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Abstract

We explore the idea of an alternative candidate for particle dark matter

namely Feebly Interacting Massive Particle (FIMP) in the framework of a two

component singlet scalar model. Singlet scalar dark matter has already been

demonstrated to be a viable candidate for WIMP (Weakly Interacting Massive

Particle) dark matter in literature. In the FIMP scenario, dark matter particles

are slowly produced via “thermal frreze-in” mechanism in the early Universe

and are never abundant enough to reach thermal equilibrium or to undergo

pair annihilation inside the Universe’s plasma due to their extremely small

couplings. We demonstrate that for smaller couplings too, required for freeze-

in process, a two component scalar dark matter model considered here could

well be a viable candidate for FIMP. In this scenario, the Standard Model of

particle physics is extended by two gauge singlet real scalars whose stability is

protected by an unbroken Z2 ×Z
′
2 symmetry and they are assumed to acquire

no VEV after Spontaneous Symmetry Breaking. We explore the viable mass

regions in the present two scalar DM model that is in accordance with the FIMP

scenario. We also explore the upper limits of masses of the two components

from the consideration of their self interactions.
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1 Introduction

One of the most important problems of fundamental physics is to ascertain the particle

nature of dark matter (DM) and their production mechanisms in the early Universe.

The existence of dark matter in the Universe is established only through its gravita-

tional effects and from different astronomical and cosmological observations such as

rotation curves of spiral galaxies [1], gravitational lensing [2], phenomenon of Bullet

cluster [3], PLANCK [4] satellite borne experiment for measuring the anisotropies in

Cosmic Microwave Background Radiation (CMBR) etc. The direct evidence of dark

matter through the direct detection mechanism [5]-[7] whereby a detector nucleus

scatters off by a possible DM particle is yet to be found. One of the viable and

popular candidates for dark matter may be the WIMPs (Weakly Interacting Mas-

sive Particles) [8]-[13]. But the particle candidates for WIMPs are not known yet.

Also not known whether the dark matter in the Universe is made up of one particle

component or its constituent components are more than one.

Although the WIMPs are yet to be detected in the world wide endeavour for direct

dark matter search they continue to be popular dark matter candidates. WIMPs are

produced in the early Universe thermally and they maintained thermal and chemical

equilibrium at that epoch. When expansion rate of the Universe exceeded the inter-

action rates of the DM particles, these particles were not able to interact with them

anymore. As a result such dark matter particles fell out of (or moved away from)

equilibrium. Thus they suffered a state of “freeze out” by being decoupled from the

Universe’s plasma and remained as relics. There are abundant examples in the litera-

ture where various particle physics models are proposed for viable particle candidates

of WIMP dark matter. Such models are either based on simple extensions of Standard

Model of particle physics (SM) or other established theories Beyond Standard Model

(BSM). Some well-known candidates in the latter category are the neutralinos [8] in

supersymmetric (SUSY) theories, the lightest Kaluza-Klein particle [14] in Universal

Extra-Dimensional (UED) model, the singlet [15]-[18] etc. while the former category

includes, among other models, the singlet and doublet [19]-[31] scalar extensions of

the SM, singlet fermionic dark matter [32]-[34], hidden sector vector dark matter [35]-

[38] etc. Vector and scalar dark matter in a model with scale invariant SM extended

by a dark sector has been explored in [39, 40]. Fermion dark matter in a dark sector

(with gauge group SU(2) × U(1)) and dark U(1) charge are considered by Biswas

et. al. [41]. But there is no definitive evidences that dark matter is in fact consists

of WIMP particles [42] or other particles that are thermally produced in the early
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Universe. It is important therefore to consider viable alternatives to thermal WIMPs.

In this work we explore, for a viable dark matter candidate, a well motivated

alternative to the WIMP mechanism, namely the FIMP (Feebly Interacting Massive

Particle) [43, 44, 45, 46] mechanism. Here, we propose a dark matter candidate that

has two components and the production of which in the early Universe are assumed

to be through the FIMP mechanism. FIMPs are identified by their small interac-

tion rates with Standard Model particles in the early Universe. Due to such feeble

interactions these FIMP particles are unable to reach thermal equilibrium with the

Universe’s plasma throughout their cosmological history. FIMPs are thus slowly pro-

duced by decays or annihilations of Standard Model particles in the thermal plasma

and in contrast to WIMPs they are never abundant enough to undergo annihilation

interactions among themselves. Therefore they are never in thermal or chemical equi-

librium with rest of the Universe’s plasma. But their number densities increase slowly

due to their very small couplings with the SM particles. Thus, in contrast to thermal

WIMP cases where the dark matter particles go away from the equilibrium, the FIMP

particles approach towards equilibrium. An example of a FIMP candidate may be

sterile neutrino, which is produced from the decay of some heavy scalars [47]-[49] or

gauge bosons [50]. In Refs. [51]-[53] various FIMP type DM candidates have been

discussed.

In the present work we propose a two component dark matter model in FIMP

scenario. The model involves two distinct singlet scalars that serve as the two com-

ponents of the dark matter. Our purpose is to demonstrate the viablity of such two

component singlet scalars in FIMP scenario to be dark matter candidates in the mass

regimes spanning from GeV to keV. To this end, three pairs of masses are consid-

ered for the dark matter components in the mass regimes GeV, MeV and keV. For

a one component singlet scalar dark matter model, the Standard Model is minimally

extended by an additional scalar singlet [15]. In our work (involving two scalar com-

ponents) we extend the scalar sector of SM by two real scalar fields S2 and S3, both

of which are singlets under the Standard Model gauge group SU(2)L × U(1)Y. Pro-

ductions of both dark matter components in FIMP scenario proceed from the pair

annihilation of SM particles such as fermions, gauge bosons and Higgs bosons. These

scalars are assumed to acquire no vacuum expectations values (VEV) at spontaneous

symmetry breaking (SSB) and a Z2 × Z ′
2 symmetry [54, 55, 56] is imposed on the

two scalars of the extended scalar sector so as to prevent the interactions of the two

scalar components with the SM fermions or their decays. Here discrete symmetries

Z2 and Z ′
2 are imposed on the scalars S2 and S3 respectively. As both the scalars
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do not generate any VEV at SSB, the fermion masses are also not affected. Such a

scalar interacts with the SM sector only through a Higgs portal due to the interaction

term (in inteaction Lagrangian) of the type H†HSiSi (where i = 2, 3). The unknown

couplings of these additional scalars are the parameters of the theory. These can

be constrained using the theoretical bounds on the Lagrangian as also by comput-

ing the relic densities and then comparing them with the same given by PLANCK

experiment.

