singlet scalar bound state (denoted
S) is stable. The S is absolutely stable if mS ≤ mD +me =
1876.12 MeV. A somewhat higher mass can also effectively
be stable, because up to mS = mp + me + mΛ = 2054.5
MeV the S decays through a doubly-weak interaction and its
lifetime may be longer than the age of the Universe [6]. Both
cases are called “stable” below for conciseness. The S can-
not be too light, or nuclei would decay. These constraints are
discussed in greater detail in Sec. IV.

The stable sexaquark hypothesis is motivated by the unique
symmetry of the uuddss ground state. Models designed to
fit known hadrons cannot be trusted to reliably describe it be-
cause Fermi statistics prevents mesons and baryons from en-
joying the triply-singlet configuration (in color, flavor, spin)
accessible to uuddss. Hyperfine attraction is strongest in sin-
glet configurations, c.f., the Most-Attractive-Channel hypoth-
esis [7], so binding is maximal in the sexaquark channel.

Lattice studies are not yet capable of determining the mass
spectrum of the uuddss system. A nearly unbound state is
predicted by HAL-QCD [8], a lattice-inspired approach to
modeling the physical light quark mass limit which however
has been criticized [9, 10]. The NPLQCD group using 850
MeV u, d, s quarks found 80 MeV binding energy in the H-
dibaryon channel. Rigorous lattice treatment of a 6-quark sys-
tem, for physical quark masses, large volume and statistical

sensitivity adequate to be sensitive to the presence of multi-
ple states is extremely challenging and may be many years
away. It should be emphasized that there is no incompati-
bility between the existence of a deeply bound stable S and
a loosely bound di-Λ molecule analogous to the deuteron,
for which there may be hints in the recent femtoscopy study
by ALICE[11]. The presence of such a loosely bound di-Λ
would complicate lattice QCD attempts to isolate an orthogo-
nal, deeply bound state.

If it exists, the S should be much more compact and weakly
coupled than normal hadrons due to being a flavor singlet and
thus not coupling to pions. Baryons (rN = 0.9 fm) are much
larger than their Compton wavelength (λN = 0.2 fm), which
can be attributed to baryons coupling to pions (λπ = 1.4 fm).
Estimating

rS = λS + bλM1 (1)

with 0 ≤ b < 0.45 by analogy with baryons, where M1 is
the lightest well-coupled flavor singlet meson, presumably the
flavor-singlet combination of ω− φ with mM1 ∼ 800− 1000
MeV, gives rS = 0.1− 0.3 fm.

The disparate size of S and baryons means amplitudes for
breakup and formation reactions involving overlap of S and
two baryons, are very suppressed; see Sec. IV below for
more details. Amplitudes for S-nucleon scattering should be
smaller than hadronic scattering amplitudes like NN, πN ,
etc., due to the absence of pion exchange, but this is less dra-
matic phenomenologically because the flavor singlet vector
meson contribution remains.

Initial searches for a uuddss bound state were stimulated
by Jaffe’s MIT bag model estimate of 2150 MeV [3] for a
state he called H-dibaryon. With a mass below 2mΛ = 2230
MeV, the state is strong-interaction stable and was almost uni-
versally assumed to have a typical weak lifetime & 10−10 s as
a result of expecting mH > mp + mΛ = 2054 MeV. Addi-
tionally, the H was envisaged structurally as a loosely-bound
di-Λ, readily formed in hypernuclei, e.g., [12]. Dozens of ex-
periments were performed attempting to find an H-dibaryon,
and seem to exclude the original proposal of a di-Λ bound by
O(100 MeV).

A careful re-examination of the experimental situation by
one of us (GRF) showed that no experiment to date would
have detected a compact, stable S [2] . Experiments either
requiredmH > 2 GeV, or searched for a signal in the invariant
mass of decay products such as Λpπ−, or implicitly assumed
a dibaryon spatial configuration comparable to a deuteron or
nucleon so its interactions and production was expected to be
comparable to ordinary hadrons; see [2] for further discussion.

If a stable S exists, it could be the Dark Matter particle.
Limits on DM-baryon interactions from direct detection ex-
periments, the CMB power spectrum and the indirect limits of
[13] from HST orbital decay and evaporation of liquid cryo-
gens, and thermal conductivity of the Earth, are discussed in
Sec. V below; these limits prove to be only mildly restrictive
on the natural parameter space.
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III. DARK MATTER RELIC ABUNDANCE

A. QCD phase transition

At high temperature, the QCD sector consists of a plasma of
massless gluons, nearly massless u, ū, d, d̄ quarks and some-
what heavier s, s̄ quarks. At low temperature, the QGP is re-
placed by the chiral-symmetry-broken, color-confined phase
in which baryons are heavy and pseudoscalar mesons are
light. Lattice QCD calculations show that the transition be-
tween the QGP and the low temperature hadronic phase is
a cross-over centered on 155 MeV [14] rather than a true
phase transition. As the temperature drops from 170 MeV
to 140 MeV, the quark and gluon condensates responsible for
hadron masses and color confinement increase; at the same
time it becomes more favorable energetically for qq̄’s and
qqq to combine into color singlet mesons and baryons. Typi-
cal intra-q, q̄, g separations are O(1 fm) for T ≈ 150 MeV.
The age of the Universe in this epoch is tUniv = 7.3 ×
10−5(100 MeV/T )2 sec, whereas the timescale for hadronic
interactions is O(10−23s).

The equilibrium number density of each fermion species as
a function of temperature is given by

n(m,T ) =
g

2π2

∫ ∞
m

E
√
E2 −m2

e(E∓µ)/T + 1
dE, (2)

where g = 6 is the number of color-spin degrees of freedom
per q and q̄ flavor) and µ is the chemical potential.

The quark masses are accurately known from the hadron
spectrum in lattice QCD [15]: mu = 2.118(38) MeV,
md = 4.690(54) MeV and ms = 92.52(69) MeV. In the
QGP, the relative abundances of photons, gluons, and light
quarks u, ū, d, d̄ are in the ratios 1:8: 9

4 , and s quarks have a
slightly lower abundance. These flavor ratios apply both to
the thermal qq̄ quarks and the “baryon excess” quarks. The
Baryon Asymmetry of the Universe today, η0 ≡ nb/nγ =
(5.8− 6.5)× 10−10 (95%CL) [5] amounts to a roughly part-
per-billion difference between the q and q̄ abundance for each
light flavor; to excellent approximation the chemical potential
can be ignored for calculating abundances above 100 MeV.
Below the hadronization transition, the most abundant parti-
cles besides photons and leptons are pions. Weak interactions
maintain flavor chemical equilibrium, and hadronic and EM
reactions like π+π− ↔ γγ keep hadron abundances in ther-
mal equilibrium well into the low temperature phase.

B. Dark Matter abundance: ΩDM/Ωb

The microphysics of the QGP to hadron transition is not
amenable to detailed calculation, but statistical physics deter-
mines the relative occupation of states of different energies
at any given temperature. Thus we can estimate the rela-
tive abundance of states giving rise to sexaquarks and to anti-
sexaquarks, and those giving rise to baryons and anti-baryons,
at any given temperature. There are, in addition, other quark,
anti-quark and gluonic states which give rise to mesons but

edema
FIG. 1: Schematic illustration of how the deficit of s quarks relative
to u, d quarks,≈ 15% at the transition temperature, leads to residual
baryons.

those are not our interest. We speak below of sexaquarks
and baryons, but the story is the same for their anti-particles;
as noted above, at these temperatures the baryon-anti-baryon
asymmetry is almost negligible.

In the SDM scenario, DM consists of sexaquarks contain-
ing 2 each of u, d, s quarks. Simply due to their higher mass,
the equilibrium fraction of strange quarks and antiquarks,
fs ≡ (ns + ns̄)/

∑3
i=1(ni + nī) is lower than that of up

and down quarks and antiquarks. Over the relevant tempera-
ture range, 140-170 MeV, the fraction of s quarks in thermal
equilibrium varies from 30-31% with the remaining 70-69%
being equally u, d.

If every s in the quark-gluon plasma were in a sexaquark
and baryons were only formed from the left-over u, d quarks,
the density of S’s would be fs

2 nq , where fs is the fraction of
quarks that are s’s and nq is the total density of quarks; the
density of baryons would be (1−3fs)

3 nq . As the temperature
drops from 170 to 140 MeV, 3fs changes only slightly, from
0.964 to 0.948.

Not every strange quark is in a sexaquark, so we introduce
κs, the efficiency with which s quarks are trapped in sex-
aquarks. Thus we have

ΩDM
Ωb

=
yb κs 3fs

1− κs 3fs
, (3)

where yb ≡ mS/(2mp) is near 1.
We can estimate κs as follows. First consider production

of S’s. Even at the level of 1-gluon exchange, which provides
a good qualitative accounting of most hadron mass splittings
[16], there is a strong hyperfine attraction between uuddss
quarks in the sexaquark (color-, flavor- and spin-singlet) con-
figuration [3, 7]. This perturbative attraction is present in-
dependently of whether the quarks are in an isolated, zero-
temperature S particle, quark nuggets, or are in the QGP. Thus
when the strongly attractive sexaquark configuration of quarks
occurs by chance in some spatial region of the QGP, it will be
energetically favored and linger in that state. Quarks in con-
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figurations which are not energetically favored will continue
their random rearranging.

Because the chemical potential is negligible, statistical
physics tells us that the relative probability of finding two
s quarks in an S-like state compared to finding them in a
state consisting of two separate (hyperon-like) 3-quark states,
is exp(∆E)/T where ∆E is the energy splitting of the two
configurations. When hadronization occurs, the S-like color
singlet states become S’s and other color singlets become
mesons, baryons and anti-baryons; configurations which are
not color singlets continue rearranging and form new color-
singlet combinations which then become hadrons.

We can estimate ∆E and hence κs using physical masses
of nucleons, hyperons and the hypothesized mass of the S;
this approximation gives

κs(mS , T ) =
1

1 + (rΛ,Λ + rΛ,Σ + 2rΣ,Σ + 2rN,Ξ)
(4)

where r1,2 ≡ exp[−(m1 +m2−mS)/T ] and the coefficients
of the different terms are the number of combinations of the
given baryon states containing uuddss. The leading uncer-
tainty due to confinement and chiral-symmetry breaking can-
cels, to the extent that the presence or absence of the quark
and gluon condensates shifts the masses of the S and octet
baryons together.

Idealizing the production of DM as occurring at a single
effective temperature somewhere in the 140-165 MeV range,
and using Eq. (4) to calculate κs(mS), leads to the values
of ΩDM/Ωb shown in Fig. 2. The predictions are within a
factor-2 of the measured ratio ΩDM/Ωb = 5.3 ± 0.1 over
the entire plane. The mild dependence of ΩDM/Ωb across
Fig. 2 follows from the fact that fs and κs have the op-
posite behavior as T changes, so the product κsfs entering
Eq. (3) varies relatively little, making the prediction robust
to uncertainties in Teff . Thus the observed ratio of DM and
baryons is a very robust consequence at the O(1) level of
the sexaquark DM model. It is noteworthy that an analo-
gous Freezeout Approximation treatment of nucleosynthesis
in central Relativistic Heavy Ion Collisions gives an excellent
accounting of abundances over 9 decades in branching frac-
tion [17] with Tfo = 156 MeV. For reference, the exact ob-
served value ΩDM/Ωb = 5.3 is obtained for Teff = 156 MeV
with mS = 1860 MeV, while for mS = 2mp, Teff = 150
MeV.

One might be tempted to take Tfo = 156 MeV from rela-
tivistic heavy ion collisions and infer mS from the observed
value of ΩDM/Ωb. However that would not be correct be-
cause there are O(1) uncertainties inherent in the analysis.
Most importantly, the turn-on of confinement and chiral sym-
metry breaking as the Universe cools is almost static and the
medium is almost homogeneous, whereas in a heavy ion colli-
sion the plasma expands into the vacuum on a short timescale
so that Teff can be somewhat different from Tfo inferred from
fitting heavy ion data [17]. Furthermore, we ignored possible
contributions of resonances to particle abundances on account
of the long timescale of the Early Universe process, whereas
their inclusion improves the fit for Heavy Ion Collisions [17].

MS (MeV)

Teff (MeV)

FIG. 2: ΩDM/Ωb versusmS (in MeV, vertical axis) and the effective
freezeout temperature (in MeV, horizontal axis). The predicted value
ranges from 3 (blue) to 8 (light tan); the measured value 5.3± 0.1 is
indicated by the black line.

We also used T = 0 masses in vacuum to estimate κs via Eq.
(4), whereas hadron masses in a nuclear medium are known
from experiment and lattice QCD [18] to differ by ≈ 10% or
more from their T = 0 values across this temperature range.
If a sexaquark would be discovered so that mS is fixed, the
2% precision with which ΩDM/Ωb is known will give in-
sight into how QCD condensates and the energy difference
of sexaquark-like and hyperon-like states evolve with temper-
ature.

Implicit in the above discussion, is that the value of
ΩDM/Ωb established in the hadronization transition persists
to the recombination epoch where it is measured [1]. For sex-
aquark DM, non-destruction requires the cross section for re-
actions such as πS → ΣΛ, KS → pΛ and ΛΛ → Sππ to
be small. This is consistent with the transition amplitude g̃
between an S and two baryons being suppressed, as discussed
in the next section.

