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ABSTRACT: Dark matter may self-interact through a continuum of low-mass states. This
happens if dark matter couples to a strongly-coupled nearly-conformal hidden sector. This
type of theory is holographically described by brane-localized dark matter interacting with
bulk fields in a slice of 5D anti-de Sitter space. The long-range potential in this scenario de-
pends on a non-integer power of the spatial separation, in contrast to the Yukawa potential
generated by the exchange of a single 4D mediator. The resulting self-interaction cross sec-
tion scales like a non-integer power of velocity. We identify the Born, classical and resonant
regimes and investigate them using state-of-the-art numerical methods. We demonstrate
the viability of our continuum-mediated framework to address the astrophysical small-scale
structure anomalies. Investigating the continuum-mediated Sommerfeld enhancement, we
demonstrate that a pattern of resonances can occur depending on the non-integer power.
We conclude that continuum mediators introduce novel power-law scalings which open new
possibilities for dark matter self-interaction phenomenology.
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1 Introduction

A dark sector is a set of fields that include dark matter and low-mass particles that mediate
interactions of the dark matter [1-6]. If these mediators interact with the Standard Model,
their signatures may appear in a suite of laboratory based experiments. Even if these
Standard Model interactions are negligible, the mediators induce long-range potentials
between dark matter particles that may be tested astronomically [7, 8]. This self-interacting
dark matter framework has been spurred by the observation that it may address potential
small-scale structure tensions between simulations of cold dark matter and astronomical
observations [9, 10].

A single mediator typically produces a Yukawa potential between dark matter particles,
V(r) ~ —e~™¢" /r, where m,, is the mass of the mediator. This long-range behavior can be
dramatically altered when the single-mediator exchange picture breaks down, for example
when the mediator is represented by a continuum of states. Models of continuum dark
sectors have existed for at least a decade in the form of conformal hidden sectors [11, 12],
closely related work on unparticle hidden sectors [13-16], and in clockwork theories [17].
The proposal that such models may lead to novel self-interactions was first identified in
ref. [18] for a spin-0 mediator modeled in the holographic description of a warped extra

I This paper describes continuum-mediated self-interacting dark matter phe-

dimension.
nomenology in that benchmark theory. The dynamics of the model generate a long-range

potential on the UV brane that scales as a non-integer power of separation,

1 1 non-integer
174 ~ o = 1.1
(r) r ( Ar ) ’ (1.1)

where A is a cutoff scale.
The long-range forces between dark matter particles allow energy exchange in dark
matter halos and create a cored density profile compared to standard cold dark matter

n this work we use continuum to refer to the discrete set of Kaluza-Klein modes. This could be also
referred to as a ‘discretuum’, as opposed to the ‘continuous continuum’ regime in which the KK modes
merge [19] Because a potential is generated by ¢-channel diagrams, the mediator field carries spacelike four-
momentum. This makes it mostly insensitive to whether the spectral distribution is continuous or discrete
and no distinction between these scenarios is necessary.



N-body simulations. Observations of small-scale structure anomalies in dwarf spheroidal
galaxies are indicative of cored halo profiles and are thus a tantalizing possible signature
for dark matter dynamics [9]. Alternative proposals to address these anomalies include
baryonic feedback on the dark matter halo. Future generations of N-body simulations
may be able to ultimately distinguish between the two scenarios, and it is plausible that
nature may even invoke a combination of the two mechanisms. We refer to ref. [20] for a
recent review of the status of these anomalies. A key result of our study is that continuum-
mediated interactions leads to a non-integer velocity dependence on the dark matter self-
scattering cross section, a quantity that relates the fundamental particle physics parameters
of the dark sector to astronomical observations. Schematically,

O'(U) ~ Unon—integer . (12)

We proceed as follows. In section 2 we motivate a class of conformal models that
generate non-integer potentials of the form (1.1) and specifically highlight a 5D dual picture
with a mass gap. We give a precise definition of the gapped, continuum-mediated self-
interacting dark matter model in section 3. We discuss experimental constraints beyond
self-interactions in section 4; these constraints can be avoided for the types of parameters
needed to address small scale structure puzzles in astronomy. The long-range potential is
derived in section 5 using spectral techniques. We present closed form expressions using
asymptotic limits that we validate numerically. In section 6 we evaluate the figure of merit
for astronomical applications, the self scattering transfer cross section. In the so-called Born
and classical regimes of dark matter coupling and velocity, we demonstrate novel scaling in
the dark matter velocity compared to non-continuum self-interacting models. We confirm
the presence of a resonant regime and analyze all regimes numerically. Continuum-mediated
self-interactions can explain small-scale structure observations even when the slope of its
potential differs significantly from a standard Yukawa potential. In section 7 we show that
Sommerfeld enhancement produces a pattern of resonances that depend on the potential
slope and mass gap. We conclude in section 8. The appendices include a streamlined
review of AdS/CFT with a UV brane (appendix A), a calculation of the approximate
transfer cross section in the non-perturbative classical regime (appendix D), a proof that
there is no Sommerfeld enhancement for a 1/r? potential (appendix E), and a review of
the numerical method used to solve for the transfer cross section (appendix F).

2 Preliminary observations

The simplest assumption for dark matter self-interactions is that dark matter currents,
Jpum, interact by exchanging spin-0 or spin-1 mediators at tree-level. In momentum space,
the matrix elements take schematically the form

\l/r/ 1

! = Jom(q) 57— Jom(—4q). (2.1)

— q m
The corresponding potential between dark matter currents in position space is Yukawa-like,
V(r) ~ e ™ /r, or Coulomb-like if m = 0. The mediator mass, m, cuts off the potential in



the infrared and is important for realizing required low-velocity scaling of the dark matter
self-scattering cross section for small scale structure anomalies.

The exchange of a single, non-derivatively coupled, weakly-interacting field in (2.1)
is the simplest dark matter self-interaction. The resulting 7—! potential is the longest
ranged potential allowed by the lower bound on the dimension of the exchanged operator
set by unitarity, A > 1. However, it is also plausible that the leading self-interaction is
shorter range than 1/r and thus there are a variety of possibilities that have yet to be
thoroughly investigated. An extreme example is a zero-range interaction, Jpm(q)Jom(—¢),
which give contact-interactions in position space, V(r) ~ 6®3)(r). This possibility is too
extreme: the contact interactions produce velocity-independent cross sections that are
tightly constrained by the upper bound on dark matter self-scattering at high velocities
from observations of galaxy cluster collisions like the Bullet Cluster.?

In this work we explore intermediate possibilities where the self-interaction potential
has finite range that is shorter than the Yukawa/Coulomb limit. The simplest possibility
amounts to a matrix element

I _ JDM(q)Wi)ZL_QAJDM(Q). (2.2)

The parameter A satisfies A > 1, where A = 1 recovers the Coulomb case. The position-

r~2A8+1 and becomes steeper near the origin for A > 1 such

space potential scales as V (r) ~
that the interaction has indeed shorter range than the Coulomb case. The interaction (2.2)
is understood to come from the exchange of a operator of dimension A. Highly non-
integer dimensions do not occur in weakly-coupled theories since quantum corrections to
the classical scaling dimension are perturbative. However, if the dark sector has strongly-
interacting dynamics, then it is likely that the operators have highly non-integer dimension.
We focus on a nearly-conformal mediator sector described a conformal field theory (CFT);
this sector may be a gauge theory with large 't Hooft coupling. Currents of elementary
dark matter, Jpyr, interact with CFT operators. Even though the mediator sector is
strongly-interacting, conformal symmetry constrains the CFT correlation functions and
provides a well-controlled framework for calculations. The CFT two-point function has a
continuous spectral representation and so we refer to this scenario as continuum-mediated
self-interacting dark matter. An analogous description of dark matter-nucleon scattering
is used in ref. [24].

A purely conformal hidden sector does not have a mass gap. This prevents an infrared
cutoff that is usually set by the mediator mass. In order to restore the desired exponential
damping at long distances, we assume an infrared (IR) mass gap in a slightly more evolved
model that is most simply described holographically in five dimensional anti-de Sitter
(AdS) space. In this scenario, a 5D field ® propagates in the bulk and interacts with the
brane-localized dark matter currents, Jpu.

20ther short range possibilities include tree-level exchange of a pseudoscalar (see e.g. [21]) and loop-level
mediated processes [22, 23|, which induce potentials going as o< 1/r™ with n integer and > 3.
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Figure 1. Schematic description of the continuum-mediated self-interacting dark matter scenario.

The AdS dual of the ungapped amplitude (2.2) is schematically:

I - ’ (2:3)

see appendix A for relevant details from the AdS/CFT correspondence. In the 5D descrip-
tion of continuum-mediated self-interacting dark matter, dark matter itself is a 4D degree
of freedom localized on the UV brane near the AdS boundary. This is identified with an
elementary degree of freedom that probes the CFT sector. The mediator continuum is a
bulk field coupled to the fields on the boundary. The mass gap in the AdS description is
encoded by an infrared (IR) brane localized further away from the AdS boundary:

I - @ | »

In the 5D description, the mass gap follows from the bulk field having two boundary
conditions at finite distance. The exact CFT limit (2.3) is recovered when the IR brane
is decoupled by sending it to spatial infinity. The 5D model is shown in figure 1 and is
described precisely in the following section.

3 Continuum-mediated self-interactions from AdS

We detail a model in 5D AdS space that realizes the continuum-mediated self-interacting
dark matter scenario; the choices of parameters are discussed in the following section. The
model is based on the warped dark sector framework [18], which is itself closely related to
the Randall-Sundrum 2 model of a warped extra dimension [25].



3.1 Geometry and action

The metric for the AdS spacetime in conformal coordinates is

ds? = 12( datdz” — dz?) (3.1)
=\ Nuvdx” dx z .

where k is AdS curvature. We restrict to a slice of this AdS space and place UV and IR
branes at the endpoints,
2oy <z < 2R 2y = % 2R = /i (3.2)

In our model, the scale p characterizes the mass gap of the mediator sector; we take yu < k.