The relic densities are calculated by evaluating the comoving number densities ns2

and ns3 (which are in general written in terms of the ratios Ys2 =
nS2

S
and Ys3 =

ns3

S

of corresponding number densities and the entropy density S of the Universe) for the

scalar dark matter components s2 and s3 respectively (see later (Sect. 3)). At the

present epoch these are computed by solving self consistently, the relevant coupled

Boltzmann equations for the two components. As mentioned earlier, in FIMP scenario

the number density of a species evolves towards its equilibrium value from almost

negligible initial abundance. This means, initially Ys2 ≈ 0 ≈ Ys3. Evolution of

these abundances requires computations of the quantities such as the decay processes

h → sjsj (j = 2, 3), where h denotes the SM Higgs, the pair annihilation processes

xx̄ → sjsj, where x can be W±, Z, f(f̄), h, s2, s3 etc. The total dark matter relic

density for the considered two component singlet scalar model in FIMP scenario

is finally obtained by adding the computed individual abundances of each of the

components as Ωtoth̃
2 = Ωs2 h̃

2 + Ωs3 h̃
2, where the relic density Ω for a particular

species is expressed in terms of Ωh̃2, h̃ being the Hubble parameter normalised to

100 km s−1 Mpc−1. The computed value of Ωtoth̃
2 should be consistent with WMAP

[57]/PLANCK [4] observational results, 0.1172 ≤ ΩDMh̃
2 ≤ 0.1226.

There are indications from astronomical observations of collisions of galaxies and

galaxy clusters, the existence of self interactions among the dark matter paricles.

From observations of Bullet Cluster phenomenon in the past and from more recent

observations of 72 colliding galaxy clusters [58], an upper limit to the dark matter

self interacting cross-sections per unit dark matter mass has been given in the litera-

tures. In this work we explore further the mass regions for our two component FIMP

dark matter model that agrees to this self interaction bound while satisfying other

conditions mentioned earlier.

The paper is organised as follows. In Section 2 we give a brief account of the

Freeze-in process. Section 3 furnishes our two component scalar dark matter model

whicle Section 4 deals with the constraints by which the model parameter space can

be constrained. In Section 5 the methodology to compute the relic densities for the
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present two component scalar DM model is described. In Section 6 we furnish our

calculational results considering the dark matter candidates in three mass regions

namely GeV, MeV and keV. As mentioned, we have also computed the dark matter

self interactions for the present scenario. The formalism computations for the same

are given in Section 7. Finally in Section 8 we give a brief summary and discussions.

2 Freeze-in Overview

In this section, we briefly discuss the “freeze-out” mechanism for thermal production

of the dark matter. In the early Universe massive DM candidates could be thermally

produced by the collision of the particles in thermal cosmic plasma and were in both

kinetic and chemical equilibrium with the thermal plasma. Dark matter particles have

a large initial thermal density at a temperature T which is greater than the mass of

DM (mχ, where χ denotes a thermal dark matter candidate). As the temperature of

the hot plasma of the early Universe dropped below the mass of the dark matter, the

lighter particles lacked the potential to produce heavier particles as they no more have

enough kinetic energy (thermal energy). The expansion of the Universe dilutes the

number of particles and thus interaction between them can hardly occur. Thus the

conditions for thermal equilibrium were violated. The DM particles then go away from

the equilibrium and decouple from Universal hot plasma. This phenomenon is called

“freeze-out”. After “freeze-out” the comoving number density of DM particles became

fixed and these particles remain as relic. Larger the annihilation cross-sections of the

particles more is the annihilation of DM particles before freeze out and consequently

the density will be less. An attractive feature of the freeze-out mechanism is that for

renormalisable couplings the yield is dominated by low temperatures with freeze-out

typically occuring at a temperature which is a factor ∼ 20−25 of the DM mass. The

WIMPs are generally produced through this mechanism.

As mentioned in Section 1, we explore in this paper, a dark matter candidate

that is produced through an alternate mechanism namely the “freeze-in” mechanism

from almost negligible initial abundance and with very feeble interactions with other

particles. The dark matter produced through this mechanism is generally referred to

as Feebly Interacting Massive Particles (FIMPs) dark matter. As the interaction of

such FIMPs with other bath particles (Standard Model particles) are very feeble, they

never attain thermal equilibrium. Although feeble, initially the FIMPs production

may happen slowly due to the very feeble interactions with the Standard Model
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particles which grow gradually. The dominant production occurs at T ∼ mχ, where

T is the temperature of the Universe.

The freeze-in process is opposite in nature to that of freeze-out. As the tempera-

ture T drops below the mass of the relevant particle (here the DM candidate), the DM

is either heading away from (freeze-out) or towards (freeze-in) thermal equilibrium.

In freeze-out mechanism the initial number density varies as T 3 and then decreases

as the interaction strength reduces to maintain this large abundance. On the other

hand freeze-in has a negligible initial DM abundance, and increases as the interaction

strength increases the production of DM from the thermal bath.