C. Durability of the S in the hadronic phase

If breakup processes such as πS ↔ ΣΛ, KS ↔ pΛ and
ΛΛ ↔ Sππ had a typical hadronic rate, these rates would
be fast compared to the Hubble expansion rate at the temper-
atures of interest, T ∼ 150 MeV. In that case, the S would
quickly come into chemical equilibrium with baryons and
the chemical potentials would satisfy µS = 2µb. However
µS = 2µb at T ∼ 150 MeV, along with mS ≈ 2mp, implies
. 10−7 of the baryon number is carried by S’s, so an initial
SDM excess comparable to the baryon excess would quickly
disappear.

Thus we need to estimate the breakup rate of S’s. We use
lowest order meson-baryon effective field theory extended to
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include the sexaquark and SBB′ vertices, and elaborate the
discussion in [4]. The Lagrangian of the low energy effec-
tive field theory describing the interactions between the flavor-
singlet S and flavor-octet baryons can be written

L =
g̃√
40
ψBγ5ψ

c
B′S + gSSV S

†∂µSV
µ + h.c. (5)

where V µ is shorthand for the flavor-singlet linear combina-
tion of ω, φ vector meson fields. The second term governs
SDM scattering cross sections and we will return to it in later
sections. S breakup to baryons is governed by the first term.
In Sec. IV we will estimate g̃ theoretically and constrain it
from observations. Here, we determine the maximum value
of g̃ consistent with SDM surviving in the hot Early Universe.

The color-flavor-spin wavefunction of the totally anti-
symmetric 6-quark color-flavor-spin singlet state is derived
in [19], where it is shown that the quarks in an S have highly
entangled wavefunctions such that only a small fraction (1/5)
can be decomposed into color singlet pairs of B = 1 states.
Projecting the S wavefunction in terms of quarks onto that of a
pair of color-singlet octet baryons, gives the color-flavor-spin
wavefunction-overlap

< S |ΛΛ > =< S |Σ0Σ0 >= − < S |Σ+Σ− > (6)

= − < S |nΞ0 >=< S | pΞ− >=
1√
40
,

motivating the 1/
√

40 in the denominator of Eq. (5) so that
g̃ is the dynamical transition amplitude < BB′|HQCD |S >
between quarks in the S and those in spatially separated 3-
quark states.

The breakup processes with the highest rates are π±S →
Σ±Λ and K+S → pΛ with amplitudes

Mπ±S→Σ±Λ ≈
fg̃√
120

(1− α)mΛmΣvrel

(
1

m2
Λ

− 1

m2
Σ

)
;

(7)

MK+S→pΛ ≈
fg̃√
120

mΛmpvrel

(
− (1 + 2α)

m2
Λ

− (4α− 1)

m2
Ξ

)
.

Here f = 0.952 and α = 0.365 are parameters characterizing
the meson-baryon couplings, taken from [20] where they are
fit to data, and vrel is the relative velocity in the final state.
The vrel factor arises because the baryons must have L = 1
in order to satisfy parity and angular momentum conservation
and Fermi statistics, given that the π/K is a pseudoscalar, the
S is an even parity, spin-0 particle, and the intrinsic parity of
a pair of baryons is +1.

Performing the thermal average [21] to determine the SDM
breakup rate shows that Γ(K+S → pΛ) = nK+(T ) <
σK+S→pΛ v > is about two orders of magnitude larger than
Γ(π±S → Σ±Λ), and Γ(ΛΛ → Sππ) considered in [22].
The suppression of π±S → Σ±Λ results from the cancelation
between the contributions of virtual Λ and Σ in (7) due to the
opposite sign of < S |ΛΛ > relative to < S |Σ+Σ− > in
Eq. (6), while ΛΛ → Sππ is suppressed by 3-body phase
space.

The Hubble expansion rate is greater than the dominant
breakup rate Γ(K+S → pΛ) = nK+(150MeV) < σv >,
for g̃2 < 4 × 10−12. In the next section we discuss theoreti-
cal expectations and experimental constraints on g̃. As will be
seen, the condition g̃ . 2 × 10−6 is well within the expected
range. The assertion of [22] that dark matter cannot be dibary-
onic, based on assuming a conventional hadronic breakup rate,
is therefore not correct. The related but earlier work of [23]
also assumes the relic SDM abundance is determined by the
conventional thermal freezeout mechanism, leading them to
conclude that a dibaryon mass of order 1.2 GeV is required
for dibaryonic dark matter. Instead, the mechanism pointed
out in [4] and reviewed above, makes essential use of the fact
that chemical equilibrium is not assured in the hadronic phase.

IV. SEXAQUARK BREAKUP INTERACTIONS

A. Modeling g̃

The effective hadronic Yukawa coupling for sexaquark
breakup, g̃, is

g̃ ūBγ5vB′ ≡< BB′|HQCD |S > . (8)

We work in the approximation that this transition amplitude
is independent of the baryon masses. Actual transitions of
physical interest such as S decay require additional factors of
Hw, but these weak interactions are perturbative so to good
approximation they factorize from the QCD part of the transi-
tion.

The QCD transition amplitude between S and two baryons,
distilled into the effective field theory parameter g̃ in Eq. (8),
describes the process by which each quark moves from an
initial position in the S into a final position in one of the
baryons, in the field of the other moving quarks, integrated
over all possible paths. The hard-core repulsion of baryons at
short distances, responsible for the relative incompressibility
of nuclear matter, implies a high potential barrier to the transi-
tion between the initial separated configuration and final com-
pact configuration. Furthermore, if the spatial extent of the S
wavefunction is of order or smaller than the effective radius of
the hard core repulsive B-B potential, the overlap of the initial
and final spatial wavefunctions is small as well. These are dis-
tinct effects, as can be appreciated by recognizing that even if
the S were large compared to the hard core radius and had a
similar spatial extent to a deuteron (2 fm), the transition can
be highly suppressed if the barrier to rearrangement is high, as
exemplified by crystalline phase transitions and protein fold-
ing.

The evaluation of g̃ entails relativistic, non-perturbative
QCD dynamics whose modeling from first principles is far
beyond current theoretical reach. When the number of quarks
is larger than 3, even calculating static properties like masses
and magnetic moments is challenging, even if the quarks are
effectively non-relativistic, which is not the present case. Rec-
ognizing the large uncertainties, we proceed to estimate g̃ as
a product of the wave-function overlap and a tunneling sup-
pression factor.
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FIG. 3: Predicted and excluded regions for g̃ as a function of mS ;
the horizontal black line is the maximum value of g̃ compatible with
non-destruction of sexaquark DM in the hot hadronic phase (Sec.
III C). The grey bands show the range of theory predictions for g̃,
for the extreme values of 0 ≤ b < 0.45 (eq. 1) and taking the hard
core radius from fits to scattering data, rc = 0.4 fm (Sec. IV A). The
width of the bands reflects the uncertainty range for the tunneling
suppression. The bands shift up (down) by a factor ≈ 102 (10−3)
for rc = 0.3 (0.5) fm. The green shaded region is excluded by non-
production of S in hypernuclear experiments [6]. The cyan shaded
region is excluded by our analysis of the stability of deuterons using
SNO, reported in Sec. IV B. The dashed orange line is the upper
limit from an estimated SuperK background rate [6]. The region
above the blue line is excluded in the mass range where decay is
kinematically allowed by requiring the S lifetime to be greater than
the age of the Universe. The dashed cyan line is a stronger limit that
could be obtained from our SNO limits on S → nn, nΛ (Sec. IV C)
if the local number density of free SDM particles were 1014cm−3

as found in [13], however such a high local number density of free
S’s can now be excluded by the discussion in Sec. VI. The red line
is the limit based on SN1987a cooling following the analysis of [24];
it is shown as dotted because this use of SN1987a has been called
into question by [25]. The inset is a blow-up of the 1850-1890 mass
range.

The procedure for calculating the wavefunction overlap was
developed in [6] where several different nuclear wavefunc-
tions, hard-core radii and model parameters for quark distri-
butions in the Isgur-Karl wavefunction were explored. The
value of the most significant parameter – the hard-core radius
in the nucleon-nucleon potential, rc – is uncertain, in part
because probing it takes relatively large momentum transfer
where a simple potential model description begins to fail. The
Hamada-Johnston potential has a hard core of 0.343 fm [26]
and the Reid hard core is rc = 0.429 fm [27]; with modern
data the hard core radius could possibly be stretched to 0.5

fm, but most likely not more (R. Wiringa, private communi-
cation).

The tunneling suppression, e−S , can be estimated as fol-
lows. In natural units, the action for a single quark Sq ∼ ∆E t
with t ∼ fm, the time to cross the system (in natural units),
and ∆E = 100 − 300 MeV, the QCD scale. Summing over
the 6 quarks, the total action for the transition can then be es-
timated as S = 3 − 9, for a tunneling suppression of 0.05
-10−4. This may underestimate the tunneling suppression be-
cause lattice gauge calculations show the inter-baryon repul-
sive potential grows rapidly at short distance, reaching 300
MeV at the shortest distance reported in [28], r ≈ 0.3 fm, so
the typical action per quark may actually be greater than 1.5.

The grey bands in Fig. 3 show g̃ calculated as the prod-
uct of the tunneling suppression and the spatial overlap, using
the consensus value rc = 0.4 fm. The band shifts up (down)
by a factor 102 (10−3) for rc = 0.3 (0.5) fm. In the lower
band, we have taken the radius of the S, which enters the cal-
culation through the Isgur-Karl spatial wavefunction, to be its
Compton wavelength. This is motivated because the S does
not couple to pions or other light particles and therefore is not
spread out by a pion cloud, unlike baryons which couple to
pions having Compton wavelength > 1 fm. To show the ex-
treme alternative, in which the S is as strongly coupled to the
mediator as the nucleon is to the pion, the upper grey band is
calculated with b = 0.45. In principle, determination of the
Yukawa parameter αSN discussed in the next section would
enable the range of b to be narrowed. For further details and
plots showing sensitivity to secondary parameters, see [6, 29].

We note that two calculations in the literature did not take
proper account of the hard core radius, effectively causing
them to overestimate g̃. Ref. [23] follows the analysis of
[6] but uses a wavefunction fit to large distance data which
does not incorporate hard-core-sensitive information, thus the
overlap derived in [23] is much larger and not realistic. Ref.
[24] ignores the short distance repulsion altogether and hence
greatly overestimates the impact of sexaquarks on the cooling
rate of SN1987a.

Although the estimated range for g̃ presented here has large
uncertainties, it is far below the≈ 2×10−6 value shown by the
black line in Fig. 3, where sexaquark breakup would decrease
the DM to baryon ratio established in the QGP-hadronization
transition. Therefore the prediction ΩDM/Ωb ≈ 5 of the pre-
vious section is a robust prediction of SDM, and its agreement
with the observed ΩDM/Ωb= 5.3 ± 0.1 is a significant point
in favor of the SDM scenario.

In the next subsections we consider direct experimental
constraints on g̃.

B. Experimental constraints on nuclear decay into sexaquark

For mD − me < mS < mD + me, the S and all nuclei
are absolutely stable. In this range, the only constraint on the
sexaquark breakup or formation vertex g̃ comes from the ob-
served lifetimes of double-Lambda hypernuclei [30–33]. The
excluded region from hypernuclei is shown as the green re-
gion in Fig. 3.
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If mS < mD −me = 1876.12 MeV, deuterium can decay
via D → Se+νe. The quark-level decay diagrams contain
two u→ s+W+ vertices, with one W+ emitted and another
being absorbed, W+ d → u, for a net quark level transition
ud → ssW+ with amplitude ∼ G2

F sin2θC cosθC . Since we
cannot perform a detailed quark-level analysis we capture the
essential features of the 3-body phase space by taking the en-
ergy dependence to be that of neutron beta decay; inserting
the factors from the amplitude and setting cosθC to 1:

dΓ

dEe
=
g̃2G4

F sin4θC P
6

120π3mDmS

√
E2
e −m2

eEe(mD −mS − Ee)2.

(9)
The P 6 factor would emerge from an integration of the quark
amplitude over the Bethe-Salpeter wavefunctions of nucleons
and S, if those were known and included in the treatment.
For our numerical estimates we take P = 100 MeV unless
otherwise stated, characteristic of the QCD scale. Clearly this
is a major source of uncertainty given the high power of P
involved. The total decay rate is obtained by integrating Eq.
(9) from me to mD −mS .

The SNO detector contains 1000 tons of heavy water. The
positrons produced in D → Seν would be detected via their
Cherenkov light if the positron’s energy is above the SNO 5.5
MeV threshold [34]. (SNO was built to detect electrons pro-
duced by solar neutrinos, νe + D → 2p + e−, but positrons
are functionally equivalent to electrons because the spectrum
of Cherenkov radiation is only sensitive to charge-squared.)
In 391.432 days, SNO has observed Nobs ≈ 2465 e± events
with kinetic energies in the 5-20 MeV range, and none above.
Let f(Eth) be the fraction of the spectrum (Eq. 9) above some
specified electron total energy thresholdEth. We obtain limits
on Γ and g̃ by requiring (suppressing the dependence of γ and
f on mS):

{
(f(5.5)− f(20))×N0(1− e−Γt) < Nobs,

f(20)×N0(1− e−Γt) < 2.44,
(10)

whichever is stronger. The 2.44 in the second equation is the
90% CL upper limit when no events are seen; given the large
value of Nobs and uncertainties in the analysis, we do not cor-
respondingly adjust Nobs.

