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In spite of the large astronomical evidence for its effects, the nature of dark matter remains enigmatic.
Particles that interact only, or almost only, gravitationally, in particular with masses around the Planck mass
—the fundamental scale of quantum gravity—are intriguing candidates. Here, we show that there is a
theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum
phase shifts. In particular, we illustrate a protocol utilizing Josephson junctions.
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Introduction—There is clear astrophysical evidence that
the energy density of the Universe includes a large
component—denoted “dark matter” (DM)—that is not
described by the standard model (SM) of particle physics
and whose nature remains mysterious [1,2]. Weakly inter-
acting massive particles, suggested by supersymmetric
extensions of the SM, have been a favorite candidate,
but negative results of several searches and the failure to
detect supersymmetry in particle accelerators [3] have
squeezed them to less appealing theoretic corners.
Searches for other candidates, such as axions, predicted
by extensions of the strong sector of the SM are currently
underway [4].
An intriguing DM candidate is provided by particles that

interact only or almost only gravitationally and have a mass
of the order of the Planck mass (mP ∼ 20 μg): these could
immediately account for the astrophysical evidence, where
DM is precisely revealed by its gravitational interaction.
The problem with this candidate is that—precisely because
of the weakness of the gravitational interaction—direct
detection is expected to be hard [5]. So, in a sense, a most
natural DM candidate is the hardest to detect. In this Letter,
we point out that detection could actually be within reach
employing quantum interference techniques.
Why Planck-mass particles—The Planck scale is the

fundamental scale in quantum gravity [6]. It is plausible to
expect stable or quasistable objects at this scale as part of
the spectrum. There are arguments indicating that quantum
gravity could predict such particles [7] and stabilize
Planck-mass black hole remnants at the end of the
evaporation [8]. Hawking radiation theory predicts small
black holes to radiate intensely, but the Planck scale is
outside the domain of validity of Hawking’s theory, which
does not take quantum gravity phenomena into account [9].
Stable or semistable Planck-mass objects could therefore be

a consequence of quantum gravity. This is a DM candidate
that does not require modifications of the SM or modi-
fications of general relativity above the Planck length scale.
Furthermore, the strength of the interaction of such
particles, combined with the assumption of a sufficiently
hot big bang, leads to a density of these objects at
decoupling whose order of magnitude is compatible with
the present dark matter density [10–12].
Quantum phases—Inspired by recent developments in

the area of tabletop experiments involving gravity and
quantum phenomena, and the surrounding theoretical
debate (see [13,14] and references therein), here we point
out that direct detection may not be out of reach.
Specifically, we make use of the fact that quantum phases
can encode information about tiny momentum transfer,
even if the corresponding displacement is too small to be
detected.
We first consider an idealized detector where the center

of detector mass is set in a superposition of locations. We
then discuss a more concrete protocol that employs the
collective quantum state of electrons in a suitable arrange-
ment of Josephson junctions as the sensitive probe.
Idealized quantum protocol—Consider a quantum par-

ticle of mass m (the “detector,” or D, particle) split into a
superposition of two positions and then recombined. For
concreteness, imagine it is a particle with spin 1=2,
prepared in the jþiz eigenstate of the spin in the z direction,
and split according to the eigenstates j�iy of the spin in the
y direction. Upon recombination, the particle will still be in
the jþiz state. But say a (classical) particle with mass M
(the “dark matter” or DM particle) flies rapidly next to one
of the two positions during the time the state was split. The
DM particle transfers different amounts of momentum to
the two branches of the D particle, altering the relative
phase. Upon recombination, the phase shift can give rise to
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a nonvanishing probability of measuring j−iz. Figure 1
illustrates the setting.
The magnitude of the effect can be estimated as follows.

Take the D particle as the source of an external potential for
the DM particle. As shown in the Appendix [Eq. (A14)],
the displacement of the D particle during the passage of the
DM particle is of the order of

Δd ≈
c2

v2
M
mp

lp; ð1Þ

where d and v are defined in Fig. 1 and lp, mp, and c are
the Planck length, the Planck mass, and the speed of light,
respectively. For M ≈mp and v ≈ 10−3 c (the mean velo-
city of DM particles in the galactic halo [15]) Δd is of the
order of 106lp ∼ 10−27 cm. Thus, detection using the
classical response would be extremely hard (see [5] for a
detailed analysis).
On the other hand, the relative “quantum phase” between

the two superimposed configurations can be estimated by
evaluating the action difference between the two branches,

ΔS ¼
Z

dt
�

GmMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðvtÞ2

p −
GmMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdþ ϵÞ2 þ ðvtÞ2
p �

; ð2Þ

which only involves the difference of the integrated
Newtonian potential in the two configurations of the D
particle separated by the distance ϵ. G is the Newton
constant. The integration of each term is logarithmically
divergent, but the integration of the difference is finite. A
direct evaluation gives

ΔS ¼ 2
GmM
v

logð1þ ϵ=dÞ ≈ 2
GmM
v

ϵ

d
: ð3Þ

An improved calculation that takes into account the
modification of the trajectory of the DM particle is given
in the Appendix. It changes the factor 2 in (3) into a 3.