3 Two Component Dark Matter Model

The two component dark matter model in FIMP scenario proposed in this work

consists of two distinct scalar singlet DM particles S2 and S3. Here, we have a

renormalisable extension of the SM by adding two real scalar fields S2 and S3. These

two real scalars are singlets under the SM gauge group and they are stabilised by

imposing a discrete Z2 ×Z ′
2 symmetry. These scalars do not generate any VEV after

spontaneous symmetry breaking and there is no mixing between these real scalars

and the SM scalar. The only possible way that the DM candidates interact with the

SM sector is through Higgs portal.

The Lagrangian of our model can be written as

L = LSM + LDM + Lint , (1)

where LSM stands for the Lagrangian of the SM particles and it consists of quadratic

and quartic terms involving the Higgs doublet H in addition to the usual kinetic term

for H . As mentioned, the dark sector Lagrangian consists of two real scalar fields,

which can be expressed as

LDM = LS2
+ LS3

, (2)

with

LS2
=

1

2
(∂µS2)(∂

µS2)−
µ2
S2

2
S2
2 −

λS2

4
S4
2 , (3)

and

LS3
=

1

2
(∂µS3)(∂

µS3)−
µ2
S3

2
S2
3 −

λS3

4
S4
3 . (4)
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The interaction Lagrangian Lint contains all possible mutual interaction terms among

the scalar fields H,S2, S3.

Lint = −V ′(H,S2, S3) , (5)

where V ′(H,S2, S3) can be written as

V ′(H, S2, S3) = λHS2
H†H S2

2 + λHS3
H†H S2

3 + λS2S3
S2
2 S

2
3 . (6)

The renormalisable scalar potential V is written as

V = µ2
H H†H + λH (H†H)2 +

µ2
S2

2
S2
2 +

λS2

4
S4
2 +

µ2
S3

2
S2
3 +

λS3

4
S4
3

+λHS2
H†H S2

2 + λHS3
H†H S2

3 + λS2S3
S2
2 S

2
3 . (7)

After the spontaneous symmetry breaking SM Higgs acquires a VEV, v (v ∼ 246

GeV) and SM scalar doublet takes the form

H =
1√
2

(

0

v + h

)

. (8)

It is assumed in the present model that the two scalars S2 and S3 do not generate

any VEV such that 〈S2〉 = 0 = 〈S3〉. As a result, after SSB we have H → h + v,

S2 = s2 + 0, S3 = s3 + 0. Thus after spontaneous symmetry breaking the scalar

potential V takes the form

V =
µ2
H

2
(v + h)2 +

λH

4
(v + h)4 +

µ2
S2

2
s22 +

λS2

4
s42 +

µS3

2
s23 +

λS3

4
s43 +

λHS2

2
(v + h)2s22 +

λHS3

2
(v + h)2s23 + λS2S3

s22s
2
3 . (9)

Now by using the minimisation condition

(

∂V

∂h

)

,

(

∂V

∂s2

)

,

(

∂V

∂s3

) ∣

∣

∣

∣

h=0, s2=0, s3=0

= 0 , (10)

we obtain the condition

µ2
H + λHv

2 = 0 . (11)
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By evaluating ∂2V
∂h2 ,

∂2V
∂s2

2

, ∂2V
∂s2

3

, ∂2V
∂h∂s2

, ∂2V
∂h∂s3

, ∂2V
∂s3∂s2

at h = s2 = s3 = 0, one can now

construct the mass matrix in the basis h− s2 − s3 as

M2
scalar =







2λHv
2 0 0

0 µ2
S2

+ λHS2
v2 0

0 0 µ2
S3

+ λHS3
v2






. (12)

It may be noted here that the mass matrix is diagonal as there is no mixing between

h, s2 and s3.

4 Constraints

In this section we discuss various bounds and constraints on the model parameters of

the model from both theoretical considerations and experimental observations. These

are furnished in the following.

•Vacuum Stability: In our work we consider an extended model with two additional

scalar fields. For the stability of the vacuum, the scalar potential has to be bounded

from below in the limit of large field values along all possible directions of the field

space. In this large limit the quartic terms of the scalar potential dominate over the

mass and the cubic terms. The quartic part (V4) of the scalar potential V (Eq. (7))

is given as

V4 = λH (H†H)2 +
λS2

4
S4
2 +

λS3

4
S4
3 + λHS2

H†H S2
2

+λHS3
H†H S2

3 + λS2S3
S2
2 S

2
3 . (13)

Bounds on the couplings from the vacuum stability condition are [59]

λH , λS2
, λS3

> 0

λHS2
+
√

λHλS2
> 0

λHS3
+
√

λHλS3
> 0

2λS2S3
+
√

λS2
λS3

> 0 (14)

and
√

2(λHS2
+
√

λHλS2
)(λHS3

+
√

λHλS3
)(2λS2S3

+
√

λS2
λS3

)

+
√

λHλS2
λS3

+ λHS2

√

λS3
+ λHS3

√

λS2
+ 2λS2S3

√

λH > 0 . (15)
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• Perturbativity: In order to obey the perturbative limit, the quartic couplings of

the scalar potential in our model should be constrained as [54]-[60]

λH , λHS2
, λHS3

≤ 4π,

λS2
, λS3

, λS2S3
≤ 2π

3
. (16)

• Relic Density: The total relic density of the dark matter components must satisfy

PLANCK observational results for dark matter relic densities.

0.1172 ≤ ΩDMh̃
2 ≤ 0.1226 , (17)

where ΩDM is the dark matter relic density normalised to the critical density of the

Universe and h̃ is the Hubble parameter in units of 100 Km s−1 Mpc−1.