The analysis outlined above using SNO data and taking
P = 100 MeV, gives the cyan exclusion region in Fig. 3. As
a result of the uncertainties in calculating the weak-decay am-
plitude in terms of g̃, the boundary curve should be regarded
as a best-estimate indication of the limit on g̃(P/100 MeV)3.
Not surprisingly, the limit on g̃ becomes dramatically stronger
as mS drops and phase space for D decay opens up. Due to
the wide range of uncertainty in the theory predictions, in-
verting the bound from D lifetime to get a lower bound on
mS is not very meaningful – especially keeping in mind that
rc > 0.4 fm is not excluded. Nonetheless, one is tempted to
deduce provisionally at least, that mS < 1800 MeV is dis-
favored even without invoking theoretical prejudices against
low masses.

C. Constraints on g̃ from sexaquark lifetime

If mS > mD − me, the sexaquark is not absolutely sta-
ble and can decay via S → De−ν̄. Since three-body decay
is strongly suppressed near threshold, a more powerful con-
straint for most of the mass range comes from S → nn, or
S → Λn when that is kinematically allowed. The analysis
is straightforward, proceeding along the lines in the previous
subsection but simpler due to the 2-body phase space. The
pink line in Fig. 3 comes from the constraint that S is longer-
lived than the age of the universe. A stronger limit is surely
possible, since if τDM = τUniv, 37% of the DM at recombi-
nation would have converted to baryons by z = 0 with po-
tentially observable implications, but there are other stronger
constraints in much of this mass range anyway. (Decaying
DM in scenarios with stronger effects than here have been
discussed by [35, 36].) For mS > mn + mΛ about 8% of
the decaying DM mass is converted to radiation (the ultimate
γ, e and ν decay products from Λ decay), also having poten-
tially interesting cosmological effects that we do not pursue
here.

The cyan dashed line is the stronger limit which would fol-
low from SNOlab limits on neutron production, if the ambient
density of S’s in the SNOlab detector were nS = 1014cm−3.
This scenario is motivated by the Neufeld et al. [13] calcula-
tion of the DM atmosphere of Earth as a function of DM mass
and interaction cross section, in the approximation that the
Earth’s atmosphere and geophysics have been constant over
its lifetime. With this caveat, the predicted abundance of DM
near the Earth’s surface reaches 1014cm−3 for DM mass in
the sexaquark range. If such a DM atmosphere consists of
free sexaquarks able to decay, the resulting limits on the S
decay lifetime are shown by the cyan-dashed line in Fig. 3.

The bound is calculated as follows. Phase III of the SNO
experiment was equipped with an array of 3He neutron coun-
ters [34] and therefore, neutrons produced from S → nn
could be detected. We require

nSV × (1− e−Γt)× 2× ε < Nobs, (11)

where V = 904.78 m3 is the volume of the tank, ε = 0.182
is the detector efficiency, and Nobs ≈ 7000 is the observed
number of neutron events during t = 385.17 days. Taking
nS ∼ 1014 cm−3 to be the ambient density of SDM in SNO,
Eqn. (11) implies τ & 4.96×1018 yr at 90% confidence level.

However this limit on g̃ is evaded or weakened if the am-
bient DM is hybridized with nuclei in the Earth and kinemat-
ically unable to decay (Sec. VIII B), if the DM-nucleon inter-
action is repulsive so dewar exclusions exclude it (Sec. VI B),
or if the DM atmosphere calculated in Ref. [13] is overes-
timated, e.g., due to significant disturbances in the tempera-
ture profile of the upper atmosphere producing periods of in-
creased for DM evaporation.

D. Cooling of SN1987a

Ref. [24] argued against a deeply bound dibaryon such as
the sexaquark, on the grounds that the reaction ΛΛ → S γ,
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FIG. 4: The S-proton cross section σ1 as a function of αSN . Born
approximation becomes inaccurate at the 30% level for α > 0.25;
for nuclei Born approximation fails at still smaller α.

would cause SN1987a to cool too fast to account for the neu-
trinos arriving over 10 s. The general use of this cooling ar-
gument has been called into question in Ref. [25], proposing
another mechanism for producing last neutrinos that is inde-
pendent of the proto-NS cooling. Nonetheless, it is interesting
to determine what bounds on g̃ could be derived under the as-
sumption of a 10s cooling time. We follow the analysis of
[24] but invert it to find a limit on g̃; this bound is shown as
the red dashed line in Fig. 3. The limit on g̃ needed to satisfy
a 10s cooling time is clearly compatible with the predicted
range of g̃. The discrepancy between this result and the con-
clusion of [24] that an S in this mass range is ruled out by
SN1987a, is due to their neglecting the hard-core repulsion
between baryons that strongly inhibits production of S’s.

V. SEXAQUARK SCATTERING INTERACTIONS

The low-energy interaction between sexaquarks and
baryons is mediated by exchange of massive QCD mesonic
states, which are constrained by low-energy nucleon and nu-
clear interactions. Thus the interactions of SDM with baryons
are not arbitrarily adjustable as is often possible in beyond-
the-standard model DM scenarios. In the non-relativistic
limit, which is applicable for all the processes we are consider-
ing, the elastic scattering of DM by baryons can be described
by a Yukawa potential

V (r) = −α
r
e−mr , (12)

where the minus sign is for convenience so that α > 0 cor-
responds to an attractive force and α < 0 repulsive. The at-
tractive case has a richer phenomenology, as discussed below.
Because the discussion here is more general than for S’s, we
designate the mediator as m and drop the subscript from αSN
when not needed for clarity.

As already noted, since the S is a flavor-singlet, the light-
est meson giving a significant contribution is the flavor-singlet

combination of ω − φ mesons designated V . (The scalar f0,
an extended di-meson resonance, is expected be very poorly
coupled to the compact S.) Taking the mixing angle from [37]
we have

|V >= 0.8 |ω > − 0.6 |φ > , (13)

where mω = 782 MeV and mφ = 1020 MeV [5]. The cou-
pling strength αSN

αSN ≡ gSSV gNNV /4π (14)

may be as large as O(1), as is typical for strong interaction
processes, or it may be much smaller depending on gSSV , the
coupling of V to S appearing in the low energy effective La-
grangian, Eq. (5).

From [37], gNNV /
√

4π = 2.5, but we stress that mod-
ern analyses of low energy baryon-baryon scattering such
as [37, 38] are much more sophisticated than a simple one-
meson-exchange treatment and include many exchanges and
other effects. Thus while the parameters in those analyses
have small error bars, used out of the context of those full
analyses a parameter such as gNNV /

√
4π = 2.5 should be

considered to haveO(1) uncertainties and just considered as a
guide for our problem. An estimate of the minimum coupling
strength range of gSSV might be to rescale gNNV /

√
4π = 2.5

by the square root of the ratio of the size of the S and V (tak-
ing theN and V to be fully overlapping and strongly coupled).
With rS as small as 0.1 fm, and rV ≈ 1 fm, this would sug-
gest gSSV a factor 30 smaller than gNNV . Adding a margin
of uncertainty in both directions, we focus our attention on the
domain 0.001 < αSN < 10.

An exact analytic solution for the Yukawa potential scatter-
ing problem does not exist and Born approximation does not
apply for the parameter space we are interested in so that a full
numerical solution is necessary. Furthermore, since nuclei are
extended, we need to solve the Schroedinger problem for the
extended potential obtained by smearing the Yukawa over a
hard sphere of radius RA ≈ R0A

1/3 fm. We took R0 = 1.0
for the calculations presented in this paper, but models in the
literature have values up to 1.25. Sensitivity of our results
to the value of R0 will be reported in [39], where details of
our calculational methods are given. We rely heavily on tech-
niques from [40]. Note that for a given model of the nuclear
wave function the constraints on αSN derived in this and fol-
lowing sections can generally be determined to higher preci-
sion than 1 significant figure, but on account of our simplis-
tic approximation that the nucleus is a hard sphere of radius
A1/3 fm, reporting higher precision would be misleading.

Figures 4 , 5 and 6 show the first crucial result: the in-
applicability of the Born approximation over a large portion
of parameter space. Fig. 4 shows how the DM-proton cross
section, σ1, depends on α for extended and point sources and
attractive and repulsive interactions. (We abbreviate σSA →
σA.) For α & 0.1 the Born approximation is inaccurate, with
the true cross section being lower than Born approximation
for the repulsive case. For an attractive interaction the true
cross section is up to a factor 105 higher and 104 lower than
Born, as α ranges from 1 to 5 in the pure Yukawa case; for an
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FIG. 5: σA/σ1 versus A for v = 300 km/s and αSN = 0.1 and
1.0 (blue, yellow), for an attractive Yukawa interaction and point
and extended nuclei (thin and thick curves, respectively); the Born
approximation ratio is shown in green-dashed. Born approximation
fails badly for all cases.
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FIG. 6: As in Fig. 5 but for a repulsive interaction. Born approxima-
tion overestimates σA/σ1 in all cases, by a factor ≈ 40 for Si with
αSN = 1 and realistic nuclear spatial distribution.

extended source such extreme deviations are pushed to larger
α.

Figures 5 and 6 show how the cross sections scale relative
to Born approximation as a function of A. Born approxima-
tion implies the following scaling of the nuclear cross section

σBorn
A = σBorn

p

(
µA
µp

)2

A2 , (15)

where µA is the reduced mass of the SA system. This scaling
fails badly even for α = 0.1, for all cases: for both repulsive
and attractive interactions and for both extended and point-
like sources. In the repulsive case, the true cross section is
significantly lower than predicted by the Born approximation

and the discrepancy increases withA. There is no such simple
relation in the attractive case, although at small αSN the true
cross section is larger for the realistic extended case, while for
large αSN the situation is more complicated.

The peaks and valleys in cross section for the attractive
case can be understood as follows, focussing on the point-
like (exact Yukawa) case where the discussion is simple. The
Schroedinger equation for the Yukawa potential can be put
into dimensionless form such that σm2 is a function only of
the dimensionless parameters (in natural units, with c = 1)
[41]:

a ≡ v

2α
, b ≡ 2µα

m
, x ≡ 2µαr , Ṽ (x) = − 1

x
e−

x
b ,

(16)
where as before µ is the DM-nucleus reduced mass and m is
the mediator mass. Evidently, b sets the range of the potential.
At low energy S-wave scattering (l = 0) is dominant so the
cross section is

σS-wave =
4π

a2b2m2
sin2(δ0) . (17)

When the S-wave phase shift δ0 → π
2 , the cross section is

on resonance and reaches its maximum value. The position
of the peaks are in one-to-one correspondence with the zero
energy bound states of the Yukawa potential. When b is small
the potential is too narrow/weak to accommodate any bound
states. As b increases, the potential becomes wider/stronger,
up to the point where a bound state with E0 → 0− appears,
at which value particle scattering has maximum cross section.
As b continues to increase, the ground state binding energy
gets more and more negative, up to some point where an-
other bound state with E1 → 0− emerges and there is an-
other peak in the scattering cross section. The position of
these zero energy bound states are easily calculated to be at
b = 1.68, 6.45, 14.34..., which is exactly where the peaks in
the cross section are located. The physical implications of the
bounds states that exist when the potential is attractive is dis-
cussed in Sec. VIII below.

On the other hand when δ0 → nπ the S-wave cross section
vanishes, which is an anti-resonance and corresponds to the
dips in the cross section. The small cross sections at the anti-
resonances lead to gaps in the exclusion limits, as we shall see
below. The anti-resonances are not associated with any bound
state behavior; they occur at b = 4.52, 11.84, ....

The existence of resonance and anti-resonance scattering is
associated with non-trivial velocity dependence of the cross-
section, as shown in Fig. 7. On resonance, σ ∼ v−2 at
small velocity for a pure Yukawa, leading to the enhanced
cross-section. For generic values of b the cross section is
roughly constant for small b, but as the anti-resonance is ap-
proached (b = 4.52 for point-like source), the cross section
is diminished at small velocities. At large velocities, for all b,
σ ∼ v−4 and the scattering is Coulomb-like. The transition to
this regime occurs for a > acrit(b). When the source of the
Yukawa is smeared over a nucleus, the behavior is different
but still non-trivial. Fig. 8 shows the behavior for repulsive
interactions, where there is no resonance or anti-resonance.
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FIG. 7: Velocity dependence of σ1 for an attractive interaction with
α = 0.01, for 3 values of b. b = 1.68 (ochre) is on resonance
and b = 4.52 (green) is on anti-resonance for the point-like case
while the resonance and anti-resonance occur for different b’s for an
extended source.
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FIG. 8: As in Fig. 7, for repulsive interaction. Note the different
vertical scale.

VI. DIRECT DETECTION AND COSMOLOGICAL
LIMITS

In view of the highly non-perturbative behavior seen in
Figs. 4 - 6, we must re-examine the existing limits on DM-
nucleon interactions. The limits on spin-independent cross
sections are almost universally reported as bounds on the DM-
nucleon cross section. However in almost all cases, what has
actually been done is to use Born approximation and the A-
scaling it implies to convert experimental limits on σA to the
reported limit on σ1. The cross section is usually assumed to
be independent of v, or in some analyses various power-law
dependences are explored.