The difference in the action gives a phase difference in
the evolution of the two branches [16] of the quantum state

Δϕ ¼ ΔS
ℏ

¼ 3
mM
m2

p

c
v
ϵ

d
: ð4Þ

This result can also be understood as follows. The differ-
ence of the action between the two branches is equal to the
change of the Hamilton function for the motion of the DM
particle in the field of the D particle. To first order, this is
precisely encoded in the change in momentum by the
general relation ∂S=∂x ¼ −p. Hence, the above calculation
can be seen as an evaluation of the difference in momentum
transfer between the two branches [17]. This can be detec-
table even if the displacement in position is imperceptible.
A non-negligible phase shift, in fact, gives rise to a

nonvanishing probability P of measuring the recombinedD
particle in the state j−iz as

P ¼ 1 − cosΔϕ
2

: ð5Þ

If the dark matter particles have Planckian mass [8,10,11],
M ∼mp, then

Δϕ ∼
ϵ

d
c
v
m
mp

: ð6Þ

It is currently possible to put a mass of the order m ≈
10−17 Kg ¼ 2 × 10−8mp into quantum superposition [18].
The speed of cold DM particles in the galactic halo leads to
an expected mean velocity on earth of v ≈ 10−3 c [15]. This
gives Δϕ ≈ 10−5ϵ=d. Because of the amplifying nature of
the factor c=v in Eq. (6), pushing technology to masses
m ∼ 10−3mp is required, in order for the prefactor of ϵ=d to
become order unity. This is far beyond current possibilities.
Fortunately, a more realistic protocol can be designed using
macroscopic collective quantum systems, as in, for in-
stance, the one representing electrons in a superconductor.
Josephson protocol—The effect described above can be

amplified when the phase shift (4) is induced in the wave
function of a large number of particles in a coherent state. A
device that allows to exploit this possibility is a super-
conducting Josephson junction (JJ) [19]. This realization of
the detector has the advantage that the collective state of the
electrons translates the probabilistic response of (5) into a
directly measurable signal, circumventing the need of a
statistical reconstruction of the phase. The standard theory
of superconductors [22,23] yields two key equations,

I ¼ Ic sinðΔϕeÞ;
∂Δϕe

∂t
¼ ΔΦ

ℏ
; ð7Þ

where I is the electric current across the junction and ΔΦ is
the Cooper pairs potential energy difference between the
two sides of the junction, ϵ is the insulator width of the JJ,

FIG. 1. A particle of mass m in a superposition state with
separation ϵ. The DM particle passes by with velocity v.
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and Ic the critical current. The phase Δϕe induced by the
passage of a DM particle is given by (2) with m ¼ 2me.
The spatial delocalization ϵ of the collective quantum state
of the electrons is now given by the size of the insulating
gap of the JJ; compare Figs. 1 and 2. Using (4) and the
previous numbers, we get Δϕe ≈ 10−19ϵ=d as the electron
mass is me ≈ 10−22mp. For small ϵ one has that
Ic ≈ eℏnsa=ðmeϵÞ, where a is the area of the JJ and
(at low temperatures) the density of superconducting
electrons ns approaches the Fermi density ns ≈ nf ¼
ð3π2Þ−1ð2meεf=ℏ2Þ3=2, with εf the Fermi energy of the
material [24]. Present technology allows for the integration
of transistors close to the nanometer scale [25] and it seems
possible to produce 50 nm of width and (say) 1 m long JJs
with a ∼ 50 × 10−9m2 compactly packed in the geometry
proposed (see detector geometry below). Using this, and
the value εf ∼ 12 eV (for aluminum), and in an ideal
aligned configuration, the DM particle would induce a
current Iout ≈ 107ϵ=ds−1 (electrons per second) with a
single DM event [Iout ≈ 10−11ðϵ=dÞA] on such JJ.
Detector geometry—We illustrate for concreteness a

possible macroscopic geometry for the detector. This will
allow us to discuss the role of the parameters d and ϵ in the
estimates above, and the most relevant sources of external
perturbations. Call each single long JJ as described in the
previous paragraph, and shown in Fig. 2, a “detecting cell.”
The alignment of the detecting cell with the DM particle
trajectory can be fixed by the astrophysical knowledge of
the velocity field of DM in our galaxy. The actual detector
can consist of a three-dimensional array of detecting cells
(see Fig. 3), arranged in a two-dimensional lattice, with
separation l. If appropriately oriented, a DM particle will
maximally excite a few of the near neighboring cells for
which the impact parameter is d≲ l. For the purposes of
the present Letter, we assume the apparatus can be designed
so that l ∼ ϵ. Therefore, for estimates we can take ϵ=d ∼ 1.
Noise—Here are some estimates of the most obvious