We assume that some stabilization mechanism prevents the two branes from falling
into one another; though we may remain agnostic about the specific choice as the details
are not crucial to our study. For concreteness, one may assume the Goldberger-Wise mech-
anism [26]. We ignore gravitational backreaction effects near the IR brane and approximate
the metric to be exactly AdS over the entire space.

The action for the theory includes bulk and brane-localized quadratic terms for the
5D real scalar mediator ®, UV brane-localized quadratic terms for the dark matter x, and
interactions between dark matter and mediator:

ZIR
5= / / d'z \/gLa + VG (Ly + Lt + £8Y) (2 = 20v) + VILES(2 — 2m),  (33)
E10AY

where g is the induced metric on the brane, with \/§ = (kz)~*. Additional terms that
do not play a role in the self-interaction phenomenology are the 5D Einstein-Hilbert term,
the 4D Standard Model action localized to the UV brane, and possible Standard Model
interactions with the mediator. The dark matter Lagrangian terms encode a 4D mass m,,
and Yukawa coupling to the bulk mediator:

A
Ly = x70,x —myX Lint = —=Pvx. 3.4
x = X7"Oux — myXx v= X (3.4)
Writing 5D Lorentz indices M, the bulk mediator Lagrangian is
1
Lo=3 (v @) (0™ @) — M3a?], (3.5)

where the bulk mass Mg is tied to the dimension A of the operator exchanged between
dark matter particles in the CFT picture. The brane-localized Lagrangian terms for the

bulk scalar encode mass and kinetic terms:

1 1
LIV = ﬁ<1>BUV[52]<1> Ly = ﬂchH»x[a?]cb Bi[0*)=m? + 0> +....  (3.6)
The B;[0%] are polynomials in the 4D Laplacian 6% = §,0%; the constant term is the
2

brane-localized masses m;. Higher order terms are typically small and irrelevant for our
study.

We remark that the low-energy effective theory also contains a radion that is identified
with the dilaton in the 4D theory. This mode is light, but localized on the IR brane and
hence has negligible contributions to the dark matter dynamics on the UV brane. We thus
do not include it in our analysis as it would produce only a minor shift in the long-range

potential.



3.2 Effective field theory consistency

5D interacting theories are non-renormalizable and are understood to be low-energy ef-
fective field theory (EFT) valid up to a cutoff, A. The cutoff is tied to the strongest 5D
interaction — either gravity or another interaction in the theory. 5D naive dimensional
analysis (NDA) [27-31], in turn, relates the cutoff to the AdS curvature [19],

0
AZikwﬁg (3.7)

where the 4D and 5D loop factors are £4 = 1672 and f5 = 2473, respectively.
In our dark sector model, the cutoff sets the dark matter-mediator Yukawa coupling
A. Thus 5D NDA bounds the Yukawa coupling by

A<y B <un (3.9)
A
where we have used (3.7) in the second inequality.

While the 5D theory is valid below A, the AdS/CFT dictionary is valid only up to a
cutoff scale on the order of £k < A. From the 4D perspective, a CFT coupled to gravity
has a cutoff parametrically smaller than Mp; because of the large degrees of freedom of the
CFT. This cutoff turns out to be k, for example by using the species scale conjecture (see
e.g. [32]).

Our 5D EFT contains isolated degrees of freedom localized on a brane. In a realistic
theory with gravity, localized 4D fields are special modes from 5D bulk fields and are
necessarily accompanied by a spectrum of KK modes [33]. We assume an appropriate limit
where the observable effects of these modes are negligible.

3.3 Model parameters

For the purposes of studying novel, continuum-mediated dark matter self-interactions, we
restrict the parameters presented in the 5D model in section 3.1. The AdS curvature, k,
corresponds to the cutoff of the theory, as described in section 3.2. To ensure that the cutoff
of the theory is beyond the experimental reach of the Large Hadron Collider to detect, e.g.,
Kaluza-Klein gravitons, we set k to be

k=10TeV . (3.9)

This sets the position of the UV brane zyy = k~' and the upper bound on all other
dimensionful parameters in the theory. The AdS curvature is much smaller than the Planck
scale, in the spirit of ‘little Randall-Sundrum’ models [34].
The mediator mass, Mg is related to the dimension A of the continuum mediator
operator and is conveniently described by the dimensionless parameter c,
M2 9
a254+k—2¢’:(2—A) . (3.10)
The range of v corresponds to the A_ branch of AdS/CFT (see details in appendix A) and
can be established as follows. Unitarity of CFT operators requires A > 1, implying a < 1.



Parameter Range What sets the range

Bulk mass 1/2<a<1 Calculability, unitarity

Mass gap MeV S p < k Early universe

Dark matter mass wSmy Sk Nonlocal potential, EFT validity
Yukawa coupling A <dArw EFT perturbativity

Table 1. Range of parameters in our model. The AdS curvature is set to k = 10 TeV; larger values
generically suppress self-interaction effects. The dimensionless brane-localized masses and kinetic
terms defined in (3.6) and (3.11) are assumed to be O(1), with the exception of byy which is tuned
to zero to reproduce the long-range behavior, (2.2). The early universe bound on p is described in
section 4.

The Breitenlohner-Freedmann bound for the stability of AdS implies o > 0 [35, 36], and
we restrict to o > 0 without loss of generality. We thus obtain 0 < o < 1.

Observe that the slope of the resulting long-range potential scales like V(r) ~ r~!
for « = 1 and V(r) ~ =3 for a = 0. For potentials more singular than r~2, solving for
the phenomenology becomes computationally intractable and, furthermore, the theory is
unlikely to produce the effects relevant for small scale structure anomalies. We thus further
restrict the range to o > 1/2 to avoid the regime where the long-range potential is steeper
than the centrifugal term.

Our theory includes brane-localized masses m?®(z, z;)* and kinetic terms ¢;[0®(z, 2;)]?
for the mediator, encoded in the brane operators B;(p?). It is convenient to introduce the
following dimensionless parametrization,

Br(p?)
k.2

B%v(pz)

Lt (2-a). (3.11)

bir(p?) = +(2-a) buv(p?) =
The brane masses are characterized by b; = b;(0).

The IR parameters big and cig generically have O(1) values so we set them all to one.
These only have a mild impact on the self-interaction phenomenology. Conversely, we tune
buv = 0 as required to reproduce the CFT behavior in (2.2) since byy corresponds to a
double trace deformation in the conformal theory. The UV brane kinetic coefficient cyy is
assumed to be O(1), though it is only significant in the limiting case a = 1.

With these benchmark values in place, the theory is described by the parameters in
table 1. The IR scale p defines the mass gap of the theory by setting the scale of the lightest
Kaluza-Klein mode and its lower bound is set by dark radiation constraints, described in
section 4.

3.4 Mediator propagator and spectrum

It is convenient to work in position space for the z-direction but momentum space along
4D Minkowski slices. The mediator field is decomposed as

Q,(2) = /d4x P B(zH, 2) p-x=put. (3.12)



The norm p = /7, pPp” is real for timelike p* and imaginary for spacelike p*. In these
coordinates, the free scalar propagator is the two-point Green’s function, see e.g. [33],

k3 (22')? {Y/oENJa(pzd - jgvya(pzd} [?OERJOC (pz>) — jéRYa(ng}
2 TV - VT ’
(3.13)

Gp(z,2') =1

where z - is the lesser/greater of the endpoints z and 2’. The quantities JUVIR are

B () () = () et (2)
with similar definitions for YYV-IR. The boundary functions B; (p?) encode brane-localized
operators and are defined in (3.6). We refer to (3.13) as the canonical representation of
the propagator.

The propagator has an infinite series of isolated poles set by the zeros of jgvffo{R —
?thER and referred to as Kaluza-Klein (KK) modes. The free propagator can thus
equivalently be written as a series

(2,2") —ZZ fn ful ) (3.15)

we refer to this particular momentum-space spectral representation as the KK represen-
tation of the propagator. Depending on the context, either the canonical or KK repre-
sentation may be more convenient. Assuming that the UV brane mass parameter is zero,
buv = 0, and that the other brane parameters have O(1) coefficients, then the KK spectrum
for p > p is

1
mn%<n—g—|—4>7w n>0, (3.16)

as can be seen from identifying the poles in the limiting form of the propagator in (5.10).
The mass of the lightest mode my depends on the brane-localized parameters and is detailed
in section 5.2.

3.5 Qualitative description of 4D near-conformal theory

The AdS/CFT correspondence describes the equivalence between a quantum field theory
on AdS;; space and a conformal gauge theory with large 't Hooft coupling and large- N
in flat d-dimensional space (for initial works see [37-44], for some reviews see [45-48]).
AdS bulk fields correspond to CET operators in a way that is exact (to the best of our
knowledge) in the full AdS spacetime and in the presence of a UV brane.

Fields localized on the UV brane are understood to be external fields probing the CFT;
these are equivalently called elementary states in contrast to CFT degrees of freedom. In
the context of our model, dark matter and Standard Model particles are elementary fields.
We require that dark matter couples to a scalar operator of the mediator CFT sector; this
scalar operator corresponds to the 5D bulk mediator field ®. The mediator CF'T two-point
correlation function gives the self-interaction amplitude in (2.3).



The understanding of the 4D dual theory is only qualitative in the presence of IR brane
cutting off large z values. The IR brane is interpreted as a spontaneous breaking of the
conformal symmetry analogous to confinement in a strongly-interacting gauge theory [49,
50]. The theory is thus only approximately conformal at scales much larger than p, however
we follow the common colloquiual practice of referring to the 4D theory as a CFT. The
scale pu = szl is naturally associated to the mass gap characterizing conformal symmetry
breaking, similar to the QCD confinement scale. KK modes are identified with composite
states that are allowed when conformal invariance is broken. In the simplest realization,
the composite states are glueballs of adjoint gauge fields.