Here, we report excluded regions in the αSN -mS (more
generally α-mDM ) plane, which is the most fundamental in-
formation, rather than reporting limits on σDMp. For a given
α and DM particle velocity and mass, we use the correct value

of the cross section from high-resolution tabulated numerical
solutions to the Schroedinger equation. This naturally incor-
porates the actual velocity dependence which as seen above is
not in general a simple power-law at all velocities. We gener-
ally report limits taking m = 1 GeV.

A. Correcting the XQC limits

The X-ray Quantum Calorimeter [42] was an experiment to
measure the diffuse X-ray background using microcalorime-
ters onboard a sounding rocket at about 100 km altitude in
the atmosphere. The results can also be used to put limits on
the DM-nucleon cross section, and extensive studies have be
performed [43–46]. The analyses prior to [46] all assumed
that the entire recoil energy of the Si nucleus (∼ keV for DM
mass of 2 GeV) is converted to phonons in the XQC calorime-
ter. However as pointed out in [46], at these low energies
below ionization threshold, the recoiling Si atom moves as a
whole and produces a cascade of dislocated atoms – very low
energy (few eV) lattice defects called Frenkel pairs consist-
ing of a hole in the lattice and an interstitial Si atom [47–54].
Similar effects can be expected in sapphire and other materi-
als used for micro-calorimeter detectors [55]. So rather than
being thermalized, the energy deposited by the DM collision
may be stored in Frenkel pairs. Limiting the production of
such point defects (vacancies and interstitial atoms) during the
process of crystal growth, is an important commercial in the
semi-conductor industry. For a review see [56]. A typical
concentration of defects is 1015 cm−3; compared to this, the
increment in defects during the course of the 100 s XQC mis-
sion is negligible, as we now show.

The Galactic DM abundance in the solar neighborhood is≈
0.3 GeV cm−3. Taking mS = 2mp and DM velocity ≈ 300
km/s, the flux of SDM is≈ 106 cm−2s−1. The fraction of the
DM kinetic energy deposited per scattering is

fKE = 2(1− cos θ)
mDMmA

(mDM +mA)2
, (18)

where θ is the CM scattering angle. For mA >> mDM, ap-
propriate for SDM and detectors like XQC, and noting that the
scattering is isotropic in the CM, the average kinetic energy
deposited in the initial collision is ≈ 100 eV, thereby produc-
ing . 100 point defects. Even if every DM particle scattered
once (vastly more than consistent with expectations and other
constraints), the increment in the density of defects in a 3 mm
thick Si detector in the 100 s flight would be . 1011 cm−3 –
more than 4 orders of magnitude less than the initial density
of defects and hence not noticeable at all. Likewise the im-
pact of DM on the abundance of point defects at sea-level is
insignificant: if the scattering cross section is large, the ambi-
ent DM at sea level carries little energy and a scattering pro-
duces few or no defects, whereas if the cross section is small,
DM-scattering is a minor contributor to the point-defect pop-
ulation. Perhaps some detection strategy could make use of
this process, however.

Due to the likelihood that recoiling atoms deposit their en-
ergy in creation of Frenkel pairs rather than in thermal excita-
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tions of the material, until the thermalization efficiency of de-
tectors such as XQC, DAMIC and CRESST is measured with
neutron scattering, limits from those experiments can only be
discussed in terms of their potential sensitivity, not as actual
exclusion limits.

The blue shaded region of Fig. 9 shows our exclusion re-
gion in the {α,mDM} plane from XQC data, for a mediator
mass of 1 GeV. We adopt the fiducial thermalization efficiency
εth = 0.01; this is at best an indicative, round-number value
motivated by a Frenkel-pair cascade analysis [46]. We follow
the XQC analysis of [46] but solve the Schroedinger equation
for the extended Si nucleus to obtain the cross section, rather
than using the A scaling from Born approximation and the
Helm form factor. (It should be noted that the Helm-form fac-
tor gives a poor approximation to the impact of an extended
source, so replacing the Born approximation is not enough;
see [39] for details.) Future analyses of direct detection ex-
periments aiming to detect DM under an overburden will also
need to take into account the possibility of DM capturing on
a nucleus en route to the detector, as discussed in Sec. VIII B
below.

B. Limits from dewar experiments

It was pointed out by Neufeld et al. [13] that if the DM
cross section on nuclei in the Earth’s crust and/or atmosphere
exceeds ≈ 10−28.5 cm2, a DM atmosphere forms around the
Earth; the density distribution of this atmosphere was char-
acterized under the assumption that the atmosphere of the
Earth has been reasonably steady over its lifetime. The den-
sity of DM particles near the surface of the Earth reaches
≈ 1014 cm−3 for mDM ≈ 2mp. The presence of such a high
density of DM, if it is free rather than bound to nuclei, pro-
duces detectable effects that Ref. [13] used to place limits on
DM interactions with various materials. The limits included
heating of liquid He and other cryogens in dewars, HST or-
bital drag, and modification to the thermal conductivity of the
Earth. Stronger upper limits on σA were obtained for many
more individual A values by dedicated dewar experiments in
which samples of different A were placed in a dewar of liq-
uid nitrogen and the evaporative mass loss after a time interval
was measured [58].

Interpreting the limits on σA for the ensemble of A’s is
challenging due to the non-trivial dependence of σA on α as
discussed in the previous section (Sec. V). Basically it en-
tails stepping through the full parameter space, determining at
each point in parameter space the local number density based
on the DM scattering cross section with air or crust including
capture and evaporation from Ref. [13], then calculating the
corresponding heating due to DM collisions for pellets of the
given A. (We thank D. Neufeld for providing necessary input
data.) Details of how this was done are presented in [39].

The green-bounded region in Fig. 9 is the nominal resultant
exclusion region for an attractive DM-nucleon interaction.
The boundary in the repulsive case is similar but smoother;
a plot for the repulsive case can be found in [39]. To get an
estimate of the uncertainty in the excluded region from the
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FIG. 9: Excluded regions in the αSN -mS plane from XQC (blue),
CMB (tan) [57] and dewar experiments (green&checkerboard), for
an attractive SN interaction. (If the DM-nucleon interaction is re-
pulsive, the plot is similar except that the XQC and dewar bound-
aries are smoother and the dewar limits exclude the entire green-
bounded region; see [39].) The thin vertical grey band marks the
range mS = 1860− 1890 MeV. The diagonal-hatched region above
the upper grey-dashed line is excluded by the requirement that pri-
mordial 4He not hybridize with DM. Within the checkerboard re-
gion the dewar limits are inapplicable when the interaction is attrac-
tive, because DM would hybridize with nuclei in Earth’s crust. The
darker green region with dashed boundary shows the dewar exclu-
sion in case the local DM density is a factor-10 lower than calculated
by [13], to give an indication of the sensitivity. The light tan region
bounded by dashed lines is a potential exclusion region estimated
from the CMB analysis of [57], approximately taking into account
“resonant” DM-4He scattering.

dewar experiments and obtain a more conservative limit from
the dewar experiments, we can take a factor-10 lower SDM at-
mosphere than estimated in Ref. [13]. Such a reduction might
arise from a lower Galactic DM flux or possible disruptions
in the accumulation of a DM atmosphere. This reduces the
size of the excluded region below the U-238 line as indicated
by the darker green region; for mS = 2mp the limit on αSN
becomes 0.015.

Note, however, that when the interaction is attractive and
αSN & 0.04, the dewar exclusion shown Fig. 9 is evaded. In
that case, SDM in the Earth binds to nuclei as discussed in
Sec. VIII B. DM particles bound to nuclei cannot freely pene-
trate through the walls of the dewar and heat the material, so
the dewar limits on DM interactions do not apply; all other
limits of [13] are evaded as well. The cross-hatched region
shows the part of the XQC exclusion region that is eliminated
for this reason.
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C. Limits on DM-baryon interactions from structure
formation

The cross-hatched region above the upper grey line is ex-
cluded for an attractive interaction because primordial He
would hybridize with S’s shortly after being produced. The
region labeled CMB follows from the limits on σDM−p ob-
tained in Ref. [57] from the damping of structure formation
that results from DM-p interactions, translated to α, mDM

space taking the proton to be a hard sphere of radius 1.0
fm. The lighter region bounded by dashed lines and labeled
CMBH+He is derived from limits of [57], but instead of as-
suming a fixed ratio σSHe/σSp based on Born approximation
(their Eq. (14)) and a coupling proportional to charge, we
used the actual ratio determined by each α, mDM pair and the
Schroedinger equation. For αSN such that He scattering is
in the “resonance” region, He completely dominates H in its
drag on DM. But recombination of He occurs at higher z than
for protons, so the rough estimation employed here probably
exaggerates the limit. We present it here because this is an in-
teresting region of parameter space in connection with exotic
isotopes and deserves a dedicated cosmological study along
the lines of [57].

The recent limits from [59] are not directly applicable
to SDM because non-gravitational DM-baryon interactions
modify the structure of cores of dwarf galaxies, potentially
modifying the mapping from as-observed dwarf properties
to linear-regime structure used in [59]; another issue which
has not yet been examined by the community is the extent
to which uncertainties due to the complexities of baryonic
physics have a significant impact on the analysis of [59].

D. Astrophysical Limits

Ref. [60] reports limits on dark matter-ordinary matter cross
sections for a number of dark matter scenarios, from bounds
on the heating or cooling of the Leo T dwarf galaxy and Milky
Way gas clouds due to DM scattering on nucleons and elec-
trons. The strongest limits for DM-nucleon scattering for
mDM ≈ 2mp come from the gas clouds, whose limit is in-
cluded in Fig. 9. It is quite similar to the CMB limit for
the mDM ≈ 2mp region of interest for SDM. Given the en-
tirely different uncertainties entering the cosmology and as-
trophysics analyses, it is useful to have both. The limit from
Ref. [60] is similar to the limit from requiring that primordial
4He does not form bound states with SDM, but applicable for
either attractive or repulsive interactions.

VII. SELF-INTERACTING DARK MATTER

Spergel and Steinhardt [61] pointed out two decades ago
that DM self-interactions of order σ/mDM ∼ 1 cm2/g (=
1.78× 10−24 cm2/GeV) could explain the observed cores in
galaxy centers, whereas cosmological simulations predicted
cusps. More realistic treatment of baryonic physics since 2000
alleviates the most severe problems of LCDM, so the call
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FIG. 10: The SIDM cross section as a function of αSN taking
mS = 2mp andm = 1 GeV, for gNNV /

√
4π = 2.5, 0.22 and 0.08,

with the key limits from Fig. 9. The green range 0.015<αSN. 0.03
is excluded by dewar limits (less conservatively, 0.005-0.03) while
the tan region is excluded by the CMB. The pale tan is the estimated
potential exclusion region by extending the CMB analysis to 4He
with non-perturbative interactions as discussed in the text. The hor-
izontal black lines mark σSS/mDM ∼ 1, 0.1 and 0.02 cm2/g, sug-
gesting that sexaquark dark matter does not have sufficiently strong
self-scattering cross section to have a significant astrophysical im-
pact.

for self-interacting DM (SIDM) is less pressing. However
problems with LCDM continue to be identified, e.g., [62],
and several authors argue that a much better accounting is
obtained of galactic dynamics with self-interactions of order
σ/M ≈ 1 cm2/g. The literature is very large; see [63–65]
for examples of recent papers and [66] for a review. For the
characteristic SDM mass mDM = 2mp, σ/M ≈ 1 cm2/g
translates to σSS = 3.34 × 10−24 cm2, at velocities ≈ 100
km/s relevant to the small scale structure of galaxies.
SDM has self-interactions via exchange of whatever pro-

duces its interactions with nucleons, identified here as pre-
dominantly due to the exchange of the flavor-singlet vector
meson denoted here by V (Sec. V). Taking the S interac-
tion to be dominated by V exchange, the self-interaction is
repulsive because like charges repel for vector exchange. The
Yukawa interaction has the same form as in Eq. 12, with

αSS =

(
αSN

gNNV /
√

4π

)2

= 0.16

(
2.5

gNNV /
√

4π

)2

α2
SN ,

(19)
where gNNV /

√
4π = 2.5 is taken from the Nijmegen Soft

Core NSC89 its (Table VI of [37]). Note, however, that al-
though low energy hadron interactions have been modeled in
detail, there is a factor-few uncertainty in the estimate (19)
because we ignore here the derivative (f ) coupling of the V
and because the V couplings obtained with the more elabo-
rate ESC19 Extended Soft Core model [38] differ from those
from NSC89, especially the f couplings. Although we drop
those contributions, they can interfere and cause significant
cancelations or enhancements.

Figure 10 shows the SS cross section as a function of αSN ,
with mV = 1 GeV and several choices for gNNV /

√
4π =
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2.5, 0.22 and 0.08. Exclusion regions from the previous sec-
tion if the S-nucleon interaction is attractive are also indi-
cated. The cross-hatched region is excluded by the require-
ment that sexaquarks do not bind to 4He. The orange region is
excluded by our analysis based on the CMB limits on σDM−p

of [57], and the pale-orange region by the estimated extension
to 4He discussed in Sec. VI C. The green region is excluded
by the [13, 58] dewar limits and the blue region by XQC.
The horizontal lines mark σ/mDM ∼ 1, 0.1, 0.02 cm2/g tak-
ing mS = 2mp. One sees from Fig. 10 that the maximum
value σ/mDM ≈ 0.02 cm2/g, which is lower than usually
considered by advocates of SIDM to improve the descrip-
tion of galaxies relative to LCDM. The maximum value may
be lower still, depending on αSN and gNNV /

√
4π. Given

that SDM also interacts with baryons, it is possible that con-
sidering both self- and baryonic interactions, SDM can give
as successful a description of galaxies as claimed for SIDM,
with a lower self-interaction cross-section than needed in pure
SIDM.