sources of noise and some considerations on ways to deal
with them.
A major source of noise is thermal. The thermal noise in

the output of a cell is suppressed as expð−Δ=kTÞ, where Δ

the superconductor energy gap at T ¼ 0 and T ≪ Tc [26].
For aluminium Δ=k ≈ 3.9 K with Tc ≈ 1.2 K. The signal-
to-noise ratio is then snr ¼ Iout ¼ I=IT > 1 requires
T < 10−1 K. Much lower temperatures have been attained
in the lab in small controlled environments [27], but
achieving this at the space and timescales necessary for
a realistic detector configuration is likely to be a key
challenge.
A second source of noise is given by the macroscopic

gravitational perturbations produced by nearby mass dis-
placements (these can range from seismic modifications of
the local gravitational field to the motion of massive bodies
in the vicinity of the experimental setup). Phase differences
due to nearly constant perturbations grow linearly in time at
a rate given by the gradient of the gravitational potential
(gravitational force) times ϵ. This will produce a slow
modulation of the current that can be distinguished from the
fast DM particle signal with a timescale approximately
given by their flying time Δt ∼ 10−5 s (in the setup used as
illustration here). In addition, macroscopic gravitational
perturbations can be discerned from DM signals due to
their global effect on the measuring cells. The smoking gun
of a DM event being a local excitation of a few detecting
cells along the track (Fig. 3). Thus, it is reasonable to expect
macroscopic perturbations of the gravitational field to act
on a very different time and space scale. This fact permits
the development of filtering techniques to extract the DM
signal from this type of noise.
Flying-by charged particles constitute a standard noise

source for regular particle detectors, such as those used in
searches for weakly interacting massive particles. We
expect standard techniques that deal with this issue to be
applicable also to the present case. Furthermore, note that if
any charged particle does enter the detector (see next
paragraph), it would excite a very large collection of cells
due to the overwhelming strength of the electromagnetic

FIG. 2. A long JJ interacting with the DM particle. This optimal
can be achieved by suitably orienting the detector.

FIG. 3. Detecting cells 3D schematic configuration. A DM
particle event excites local cells only (excited cells are repre-
sented as black lines).
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interaction over the gravitational one. Therefore, we are in
the setting where the weakness of gravity compared to
electromagnetism comes to our advantage as the local
excitation of only a few cells should identify unambigu-
ously a DM particle event.
Electrically neutral particles can penetrate the detector

and produce charged particles inside via ionization. As in
the previous case, experience with standard particle detec-
tors suggest that this can also be under control in our
setting. Neutrons can be prevented from entering the devise
using standard shielding techniques [28]. Neutrinos cannot
be shielded and can produce ionization. But these events
are rare and do not seem to represent a problem. Using the
data from [29] one can estimate fewer than 102 ionizations
per year in a 1 m side detecting cube. Assuming that it takes
1 h to reset the system, the probability that a DM particle
crosses the detector and is missed due to such noise source
is less than one event in 106.
Conclusion—We have pointed out the possibility that

Planck-mass particles making up dark matter that only
interact gravitationally could be detected using quantum
interference. We have illustrated an idealized setup where a
mass is set in a superposition of locations, and a realistic
setup using Josephson junctions. The central idea is to
detect the relative quantum phase acquired by a macro-
scopic quantum system whose wave function is spatially
delocalized. Concretely, we propose a large number of long
JJs arranged in an orientable detector. Given the numbers
we have used, this implies that each detector would require
manufacturing about 1016 long JJs, which may pose a
significant technological challenge. Such arrangement
allows for an amplification of the signal sufficient for a
one-shot detection scheme. This seems necessary given the
low rate of such events, as the flux of such DM particles on
Earth is expected to be of the order of 1 particle=m2=yr [5].
Covering a total area of several square meters with such
detectors can give a significant rate. We have crudely
estimated the most obvious sources of noise. The meas-
urement may be within technological reach, but a more
detailed feasibility study is needed. The challenge is
significant, yet it is remarkable that quantum mechanics
can amplify effects, which classically amount to hardly
detectable Planck scale displacements (1), to macroscopic
observable levels. Rapidly evolving quantum technologies
combined with the growing interest in experiments testing
the interface of gravity and quantummechanics can be used
to address crucial questions in astrophysics, and possibly
provide direct validation of certain implications of quantum
gravity.
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Appendix: Exact classical nonrelativistic calculation—
The general relativistic expression for the action of a test
particle (here the D particle) is proportional to its proper
time,