Either the AdS or CFT description of the theory may be more convenient depending
on the context. We primarily focus on the 5D description where the model is concretely
defined. The qualitative behavior of this theory is general and captures what is expected
for a purely 4D near-conformal mediator; one may view the 5D construction as a simple
quantitative tool to describe such a theory.

4 Phenomenological constraints

We briefly comment on implications of our model beyond the dark matter self-interaction

phenomenology that is our primary focus.

4.1 Cosmological dark radiation

Models of near-conformal dark sectors necessarily introduce large numbers of degrees of
freedom. Many of these may be relativistic in the early universe and are thus constrained
by big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB). There
are at least three ways to avoid the tight constraints on the effective number of relativistic
degrees of freedom, Neg:

1. The theory may have a sufficiently large mass gap, O(MeV), so that all states are
non-relativistic at the relevant times. In this case there is no dark radiation.

2. The relativistic states decay quickly enough that they do not affect BBN or the
CMB [24].

3. The dark sector may be much colder than the Standard Model so that the density
of states is suppressed compared to visible matter. This is a natural possibility and
has been studied in the context of gravitational interactions in AdS [51-53]. Dark
radiation from a bulk scalar will be studied in an upcoming work [54].

With these features in mind, we focus on p = O(MeV), but allow for p the possibility of
lower scales subject to additional model building to accommodate Neg limits.

4.2 Fifth force

Bulk graviton exchange leads to deviations from the Newtonian gravitational potential of
the form [25, 55]

Vao(r) :—GTN {Ho(krjﬂﬂ. (A1)



Constraint from fifth force searches set k > 5meV or k~! < 50 um and hence can be
ignored; see e.g. [56] for a recent measurement, [57] for a review of 73 constraints.

4.3 Deviations from the standard model

Standard Model fields are assumed to be localized on the UV brane. For the purposes of
dark matter self interaction phenomenology, we neglect any direct UV-brane interactions
between the dark matter and Standard Model and assume that the mediator-Standard
Model couplings are negligible. These couplings are phenomenologically relevant, for ex-
ample in dark matter direct detection experiments [24] or in searches for novel forces
between Standard Model particles [18, 23], but are not directly related to the small scale
structure anomalies that are the primary phenomenological focus of this paper.

In principle the brane-localized fields are limits of 5D fields with heavy KK modes [33].
The most significant effects of these modes are deviations in the Standard Model gauge
sector: gauge bosons can scatter off 5D gravitons and the gauge couplings pick up an
anomalous logarithmic running above the IR scale . Both of these effects are small
enough to be undetected with current data in the limit where A is sufficiently close to k.
Since we already assume this in (3.7), the model is safe from these effects.

5 The continuum-mediated potential

The potential V' between two particles is obtained from the ¢-channel scattering amplitude
with the external legs taken to the appropriate non-relativistic limit,3

. . 1/ )\2
iM = —dimyV (Ja]) = =47-Glq| (2uv, 20v) (5.1)

with ¢t &~ —|q|? where q is the three-dimensional momentum transfer. On the right-hand
side we insert the expression from the exchange of a ¢-channel bulk mediator between dark
matter currents. The position-space potential is related by a Fourier transform

d®q —~ -
Vi) = [ S5V () e (5.2)
(2m)
with » = |r|. Even though our effective theory has a cutoff, one may integrate (5.2) to

infinite |q| under the assumption of a smooth cutoff, as shown in the appendix B of ref. [23].

Simply inserting the exact propagator (3.13) is analytically challenging. We proceed
by using a spectral representation where the discontinuity of the two-point function is
evaluated in the appropriate asymptotic limits from section 5.2.

5.1 Spectral representation

The spectral representation for the bulk propagator is [59]

1 oo Disc, |G 5(2,2)
Gp(zvzl)zi/o d p/[)_\/; }

27
3In principle u-channel diagrams contribute when the scattering particles are identical. This is an O(few)

(5.3)

effect [58, appendix C]. We neglect the u-channel contribution for simplicity and ease of direct comparison
to ref. [9].

~10 -



where Disc, [g(p)] is the discontinuity of g(p) across the branch cut along the real line,
p€RT:
Disc,lg(p)] = 1131(1) g(p+ie) — g(p — ie) e>0. (5.4)

We compute the non-relativistic potential using this spectral representation of the propaga-
tor. Performing the d®q integral yields a general representation of the long-range potential:

1 )\2 e—\/ﬁT
Vir)=— T / dp Disc, [G\/’(ZUVwZUV)} :

Kaluza-Klein representation. One may use the KK representation of the free propa-

(5.5)

gator (3.15) in the spectral representation of the potential (5.5); this amounts to identifying
the exchange of a 5D bulk scalar with the sum of t-channel diagrams with each KK mode:

. Lo, + lo, + Lo, 4+ (5.6)
—r —r —r

The spectral distribution is Disc,, [G\/ﬁ(z, z’)} =3, [n(2) fu(2)278(p? — m2), so that the
potential is an infinite sum of Yukawa potentials from each KK mode:

1 )2

Vi(r)= I E an (zuv)?

e—mnr

(5.7)

While this KK representation of V' is exact, it requires knowledge of the entire spectrum
of KK masses and wavefunctions.

Canonical representation. One may alternatively use the canonical representation of
the propagator (3.13) in the spectral representation of the potential (5.5). In this case, one
may apply the closed-form asymptotic expressions derived in the following section. These
asymptotic expressions carry the same poles as the KK representation. The momentum
flowing through the propagator is necessarily spacelike in diagrams that contribute to the
potential. Thus we may readily use the asymptotic expressions for large |p| that are valid
away from the poles, (5.11) for < 1 and (5.16) for & = 1. We numerically validate this
approximation in section 5.5.

5.2 Propagator asymptotics

We present the limits of the bulk propagator G, for Minkowski momenta p much smaller
and larger than the mass gap, u. We focus on propagation to and from the UV brane
where the dark matter currents are localized. These limits illuminate the properties of the
theory and yield simplifications for the self-interaction potential.

We treat the @ < 1 and o = 1 cases separately; the asymptotic behavior of Bessel
functions with near integer order have an extra contribution that is neglected for non-
integer order.* As a result, one typically cannot obtain the a = 1 asymptotic behavior

4This is due to the expression for the Bessel function of the second kind with integer index a — n,

104G ()" 0a)

T Oa s Oa
a=n

Yo(z) =

a=—n
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as the @ — 1 limit of the @ < 1 asymptotic behavior. The o = 1 case is a meaningful
benchmark as it is equivalent to the exchange of a single 4D mediator.

5.2.1 Propagator asymptotics for 0 < a < 1
Small momentum asymptotic, |p| < p. For Minkowski momenta much less than
the mass gap we find a single 4D pole:

2k(1 — a) (2a + brR) <u>2—20
2+ bir)p? — da(l — a)brp? .

- (5.8)

All other poles are be heavier than O(u). For big < O(1), the light 4D mode mass is
2+ bIR

Large momentum asymptotic, |p| > p. For momenta much larger than the mass gap,

Gp(zuv, zuv) = ia(
(5.9)

mg =

2 [0
‘;’2) Sa(p)  Salp) =

Gp(zuv, 2uv) = A C ( (5.10)

The tower of KK poles are encoded in S, (p). The propagator further simplifies when the

).
momentum has an imaginary part Im(p/u) 2 1:

{ Q 2\ “
Gplauv, 2ov) = op (Eé J)r 1 (i];) ; (5.11)

where we have used S, ~ (—1)% in this limit.° This includes the case of spacelike momen-
tum. In this limit the conformal scaling appears: recalling that o« = 2 — A, the propagator
reproduces the scaling of the amplitude (2.2). Observe that the UV brane kinetic term does
not appear in this expression. This reflects the fact that none of the modes are localized
near the UV brane.

5.2.2 Propagator asymptotics for o =1

Small momentum asymptotic, |p| < p. For Minkowski momenta much less than
the mass gap, we find

(2 + br)2ik

G : - : 5.12
P (EUV20V) = e b @eovk + Log(k2/12)) — bix] — dbm? (5.12)
This carries a single 4D pole. The mass of this light mode is
4brr p?
mg = : IRH (5.13)

24+ bIR) [QCka + log(kQ//ﬂ)] —br '

This mass is suppressed by cyy + log(k/u), where cyy is the coefficient of the UV brane-
localized kinetic term and log(k/u) describes the bulk volume. One may understand (5.13)
as a dressing of the zero mode with an IR brane-localized mass.

5Loops from bulk interactions cause heavy KK modes to acquire large widths and give an effective
imaginary part to timelike four-momentum in the bulk propagator [19, 60, 61]. This physical imaginary
part is important for timelike processes but is not for spacelike processes, hence it is irrelevant for the
potential.
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Large momentum asymptotic, |p| > p. For momenta much larger than the mass gap,

2ik

Gp (ZU\/, ZU\/) = . (5.14)
p? PCUV — mcot (% + %) — log (%) - 27]
When Im(p/p) 2 1 the cotangent approaches —i and the propagator simplifies,
2ik
Gp (zuv, 2uv) = (5.15)

5 .
p? [2CUV — log <_4pﬁ) - 2’7}
In contrast to the o < 1 case (5.11), the UV brane kinetic term is not negligible. This
propagator describes a 4D mode with a logarithmic running of its wavefunction. It is similar
to the well known case of a bulk gauge field in AdS. We can absorb a large logarithm by
redefining the brane wavefunction coefficient cyy at a physical scale pg:
2ik

2 (94 — _r2\|-

P [200v —log ()]

For the astrophysical applications of self-interacting dark matter, the energy transfer ranges

¢uv = cyv + [log (k/po) — 7] G, (zuv, zuv) = (5.16)

over only a few orders of magnitude and the logarithmic running is thus negligible. The
a = 1 case thus reproduces the standard single-mediator self-interacting dark matter model
and serves as a useful benchmark.