• Collider Physics Bounds: ATLAS and CMS had observed independently the

excess in γγ channel from which they had confirmed the existence of a Higgs like

scalar with mass ∼ 125.5 GeV [61, 62]. The signal strength of Higgs like boson is

defined as

R =
σ(pp → h)

σSM(pp → h)

Br(h → xx)

BrSM(h → xx)
, (18)

where σ(pp → h) and Br(h → xx) denote the production cross-section and the decay

branching ratio of Higgs like particle decaying into SM particles (x) respectively

while σSM(pp → h) and BrSM(h → xx) respectively are those for SM Higgs. The

braching ratio of Higgs like boson and SM Higgs boson can be expressed respectively

as Br(h → xx) =
Γ(h → xx)

Γ
and BrSM(h → xx) =

ΓSM(h → xx)

ΓSM
, where Γ(h → xx)

and ΓSM(h → xx) are the decay width of Higgs like boson and SM Higgs boson. The

quantities Γ and ΓSM represent the total decay widths of Higgs like particle and SM

Higgs boson respectively. Using these expressions for branching ratio in Eq. (18) one

obtains

R =
σ(pp → h)

σSM(pp → h)

Γ(h → xx)

Γ

ΓSM

ΓSM(h → xx)
. (19)

As there is no mixing between the scalars (h, s2 and s3) we have σ(pp → h) ≡
σSM(pp → h) and similarly Γ(h → xx) ≡ ΓSM(h → xx). Thus Eq. (19) takes the

form

R =
ΓSM

Γ
. (20)
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In the above expressions the total decay width of Higgs like boson can be wriiten as

Γ = ΓSM+Γinv. The invisible decay width of Higgs like boson to dark matter particles

Γinv is given as

Γinv = Γh→s2s2 + Γh→s3s3 . (21)

The decay width Γh→sisi (i = 2, 3) can be expressed as

Γh→sisi =
λhsisi

8πmh

√

1− 4m2
si

m2
h

. (22)

The invisible branching ratio for such invisible decay is then given as

Brinv =
Γinv(h → sisi)

Γh

, i = 2, 3 . (23)

We have checked that due to the small values of the couplings in our model this

branching ratio (Eq. (23)) for the invisible decay of Higgs like boson has to be small.

To this end, we impose the condition Brinv < 0.2 [63] and that the Higgs like boson

signal strength must satisfy the limit R ≥ 0.8 [64].

5 Relic Density Calculations for Two Component

Scalar FIMP Dark Matter

The evolution of the number density of DM particle with time is governed by the

Boltzmann equation. In this section we compute the number densities for both the

DM candidates s2 and s3 in our model, at the present epoch (temperature T0 ∼ 10−13

GeV). For the case of a two component dark matter, the relic density is obtained

by solving self consistently, two coupled Boltzmann equations which, for the present

scenario, are given by

dns2

dt
+ 3H̃ns2 = −〈Γh→s2s2〉(ns2 − neq

s2
)− 〈σv〉s2s2→xx̄(n

2
s2
− (neq

s2
)2)

−〈σv〉s2s2→s3s3

(

n2
s2
− (neq

s2
)2

(neq
s3)2

n2
s3

)

, (24)

dns3

dt
+ 3H̃ns3 = −〈Γh→s3s3〉(ns3 − neq

s3
)− 〈σv〉s3s3→xx̄(n

2
s3
− (neq

s3
)2)

+〈σv〉s2s2→s3s3

(

n2
s2
− (neq

s2
)2

(neq
s3)2

n2
s3

)

. (25)
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In the above, nsi and neq
si

(i = 2, 3) are the number densities (that evolve with time t)

and equilibrium number densities respectively for the scalars s2 and s3, 〈σv〉sisi → ab

denotes the average annihilation cross-sections for the two scalars si, i = 2, 3 (a, b are

the annihilation products) and H̃ is the Hubble parameter.

This is to mention that the Boltzmann equations (Eqs. (24, 25) ) should also

in principle include terms due to 4 → 2 or 3 → 2 interactions of the dark mat-

ter self annihilations. The annihilation cross-sections for such processes such as

s2s2s2s2 → s2s2, s2s2s3s3 → s2s3, s2s2s2 → s2s2, s2s2s3 → s2s3 could be significant

if the couplings are large. For our cases we consider FIMP dark matter masses in

three ranges namely keV, MeV and GeV while for GeV range such contributions are

ruled out since for a significant contribution, the coupling is to be large enough that

may violate perturbative limit [65]. In case of keV range we have checked (also by

Ref. [66]) that 4 → 2 interaction is insignificant due to smalleness of corresponding

self coupling while for MeV range FIMP these could be significant. We have checked

that for the chosen mass and the values of the couplings (obtained from theoretical

constraints) the contribution is negligibly small even for MeV mass range FIMPs.

From Fig. 3 of Ref. [67], we see that for the present work the contribution for MeV

mass range falls in the semirelativistic region of the plot. Hence we did not consider

these terms in the Boltzmann equations.

Defining a dimensionless quantity namely the comoving number density expressed

in terms of the ratio Yi = nsi/S (i = 2, 3) of the number density (nsi) and the total

entropy density (S) and defining z = mh/T , T being the photon temperature, Eqs.

(24, 25) can be rewritten in terms of the variation of Yi(i = 2, 3) with z as

dYs2

dz
= − 2zmPl

1.66m2
h

√

g∗(T )
√

gS(T )

(

〈Γh→s2s2〉 (Ys2 − Y eq

h )

)

−4π2

45

mPlmh

1.66

√

g∗(T )

z2
×

(

∑

x=W,Z,f,h

〈σvxx̄→s2s2〉(Y 2
s2
− (Y eq

x )2) + 〈σvs2s2→s3s3〉(Y 2
s2
− (Y eq

s2
)2

(Y eq
s3 )2

Y 2
s3
)

−〈σvs3s3→s2s2〉(Y 2
s3
− (Y eq

s3
)2

(Y eq
s2 )2

Y 2
s2
)

)

(26)

and

dYs3

dz
= − 2zmPl

1.66m2
h

√

g∗(T )
√

gS(T )