VIII. PRODUCTION OF EXOTIC ISOTOPES

DM-nucleus hybridization takes place at a phenomenolog-
ically interesting level, if a bound state exists and the relative
velocity is sufficiently low for capture to occur, in regions of
the Universe with sufficiently high density of both SDM and
nuclei of mass A ≥ Amin(αSN ). Fig. 11 shows that the bind-
ing energy of a sexaquark to a nucleus of mass A is typically
≈ 0.1-10 MeV over the range of αSN large enough to produce
binding for A . 40. Therefore most bound states would sur-
vive in most astrophysical environments, once produced. In
this section we consider two particularly relevant production
sites, Big Bang nucleosynthesis and in the Earth.

Avoidance of creation of abundant (and not observed) pri-
mordial 4HeS implies αSN . 0.7 as discussed in Sec. VIII A
below, which has the further consequence that sexaquark
binding only occurs at a significant level with nuclei produced
in stars and their explosions and mergers. This means that
non-negligible levels of hybrid nuclei is restricted to baryon-
dominated environments, so that depletion of free SDM by
binding to baryons has only a higher-order impact on the
CDM character of SDM.

Denoting the hybrid nucleus-sexaquark state by AS, the
dominant capture process is S + A → AS + γ, analogous
to the case for neutron capture. The theory of neutron capture
is well-developed due to its importance in nucleosynthesis and
nuclear physics, c.f., [67]. At intermediate to high incident en-
ergy, resonance intermediate states can be excited, but at the
low energies relevant here, the most important contribution
to the amplitude is due to “direct capture” with the nucleus a
passive source of the potential. Because the potential well is
shallower in theAS case than for nuclei, given the αSN range
of interest, the dominant contribution to the capture cross sec-
tion is from an initial p-wave scattering state into the (s-wave)
bound state with emission of an E1 photon. Derivation of
the capture cross section in this case will be presented else-
where [68].
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FIG. 11: Binding energy of a sexaquark to selected nuclei as a func-
tion of αSN .

A. Primordial nucleosynthesis

SDM can potentially impact primordial nucleosynthesis in
two ways:
1) interference with the standard synthesis process by disrup-
tion of intermediate or final nuclei, and/or
2) production of hybridized nuclei, if the interaction is attrac-
tive and sufficiently strong to form a bound state.

Our colleague R. Galvez modified the BBN code AlterBBN
[69] to allow for SDM-nucleus interactions. He found that
even with the DM-nucleus cross section at its unitarity limit,
nuclear breakup by SDM scattering (A+ S → A1 +A2 + S,
e.g., 7Be + S →3 He +4 He + S) is negligible. This stems
from the kinematic fact that in the temperature range at which
nucleosynthesis occurs, T . 80 keV, i) the available energy
in the final state is so small that 3-body phase space suppres-
sion is very large and ii) the energy transfer in collisions be-
tween nuclei and SDM is too small to overcome the potential
barrier to breakup except in the extreme tail of the Boltzmann
distribution, even for the least-bound nucleus 7Be.

However as noted in Sec. V, if the S-nucleon interac-
tion is attractive, S forms bound states with nuclei of A >
Amin(αSN ). The minimum nuclear mass to form an A-
S bound state increases as the coupling strength αSN de-
creases. The relationship is shown in Fig. 12. It is very
important to stress that all A above some minimum value
Amin which depends on αSN will form bound states. If nu-
cleus A hybridizes, so do all heavier nuclei, in the approxima-
tion of spherical homogeneous nuclei with radii increasing as
∼ A1/3.

For the αSN range of interest, hybridization occurs at a
rate much higher than the expansion rate of the Universe at
the BBN epoch (τUniv ≈ 100 s). Thus hybridized and unhy-
bridized states are in chemical equilibrium. Unless the bind-
ing energy is very small, statistical physics favors hybridiza-
tion so we require αSN to be small enough that no essential
primordial nuclei forms a bound state with S. This constrains
αSN . 0.7 − 0.8 in the attractive case, to avoid that primor-
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FIG. 12: The minimum αSN such that a bound state AS can form;
αSN & 0.7 is excluded by non-binding of primordial 4He. Men-
tally inverting axes, the plot also gives Amin(αSN ), the minimum A
which forms bound states for given αSN .

dial He is not in fact HeS with mass ≈ 6 amu. As noted, this
condition also insures that no other nucleus having A ≤ 4 can
hybridize.

An enticing scenario for explaining the deficit of primor-
dial 7Li as inferred from the Spite plateau [70–74], would be
if 7Be hybridized such that the electron capture production
of 7Li or 7LiS was suppressed or forbidden. While this can
be contrived [39], it does not solve the problem because then
7BeS should be present at the level expected for 7Li, whereas
the upper limit on Be in dwarf stars is much lower [75, 76].
(The isotope shift for 2 amu higher mass is small relative to the
widths of the lines used to identify Be or Li, so a hybridized
component in the elemental abundance would not be missed.
We have not explored whether hybridization of nuclei with
A > 4 during BBN could diminish production of 7Li and re-
solve the 7Li puzzle.)

B. Exotic isotope formation in Earth and its atmosphere

Dedicated studies place very stringent limits on the local
abundance of exotic isotopes with & 100 GeV mass splittings
relative to the normal nucleus [77–83]. However limits have
yet to be developed for mass splitting close to 2 amu, as is rel-
evant for the exotic isotopes formed if SDM hybridizes with
nuclei. In this section we take a first look at possible exotic
isotope abundances for attractive SDM. Many of the most im-
portant nuclei in the Earth have stable isotopes with A + 2,
with natural abundances generally much larger than expected
for SDM hybrids, so dedicated experiments to search for the
predicted isotopes will be required for most cases, to discrim-
inate between an A+ 2 nucleus and an AS bound state.

As shown in [84], about 15% of hadronically interacting
DM (HIDM) with mass O(GeV), whose trajectories intersect
Earth, are captured. Ref. [13] develops in detail the theory
of the HIDM atmosphere which forms around Earth, in the
absence of hybridization. The number of SDM particles cap-
tured by Earth over its lifetime can be estimated in different

ways. Here we use NS ≈ 1.3 × 1041 as calculated in [13],
for an accumulation rate of

ṄS ≈ 2.8× 1037 Myr−1 . (20)

ṄS can arguably be up to a factor-6 higher [68], increasing
proportionately all of the abundance estimates below. Here we
give a very simplified treatment of the hybridization process,
for some illustrative possibilities.

In a collision with the relatively massive nuclei comprising
the Earth and its atmosphere, an energetic DM particle of mass
2mp loses 4/9 of its energy, on average. To go from vesc = 11
km/s after the DM is gravitationally bound, to v ≈ 1 km/s for
thermal equilibrium at 300 K, requires of order 10 collisions
– negligible compared to the total number of scatterings typi-
cally preceding a hybridization event. The mass of the DM is
small relative to the nuclei it scatters on, and the velocities are
very small, so the CM and lab frames are essentially the same
and the scattering is isotropic in the lab frame.

As SDM diffuses through the atmosphere or in the Earth,
two processes are at play:

1. The SDM scattering length is determined by its inter-
action with all of the nuclei in the local environment
:

λ̄ =

(
n
∑
A

fA σA

)−1

, (21)

where fA is the fractional abundance by number of nu-
cleus A and n is the total number density. The total
path length L while traversing a thickness z0 is then, in
homogenous diffusion approximation:

L = 3 z2
0/λ̄ = λ̄ Nscat , (22)

where the last relationship enables the mean number of
scatterings in the medium to be deduced.

2. The SDM capture length is determined by its capture
cross section on those nuclei withA ≥ Amin capable of
forming bound states (Amin depends on αSN , as shown
in Fig. 12), giving:

λ̄cap =

n ∑
A≥Amin

fA σ
cap
A

−1

. (23)

Capture occurs if L & λ̄cap.
Fig. 13 shows the scattering cross section versus αSN for

a number of interesting or abundant elements in the Earth’s
crust. For αSN ≥ 0.03 (the minimum to bind 238U), all SDM
captured by Earth become bound to nuclei and the dewar
limits discussed in Sec. VI B (and indeed all limits of [13])
are evaded. However the distribution over host elements and
physically in the Earth, of the ≈ 1.3 × 1041 S’s accumulated
over the Earth’s lifetime, varies dramatically with the value of
αSN .
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The simplest scenario to analyze is when DM predomi-
nantly captures on O in the ocean, which we discuss to illus-
trate the analysis; a more comprehensive study of other possi-
bilities is presented in [68]. Natural O is predominantly 16O,
with 0.2% 18O. Since the scattering and capture cross sec-
tions depend on A, not Z, these are not exactly equivalent re-
garding their capture probability, but we lump them together
in this first, broad-brush description. Moreover the O in the
atmosphere (which is mostly in O2) rapidly cycles with O in
the oceans and biomass on the timescales relevant to this prob-
lem, and furthermore the column number density of O in the
atmosphere is small compared to that in H2O in the ocean, so
we lump together O from both atmosphere and ocean, for this
simple treatment.

The oceans cover 70% of the Earth’s surface, with mean
depth 5 km and scattering length λ = 30 cm/σb , for Nscat ≈
1012 from Eq. (22). Thus SDM incident on the surface of the
oceans will be captured by O in the ocean water, as long as an
OS bound state exists and σcap

O /σO & 10−12. (For compari-
son, neutron capture cross sections are typically 10−4− 10−5

times the scattering cross section; if this ratio were applicable
to SDM, capture would take place after ≈ 104−5 collisions,
or a path length of . 3 km.) Ocean water has a residence time
of ≈ 100 Myr, during which 0.7× 2.8× 1039 SDM particles
capture. The total number of O nuclei in the oceans and atmo-
sphere is 5.5× 1046 for a fractional abundance of OS relative
to all O of ≈ 5× 10−8.

If the capture to scattering cross section ratio is smaller
than 10−12, capture would not occur on first passage through
the ocean and the OS would be distributed more uniformly
through the solid Earth, since O is the most abundant element
in rocks. Assuming OS bound states exist and O is the domi-
nant binding site for the SDM, a lower limit on the fractional
abundance is given by assuming it is distributed uniformly
over all the O in the Earth:

NOS
NO

&
1.3× 1041

6.7× 1049
≈ 2× 10−9 . (24)

Comprehensive predictions of the distribution of captured
SDM over different molecules and physical locations in Earth
and its atmosphere, for general αSN , will require a multi-
disciplinary effort.

C. Exotic isotope detection

The mass of the exotic isotope is

MAS = MA +mS −BEA(α) , (25)

where BEA(α) is the ground-state binding energy shown in
Fig. 11 (replacing αSN → α for brevity). Generally,BEA(α)
ranges from 0 to ≈ 10 MeV. The main uncertainty in pre-
dicting MAS is in the value of mS . Based on the discussion
in earlier sections, mS can be anticipated to be in the range
1800-2000 MeV. For our fiducial value mS ≈ 2mp, the ex-
otic isotope is similar in mass to the A+ 2 isotope.

18O is a stable isotope which accounts for 0.2% of naturally
occurring oxygen. If one in 109 of 16O captures an SDM, that
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FIG. 13: Cross section in cm2 versus αSN for selected nuclei {14N,
16O, 20Ne, 24Mg, 28Si, 40Ar, 56Fe, 238U}, for an attractive interac-
tion. Below αSN = 0.03 there are no bound states for A ≤ 238.

would produce an isotopic mass similar to naturally occur-
ring 18O at a ppm level which may well have gone unnoticed.
Similarly the most abundant isotope of Si is 28Si, but 3% of Si
is 30Si, potentially masking prior detection of the anomalous
isotopic mass.

Modern mass spectroscopy tools used for geochemical re-
search have the sensitivity and resolution to discover OS at
the predicted level, with mass resolution in theA ≈ 16 regime
of at least 1 part in 30,000 (≈ 0.5 MeV) and up to 1 part in
1 million for certain specialized applications. [85, 86]. For
smaller αSN the threshold Amin for forming exotic isotopes
increases, and estimating the abundance is more complex due
to the non-trivial geochemistry of the Earth’s crust. On the
other hand, heavier nuclei are rarer so the fraction which are
exotic would be higher, so robust limits on αSN & 0.04 may
be possible through dedicated searches.

Although predicting the abundances of different exotic iso-
topes for general αSN is challenging, the absence of compre-
hensive and accurate fractional abundance predictions does
not preclude an effective experimental search. A potential
signal is a narrow line in a sensitive mass spectrometer at a
mass not known to be associated with known isotopes. Let
us denote the mass of the unexplained line as µZ . Initial
searches would focus on mass ranges µZ = MZ,Ai

± (1800−
2000) MeV, where i denotes a stable isotope of Z. There are
a number of signatures to discriminate a real sexaquark bound
state signal from noise or other sources. If it is a bound state
of {Z,A} and sexaquark, then

µZ = MZ,A +mS −BEA(α) . (26)

There is no ambiguity as to which {Z,Ai} could be the bound
state host nucleus because the range of mass uncertainty, 100
MeV, << 1 amu.