5.3 Potential, a < 1

For bulk masses in the range 0 < a < 1 and with generic IR brane mass parameter
bir ~ O(1), the lightest excitations have mass on the order of u; see (5.9). Since there
is no light mode to contribute to non-analyticities of G, for [p| < p, we may apply the
|p| > p approximation of the propagator to the spectral integral (5.5). The lower limit of
the spectral integral is formally the mass of the lightest KK mode,

1 )2 e~ VPr

V(T) = —W? /Tn2 dp DiSCp |:G\/5(ZUV7 ZUV)]
1

(5.17)

However, because m; = O(u), by using the p > p? approximation for the propaga-
tor (5.11), we introduce some uncertainty in the lower bound of the spectral integral.
We verify the validity of this approximation in section 5.5.

The discontinuity across the branch cut along p > 0 is

, 1 (4k2\Y (o) .
Disc, {G\/ﬁ(zUV,zUV)} =z <p> T1—a) sin(ra) , (5.18)
where we have used (5.11). This is valid for Im(p/p) 2 1, which we assume because p
is spacelike. Evaluating the integral across the discontinuity using the I' reflection and
duplication formulas® gives the main expression we use in our analysis:

M T3/2-a)l

2—2a
Vi) = =57 rl—a) r (lclr) Q2 = 2amur). (5-19)

SNamely: T' (1 — 2)I'(2) = n/sin (7z) and T’ (22) = 7~ /222710 (2) T (2 4+ 1/2).
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where @ (2 — 2a,, my7) is the regularized incomplete I' function,
Qo) = s [ doarte (520)
D, z) = xaP e, )
I'(p) Jz

For r > ml_l, the potential is exponentially suppressed at long distances,

mi 1—2« 1

V(r) o< — <k:) We*m”". (5.21)

We see that Q(2 — 2, r) takes the place of the e Yukawa factor that encodes the mass
gap in the single-mediator scenario. In turn, this mass gap is a key ingredient for cutting
off unwanted long-range dark forces.

It is illustrative to check the behavior in the gapless limit g — 0. The large, spacelike
momentum approximation of the propagator (5.15) is exact in this limit and potential can
be evaluated exactly. We recover the gapless limit in (5.19) the gapless limit is recovered
by taking m; — 0, giving

N T(3/2—a)l ( 1 )Ha, (5.22)

Vewess7) = =5 5n T = a) 7 \r

which matches the result from [18]. The power law behavior obtained matches the proposed
scaling in (2.2) with the AdS/CFT identification A =2 — a.

5.4 Potential, a =1

For bulk mass parameter a« = 1 and with generic IR brane mass parameter big ~ O(1),
there is a mode lighter than the scale . The suppression relative to p is the kinetic factor
(cuv + log(k/p))*/? in (5.13). This is in contrast to the o < 1 case. The spectral integral
over the discontinuity in G ; must thus take into account this pole in the p < p? regime
in addition non-analyticities in the p > u? regime. We separate the potential into two
pieces accordingly, V' = Vjgnt + Vkk.

Light mode contribution. The light mode contributes a simple Yukawa potential:

2 9 e—mor
A 2
Viight o fozuv) (5.23)
where the profile evaluated on the UV brane is
2+ bir)2k k
folzuv)? = Chal,) ~ (5.24)

(2 +bir) [QCUV + log (ﬁ%)} —bir - cuv + log (%0) +y

as can be derived from the pole of the small momentum transfer limit of the propaga-
tor (5.12). On the right-hand side we use the assumption that bjg ~ O(1), apply the
1 < k limit, insert the renormalized brane kinetic term coefficient éyy defined at the scale
po from (5.16).
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KK mode contribution. The KK mode contribution uses the [p| > u asymptotic of
the bulk a = 1 propagator (5.16) applied to the large-momentum spectral integral, (5.17).
To obtain an analytically tractable expression we take the limit éyy > log(p/p) over the
range p € [m3,r~?]; the upper bound comes from the exp (—,/pr) factor in the spectral
integral. The resulting propagator is

ik log(—p*/p}) 1
G, (zuv, 2z = — 1+ — + O = . 5.25
» (zuv, zuv) T [ ey z. (5.25)
The discontinuity in the spectral intergal is
27k k= 1
Disc, |G 5(zuv, 2 =—0p)+5—+0| = . 5.26
p[ valzuov UV)} p— (p) 2y (C%v> (5.26)

The singular 0(p) term is outside the range of integration and does not contribute. The
leading contribution comes from the O (663,) term and evaluates to

1 A2

The o = 1 potential and limits. Since we have used the éyy > log(p/p2) limit in the
KK potential, we may apply the same approximation to the light mode contribution. This
produces the full & = 1 potential

A2 1 1 r 1
Vir) = ——— | — (1 _ Og(p(j/wy> e~mor | M + 0O = |- (5.28)
drr | cuv cuv Cov v

At long distances, r > ml_l,

0, myr) . 1 emr

P = . 5.29
&y &y mar ( )
One can explicitly see the exponential suppression from both the light mode and KK
mode mass gaps. In the short distance r < mfl limit, the incomplete I'" function is

m

I'0,z) = —(log « + ) and one has e ~ 1. Since mor < 1, we obtain

A1 1 1
Vo= -2 L [ s (2)] +o (), (5:30
CU\/47T7’ Cuv T0 Cuv

where we introduce the scale rq
log rog = log po + 27 + log (ml> (5.31)
I

to absorb O(1) coefficients. The explicit x dependence vanishes because the log p from the
light mode and the logm; = log u + O(1) from the KK modes cancel.

While (5.30) could be understood as the p — 0 limit of the @ = 1 potential, the
cuv > log(p/p%) assumption we used to evaluate the spatial potential formally does not
hold in this limit. Instead the full log™ r series would need to be resummed. Nevertheless,
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Figure 2. Absolute potential |V (r)| plotted to validate the continuum-mediated potential with a
mass gap (black) against a sum over np,,, Kaluza-Klein modes (colored). The potential with npax

KK modes is valid for separations larger than r 2> m;nlm. The disagreement at long separations

between the blue and black lines represents our numerical error and does not change the quantitative
behavior of integrals over the potential. Also shown: the non-integer power law limit (dashed gray)
that is realized in the gap-less limit m; — 0.

we verify that the Fourier transform of the propagator (5.25) matches the potential (5.30).
Interestingly, in this limit the contribution from the light mode is replaced by the d(p)
contribution in the discontinuity across the propagator, (5.26), which is otherwise cut off
at finite p. Details of this calculation are presented in appendix B.

The expressions in this section show that the KK mode contribution tends to be small
with respect to the light mode for both large and small r. This logarithmic correction is
negligible in our self-interacting dark matter calculations and thus the o = 1 case matches
the standard single 4D mediator scenario. It can thus be used as a benchmark comparing
to a # 1 phenomenology.

5.5 Validation of potential

In this study we use the asymptotic approximation of the gapped continuum-mediated
potential (5.19). In order to quantify its validity, we compare our approximation to an
explicit sum over Kaluza-Klein mediated Yukawa potentials (5.7). This is a meaningful
check since a sum over ny.x KK modes is a valid approximation to the full sum on scales
longer than the inverse mass of the heaviest mode, r 2 m;nll
of the gapped continuum-mediated potential with the sum over a large number of KK in

- We thus test for agreement

the regime where the latter is valid.

We present our validation in figure 2. The key comparison is between sum over nyax =
10* KK modes (blue) and the continuum-mediated potential (black). For values of o < 0.95,
the sum over ny.x KK modes agrees with the continuum potential in the regime where the
finite KK sum is valid, r > m, !

max

. However, at distances longer than the inverse mass
gap, r 2 ml_l, the curves diverge slightly while maintaining the same qualitative gapped
behavior. This discrepancy is caused by the |p| > u limit assumed in the derivation of the
continuum-mediated potential (5.19). This discrepancy grows when « & 1; see footnote 4.
Practically, we restrict the continuum-mediated potential for o < 0.95. In this range, the
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large-a discrepancy does not change the qualitative behavior of the continuum-mediated
potential, nor the quantitative behavior of integrals of this potential. For larger values of
a, the potential reproduces the well-known case of a single 4D mediator, as described in
section 5.4.

Figure 2 also demonstrates how a sum of Yukawa potentials can reproduce a potential

that goes like a non-integer power of the separation, (1.1). The lightest KK mass sets
-1

TMmax

a long-range length scale, mfl. In the regime m < r <« mq, the sum over Yukawa
potentials from mnp.x KK modes produces a total potential that matches the power law

of (5.22).

6 Astrophysical phenomenology

We apply our continuum-mediated model to the phenomenology of self-interacting dark
matter for small-scale structure. The quantity that connects particle physics parameters
to astronomy is the transfer cross section. We demonstrate the dependence of this cross
section on our model parameters and provide representative fits.