(

〈Γh→s3s3〉 (Ys3 − Y eq

h )

)

−4π2

45

mPlmh

1.66

√

g∗(T )

z2
×

11



s2, s3

s2, s3

h

f

f̄

s2, s3

s2, s3

h

W+

W−

s2, s3

s2, s3

h

Z

Z

s2, s3

s2, s3

h

h

h

s2, s3

s2, s3

h

s2, s3

s2, s3

s2, s3

s2, s3

h

s2, s3

s2, s3

s2, s3

s2, s3

s2, s3

s2, s3

h

h

s2, s3

s2, s3

s2, s3

h

h

Figure 1: Feynman diagrams for both the scalar dark matter candidates s2 and s3.
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(

∑

x=W,Z,f,h

〈σvxx̄→s3s3〉(Y 2
s3
− (Y eq

x )2)− 〈σvs2s2→s3s3〉(Y 2
s2
− (Y eq

s2
)2

(Y eq
s3 )2

Y 2
s3
)

+〈σvs3s3→s2s2〉(Y 2
s3
− (Y eq

s3
)2

(Y eq
s2 )2

Y 2
s2
)

)

. (27)

We have already mentioned that the initial abundance of FIMP [43, 44] dark matter

candidate is negligible. Therefore assuming Ys2 = Ys3 = 0, Eqs. (26, 27) take the

form

dYs2

dz
= − 2zmPl

1.66m2
h

√

g∗(T )
√

gS(T )

(

〈Γh→s2s2〉 (−Y eq

h )

)

−4π2

45

mPlmh

1.66

√

g∗(T )

z2
×

(

∑

x=W,Z,f,h

〈σvxx̄→s2s2〉(−Y eq
x )2

)

(28)

and

dYs3

dz
= − 2zmPl

1.66m2
h

√

g∗(T )
√

gS(T )

(

〈Γh→s3s3〉 (−Y eq

h )

)

−4π2

45

mPlmh

1.66

√

g∗(T )

z2
×

(

∑

x=W,Z,f,h

〈σvxx̄→s3s3〉(−Y eq
x )2

)

. (29)

In the above, mPl is the PLANCK mass, mPl = 1.22 ×1022 GeV and the term g∗ is

defined as [12]

√

g∗(T ) =
gS(T )
√

gρT

(

1 +
1

3

dlnheff(T )

dlnT

)

, (30)

where two effective degrees of freedom geff(T ) and heff(T ) are related to the energy

and entropy densities of the Universe through the following relations,

S = gS(T )
2π2

45
T 3 , ρ = gρ(T )

π2

30
T 4 . (31)

Also, the thermally averaged decay widths and annihilation cross-sections for various

processes are given by,

〈Γh→sisi〉 = Γh→sisi

K1(z)

K2(z)
,

〈σv〉xx̄→sisi =
1

8m4
x T K2

2 (Mx/T )

∫ ∞

4m2
x

σxx̄→sisi(s− 4M2
x)
√
sK1(

√
s

T
)ds . (32)
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In Eq. (32) i = 2, 3, x = W±, Z, f, h, s2, s3, K1 and K2 are the modified Bessel

functions of order 1 and 2, s defines the centre of momentum energy. The decay

widths Γh→SiSi
and annihilation cross-sections σxx̄→sisi (i = 2, 3) for different processes

considered to calcuate the coupled Boltzmann equations (Eqs. (28, 29)) are given

below

Γh→sisi =
g2hsisi
8πmh

√

1− 4m2
si

m2
h

, (33)

σhh→sisi =
1

2πs

√

s− 4m2
si

s− 4m2
h

{

g2hhsisi +
9 g2hhhg

2
hsisi

[(s−m2
h)

2 + (Γhmh)2]

−6 ghhsisighsisighhh(s−m2
h)

[(s−m2
h)

2 + (Γhmh)2]

}

, (34)

σs2s2→s3s3 =
1

2πs

√

s− 4m2
s3

s− 4m2
s2

{

g2s2s2s3s3 +
g2s2s2hg

2
hs3s3

[(s−m2
h)

2 + (Γhmh)2]

−2 gs2s2s3s3gs2s2hghs3s3(s−m2
h)

[(s−m2
h)

2 + (Γhmh)2]

}

, (35)

σs3s3→s2s2 =
1

2πs

√

s− 4m2
s2

s− 4m2
s3

{

g2s2s2s3s3 +
g2s3s3hg

2
hs2s2

[(s−m2
h)

2 + (Γhmh)2]

−2gs3s3s2s2gs3s3hghs2s2(s−m2
h)

[(s−m2
h)

2 + (Γhmh)2]

}

, (36)

σWW→sisi =
g2WWhg

2
hsisi

72πs

√

s− 4m2
si

s− 4m2
W

(

3− s

m2
W

+
s2

4m2
W

)

(s−m2
h)

2 + (Γhmh)2
, (37)

σZZ→sisi =
g2ZZhg

2
hsisi

18πs

√

s− 4m2
si

s− 4m2
Z

(

3− s

m2
Z

+
s2

4m2
Z

)

(s−m2
h)

2 + (Γhmh)2
, (38)

σff̄→sisi
=

Ncg
2
ffhg

2
hsisi

16πs

√

(s− 4m2
si
)(s− 4m2

f)

(s−m2
h)

2 + (Γhmh)2
. (39)

In the above equations the couplings of the vertices are defined as gabc and gabcd,

where a, b, c, d are the fields. The masses of W and Z bosons and the fermions (f) are

denoted as mW , mZ and mf respectively. Nc in Eq. (39) denotes the color quantum

number. Detailed expressions for all the couplings required given in Eqs. (33 - 39) are

enlisted in the Appendix. The Feynman diagrams corresponding to all the possible

channels for the two distinct scalar components s2 and s3 are shown in Fig. 1.