Three complementary classes of consistency conditions
are:

•Multiple stable isotopes {Z,Ai}
Each isotope of the same element should have a similar rela-
tive abundance of SDM bound states, to the extent that their
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geochemical history is the same and αSN is not near a reso-
nance for this A range (which can lead to significant differ-
ences in σcap

Ai,Aj). Thus a line of similar strength should be
found associated with each stable isotope, with the line posi-
tions satisfying

µZ,i − µZ,j = MZ,Ai
−MZ,Aj

−BEA,i(α)−BEA,j(α) .
(27)

Except near a resonance value for {A,α}, BE is a slowly
varying function ofA so the splitting in Eq. (27) is generically
small, . 1 MeV. To the extent that the exotic abundances are
the same, the line strengths relative to those of the unbound
isotopes should be similar.

• Hosts with neighboring {Z,Z ′}

If elements can be studied which have neighboring {Z,Z ′}
with both having stable isotopes with the same A, the predic-
tion is even stronger:

µ(Z,A) ≈ µ(Z ′, A) (28)

with the equality only broken due to non-identical nuclear
wavefunctions of {Z,A} and {Z ′, A}. Here, however, the
fractional abundances and hence signal strength are not in
general the same, since the geophysics and geochemistry of
the two elements is different.

•Multiple observed lines for different {Z,A} hosts

With signals seen for N ≥ 3 different {Z,A} hosts, one can
extractmS−BE(A) for each of them. Within the uncertainty
onBEA(α) due to uncertainties in the nuclear wavefunctions,
a single value of mS and αSN should give a good fit to all
µZ,A.

IX. ACCELERATOR SEARCHES FOR THE SEXAQUARK

One of us (GRF, [2]) made a comprehensive review of ex-
perimental searches for the H-dibaryon and determined that
apart from one experiment, all of the searches up to 2017
either searched for decay products or were only sensitive to
masses below 2 GeV, making them insensitive to the hypoth-
esized stable S. The one exception, BNL E888 [87], placed
bounds that were far too weak to be relevant to its existence
[2]. The experimental challenge to discovering an S and
demonstrating its existence is that S’s are similar in mass to
neutrons, but interact less and are much less abundant. In a
low energy exclusive reaction such as K−p→ SΛ̄, the quan-
tum numbers of the unseen S are unambiguous, but the rate
S production ∼ g̃2. If the DM is composed of sexaquarks,
g̃2 . 4 × 10−12 (see Sec. III C), and the expected suppres-
sion is even more severe if the theoretical estimate for g̃ (Sec.
IV A) is used.

The situation in a high energy collision is different, and we
must consider two regimes. In an inclusive short-distance-
initiated reaction like decay of Upsilon(1S,2S,3S), closure ap-
proximation is valid and estimation is relatively robust. The

analysis is given in [2] and recapped in Supplemental Mate-
rials XII B 2. Estimating the S:n production ratio in the cen-
tral region of high energy collision is more uncertain. One
appraoch is to use the naive rule of thumb based on baryons
versus mesons that for each additional quark which has to be
incorporated into a hadron, the abundance is reduced by a fac-
tor 10-20. Producing an S entails 3 additional quarks that
must be incorporated into the state, for a penalty of a factor
103, and baryon number conservation requires the production
of still another anti-baryon relative to the case of neutron pro-
duction, for an additional penalty of 101−3 depending on how
that should be counted. Since no penalty is imposed on ac-
count of the S’s small size this may be an overly optimistic
estimate, but it suggests that in a very high energy collision
or in the final state of Z decay, the abundance of S’s (or S̄’s)
could be 10−4 − 10−6 relative to neutrons.

However it is not enough to produce an S – it must be iden-
tified, or its presence unambiguously established, which is
non-trivial. Unlike in a search for heavy Beyond the Standard
Model neutral particles, e.g., as expected in Supersymmetry
[88], the S has a typical QCD transverse momentum, O(1)
GeV, so the missing energy or missing transverse momentum
it carries is too small to notice at a high-energy accelerator.
Two methods to search were suggested in [2]: searching the
final states of Υ decay and searching for a very distinctive
signature of S̄ annihilation at the LHC. They are briefly
recalled below along with several new suggestions.

• Final states of Υ(1S, 2S, 3S) decays
The reactions

Υ [→ gluons]→ S Λ̄ Λ̄ or S̄ Λ Λ + pions and/or γ (29)

are ideal discovery channels. The characteristic size of
the ggg state from which the final hadrons emerge is (10
GeV)−1 = 0.02 fm, so the small size of the S is not an in-
herent disadvantage, as it is when produced in a reaction like
K−p → SΛ̄. A statistical estimate of the branching fraction
for inclusive S plus S̄ production is 2.7× 10−7; see the Sup-
plemental Materials for details. It is small due to the necessity
of producing extra gluons to have the required minimum 6 qq̄
pairs, and the low probability of 6 quarks or antiquarks of the
required flavors being in a color-flavor-spin singlet state.

If all of the final particles are seen, the mass of the unseen S
can be reconstructed from 4-momentum conservation: m2

S =
(pΥ−pΛ1−pΛ2−Σpπ′s&γ)2. The width of the missing-mass
peak is entirely due to resolution which is so good in some
detectors, O(20) MeV, that even a few events appearing to be
Λ̄Λ̄ or ΛΛ + pions or gamma, having a common missing mass,
would be a powerful smoking gun for the existence of the S
and would accurately determine its mass. The initial state can
be any Υ or continuum state below open-bottom threshold.
Other final states besides ΛΛ/Λ̄Λ̄ are also discovery avenues,
e.g., Ξ−p, or a Λ can be replaced by K−p. As long as no
B- and S-carrying particle escapes detection besides the S or
S̄, any combination of hyperons and mesons with B= ± 2,
S= ∓ 2 quantum numbers, including final states with higher
multiplicities, can be used. The Λ̄Λ̄ and ΛΛ final states are
very good because the Λ’s short decay length (cτ = 8 cm) and
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64% branching fraction to the 2-body charged final state p π−,
means Λ’s and Λ̄’s can be reconstructed with high efficiency,
and their 4-momenta well-measured.

Babar performed a search for exclusive S and S̄ produc-
tion and placed an upper limit on the branching fraction of
BFexc < 1− 2× 10−7 [89]. However as is shown in the Sup-
plemental Materials by examining exclusive branching frac-
tions for other channels in Υ decay, the penalty for demanding
an exclusive final state is at least a factor 104. Thus Babar’s
sensitivity in the search [89], is by far insufficient to shed light
on the possible existence of a stable S. (The utility of Υ decay
final states as being potentially enriched in flavor-singlets, in
particular the H-dibaryon, was recognized early-on by Belle,
however their search [90] assumed the H-dibaryon was unsta-
ble and sought evidence of its decay into Λ final states, so is
inapplicable to the sexaquark scenario.)

A more general strategy than just identifying events with
exactly two Λs or two Λ̄s plus only pions or gammas in final
states of Υ(1S, 2S, 3S) decay, is to study the proportion
of events having specified numbers {NB , NS , NB̄ , NS̄}
of baryons, strangeness +1 particles, anti-baryons and
strangeness -1 particles, respectively, in the final state. The
feasibility of establishing a statistically significant excess of
events with the correlated NB − NS = ±4 expected in the
case of S and S̄ production, depends on Ntot, the total num-
ber of Υ(1S, 2S, 3S) decays recorded, and the ID efficiency
of the various baryons and strange particles, including losses
from less than 4π detector coverage. In the Supplemental
Materials a simple estimate is given, using a single effective
efficiency for identifying baryons and anti-baryons, eB , and
similarly eS for strange and anti-strange particles, to roughly
assess the feasibility. It suggests that the estimated inclusive
branching fraction 2.7 × 10−7 may be accessible to Belle-II,
depending on the amount of running on Υ(1S, 2S, 3S) and
the actual effective efficiencies. This motivates a more
detailed investigation with a real detector simulation. The
hadronic event generator EPOS-LHC has been modified to
incorporate S and S̄ production in hadron and heavy ion
collisions, and in Υ(1S, 2S, 3S) decay, with a coalescence
model production mechanism [91].

• S̄ annihilation in an LHC tracker
With some rate, perhaps 10−4 − 10−6 relative to neutrons

according to the simplistic estimate above, S̄’s should be
produced in LHC collisions. In a detector such as CMS,
ATLAS, ALICE or LHCb, such an S̄ can annihilate with a
nucleon in the material of the beam-pipe or tracker, to produce
a very distinctive final state in which for instance a Λ̄ and a K
emerges from the material. Unfortunately, the expected rate
of useful events is very small. If the lab energy of the S̄ is
small enough for the annihilation event to not produce too
many final particles, the cross section∼ g̃2, i.e., very small. If
the energy is large and many particles are produced, possibly
evading the breakup amplitude suppression, then identifying
the characteristic B = -1 and S = +2 signature of the final state
is almost hopeless. See [2] for more detailed discussion.

• Search for long-interaction-length stable neutral particle

The challenge in searching for inclusive S and S̄ production
in a high energy collision is the problem of identifying them
in the face of vastly more neutrons, as mentioned earlier. A
possible strategy is to search for evidence of a neutral compo-
nent with interaction length longer than that of neutrons and
different from known neutral long-lived particles. Due to the
small value of g̃, the S̄ annihilation channel is much smaller
than its scattering channel, so S̄ interactions should be very
similar to S interactions. The S and S̄’s are generally rela-
tivistic even in the central region, so the calculations in Sec. V
do not apply. Instead, we can roughly estimate their interac-
tion length relative to that of neutrons in this energy regime as
λint
S ≈ (αNN/αSN )2 λint

n ≈ 6 × 103 (0.2/αSN )2 λint
n , with

coupling αSN taken to be the same to first approximation as
the αSN which enters the potential scattering problem rele-
vant for dark matter constrained in Sec. V.

The strategy of looking for an anomalous component
of long-interaction-length neutral stable particles could be
implemented with a relatively simple customized experiment.
Conceptually, a beam is directed onto a target, followed by
sweeping magnets and decay region to eliminate charged
particles and short-lived neutral components. This would be
followed by an instrumented region with particle tracking
interleaved with absorber, whose overall length is & 105

neutron interaction lengths. The requirements on the tracking
being to measure the longitudinal position of n- and S- or S̄-
initiated events, and to discriminate between interactions and
decays, which need to be rejected. A quasi-beam-dump setup
could be employed to reduce the n : S ratio in the detector.
The detector could be built up in stages, initially adapted to a
shorter interaction length in case αSN is larger than 0.2. An
in-principle-complementary approach is exemplified by the
experiment of [92] at Fermilab which used timing rather than
anomalous interaction length. It was only sensitive to masses
above 2 GeV due to neutron background, so not applicable
for the sexaquark. However the method requires measuring
the energy deposit and time-of-flight to discriminate the new
particle from neutrons so seems to be both more complicated
and less powerful – but perhaps merits consideration.

• Heavy Ion Collisions
A very attractive production channel for S and S̄ is in the

central region of relativistic heavy ion collisions (HICs), be-
cause of the similarity of the production to that of DM in the
Early Universe. The process is not identical to the Early Uni-
verse because in the Early Universe the cooling timescale at
the hadronization transition is ∼ 10−5s and the medium is in-
finite, while in a heavy ion collision the cooling time is very
much shorter and the plasma expands into the vacuum.

Ref. [17] obtains an excellent fit to the relative abundances
of final particles in central Pb-Pb collisions, including such
complex and exotic states as hyper-triton, assuming statistical
equilibrium at a temperature T = 156 MeV and accounting
for production and decays of resonances. The main systematic
uncertainty is associated with treatment of the resonances. A
similar approach applied to S and S̄ production would give a
result similar to deuteron and anti-deuteron: dN/dY ≈ 10−1

in the central Pb-Pb collisions at
√
sNN = 2.76 TeV – about
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a factor-300 less than p and p̄.
Perhaps the long-interaction-length neutral particle tech-

nique can be employed, depending on the particulars of the
detector. Another strategy is to look for an excess of events
in which the observed final state has baryon number minus
strangeness |B−S| = 4 , due to production and escape of an
S or S̄ whose baryon number and strangeness is balanced by
the observed final state hadrons. The problem of course is the
impossibility of perfectly measuring the B and S of each final
particle. A further problem for ALICE is the limited rapidity
range that can be observed. In Ref. [93], ALICE presents a
study of the event-to-event fluctuations in the baryon number
of particles with 0.6 < p < 1.5 GeV/c and |η| < 0.8. For
central collisions the difference in number of baryons and
anti-baryons is of order the sum. With such large fluctuations,
it would appear difficult to discern a population of events
above background with B − S = ±4, unless a large portion
of the final particles can be ID’d. A detector simulation or
an analysis along the lines of Supplemental Materials XIII
would be needed to properly assess the prospects.

• High intensity photon beams
J-Lab has a tagged photon beam of energy 9 to 12 GeV, with

108 photons/second on target. The GlueX experiment antic-
ipates collecting ≈ 1012 interactions. It has adequate kine-
matic reach to probe reactions such

γ p→ S Λ̄K+ + pions . (30)

A 12 GeV photon provides ECM = 4.84 GeV; this is 1.35
GeV above the 3.5 GeV total mass of S, Λ̄, K+ for the fidu-
cial mS = 2mp, leaving room to spare for phase space
and pion production. Depending on the solid angle cover-
age and tagging efficiency, unbalanced baryon number and
strangeness due to an escaping S could be a good discovery
channel in spite of the S production rate going as ∼ g̃2, given
the potentially very large number of events.