6.1 Review of self-interacting dark matter cross sections

We summarize key results of self-interacting dark matter phenomenology; see ref. [10] for
a detailed review. Long-range dark matter self-interactions affect halo density profiles by
thermalizing the inner halo and reducing the central density. The effect of dark matter
self-interactions on halos depends on the scattering rate, ov(py/m,). Since the dark mat-
ter density p, and the relative velocity v are known for the relevant astrophysical systems,
the figure of merit is the ratio of the cross section to the dark matter mass, o/m,. Dwarf
spheroidal galaxies have low relative velocities (v ~ 10km/s) and exhibit small-scale struc-
ture anomalies that could be explained by sufficient self-interactions [9, 62, 63]. On the
other hand, galaxy clusters have large relative velocities (v ~ 1500 km/s) and typically set
upper bounds on these interactions:

2 2
<0> e’ <0> <o’ 6.1)
My dwarf g My cluster &

The small-scale target and large-scale upper limit are simultaneously satisfied in self-
interacting dark matter models due to the velocity dependence of the cross section. In
fact, a more relevant quantity for fitting to astronomical observations is the transfer cross
section, which is weighted by the amount of transverse momentum transferred between
dark matter particles:

o = /dQZg (1 —cosb). (6.2)

This accounts for the fact that back-to-back scattering does not change the distribution of
energy between halo dark matter particles.” The transfer cross section is the figure of merit

"A more symmetric treatment is to use the viscosity cross section, oy = f dQsin® @do /dQ2 . In order to
map to the standard self-interacting dark matter literature, we use o which differs from oy by at most an
O(1) factor [10].
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Figure 3. Regimes of self-interacting dark matter. The horizontal axis measures whether the
ladder of mediator exchanges can be approximated by a single mediator exchange. The vertical

axis is a measure of the velocity. The figures of merit are scaled by the ratio of the dark matter mass
to the mediator mass (or mass gap) so that the regimes are limits relative to unity. The perturbative
regime is described by the Born approximation over the range of all velocities, whereas the non-
perturbative regime is separated into a classical regime at high velocities and a resonant regime at
low velocities. Blue: asymptotic velocity scaling of the transfer cross section o in the continuum-
mediated scenario. No simple scaling exists in the resonant regime. The standard case of a single
4D mediator corresponds to o = 1.

for determining the effect of self-interactions on the dark matter halo profile. The behavior
is classified according to regimes along two axes: perturbativity and relative velocity, see
figure 3.

Perturbativity. The horizontal axis of figure 3 distinguishes whether the transfer cross
section is accurately described by the exchange of a single mediator (perturbative) or
otherwise requires a sum over ladder diagrams (non-perturbative). In the former case, one
may use the Born approximation. For a 4D dark sector with a single mediator of mass m
and corresponding potential V' ~ a,e”"¢" /r, these regimes correspond to

Born: XX 1 non-perturbative: DX 5 1. (6.3)
me me
The weighted coupling, o, m, /mg, measures whether the Hamiltonian eigenstates are dis-
torted from the non-interacting case [64, (7.2.13)]. The sum over ladder diagrams in the
non-perturbative regime reproduces the distortions of the asymptotic states relative to the
non-interacting eigenstates.

Velocity. The horizontal axis of figure 3 distinguishes whether the dark matter relative
velocity (kinetic energy) is large enough to ignore the effect of the mediator mass. When
the theory is perturbative, the Born approximation may be applied across the entire range
of velocities. On the other hand the velocity separates the non-perturbative case into two

regimes according to whether the de Broglie wavelength (inverse momentum) (m,v)~! is
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comparable to the screening length (inverse mediator mass), m;l:

resonant: 27 < 1 classical: XU 1. (6.4)
me me
The classical regime is the case where the zeroth-order WKB approximation is valid; this
corresponds to the A — 0 limit. For a 4D dark sector with a single mediator of mass
myg, the classical regime is the case where the mediator mass is negligible and the theory
reproduces the case of Rutherford/Coulomb scattering. In contrast, in the resonant regime
the Yukawa factor deforms the potential away from the Coulomb limit enough to support
quasi-bound states. In this regime, one must numerically solve the Schrédinger equation
in a partial wave expansion to determine the transfer cross section [9].
Figure 3 shows that v < «, is a necessary condition for the existence of resonances
over some range of v. Conversely, v > «, is a sufficient condition for having no resonance
for any value of v.

6.2 Analytical behavior of a continuum mediator

The transfer cross section from a continuum-mediated potential can be mapped onto the
self-interacting dark matter regimes described above and pictured in figure 3.

Effective coupling. The condition for perturbativity depends on the dark fine structure
constant, which is o, = gi /47 for a single 4D mediator. We can identify an effective fine
structure constant oz;ﬁ for our continuum mediator. For bulk mass parameters 1/2 < o < 1,

A2m fn(zuv)? A2 4 1 my\ 22
eff 1 n\~UV ~ mi
N T ark zn: mp, A [2a — 1T(1 — a)2] ( Qk) ' (6.5)

This follows from applying the Born approximation condition (6.3) to the sum of Kaluza-
Klein potentials (5.7). On the right-hand side we use the spectral representation (5.3) to
evaluate the sum. This calculation is detailed in appendix C, where we also discuss the
limiting cases where the bulk masses satisfy & = 1/2 and o = 1. We note that the factor
of (m1/k)?72% ~ (u/k)?>72% in (6.5) suppresses the effective coupling compared to a naive
estimate A\? /4.

Transfer cross section regimes. The self-interaction regimes in figure 3 are mapped
to the continuum-mediated scenario by identifying the mediator mass with the lightest KK
mode mass (the mass gap), mgy — mi. We find that the effective coupling afff replaces a,
in the demarcation of the perturbative (Born) and non-perturbative regimes,

;ﬂmx ) ozf(ﬂmx
Born: <1 non-perturbative: ———= > 1. (6.6)
mq mi

We can likewise divide the non-perturbative regime into the classical and resonant regimes:

Classical: XY > 1 Resonant: X" < 1. (6.7)
mi mi
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Figure 4. Velocity dependence of the transfer cross section in the Born regime. Comparison
between the Born approximation and (blue/solid) and the numerical result from a sum of partial

waves (orange/dashed). The results asymptotically scale like v~ at large velocity (green).

Unlike the case of a Yukawa potential, there are no analytic expressions for the transfer
cross section in the entire non-perturbative classical regime.® We show the scaling of the
transfer cross section for the classical regime in the small mass gap/high velocity limit and
give a closed form result in the low velocity regime below, see appendix D.

Continuum-mediated Born regime. In the Born regime, the transfer cross section
computed perturbatively from the 1/2 < o < 1 continuum-mediated potential (5.19) is

do Born (aeﬂ)2 m2 2
X X
(dQ) — 74m‘11 (2ce — 1)2 o (1, a; 1+ a —|q|2/m%) , (6.8)

where oF (1,0;1 4 a; —|q|?/m?) is the hypergeometric function that encodes the mass
gap. The transferred three-momentum, q, satisfies |q|? = %miqﬂ(l — cos @) where 0 is the
scattering angle in the center of mass frame. We compute the angular integral numerically.

We may examine (6.8) in the limits of large and small transferred three-momentum.
For a transfer momentum much larger than the mass gap, |q| > mj, the transfer cross
section is

Mm?2 F(Oz) 2 o 4o
Born X

~ . 6.9
oT 167rk4(1 —a) {1“(1 _ a)} My la] > my (6.9)

This matches the result from the gapless potential, (5.22). In the opposite limit, |q| < my,
the transfer cross section approaches a constant:

A2 o \ 4o
Born X
~ ma . 1
ot 647m202kAT (1 — o) <m1> la| > my (6.10)

Figure 4 compares these asymptotic behaviors to a numerical solution.
Early astrophysical simulations of self-interacting dark matter assumed a constant o
and found that the cross sections required to address small-scale structure anomalies were

8See ref. [65] for a discussion of scattering in the limit of no mass gap.
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inconsistent with bounds from the upper limits set by galaxy cluster collisions. One of the
key insights of ref. [9] was that suppression of the cross section at transfer momenta relative
to a light mediator would alleviate this tension. In the continuum-mediated scenario, we
see that the bulk mass parameter o controls the velocity-scaling in the high-velocity Born
limit. This parametric control is not possible for the exchange of a single mediator.

Continuum-mediated classical regime. Unlike in the Born regime, in the classical
regime closed form results for the transfer cross section do not follow from straightforward
calculation. While in the case of a Yukawa potential closed form expressions can be de-
termined for the entire non-perturbative classical regime, see e.g. ref. [9, eq. (7)], analytic
expressions for the continuum mediated transfer cross section are harder to come by. In
the limit of a small mass gap/large velocity, one can determine its velocity dependence. In
the opposite low velocity limit, one finds a closed form expression. The calculations are
detailed in appendix D.

One can write the transfer cross section in this regime as an integral over the impact
parameter p. It is convenient to introduce the dimensionless quantities £ = p/pp, where pg
is a characteristic length scale defined from the potential (5.19),

1
22 r3/2—a)|*>
2m3/2myv2k2—2> T'(1 — ) '

gassical 271-,03/0 [1 —cosO(&, mipo)] £dE  po =
(6.11)

When mipy < 1, corresponding to the small mass gap/high velocity limit, the scattering
angle 6 is a function of the ratio £ only [65]. In this case, the transfer cross section depends
on a non-integer power of the relative velocity, —4/(3 — 2a)). A finite mass gap induces
corrections to this scaling.

While this scaling holds in the small mass gap/high velocity limit of the classical
regime, an approximate closed form solution for the transfer cross section can be computed
for lower velocities. Following the methodology of ref. [66], we calculate the transfer cross
section in terms of the parameter
B 2oz>e<ﬁm1

8= 2a—1). (6.12)

2
V1

In the limit 8 > 1, the transfer cross section is found to approximately be

. 5\ a-n, (20-9)]
O_rcrlassical ~ 1 + log ( ) _ 2 . (613)

N — +
my log log 8 log (%)

See appendix D.2 for details. Recent work on the semi-classical regime of self-interacting
dark matter has provided a more rigorous derivation of the analogous single mediator
results, including the leading order quantum mechanical corrections [67]. For simplicity we
utilize the methods of ref. [66] and leave a detailed study of the semi-classical regime of
continuum-mediated self-interacting dark matter for future work. Our analytical result is
shown to be in good agreement with the numerical solution to the Schrodinger equation,
see figure 5.
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Summary of velocity scaling. We summarize the velocity scaling in the different

regimes:
V0 Born (low velocity)
—Ao . .
v Born (high velocit
o ~ (high velocity) (6.14)
p~4/(3-2a) Classical

no simple scaling Resonant .

The dependence on the bulk mass parameter « is a key difference from the standard 4D,
single mediator case. The 4D scenario corresponds to a = 1.