The relic densities of each of the components s2 and s3 of the dark matter are
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finally obtained in terms of their respective masses and comoving number densities

at the present epoch, as [68, 69]

Ωih̃
2 = 2.755× 108

( mi

GeV

)

Yi(T0), i = s2, s3 . (40)

Solving numerically the two coupled Boltzmann equations Eqs. (26 - 29) alongwith

Eqs. (33 - 39) we compute the comoving number densities Yi(T0) for both components

of FIMP dark matter. The total relic density Ωtot is then obtained by adding the

relic densities of each of the components s2 and s3 as follows

Ωtoth̃
2 = Ωs2h̃

2 + Ωs3 h̃
2 . (41)

The total relic density Ωtoth̃
2 should satisfy the PLANCK measurement

0.1172 ≤ ΩDMh̃
2 ≤ 0.1226 . (42)

As mentioned earlier, in our present dark matter model we have considered two

distinct scalar dark matter particles in the FIMP scenario. In Fig. 2 we furnish rep-

resentative plots showing the evolutions of relic densities for each of the components

as well as the total relic densities of two component scalar dark matter for each of

the chosen mass regimes namely GeV (Fig. 2a), MeV (Fig. 2b) and keV (Fig. 2c).

6 Calculations and Results

We have considered here a two component scalar dark matter model under the frame-

work of Feebly Interacting Massive Particle (FIMP) dark matter. In this work this is

our purpose to demonstrate that over a wide range of masses (from GeV to keV) such

a two component FIMP scalar dark matter is a viable dark matter candidate. There-

fore in our analysis we have chosen the DM candidates in three mass regimes namely

GeV, MeV and keV. To this end we first calculate the relic densities of the FIMP dark

matter candidates in our proposed model. From Section 3 it should be clear that the

various unknown couplings (λHS2
, λHS3

, λS2S3
etc.) constitute the parameters of our

model. We first constrain those parameters by using various theoretical bounds given

in Eqs. (14-16) as also the collider bounds described in Eqs. (18-23). We have chosen

a pair of values for two DM components in our two component scalar model in each

of the three separate mass regimes GeV, MeV and keV. The relic densities of each

component are first calculated using the Eqs. (24-40) by varying the parameter space

within the constrained range. These are eventually added up (Eq. (41)) to obtain the
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Figure 2: Variations of the relic densities of the two single scalar dark matter com-

ponents s2 and s3 with z for different values of couplings (λHS2
, λHS3

) and masses

(ms2, ms3) in the three mass regions GeV (a), MeV (b) and keV (c) . In each plot

(from (a) to (c)) the red solid line and the green dashed line indicate the relic den-

sity of the components s2 and s3 respectively while the blue dotted line represents

the same for the total relic density. The PLANCK observational range for DM relic

density is 0.1172 ≤ ΩDMh̃
2 ≤ 0.1226.
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total relic density of the present two component dark matter model. The expressions

for various couplings gx1,x2,x3
and gx1,x2,x3,x4

(where xi, i = 1, 2, 3, 4 represents different

particles involving annihilation cross-sections or decay widths) required to compute

the relic densities by solving the Boltzmann equations (Eqs. (26-29)) in terms of

the model parameters are given in the Appendix. Thus the computed relic densities

are then compared with the PLANCK observational measurements for the same (Eq.

(42)). Thus the model parameter space is further constrained by the observed relic

denisties for the dark matter. We have also checked that the scattering cross-section

of each of the components of the present model with nucleon is well below the most

stringent upper bound for the same reported by the LUX dark matter direct detection

experiment [5]. In the following we describe the calculations for each mass regime

considered here.

6.1 FIMP at GeV Mass Regime

In the GeV regime the masses of the two scalar components are chosen to be 15

GeV and 10 GeV. The relic densities for such two component FIMP dark matter are

calculated for each of the components by solving the coupled Boltzmann equations

(Eqs. (26-29)) which are added up to obtain the total relic density. The computation

is performed by varying the model parameters. The range of these parameters are

so chosen that they satisfy the theoretical bounds given in Eq. (14-16). This is

also verified that for the chosen range of the model parameters the collider bounds

(Sect. 4) are satisfied. In other words we ensure that within the chosen range of our

model parameters the signal strength of SM Higgs boson (Eq. (19)) satisfies the limit

R ≥ 0.8 and the invisible branching ratio (Eq. (23)) satisfies Brinv < 0.2.

In Fig. 3 we show the variations of the total relic abundance Ωtoth̃
2 (right panel)

and the relic abundances Ωs2,s3h̃
2 for each of the components of the present DM model

(left panel) with λHS3
. In Fig. 4 similar variations with coupling λHS2

are plotted.

In both the figures the PLANCK observational results for ΩDMh̃
2 are shown by two

parallel lines. It is observed from Figs. 3,4 that the relic abundance increases with

the increase of the parameters λHS3
and λHS2

. Figs. 3,4 constraints these parameters

by PLANCK results. In fact from Figs. 3,4 one sees that for the chosen fixed FIMP

component masses of 15 GeV and 10 GeV the upper limits of the Higgs-couplings

with the scalar components λHS2
and λHS3

will be around 10−12.

Unlike the WIMP dark matter where the relic density of dark matter would de-

crease with the increase of the Higgs-couplings with the DM candidates, for the case
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Figure 3: The variations of the relic abundances Ωs2,s3h̃
2 for each of the two DM

components with the coupling λHS3
. The red and green regions represent the relic

abundaces of s2 and s3 respectively. Right panel shows the variation of Ωtoth̃
2 with

λHS3
. The PLANCK limit is shown by the thick green line. See text for details.
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Figure 4: Same as Fig. 3 but for λHS2
.
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Figure 5: The available region constrained by the PLANCK results in λHS2
− λHS3

plane is denoted in this figure.

of FIMP DM the relic density increases with the Higgs-couplings instead. This is one

of the salient features of FIMP dark matter. This can also be seen from Figs. 3,4

that the nature of variations of the relic abundances with λHSi
(i = 2, 3) are parabolic

which reflect the fact that Ωh̃2 ∼ λ2
HSi

(i = 2, 3).