X. SUMMARY

At this point in time, it is not possible to decide on theo-
retical grounds whether there is an as-yet-undiscovered stable
neutral boson with baryon number 2 in the QCD spectrum.
Many would argue against this possibility based on faith in the
qualitative and semi-quantitative understanding the commu-
nity has developed of chiral symmetry breaking, quark con-
finement, asymptotic freedom and many aspects of the hadron
spectrum in QCD. However in the spirit that our understand-
ing of QCD may not be as complete as we would like to think,
and motivated by the lack of a compelling and viable alterna-
tive Dark Matter candidate, we have examined here whether
a stable sexaquark can be excluded in light of present knowl-
edge, and whether it would make a satisfactory DM particle.

We find that sexaquark dark matter is not presently ex-
cluded either by accelerator experiments, dark matter direct
detection constraints, astrophysical constraints such as neu-
tron stars and SN1987a, or cosmological constraints such as

the CMB and structure formation or primordial nucleosynthe-
sis.

The sexaquark relic abundance after the transition from the
quark gluon plasma to the hadronic phase is completely de-
termined in freezeout approximation by statistical physics,
known parameters of QCD and the sexaquark mass. The pre-
dicted value is ΩDM/Ωb ≈ 5, with better than factor-2 accu-
racy. This in remarkable agreement with the observed value
ΩDM/Ωb = 5.3± 0.1. The analysis is given in Sec. III.

Whether this no-free-parameter result persists to low-
temperatures depends on the amplitude to break up a
sexaquark into two baryons, g̃, which we calculate in
Sec. IV A. Three separate effects combine to suppress sex-
aquark breakup, the most important being the hard-core ra-
dius characterizing the short-distance repulsion of the baryon-
baryon potential; we adopt the central value of the standard
fits to data, rc = 0.4 fm [26, 27]. Other sources of suppres-
sion are the small radius of the sexaquark and the QCD barrier
to tunneling through the intermediate state. Predictions for g̃
for extreme choices of the parameters are shown in Fig. 3,
where one sees that even with no tunneling suppression and
taking the maximum rS , the breakup amplitude is too small to
destroy the abundance ratio set at the QGP-hadron transition.

We also constrained the allowed range of g̃ empirically,
most importantly by using SNO data to obtain a limit on the
deuteron beta decay lifetime: τD > 1029 yr. This gives the
strongest and most robust experimental limit to date on the
sexaquark breakup amplitude if the S is lighter than 1870
MeV. It improves on and superceeds the estimates derived in
[6] for Oxygen decay in SuperK. The limits on g̃ are summa-
rized in Fig. 3. The mass range 1870-1880 MeV is virtually
unconstrained, but any mass above 1850 is currently comfort-
ably compatible with the constraints, given theoretical esti-
mates for the breakup amplitude.

Since the S is a particle in QCD, its scattering on baryons
can be related to parameters of effective field theory. The scat-
tering is primarily due to exchange of the flavor singlet linear
combination of ω and φ vector mesons, here denoted V (Sec.
V). Thus SDM interacts with baryons via a Yukawa poten-
tial with range m−1

V ≈ 0.2 fm. The main uncertainty in the
calculation of DM-nucleus cross sections is the strength of
the potential, αSN , and its sign. At leading order this is deter-
mined by the coupling between S and V , gSSV , with |αSN | =
|gSSV gNNV |/(4π); we consider 0.001 < αSN < 10.

We developed the necessary theoretical infrastructure to in-
terpret DM direct detection experiments when the DM has
non-perturbative interactions with nucleons. Cross sections
do not scale with atomic mass A in the manner widely as-
sumed based on Born approximation, and the form factor for
extended nuclei and the velocity dependence of DM-nucleus
cross sections exhibit strong, highly non-trivial behavior. We
treated these in detail by solving the Schroedinger equation.
We obtained constraints on the Yukawa coupling parameter
αSN as a function of mS implied by direct detection experi-
ments and constraints on σDM−p from the CMB power spec-
trum.

The excluded regions for an attractive interaction are shown
in Fig. 9; the boundaries in the repulsive case are smooth
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but similar. For a repulsive interaction and mS ≈ 2mp, the
maximum Yukawa coupling is |αSN |max ≈ 0.004 and σSN .
10−29cm2, taking the dewar limits [13, 58] at face value; see
Sec. VI B for a discussion of a more conservative choice.

For an attractive interaction, αSN can be as large as 0.7
and the phenomenology of SDM is very rich. The con-
straint αSN < ≈ 0.7 is required to avoid that virtually
all primordial 4He is in the form of a bound state with an S
whose mass is about 2 amu larger than normal 4He. But for
≈ 0.7 > αSN & 0.03, SDM captured by Earth quickly binds
to nuclei. For example, if αSN & 0.2, SDM binds to oxygen
nuclei in the Earth’s oceans, crust and atmosphere, forming a
roughly 100-part-per-billion abundance of exotic isotopes of
O with a mass about 2 amu larger than the fundamental nu-
clear mass. Experimental searches for exotic isotopes have
not explored such small mass offsets with adequate (ppb) sen-
sitivity. Future searches of this type are well-motivated be-
cause αSN & 0.004 seems natural so the dewar limits for the
repulsive case suggest the S-baryon interaction is attractive.

XI. CONCLUSIONS

We have shown that sexaquarks are an excellent dark matter
candidate. Their relic density is fixed by the physics of the
transition from quark gluon plasma to hadrons and statistical
physics and known parameters from QCD predicts the DM to
baryon density ratio ΩDM/Ωb ≈ 5, in excellent agreement
with the observed value ΩDM/Ωb= 5.3± 0.1.

The possible range of sexaquark coupling strength to
baryons considered here, 0.001 . αSN . 10, allows for
a broad range of phenomenological behaviors. The SDM-
proton scattering cross section may be σSp . 10−29 cm2,
which would have evaded detection and is compatible with all
cosmological, astrophysical and laboratory bounds; for a re-
pulsive SDM-baryon interaction this is the only option com-
patible with observational limits. However the DM-nucleon
interaction is a priori equally likely to be attractive, in which
case the phenomenological options are much richer.

The sexaquark dark matter hypothesis motivates the follow-
ing experimental efforts:
• Search for exotic isotopes of A > 4 nuclei in the Earth,
having a mass offset of mS − BE, with BE . 10 MeV, i.e.,
about 2 amu heavier than the host nucleus A. If the Yukawa
coupling between SDM and nucleons is attractive and strong
enough to bind to oxygen, & O(ppb) of oxygen nuclei should
be exotic and have a mass within 10’s or at most 100’s of MeV
of 18O. For weaker Yukawa coupling only heavier nuclei bind,
motivating the search for exotic isotopes of a diversity of ele-

ments. If DM proves to be composed of sexaquarks which can
bind to nuclei, the study of the abundances of exotic isotopes
will become a powerful tool for geoscience as well as a high-
precision window on the sexaquark mass and its coupling to
nucleons.
• Search in final states of Υ(1S, 2S, 3S) decay, and also in
heavy ion collisions and at J-Lab, for the signature of S or
S̄ production. In Upsilon decay one can search for events
with Λ̄Λ̄ or ΛΛ and no accompanying baryon number or
strangeness. Even a handful of events in which all particles
except the unseen S or S̄ are well-measured, could give a
missing-mass peak that is a decisive signature. Another strat-
egy would be an inclusive search for events withB−S = ±4.
• Search for the presence of a second component in the
interaction-length distribution of stable neutral particles pro-
duced in the central region of relativistic heavy ion or other
high energy collisions. Taking anti-deuterium production as a
guide, the abundance of the S and S̄ component in a heavy ion
collision should be about 0.3% that of n and n̄. The anoma-
lous interaction length depends on αSN which is constrained
by cosmological and dewar constraints as discussed in Sec. V;
a rough estimate is λint

S ≈ 6× 103 λint
n (αSN/0.2)2.

• Calibrate the XQC and other semi-conductor detectors used
to search for DM with mass less than a few GeV, to determine
the extent to which low energy recoiling atoms deposit their
energy in forming lattice point defects (Frenkel pairs) or co-
herent phonon excitations (thermalization). If the fraction of
energy thermalized is large enough, detectors such as XQC
above the atmosphere or CRESST near the surface of Earth
would be sensitive to DM mass in the≈ 2mp range. However
until these detectors are calibrated for low recoil energies, they
can only be used to place limits on DM interactions above the
mass range relevant for SDM.
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XII. SUPPLEMENTAL MATERIALS

A. Neutron Star Equation of State

The discovery of several neutron stars (NS) with masses
greater than 2M� presents a great challenge to hadron
physics. Allowing just for known hadronic degrees of free-
dom – nucleons, hyperons and mesons – the equation of state
(EoS) is too soft to support a NS of such a large mass against
collapse to a black hole. One option to explain this observa-
tion is to invoke a transition from hadronic to quark degrees
of freedom, where the freedom in our knowledge of the quark
EoS allows higher masses than possible in the hadronic phase.

It has been known for some time that the presence of an
H-dibaryon exacerbates the problem of NS masses and would
exclude MNS = 1.4M�; indeed this was an argument against
the existence of the H-dibaryon [94] . The point is that being
a boson there is no Fermi pressure support for an H-dibaryon
component, unlike when the same state is dissociated into two
Λ’s. With a sexaquark the analysis is similar to that for an H-
dibaryon. A Λ converts to an S via Λn → S in O(hr), in
spite of the small cross-section ∼ (GF g̃)2, due to the very
high density of n’s. The strong interaction process ΛΛ → S
has a factor 1012 times higher rate and will dominate except
when the Λ density is low. Therefore, when chemical equi-
librium calls for a component of S’s, it will be present. Para-
doxically, discovering even more massive NS’s up to signif-
icantly > 2M� eliminates the NS argument against the H-
dibaryon and the S: once the transition to a quark plasma
must be accepted as established, the presence or absence of
an H-dibaryon or S in the spectrum is largely irrelevant. De-
tails will be discussed in [95].

Other papers arguing against bosonic dark matter based on
NS stability against collapse to a BH [96–99] are not directly
applicable to SDM with its repulsive self-interaction and the
possibility of converting to strange quark matter in the core of
the star.

B. S/S̄ production in Υ decay

In the Appendix of [2], GF estimated a production fraction
2.7×10−7 for inclusive S + S̄ production in the 3g channel at
the Υ resonance, using a statistical model with no penalization
for wavefunction overlaps. Babar has placed a limit on the
branching fraction for the 3-body exclusive process Υ2,3S →
SΛ̄Λ̄+cc of (1.2−1.4)×10−7. The question addressed in this
section is how constraining or not this limit on the exclusive
production is. First, the statistical estimate for the inclusive
branching fraction is given.

1. Statistical model for S/S̄ production in Υ decay

All Υ decays below open-bottom, i.e., Υ(1S), Υ(2S) and
Υ(3S) decays, go through 3-gluons. To leading order each
gluon converts to q and q̄s of ≈ 2 GeV, which produce mini-
jets or form hadrons through string-fragmentation. Production
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of the minimum 6q+6q̄ with 6 q’s or q̄’s having relatively sim-
ilar momenta needed to produce an S or S̄ requires creating 3
more gluons, at a penalty factor of α3

s in the amplitude. Here
αs & αs(Υ) ≈ 0.2, and may be O(1) because large momen-
tum transfer is not required, so we adopt the geometric mean.

The next requirement is for 6 q or q̄’s to be nearest neigh-
bors in space, within a distance scale < rS . Statistically,
the penalty for having exclusively q’s or q̄’s within a nearest-
neighbor grouping is

(
1
2

)5
. As a zeroth approximation, no

penalty is included for such a grouping of q or q̄’s to have
an appropriate spatial wavefunction to be an S or S̄, on
the grounds that the q and q̄’s originate in a region of size
≈ 1

10GeV = 0.02 fm then expand, so at some point they will
be in the relevant volume to form an S.

Finally, to form an S or S̄, the 6 q’s or q̄’s must have the to-
tal flavor-spin-color quantum numbers to be an S or S̄. With-
out loss of generality consider the 6q case. S belongs to the
(1,1,1) representation of SU(3)c × SU(3)f × SU(2)s. With
a spatially symmetric wavefunction, Fermi statistics implies
it is in the totally antisymmetric 6-quark representation of
SU(18). In a statistical approximation that the q’s produced
by the gluons randomly populate all possible color, flavor and
spin states, the fraction of cases contributing to the antisym-
metric representation is 18×17×16×15×14×13/(6×5×
4× 3× 2)/186 = 5.46× 10−4. Dividing by 25, multiplying
by (α2

s ≈ 0.2)3 and by 2 for S and S̄ results in the estimated
branching fraction of Upsilon to states containing an S or S̄:
BFS ≈ 2.7× 10−7.

A more detailed model calculation could give a larger es-
timate, since color correlations among the gluons and quarks
likely enhance the amplitude for states corresponding to at-
tractive QCD channels, while the simplification of ignoring
the spatial structure could lead to a suppression. Combining
these effects with the crude nature of the estimated depen-
dence on αs, means improvements can take this naive estimate
in either direction.

2. Penalty for low-particle-number exclusive final states

We begin by noting some measured branching fractions that
can provide guidance for the penalty of demanding a low-
particle-number exclusive final state rather than a more inclu-
sive one, and their implications:
J/Ψ:

• Branching fraction for inclusive BB̄ production ≈
10−2: Making a pair of baryons + mesons is 100x
harder than just making mesons.