6.3 Numerical methodology and results

To make quantitative statements about the transfer cross section that extend to the classical
and resonant regimes, we numerically solve the Schrodinger equation using a partial wave
expansion,

op = (m4”/2)2 SO+ 1) sin? (Sesy — 67). (6.15)
xV ¢

where dy is the scattering phase shifts partial wave £. We follow the methodology of ref. [9]
with a more relaxed numerical algorithm described in appendix F.

For bulk mass parameters o < 1/2, the potential dominates over the repulsive centrifu-
gal barrier for r — 0. In this case one must place a short distance cutoff on r that encodes
data from the UV completion. Practically, the partial wave expansion converges poorly
and becomes numerically intractable for potentials more singular than r—2. As such, we
restrict the bulk mass parameter to the range 1/2 < a < 1, where the upper limit is the
theoretical upper limit established in section 3.3.

Realization of the transfer cross section regimes. The scattering rate density rele-
vant for thermalizing the cores of dark matter halos is the transfer cross section times the
dark matter number density, orn, ~ orpy/m,. The dark matter density p, is a measured
input, so a useful figure of merit is the ratio or/my, for which the typical value required
for small-scale structure is o/m, ~ O(1).

To demonstrate the self-interacting dark matter regimes discussed in this section, fig-
ure 5 scans the ratio or/m, over the mass gap p ~ m; for different values of the bulk
mass parameter c. These one-dimensional plots are slices of the transfer cross section over
the two-parameter space of regimes in figure 3. For each of these plots, large values of
u correspond to the low-velocity Born regime. Figure 5 confirms the agreement with the
Born approximation in this limit. As one decreases p, one moves upward and to the right
in figure 3, crosses the resonant regime with pronounced peaks in the cross section, and fi-
nally enters the classical regime. Figure 5 confirms that our approximate analytical results
in the classical regime agree with the numerical solution to the Schrédinger equation. For
smaller values of o, our approximation for the transfer cross section in the classical regime
breaks down as expected.
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Figure 5. Comparison of the numerically calculated transfer cross section to the analytic approx-
imations introduced in figure 3. The general behavior displays distinct regimes, similar to that
of a single mediator, see e.g. ref. [9, figure 2]. The blue line is the numerical solution. Orange
(dashed)/green (dotted) lines correspond to analytic Born/classical approximations valid in their
respective regimes; (6.8) and (6.13).

Resonances and the bulk mass parameter. The resonance structure of transfer cross
section can be very sensitive to the bulk mass parameter «. This parameter has no analog
in 4D self-interacting dark matter models with a single mediator and represents a new
model degree of freedom to affect phenomenology. The bulk mass feeds into both the
overall effective coupling a‘;ﬁ (6.5) and the slope of the potential at short distances (5.19).
We demonstrate the a-sensitivity of the transfer cross section with a set of benchmark
parameters in figure 6. The two plots scan over both « and the relative velocity v to
highlight the interplay in the resonance structure.

We remark that figure 6 plots (meg< to make it straightforward to use scaling relations
to connect results to different parameters. The partial wave expansion (6.15) makes it clear
that op ~my 2. The additional m, dependence of the phase shifts , depend only on the
ratios m, /m; and m, /k; see appendix F. Thus the plots are unchanged by the following
rescaling of parameters by 7:

My —> MMy k — nk = ML (6.16)

This extends the scaling arguments in ref. [9] to the case of a continuum mediator.
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6.4 Comparison to astrophysical data

The scattering rate, orv(py/my), determines the energy transfer in dark matter halos.
Figure 7 plots the figure of merit orv/m, for a set of benchmark parameters compared to
the astronomical data points presented in ref. [9]. The plot includes a Yukawa potential to
represent the 4D single mediator case. These benchmarks correspond to a range of bulk
mass parameters o. The other parameters are set to give fits of comparable x? to the
Yukawa potential. We remark that this is not a scan to minimize x? and is only meant
to demonstrate the range of parameter possibilities that can fit the data. The ultimate
cause for the dark matter halo density profile observations may partially (or wholly) include
contributions from baryonic feedback, see ref. [20] for a recent status report. Thus one may
conservatively interpret the data in figure 7 as upper limits on the transfer cross section
for a viable model.

The mass hierarchy between the dark matter and lightest KK mass is comparable to

that of the benchmark 4D self-interacting dark matter theory, m, /mg ~ O(103). While A

eff
X

constant for the benchmarks in figure 7. In the extreme case o = 0.55, the effective

can vary over a few orders of magnitude, the effective coupling a$" remains approximately
coupling a;ff is small compared to the other benchmarks. This is compensated by a small
dark matter mass. This interplay between « (i.e. the bulk mass) and the dark matter-
mediator coupling A may be used, for example, to maintain the fit to data in figure 7 while
adjusting a mediator-Standard Model coupling Agy to realize other phenomenology.

We remark that while we restrict to the range of bulk mass parameters 1/2 < a < 1 for
theoretical reasons, we also observe that the model phenomenology gives a mild preference
for values away from the lower limit. For small values of a: = 0.55, reproducing the desired
(o1v)/m, behavior requires sub-GeV dark matter and a Kaluza-Klein scale of O(10keV),
which may cause tension with cosmological constraints [68]. On the other hand, for large
values of @ — 1, one must take care to use the appropriate limiting form of the bulk
propagator, as discussed in section 5.2. Since the a = 1 case essentially describes a single
4D mediator, this limit approaches that of ordinary self-interacting dark matter models.

Beyond simply describing the model parameters that reproduce astrophysical data, it
is also illustrative to plot a range of model parameters to see how they distort the (orv)/my,
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Figure 8. Velocity dependence of the thermally averaged transfer cross section, analogous to fig-
ure 7, for a range of u and m,, choices to demonstrate the behavior with respect to these parameters.

behavior from the ideal case. Figure 8 presents such a scan over the mass gap p and m,,
with other parameters fixed.

Varying the mass gap p primarily affects the behavior at low velocities (low momentum
transfer), though it leads to an overall rescaling because it is a multiplicative factor in the
effective coupling a‘;‘(ff (6.5). Thus for a set of parameters that fit the cluster data well, one
can tune the mass gap to help fit the low-velocity data.

The dependence on the dark matter mass m,, on the other hand, is highly nontrivial.
One can see this because the phase shifts in (6.15) depend on the dimensionless com-
binations m, /m; and m, /k, as described in appendix F. Varying m, thus affects two
independent quantities in the numerical solution of the partial waves.

6.5 Comment on annihilation and relic abundance

The purpose of this study is to demonstrate the distinctive self-interaction phenomenology
of our model and we have remained agnostic about whether or not dark matter is a relic
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from thermal freeze out. Thus we have not restricted the dark matter mass m, and bulk
coupling A to fit that of a thermal relic, even though such a restriction would itself be an
interesting benchmark. Indeed, one of the constraints on typical 4D self-interacting dark
matter models is that the required self-interactions for small scale structure are generally
too large for dark matter to be a thermal relic in the simplest cosmological scenarios.
Recent work has shown that in the presence of bulk self-interactions, the high KK-number
states of the 5D scalar are not valid asymptotic states due to the breakdown of the narrow
width approximation [19]. As a result, the production of KK modes is heavily suppressed
by phase space. This can lead to a tantalizing mechanism to suppress the annihilation
rate: by increasing the bulk scalar self-interaction — a new parameter in the theory —
one may control the total number of effectively allowed final states. We leave this topic for
future work.

7 Continuum-mediated sommerfeld enhancement

The same dynamics that generate dark matter self-interactions also lead to Sommerfeld en-
hancements. Sommerfeld enhancements encode the effect of the long-range force on a short-
distance process (annihilation) and so depend on the solution to the two-body Schrodinger
equation at the origin, W(0) [69-75]. In contrast, the dark matter self-interactions that are
the main focus of this paper are intrinsically long-ranged. Diagrammatically both processes
involve a ladder of exchanged force mediators between the dark matter initial states. When
the potential has a mass gap, the potential supports resonances at large enough coupling.

We investigate the Sommerfeld effect in our continuum-mediated model. The contin-
uum-mediated potentials we consider are shorter-ranged than the 1/r factor in Yukawa
potentials. Since the Sommerfeld enhancement is a long range effect, one may expect that
the continuum-mediated Sommerfeld effect is suppressed as compared to the Coulomb case.
However, the possibility of resonances may compensate for this and a detailed quantitative
analysis is required.

Analytical results for Sommerfeld enhancement are only available for Coulomb poten-
tials. More generally, one must use numerical methods to solve for the enhancement from
more general potentials, see e.g. ref. [76]. This method is valid for potentials that scale

2 corresponding to bulk masses 1/2 < o < 1 in our continuum-mediated

like =1 to r~
model. Potentials that are strictly steeper than r~2 require a separate treatment because
the potential term dominates the centrifugal term at small distances. These potentials
require a short-distance cutoff as expected from a low-energy effective theory.

We numerically explore the Sommerfeld enhancement over the range of bulk masses
1/2 < a < 1 range for a continuum mediator with a mass gap. This is described by the
same potential used for self-interactions, (5.19). To avoid the breakdown of asymptotic
approximations described in section 5, we restrict to a < 0.9. Figure 9 shows the Som-
merfeld enhancement as a function of o and p1/m, for a benchmark coupling A = 10. The
key result is that Sommerfeld enhancement occur even when o < 1 where the potential is
shorter-ranged than a Yukawa potential. The enhancement increases for smaller mass gap
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Figure 10. Sommerfeld enhancement of the ¢ = 0 partial wave as a function of a.

relative to the dark matter mass, p/m,. For example for p/m, = 10~* we find S ~ 10
for ac ~ 0.66.

Resonances appear in a nontrivial pattern in the a—u plane. With the assumptions in
figure 9, the theory exhibits resonant behavior occurring for bulk masses as low as a ~ 0.7.
These resonances are expected to vanish at lower coupling; this is shown in figure 10 where
the Sommerfeld enhancement is plotted for constant u. The large coupling case A = 10
exhibits resonances, while a smaller coupling A = 1 does not. In this case the Sommerfeld
effect is found to quickly decrease with a.