Further, in order to constrain the parameter space by the PLANCK observational

results we simultaneously vary the two parameters λHS2
, λHS3

. The results are plotted

in Fig. 6. In Fig. 6 we show the two parameter scan results, where the region

constrained by the PLANCK results are shown by the red colour zone in the λHS2
−

λHS3
plane.

6.2 FIMP at MeV Mass Regime

In the MeV regime we choose the masses of the two component dark matter to be

10 MeV and 5 MeV. With these masses and using our formalism of two component

FIMP dark matter model we constrain the parameter space following the procedures

similar to what described in Section 6.1. In this mass region too the parameter space

is finally constrained by calculating the relic abundance and then comparing them

with the PLANCK results. The results are shown in Figs. 6,7. From Fig. 6 and Fig.

7 which show the variations of relic abundances for each of the two components as

well as the total abundance with the coupling parameters λHS2
, λHS3

respectively we

obtain an upper limit for λHS3
and λHS2

to be of the order of ∼ 8× 10−11. In Fig. 8

we show the parameter space restricted by the PLANCK relic abundance results and
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is indicated by the red colour region in the relevant plot.

6.3 FIMP at keV Mass Regime

In the keV range we have considered the masses of the two FIMP scalar components

to be 10 keV and 5 keV and performed the analysis similar to what described in the

cases of GeV and MeV ranges for restricting the parameter space. The results are

shown in Figs. 9,10. We find similar nature for variations of the relic abundances

with the couplings (Figs. 9,10) as also for the constrained parameter space (Fig. 11).

We find the upper limits for λHS3
and λHS2

to be around 2.2× 10−9.
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Figure 6: Same as Fig. 3 but for MeV mass regime. See text for details.

7 Self Interactions for Singlet Scalar Dark Matter

Recently there are evidences of dark matter self interactions [58, 70, 71, 72, 73] from

the observations of collision of several galaxy clusters. The visible part of a galaxy

is generally embedded inside a spherical halo of dark matter that extends far beyond

the visible reaches of that galaxy. The dark matter halo makes up most of the galaxy

masses. At the time of collisions between multiple galaxies a lareger galaxy among

them pulls stars and other stellar material from a smaller galaxy and this process is

called tidal stripping. Due to the presence of gravitational effect one galaxy pulls in

material from another and this can cause the dark matter to suffer a spatial offset

from the stars in the galaxy. Recently the galaxy cluster Abell 3827 is observed
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Figure 7: Same as Fig. 4 but for MeV mass regime.
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Figure 8: Same as Fig. 5 but for MeV mass regime.

by the Hubble Space Telescope [71]. The observations of the four elliptical galaxies

falling into the inner 10 Kpc core of galaxy cluster Abell 3827 indicate that the

dark matter could be self interacting. The position of the dark matter halos of the

four falling galaxies can be restored by using gravitational lensing and many other

strongly - lensed images of background objects. It is observed that one of the halos

among these four galaxies is significantly separated from its stars by a distance of

∆ = 1.62+0.47
−0.49 Kpc. This spatial offset can be explained by the study of dark matter

self interaction. Determination of the size of the spatial offset gives us an estimate

of this self interaction cross-section to the σDM/m ∼ 1.5 cm2/g which is consistent

with the bound obtained from [58]. A study on 72 colliding galaxy clusters [58] also
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Figure 9: Same as Fig. 3 but for keV mass regime. See text for details.
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Figure 10: Same as Fig. 4 but for keV mass regime.

put an upper limit on the self interaction cross-section as σDM/m < 0.47 cm2/g with

95% C.L. It appears from [72] that for the singlet scalar dark matter produced via

thermal freeze-out mechanism cannot explain the observed DM self-interaction cross-

section. The DM candidates produced via thermal freeze-in mechanism might explain

the DM self interactions deduced from the observational results mentioned above. In

our model, as discussed earlier, we have proposed two scalar DM candidates (two

component scalar DM) s2 and s3 in FIMP scenario.

Under the framework of present model the self interaction scattering cross-section

per unit dark matter mass (σ/ms) for singlet scalar dark matter can be wriiten as
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Figure 11: Same as Fig. 5 but for keV mass regime.

[72],

σ

ms

≃ 9λ2

2πm3
s

, (43)

where λ = λS for mass of dark matter to be much higher than mass of Higgs and

λ = λS − g2

8m2

h

[72] when mass of dark matter is less than that of Higgs. Here, λS

and g denote the 4-point dark matter self-coupling and the coupling of Higgs to the

dark matter respectively. We coinsider g ≤ 2π in our work. Also ms and mh are

the corresponding masses of dark matter and the Higgs. In case of two scalar singlet

model the above relation is modified and the effective scattering cross-section per unit

effective dark matter mass can be expressed as,

σ

m

∣

∣

∣

eff
= f 2

s2

9λ2
S2

2πm3
s2

+ f 2
s3

9λ2
S3

2πm3
s3

+ fs2fs3
9λ2

S2S3

2πµ3
s

, (44)

where λS2
, λS3

denote the 4-point self couplings among each of s2, s3 respectively while

λS2S3
denotes the same between s2 and s3. In Eq. (44) fs2 and fs3 are respectively

the corresponding dark matter density fractions fi =
Ωi

ΩDM

, i = s2, s3 [66, 74] for s2

and s3. Since fs2 + fs3 = 1(fs2 = 1− fs3), Eq. (44) reduces to the form

σ

m

∣

∣

∣

eff
= f 2

s2

(

9λ2
S2

2πm3
s2

+
9λ2

S3

2πm3
s3

− 9λ2
S2S3

2πµ3
s

)