• BR(π+π−)/BR(π+π−+X) ≈ (1.5×10−4)/(0.15) =
10−3 with X an observed exclusive mode: Exclusive to
inclusive penalty is at least 10−3. There is an angu-
lar momentum barrier but plenty of phase space, so no
suppression there.

Υ1S :

• Sum over 100 observed exclusive modes accounts for
1.2% of decays: Average observed exclusive ≈ 10−4.

state mass (MeV) width (keV)

J/Ψ 3096.9 92.9± 2.8
Υ1S 9460.3 54
Υ2S 10023.3 32± 2.6
Υ3S 10355.2 20.3± 1.85

TABLE I: 1−− Charmonium and Bottomonium states, from [5] .

Final State branching fraction number events

hadrons 87.7%
virt. γ + hadrons 13.5%

ggg 64.1%
γgg 8.8 %
`+`− ≈ 3× 2%
π+π− 1.47× 10−4

2(π+π−)π0 4.1%
3(π+π−)π0 2.9%
4(π+π−)π0 0.9%

ρπ 1.7%
2(π+π−π0) 1.6%
π+π− +X 14.6 %

pp̄ 2.1× 10−3

pp̄+ {π0, π+π−, π+π−π0, η} 12.5× 10−3

ω2π+ 2π− 8.6× 10−3

ωπ+π−π0, ωπ0π0 4.0, 3.4× 10−3

π+π−π0, φK+K−, K+K0
Sπ

− ≈ 2× 10−6

π+π− 2π0 1.3× 10−5

Ξ0Ξ̄0, ∆(1232)++ ¯∆(1232)
−−

1.7, 1.1× 10−3

TABLE II: J/Ψ1S , from [5]

• There is no observed 2-body decay, with upper limit
4 × 10−6. (The most sensitive channels are ρπ, ωπ.)
A few 3-body decays observed, biggest being ωπ+π−

with BR 4.5 × 10−6: Multi-body final states favored
over 3-body. Suppression factor for 3-body may be as
small as O(10−5).

• Biggest identified exclusive decay, Υ1S → π+π− 2π0,
has BR 1.3× 10−5.

Υ2S , Υ3S :

• BR(Υ2S → Υ1S + ππ) = 26.5%.

• BR(Υ3S → Υ2S +X) = 0.1.

• Several exclusive 3 body decays seen. The most signif-
icant is φK+K− with BR 1.6× 10−6.

• There are only upper limits on Υ2S 2-body decays, ex-
ceptK∗(892)0K̄∗2 (1430)0+c.c.with BR= (1.5±0.6)×
10−6.

We need to estimate BF(Υ2,3S → SΛ̄Λ̄). We can do that
by starting from the observed BF(Υ1,2,3S → φK+K−) ≈
2×10−6 in all three cases. As for the inclusive ggg → S+X ,
the rate for the exclusive process Υ2,3S → SΛ̄Λ̄ is suppressed
relative to Υ1,2,3S → φK+K− by the factors

1. (α2
s ≈ 0.2)3 = 0.008, to account for the production of

3 additional qq̄ pairs beyond the 3 qq̄ pairs required to
form any non-exotic hadronic final state from ggg and
in particular sufficient to form φK+K−.
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Final State branching fraction number events

ggg 81.7%
γgg 2.2 %
`+`− ≈ 3× 2%
ρπ, ωπ <≈ 3.7× 10−6 90%CL

π+π−, K+K−, pp̄ < 5× 10−4 90%CL
π+π−π0, φK+K− (ωπ+π−) ≈ 2(4.5)× 10−6 also KKπ

π+π− 2π0 1.3× 10−5

sum 100 exc. modes 1.2 %
J/Ψ +X (5.4± 0.4)× 10−4

TABLE III: Selected Υ1S hadronic decays, from [5]

Final State branching fraction number events

ggg 58.8%
γgg 8.8 %

Υ(1S) + ππ 26.5 %
J/Ψ+anything < 6× 10−3 90% CL
π+π−2π0 1.3± 0.3× 10−5

φK+K− (1.6)± 0.4)× 10−6

K∗K−π+ (2.3± 0.7)× 10−6

K0
SK

+π− + cc 1.14× 10−6

TABLE IV: Selected Υ2S , from [5]

2. (1/2)5 = 0.03, the probability of having 6q’s or 6q̄’s in
immediate proximity to make an S or S̄. The parallel
factor for the φK+K− final state is a factor (1/2)1 =
0.5.

3. The color-flavor-spin factor from the requirement that
the 6q’s or 6q̄’s have the quantum numbers of the S
or S̄ the totally antisymmetric singlet representation of
SU(18): 18 × 17 × 16 × 15 × 14 × 13/(6 × 5 × 4 ×
3 × 2)/186 = 5.46 × 10−4. For the case of the φ, the
analogous factor is (1/3)(3/4)(1/9) = 0.028, where
the factors are respectively for forming a color singlet,
spin-1 and specified flavor.

Thus ignoring spatial wave-function suppression we get the
estimate

BRΥ2,3S→SΛ̄Λ̄ = 0.008

(
0.03

0.5
× 5.4× 10−4

2.8× 10−2

)
BRΥ2,3S→φK+K−

=1.25× 10−11.

Whether there is also a penalty for making pp instead of
K+K− is unclear. No such penalization is called for when
calculating inclusive S production as in the Appendix of [2],
because baryon number conservation requires production of a
pair of anti-baryons with S. However for the exclusive am-
plitude the penalization may apply, since there is no unitarity

Final State branching fraction number events

ggg 0.357± 0.026
γgg 0.0097

Υ2S+anything 0.106
(non-Υ2S)bb̄+anything 0.32

`+`− ≈ 3× 0.02

TABLE V: Selected Υ3S , from [5]. No non-leptonic non-b-containing final
states seen.

sum over all possible final states. In that case, there would
be an additional suppression O(10−1) as seen in J/Ψ decay
and the heuristic 0.1 for a baryon relative to a meson high-
multiplicity hadronic final states. We also dropped the flavor-
counting-factor since that is not so significant.

The above analysis indicates that the current exclusive scat-
tering limit on branching fraction is about 4 orders of mag-
nitude above the required level of O(10−11). Can we un-
derstand this small value from another point of view? Ba-
sically, it follows from the fact that production of any given
low-multiplicity exclusive channel in the decay of ggg with
invariant mass ≈ 10 GeV is highly suppressed. This can be
seen as follows: in Υ1,2,3S decay, respectively 82%, 59% and
36% go through the ggg channel. From the Tables, the largest
3-body channels detected is consistently VM+2 PS, each hav-
ing branching fraction≈ 2×10−6. From this, we can estimate
the suppression factor for a ggg with invariant mass≈ 10 GeV
to go to any 3-body exclusive final state is about 10−5. Start-
ing from the inclusive branching fraction estimate 2.7×10−7,
we then arrive at the estimated branching fraction for the ex-
clusive channels Υ2,3S → SΛ̄Λ̄ + cc of few 10−12. Thus
two different estimation methods point to the same produc-
tion level for this exclusive final state, more than 4 orders of
magnitude below the current experimental limit.

XIII. FEASIBILITY OF USING B − S = ±4 AS A
DIAGNOSTIC FOR S PRODUCTION

With an estimated inclusive branching fraction of ≈ 3 ×
10−7 in Υ(1S, 2S, 3S) final states, and few-body exclusive
branching fractions typically a factor 104 or more smaller than
their inclusive counterparts, based on the discussion above, it
is motivated to ask whether searching for an excess of events
with B − S = ±4 could be a possible strategy. Or, more gen-
erally, comparing the relative abundances of events with B-S
combinations that are rare but get contributions from events
when an S or S̄ is produced and escapes, with its quantum
numbers balanced in the remaining hadrons.

A proper study requires detector simulations, but the feasi-
bility can be assessed as done below, taking a single “effec-
tive” efficiency eb for identifying a produced baryon or anti-
baryon as such and “effective” efficiency es for identifying
a produced strangeness+1 or strangeness-1 particle as such.

Final State branching fraction number events

γ π+π− 6.3± 1.2± 1.3× 10−5

γ 2π+2π− 2.5± 0.7± 0.5× 10−4 26
γ π+π−K+K− 2.9± 0.7± 0.6× 10−4 29
γ π+π−pp̄ 1.5± 0.5± 0.3× 10−4 7± 6
γ π0π0 1.7× 10−5

γ K+K− < 1.14× 10−5 90% CL
γ pp̄ < 0.6× 10−5 90% CL

γ 2h+2h− 7.0± 1.1± 1.0× 10−4 80± 12
γ 3h+3h− 5.4± 1.5± 1.3× 10−4 80± 12
γ 4h+4h− 7.4± 2.5± 2.3× 10−4 80± 12
γ 2K+2K− 1.14× 10−5 2± 2

TABLE VI: Radiative Υ1S , CLEO measurements from [5]
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FIG. 14: Significance as a function of sexaquark branching fraction,
for 109 Υ(1S, 2S, 3S) decays and different assumed ID efficiencies,
from top to bottom {eb, es} = {0.9, 0.5}, {0.9, 0.4}, {0.8, 0.5}.

The other needed input are fb, the branching fraction for pro-
ducing a B − B̄ pair in the final state and fs, the branching
fraction for producing a strange-anti-strange pair in the final
state. From Z-decay final states, we adopt for our rough esti-
mate fb = 0.05, fs = 0.16. We make the further simplifying
assumption that the branching fraction to produce a pair of
B’s (in the absence of S,S̄ production) is f2

b , an so on. We
designate the branching fraction to produce a single S or S̄

by g. In the following, we take g << fb < fs and keep
higher orders in fb and fs such that the dropped terms are less
significant than those kept, assuming eb, es > 0.2.

As a simplifying assumption, we take the efficiency of cor-
rectly recognizing a B = +1 and B = −1 particle to be the
equal, which is not exactly true, and similarly for strangeness
±1. For this rough estimate, we track as if ID’ing B and S is
independent and uncorrelated, but that is not exact – for in-
stance Λ, Λ̄’s are particularly easy to ID but in the approxima-
tion adopted, the efficiency of counting them would be eb es,
also missing the correlation due to the fact that the geometric
penalty should not be counted independently. In fact, for those
reasons, the estimate below may be somewhat pessimistic.
Likewise, studies focussing specifically on correlations in hy-
peron production (e.g., excess of events with observed Λ,Λ
or Λ̄, Λ̄ compared to expectations from Λ, Λ̄) may prove to be
more favorable due to their enhanced ID power, overcoming
their more limited statistics.

Using the abbreviation {nxbyBzsvS} to represent the frac-
tion of final states in which there are exactly x identified
baryons, y identified anti-baryons, z identified S=+1 parti-
cles and v identified S=-1 particles, we can write all of the
{nxbyBzsvS}’s up to final states with exactly 4 identified B
and/or S non-zero particles. The following gives some exam-
ples, now denoting fs → h; fb → f for compactness and de-
noting baryon (anti-baryon) and strangeness +1 (-1) as b,B,s,S
for more compact expressions:

n1b = eb(f(1− eb) + 2g(1− eb)(1− es)2 + 2f2(1− eb)3)(1 + h(1− es)2) (31)

n2b2S = e2
be

2
s(g + f2h2(1− eb)2(1− es)2) (32)

n1b1B1s1S = e2
be

2
s(fh+ 4fh2(1− es)2 + 4f2h(1− eb)2) . (33)

Note that this analysis does not consider mis-identification
which must be taken into account for a real assessment, but
it does give a useful idea of the possible statistical power.

The most sensitive combination to find a signal for g 6= 0
is of course n2b2S = n2Bn2s. Fig. 14 shows the signifi-

cance by which a given sexaquark branching fraction is dis-
tinguished from background according to this simplified anal-
ysis, for Ntot = 109. The statistical model estimate is BF =
g = 2.7 × 10−7 and the significance scales as

√
Ntot. We

have defined

nσ(g) =
(n2b2S(g) + n2B2s(g)− (n2b2S(g = 0) + n2B2s(g = 0))

√
Ntot√

(n2b2S(g) + n2B2s(g) + (n2b2S(g = 0) + n2B2s(g = 0))/2
. (34)

The different colored lines give 3 examples of how the signifi-
cance depends on the efficiencies eb and es. The Belle-II parti-
cle ID efficiency for baryon and kaons is 0.8-0.9 depending on
how hard they cut, which depends on what backgrounds they
want to suppress, so we consider eb = 0.8 and 0.9. Since only

charged K’s have a definite strangeness, we penalize kaons by
a factor-2; hyperons on the other hand have clearly determined
strangeness, so we consider es = 0.4 and 0.5. Not surpris-
ingly, large eb is more important than large es, since baryons
are rarer and thus any sexaquark contribution makes a larger
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relative impact on the baryon abundances. A detailed analysis
could exploit other combinations such as n2b1S which have
some sensitivity to g but with a larger fractional contribution
from standard channels, and use cases like n1b1B1s1S which
get no contribution from S or S̄ to develop confidence that the

systematics of the background are fully understood.
The result of the crude analysis given above is roughly ap-

plicable for any process in which the multiplicity of gluons
and qq̄’s produced is large. Thus it could be a guide for the
feasibility of heavy ion and a GLUEX search as well.
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