The Sommerfeld enhancement decreases quickly with « and eventually vanishes near
a = 1/2, corresponding to a r~2 potential. We remark that the enhancement for an
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ungapped V(r) oc r~2 potential can be solved exactly. In this case, the centrifugal term
has the same scaling as the potential so that the £ = 0 solution is singular and dependent on
the EFT cutoff. To the best of our knowledge, Sommerfeld enhancement for this case has
not been discussed in the literature. We present details of this calculation in appendix E.
We find S = 1 whenever the dark matter mass is much smaller than the EFT cutoff. In
other words, the 1/r? potential is too short-ranged to induce any Sommerfeld enhancement,
confirming the numerical result in figure 9.

8 Conclusion

We propose a model where dark matter self-interacts through a continuum of 4D mediators.
This generalizes work on self-interacting dark matter that has otherwise focused on the case
of a single massive mediator producing a Yukawa potential. A continuum mediator may
arise in a strongly-coupled gauge sector. We assume that this mediator sector is nearly
conformal so that its features are dictated by symmetry. Applications of the self-interacting
dark matter paradigm to small-scale structure anomalies require a mass gap to cut off the
potential at long distances. A natural choice to realize this mass gap is to assume that
the strongly-coupled sector has a large number of colors so that the theory is described
holographically by a brane-localized dark matter interacting with a bulk field in a slice of
5D AdS space.

We present a concrete realization where the 5D continuum mediator is a scalar. We
address aspects of effective field theory and constraints from experiments and cosmology.
The key parameter that characterizes the hallmark features of our model is o, which encodes
the scalar field’s bulk mass and maps onto the conformal dimension A of the dual scalar
operator.

We evaluate the non-relativistic potential induced by a continuum mediator with a
mass gap using the spectral representation and asymptotic expressions for the 5D prop-
agator. We obtain simple closed-form expressions for the @ < 1 and o = 1 cases and
validate them numerically. The o = 1 case corresponds to a Yukawa potential. At long
distances, the potential scales like a non-integer power, V ~ r?@=3. We focus on the range
1/2 < a < 1 where calculations are tractable and the potential satisfies constraints from
CFT unitarity.

The astronomical phenomenology of dark matter self-interactions depends on the trans-
fer cross section, op. We calculate this quantity in the continuum-mediated scenario
and demarcate three types of qualitative behavior — the Born, resonant, and classical
regimes. These regimes are qualitatively similar to those of a single 4D mediator, but in
the continuum-mediated model the regimes depend on « in addition to the strength of the
dark matter coupling and mass gap.

The velocity-dependence of the transfer cross section allows a self-interacting dark mat-
ter model to explain small-scale structure anomalies while avoiding cluster-scale constraints.
In contrast to the single 4D mediator, the transfer cross section in the continuum-mediated
model exhibits non-integer velocity scaling. For example, in the perturbative Born regime,

or ~ v74 for large velocities. In the non-perturbative classical regime, op ~ v=%/(3-20)
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in the small mass gap limit. In contrast, a Yukawa potential in both of these regimes has
a transfer cross section scaling of op ~ v™4.

We present benchmark fits of the transfer cross section to astrophysical data. In the
extreme case of bulk mass parameters o ~ 0.55, fits typically require sub-GeV dark matter
and sub-MeV mass gaps, which may be cosmologically challenging. Larger values of «
permit higher mass scales so long as the ratio of the dark matter mass to the mass gap is
My /1 ~ 103. Larger bulk masses cause KK mode profiles to localize away from the UV
brane that contains dark matter. Thus larger bulk masses typically require larger dark
matter-mediator couplings between the dark matter and mediator.

Our model necessarily leads to continuum-mediated Sommerfeld enhancement. We
demonstrate the pattern of resonances that occur in the (u, ) plane. The enhancements
vanish as o — 1/2, consistent with our analytical results for a 1/r? potential.

We conclude that models of dark matter with continuum mediators introduce novel
power-law scalings in self-interaction effects. The bulk mass parameter, «, has no analog
in standard 4D self-interacting dark matter models and is a new way to control the phe-
nomenology. Since the bulk mass controls the localization of the mediator, it naturally
plays a role in possible effective couplings to the Standard Model. These observations open
new possibilities for dark matter phenomenology.
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A AdS/CFT with UV brane

The AdS/CFT correspondence states that boundary correlators of quantum field theory in
AdS;1 spacetime are equivalent to correlators of a conformal field theory in d-dimensional
spacetime [45-48]. For a given bulk field in AdS, the corresponding CFT operator arises
through the asymptotic behavior of the field near the AdS boundary. In this appendix
we revisit and streamline the two branches of the correspondence in the presence of a UV
brane.

A.1 The two branches

A scalar bulk field ® in AdSs corresponds to a scalar operator O of a CFT. The conformal
dimension of O is denoted A. An analysis of the boundary asymptotics shows that the
relation between AdS bulk mass and A is given by [37-44]

A(A + d)k* = M2, (A1)
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or equivalently (3.10). We recall that M3 = (a? — 4)k? and a > 0 by convention. The two
roots of (A.1) are

Ar=2+a. (A.2)

These two roots indicate that the correspondence has two branches; for a given AdS field
there can be two CFT duals. Unitarity of the operator implies A > 1. It follows that the
Ay branch exists for a € Ry, but the A_ branch exists only for 0 < o <1 [77].

The correspondence is formulated as follows. We define the value of the bulk field on
the AdS boundary ®; = ®(X* — boundary). Starting from the AdS partition function,
one integrates over the bulk degrees of freedom while holding ®y constant. This defines
the boundary effective action

DCI)eiSAdS[q)] — e’LTAdS[(I)O] . (A3)
)

The two branches of the correspondence are then formulated as follows.
In the A, branch, the dual CFT is defined by the correspondence

L' adas[®o] = Werpr[®o] (A.4)

with Wepr[J] the generating functional of connected correlators of a CEFT where J is the
source of the operator O (with [O] = Ay),

ZeprlJ] = /D¢CFTeiSCFT[¢CFTHf d*z0J _ iWerrlJ] (A.5)

In this branch we can observe that the ®( variable corresponds to the source of the O
operator.
In the A_ branch the dual CFT is defined by the correspondence

Laas[O] = Zcrr|[0] (A.6)
with Ycp7[Oc] the Legendre transform of Wepr[J],
ECFT[O] = WCFT[J] — /d.%'uOJ (A7)

> is constructed similarly to an effective action. Its argument is understood to be an
expectation value, e.g. O, this is left implicit here. In the A_ branch we can observe that
®( corresponds to the expectation value of the O operator itself.

A.2 The two branches with a UV brane

One can truncate AdS with a UV brane and identify ®; = ®(X™ — UVbrane). The
above AdS/CFT relations from full AdS remain structurally the same, however fields on
a brane away from the boundary can be dynamical, hence the UV brane has a localized

action Syy. In particular the ®g variable is in general dynamical instead of being static as
in the full AdS case. Thus ®¢ is now a 4D field, external to the CFT.
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The AdS partition function is
/D(I) etSuv[®o] 'Dq)elsAdS[‘P /D(I)Oeiruv[q’oHiFAds[q)o] ) (A.8)

To formulate the 4D theory in terms of a generating functional of connected correlators,
one would have to introduce new static sources coupled to ®g and O. Instead we can
Legendre transform and describe the theory directly in terms of an effective action I'yp.
We introduce I'yy, the effective action generated by Syv.

Consider the A, branch. The 4D theory is identified as in (A.4), appending Suyy on
both sides. The Wepr is substituted by its Legendre transform using eq. (A.7), where
the J source is localized on the UV brane and can now be dynamical. It follows that the
effective action of the 4D theory is given by

Tuv[®o] + Fags[Po] = Tuv[Po] + Xcrr[O] + /dﬁ“@‘l’o = T'yp[Po, O]. (A.9)

To illustrate the 4D theory defined by (A.9), consider a dynamical UV brane-localized
current Jyy coupled to @ as Syy = [d*zJuv®o, and evaluate the (JyyJuyy) correlator.
One finds that the Jyy currents exchange a propagator of ®g, which is itself dressed by
the two-point function of O.

In the A_ branch the effective action of the 4D theory is identified as

Luv[O] 4 Taas[O] = Luv[0] + Zcpr[O] = L'ap[O]. (A.10)

Consider again the (JyyJuy) correlator from the Syy = [ d*zJyy®q interaction. What
we obtain is that the Jyy currents exchange a two-point correlator of @. This A_ branch
of the duality is the one used for our model. Identifying the Jyy current as Jpyg, the (JJ)
correlator discussed here describes formally the relation given in (2.3).

B Derivation of gapless a = 1 potential

In this appendix we show how to evaluate the Fourier transform of (5.25). The first term is
a simple pole at the origin and thus gives a Coulomb potential. The next-to-leading term
goes as log(q)/q?. To evaluate its Fourier transform we use

log ¢° _ 1
q

2n T ® 2q

q

a—n

with n = 1. The Fourier transform of ¢~ is

1 3 iqr 1 1 1 / 3 'qr/ dt 1 —tq? 1 F<3/2 — Oé) ( 4 )3/204
iqr_— L i dt o @ _ 4 |
(2m)3 /d ¢ q>« (2m)3 T'(a) d"qe t € (4%)3/2 () 2

(B.2)
We then evaluate the « derivative and set o = 1, which gives
1 I'(3/2 — «) 1
Oa = — 1 . B.3
(4m)3/2 N <i>3/2_a 5 (7 +log7) (B.3)
r? a—1

Combining these identities gives (5.30).
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C Validity of the born approximation

In order to determine the validity of the Born approximation, consider the wave function
for a dark matter particle scattering off of a potential V(x),

eiplx—x'|

P(x) ~ ePX _ mx/d3 V(X')eip'x/, (C.1)

4rr|x — X/|

where |p| = myv/2 and p - x' = pr’ cos§. Near the origin |x — x’| ~ 7/, thus the condition
for when the Born approximation is valid is

. /
m err .
X /de/ ) V(X/)esz
47 T

For a Yukawa potential V(r) = a,e™"¢" /r this condition is simply a,m,/mi; < 1. At

<1. (C.2)

low energies we can replace the exponentials by 1. For a central potential in spherical
coordinates the angular integral is trivial. Evaluating (C.2) for a Yukawa potential gives
the condition aym, /mg < 1. This bound can be equivalently determined by considering
the typical momentum flowing through a ladder diagram is of order a,m, [78, 79]. We
evaluate (C.2) for (5.7) and arrive at the result

2 2
4/7\rl<: 3 Jalzov)” (C.3)

mny

In order to make the connection to the Yukawa case more explicit, we define the effective
coupling

X _ 47Tk an ZUV : (C4)

such that the condition for when then Born approximation is valid becomes

aeﬁ

m
X X «1, (C.5)
mi

analogous to the Yukawa case.