+ fs2

(

9λ2
S2S3

2πµ3
s

− 2
9λ2

S3

2πm3
s3

)

+
9λ2

S3

2πm3
s3

. (45)

Using the observational bounds on σ
m

∣

∣

∣

eff
one may restrict the parameter space fs2 −

ms2 −ms3 from Eq. (45). For this purpose upper bounds on the couplings λS2
, λS3
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that satisfy the dark matter self interaction limit (from observations) for different

chosen values of fractional densities of s2 component. See text for details.

and λS2S3
from perturbative unitarity conditions are used and σ

m
is calculated using

Eq. (45) for a range of masses ms2 and ms3 for the two components with different

fixed chosen values of fs2 (0 < fs2 < 1). In Fig. 12 we plot for diferent f2 values

those pairs of mS2
and mS3

in mS2
− mS3

in plane that satisfy the limit σ
m

= 0.47.

Thus, in addition to the constraints described in Sect. 4, the self interaction results

will further constrain the masses of the dark matter components. The plots in Fig.

12 show the upper bounds on the masses of dark matter for different fixed fs2 values.

Each pair of points on a plot in Fig. 12 for a fixed value of fs2 therefore correspond

to the upper limit of the masses for the components s2 and s3 that satisfy the self

interaction observational upper bound given in Eq. (44). The left region of each such

plot in Fig. 13 therefore describes the allowed region for the masses of s2 and s3 for a

chosen fractional density (fs2 and therefore fs3 = (1.0−fs2)). From these plots of Fig.

12 it reveals that there are upper bounds of masses for each of the scalar components

beyond which the experimental bound for σ/m will not be satisfied. Moreover, it

can also be seen that the maximum values of ms2 and ms3 (for the chosen maximum

value of 2π
3
for the couplings) do not exceed ∼ 0.2 GeV. These maximum limits of the

individual masses ms2 or ms3 also vary for different fractional densities fs2 (fs3) of

the respective components. For example, for fs2 = 0.3 (fs3 = 0.7), the mass of the s2

24



component does not exceed a value ∼ 0.06 GeV while the mass of the s3 component

remains limited to a value of around 0.15 GeV. Again, for fs2 = 0.9 (fs3 = 0.1) −
a situation when the two component dark matter is overwhelmingly dominated by

only the s2 component − the upper limit for ms2 ∼ 0.11 GeV. Similar results, but

for just one component dark matter scenario is given earlier by Campbell et al [72].

Here we show, for the case of a two component scalar FIMP dark matter model,

the simultaneous limits for the masses of the two components restricted by the self

interaction bounds. It is also to be noted that although a FIMP dark matter scenario

appears to be viable candidate in the mass range as high as few GeV from the present

analysis of Sect. 6, such mass range is disallowed from self interaction considerations.

8 Summary and Discussions

The key feature of FIMP dark matter is that they were never in thermal equilibrium

to the Universe’s heat bath and are produced non-thermally while they approach

their ”freeze-in” density. Their couplings with SM particles are so feeble that they

never attempt thermal equilibrium. But these types of feebly coupled dark matter

may have significance in cosmological or astrophysical contexts such as formation of

small scale structures, signatures of the primordial initial conditions present in the

Universe or to address issues like “too big to fail problem” etc.

In this work we extend the scalar sector of Standard Model by introducing two sin-

glet scalars where these scalars are considered to have produced in the early Universe

via Feebly Interacting Massive Particle or FIMP mechanism. We perform extensive

phenomenology of such a model and show that our two component FIMP scalars can

be a viable candidate for dark matter in the Universe. Using the theoretical con-

straints on the interaction potential as well as the couplings as also employing the

PLANCK observed relic densities and collider bounds, we domonstrate that in FIMP

scenario, the mass regime of such scalar FIMP dark matter candidates may extend

from GeV to keV. We have also explored the self interaction for these dark matter

candidates. The self interaction cross section bound obtained from the results of 72

colliding galaxy clusters however restricts the viable mass range to upper values of

around ∼ 0.2 GeV.

A FIMP dark matter has various cosmological and astrophysical implications as

well as implications on its direct and indirect signatures [75]. As the couplings of such

candidates are extremely small it is difficult to obtain measurable direct signatures
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arising out of elastic scattering or indirect signatures from annihilation of FIMP dark

matter. However, signals from decay of nonthermal light dark matter in the form of

observed X-ray signals (3.55 keV line [76]) have been explored previously by one of

the present authors [77]. The issues such as small scale structure formation problems

can be addressed by warm dark matter with non thermal velocity distribution which

is possible if they are produced via “freeze-in” mechanism [75]. As the FIMP dark

matter never attains thermal equilibrium due to their feeble coupling, the initial

condition for such non thermal production at early Universe is not washed away and

can be probed via FIMP dark matter studies. Any primordial fluctuations caused by

very feeble interactions of scalar fields in dark sector (which may not be washed away

to absence of thermalisation) can be probed by their possible imprints in Cosmic

Microwave Radiation (CMB).

The FIMP dark matter therefore has wide implications not only in addressing

various dark matter related issues but other astrophysical and cosmological concerns

as well as the particle nature of dark matter. A two component or multicomponent

dark matter in this scenario may be useful to probe simultaneously various aspects

related to dark matter ranging from cosmology or astrophysics to particle physics.
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Appendix
The expressions for the couplings used in this work are listed below

ghhh = −λHv ,

ghs2s2 = −λHS2
v ,

ghs3s3 = −λHS3
v ,

ghhs2s2 = −λHS2

2
,

ghhs3s3 = −λHS3

2
,

gs2s2s3s3 = −λS2S3
,

gs2s2s2s2 = −λS2

4
,

gs3s3s3s3 = −λS3

4
,
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gWWh =
2m2

W

v
,

gZZh =
m2

Z

v
,

gffh =
mf

v
.
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