S ¼ −mc2
Z

dτ; ðA1Þ

where cdτ ¼
ffiffiffiffiffiffiffiffiffiffi
−ds2

p
, and we have set the speed of light

to unit. In the weak field approximation the line element
ds2 defining the gravitational field generated by the DM
particle is

ds2 ¼ −
�
1 −

2GM
r

�
c2dt2 þ

�
1þ 2GM

r

�
dx⃗2; ðA2Þ

where G is the Newton constant. Using t as integration
variable along the trajectory of the DM particle gives

S ¼ −mc2
Z

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2GM
r

�
−
�
1þ 2GM

r

� ˙x⃗2

c2

s
; ðA3Þ

whose leading order expansion in ˙x⃗ and M=r gives the
expected nonrelativistic action up to a constant, namely

S ¼
Z �

1

2
m˙x⃗2 − VðrÞ −mc2

�
dt; ðA4Þ

with VðrÞ ¼ −GM=r the Newton’s potential.
Now we explicitly compute the action evaluated on

classical solutions. Success is granted by the fact that the
Newtonian two-body problem is exactly solvable using
conservation laws. The relativistic case can be equally
solved, but we do not need it since relativistic corrections
are negligible for cold dark matter particles. We fix the
center of mass frame and assume, for simplicity, that
M ≫ m, implying that the center of mass coincides with
the position of of the DM particleM. The action difference
is invariant under Galilean transformations.
In spherical coordinates—and ignoring the constant term

in the Lagrangian—the action (A4) becomes

S ¼
Z �

1

2
mṙ2 þ 1

2
mr2ϕ̇2 − VðrÞ

�
dt; ðA5Þ

where we have used the fact that in spherical coordinates
˙x⃗ ¼ ṙêr þ rϕ̇êϕ when one assumes (without loss of gen-
erality) the motion to happen on the θ ¼ π=2 plane.
Because of spherical symmetry, angular momentum is
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conserved,

L ¼ mr2ϕ̇ ¼ constant: ðA6Þ

Using this and r as integration parameter (A5) becomes

S ¼
Z �

1

2
mṙ2 þ L2

2mr2
− VðrÞ

�
dr
ṙ
: ðA7Þ

Finally we get ṙ from energy conservation, namely

1

2
mṙ2 þ L2

2mr2
þ VðrÞ ¼ E; ðA8Þ

from which we get that

ṙ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m

�
E −

L2

2mr2
− VðrÞ

�s
: ðA9Þ

Writing VðrÞ ¼ −GmM=r ¼ −c2mMlp=ðmprÞ (where
we wrote G in terms of Planck mass mp, Planck length lp,
and c), and substituting the previous two equations in (A7)
we get

S ¼ 2

Zr0
∞

Eþ 2c2lp
mM
mprffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
m ðE − L2

2mr2 þ c2lp
mM
mpr

Þ
q dr; ðA10Þ

where we have split the integral into the two symmetric
branches around the point of closest approach r0 corre-
sponding to the situation where ṙ ¼ 0 or equivalently

E −
L2

2mr20
þ c2lp

mM
mpr0

¼ 0: ðA11Þ

Introducing the impact parameter d via the relation L ¼
dmv with v ¼ ṙj∞ or, using the conserved quantities,

L2 ¼ m2d2v2 ¼ 2Emd2; ðA12Þ

we can write the condition (A11) as

1

2
v2 −

d2

2r20
v2 þ Mlp

mpr0
c2 ¼ 0; ðA13Þ

where we replaced E ¼ mv2=2. The value of r0 is

r0 ¼
−c2lpM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4l2

pM2 þ d2m2
pv4

q
mpv2

: ðA14Þ

For d ≫ lp one has

r0 ¼ d −
c2

v2
M
mp

lp þO

��
c2

v2
M
mp

�
2 lp

d

�
lp; ðA15Þ

and the impact parameter coincides with the parameter d in
Fig. 1 to leading order. And the action (A10) reads

S ¼
Zr0
R

2ð1
2
mv2 þ 2mc2 Mlp

mpr
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2 − d2

r2 v
2 þ 2

Mlp
mpr

c2Þ
q dr; ðA16Þ

which is divergent when the cutoff R → ∞ limit is taken.
This is normal as the action of an unbounded trajectory is
infinite [the action is proportional to proper time, as in
(A1)]. We are interested in the change in the action with
respect with d. To first order in ϵ [recall notation from
Fig. (1)] we get

ΔS
ℏ

¼ lim
R→∞

−
ϵ

ℏ
∂S
∂d

¼ 3dcmMmpv3ϵ

2ðd2m2
pv4 þ c4l2

pM2Þ : ðA17Þ

Assuming that d2m2
pv4 ≪ c4l2

pM2 one obtains

ΔS
ℏ

≈ 3
c
v
mM
m2

p

ϵ

d
; ðA18Þ

which is the relation in the Letter.
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