Recalling that the bulk profiles depend on the bulk mass parameter a, we note that the
sum over KK modes in oy g diverges for o < 1/2. This is consistent with the Schrodinger
equation in which, near the origin, the continuum mediated potential (5.19) dominates
over the centrifugal barrier for < 1/2. In order to achieve finite results in the case when
a < 1/2, we introduce a smooth cutoff to (C.3) such that

B fn zuv ) off /Ay fn ZUV) —rn /A
X = 47Tk: Z — oy (A) = 471_]{: Z e (C.6)

where A~! is the short distance cutoff. We evaluate the KK sum using the spectral repre-
sentation of the propagator (5.3) and using the large-momentum asymptotics (5.11). We
arrive at the result

)\2 m 2k 202 m

eff 1 1

ool = 2 (= T(1-2a 1), .
X 4r(1 — a)2 A < A ) ( T A ) (C.7)
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When « > 1/2, the limit A — oo is finite and cutoff independent,

2 2—2a
- oy (5) (©8)
a>1/2  Am |2 —1T(1 — «)?] \ 2k

This result is identical to evaluating (C.2) for the continuum mediated potential (5.19).

eff
Qy

For the special case of a bulk mass parameter « = 1/2, we find that the effective
coupling for the Born approximation is

A2m Ae™7
eff 1
= 1 ) .
e S 2% og< . > (C.9)

The other limit, &« — 1 requires special care. Because the asymptotic expansions of the
canonical propagator used for the o < 1 result break down in this limit, one cannot simply
take & — 1 in (C.8). Instead, in the case where o = 1, scattering is governed by the
Yukawa potential (5.23) and we can directly apply (6.3) so that

oy = fo(zuv)? (C.10)

where fo(zuv) is given by (5.24).
The accuracy of the Born approximation improves at higher energies. This can also
be shown from (C.2) by computing the angular integral for a general central potential,

D Classical transfer cross section

We calculate the transfer cross section in the classical regime and observe its velocity
dependence. The angle by which a particle in a central potential is deflected is (p) =
| — 2¢(p)| where [80]

o0 dr
p(p) = p/
Tmin 72 \/1 — p?/r?2 =4V (r)/m,v?

(D.1)

and p is the impact parameter. The lower limit of integration ry, is the largest root of
the denominator of (D.1). In contrast to the quantum case, the classical cross section
is typically given in terms of the impact parameter rather than the angular variables.
In the classical limit, integration over the deflection angle can be troublesome since the
solution to (D.1) for ¢(p) and thus 6(p) takes values greater than 7 for cases other than a
1/r potential. On the other hand the impact parameter always ranges between zero and

infinity.
The differential cross section is do = 2mpdp. The transfer cross section is thus
. 9]
gsassical 27r/ [1 —cosf(p)] pdp . (D.2)
0
To connect to the deflection angle, we note that
do classical p(X) dp
il - il D.3
(dQ) sin 0 ‘ de (D-3)

where in these variables d€) = 27 d cos . We present calculations for the velocity scaling in
the small mass gap/high velocity limit and an analytical result in the low velocity region
of the non-perturbative classical regime.
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D.1 Velocity scaling in the small mass gap/high velocity limit
For the sake of this calculation we assume the gapless limit where the potential is (5.22)

N I'(3/2-q) 1
273/2 T(1 — ) r(kr)2—2e’

This approximation also accounts for the high velocity limit where the particle momentum

V(r) = (D.4)

is much greater than the mass gap. Given our potential we can define a characteristic
length scale

A2 L3/2—a)|*>
= D.5
po [27?3/2mx1)2k32—20‘ Il —a) (D5)
so that after making the change of variables r = p/z, (D.1) becomes [65]
Tmax dx
p(p) = (D.6)

0o V1—2?+2(poz/p)>
where the limit of integration xy,x is the smallest positive root of the denominator. Observe
that ¢ (and by extension x) and as xpax are functions of the dimensionless combination
p/po and not p independently. Making the change of variables p = pp, the transfer cross
section is

gllassical _ o 52 /OOO [1 — cos x(&)] £d€ . (D.7)

Because y is a function of £ and « only, the integral (D.7) only depends on the bulk mass
parameter. We can thus conclude from (D.5) that the velocity dependence of the transfer
cross section in the classical regime is afflaSSical ~ A/ (320)

The presence of the mass gap spoils the velocity dependence derived in (D.7). For
the gapped potential (5.19), after changing variables, the deflection angle depends on the

quantity mqpg as well. Thus a small but nonzero m; induces corrections to (D.7).

D.2 Low velocity classical regime

We present a closed form result for the transfer cross section in the low velocity region of
the non-perturbative classical regime. Following the method of ref. [66], the transfer cross
section is a function of a single unique parameter,

2oz§<ﬁm1

B = (20— 1). (D.8)

2
myv

The transfer cross section is o1 = 7p2 where p, is found by solving the set of equations

7 df/; Ty Px
‘/eff(rma)(? ,0*) =1 ffd(rp) =0 (Dg)
where ‘zﬁ‘ is the effective potential
2
~ p 4
Veg(r, p) = = Vi(r). D.10
i) = G+ gV () (D10)

These conditions correspond to the maximum of the effective potential Vetr.
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We find for § > 1 that the transfer cross section is approximately

oSassical ml% [1 + log (1056) —(2a —1)log™' g + (Za - 2) log ™! (1025”2 . (D.11)

The accuracy of (D.11) is confirmed in figure 5.

E Sommerfeld enhancement from a 1/r? potential

The Sommerfeld effect amounts to the enhancement of the particle wavefunction at the
point where the local annihilation process happens. It comes from the dressing from ladder
diagrams generated by a potential V' (r). The dressed wavefunction is determined by di-
rectly solving the Schréodinger equation. The Sommerfeld enhancement factor is defined as
o = S(p)op with ¢ the undressed cross section. The method to evaluate the Sommerfeld
effect is well known, here we follow [70] (see also [72]).

The Schrodinger equation is

2

1 p
— g DY) + V() = 5w (). (E.1)

In any solution of the Schrédinger equation with rotational invariance around z, the solu-
tions can be expanded as

U= Z a;Py(cos @) Ry(r) . (E.2)

The radial wavefunction satisfies

1 d (TQng) . <V(r) G 1)) Ror) = 2Ry (E.3)

C2Mr2dr dr 2M 12 T oM

In the standard approach one uses the fact that angular momentum with £ > 0 gives
Ry ~ rt at small 7, which implies that the ¢ > 0 contributions to the wavefunction vanish
at the origin. Hence one can focus on the ¢ = 0 angular momentum.

For our continuum-mediated potential V (r) oc 72*~3 the vanishing of £ > 0 remains
true for any o > 1/2. For @ > 1/2, the ¢ = 0 mode gives Ry ~ constant at small 7. But for
a = 1/2, which is the V(r) o 1/r? potential of our interest, the £ = 0 component diverges
at small r. This feature is not an inconsistency. We work in a low-energy EFT so the r
coordinate cannot be zero, it is rather cut at a small value corresponding to the UV cutoff,
r = ro. In our AdS model the cutoff is at ro ~ k~1. Of course, the subsequent results may
be cutoff dependent, but this is not a conceptual problem, this simply reflects that an EFT
prediction can depend on the unknown UV physics.

Here we parametrize the a = 1/2 potential as

Vir)= o

The matching to the physical couplings from the AdS model is k = W/\Tzk
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Introducing x¢(r) = rRy(r) the Schrédinger equation becomes

2
5 O0(r) + Vo) = Zoxo(r). (E:5)

From this equation, various equivalent methods lead to the Sommerfeld factor, which differs
by the boundary conditions chosen for x [70]. We use the following. y, is chosen to satisfy
Orx¢ = ipxe at 7 = 0o. Using this solution, the Sommerfeld factor is

S = ‘XO(T:OO) . (E.6)
Xo(r = 710)
Notice that since we are in an EFT with have replaced the r = 0 by r = ro.
The solution satisfying the condition at r = oo is found to be
1
Xo(r)e o ViHD (pr), = 1~ Mk (E.7)

The dimensionful x coupling is of order of the inverse cutoff of the EFT. The EFT
would break at Mk ~ 1, we are rather interested in Mk < 1, i.e. the dark matter mass is
much lower than the cutoff &.

Expanding in the small parameter M« we find

Xo(ro) o< i+ O(prog) . (E.8)

We have that prg is necessarily < 1 since rg is the inverse cutoff k~!, and because the
non-relativistic approximation requires p < M and the EFT validity requires M < k.

It follows that within the range of validity of the EFT, we can simply take n ~ 1/2.
The Hankel simplifies to H(z) oc 271/2€%*, thus xo(r) o " for any pr. The Sommerfeld
factor is then exactly S = 1 for any p.

F Self-interacting dark matter numerical method

We summarize the methodology for determining the dark matter self-interaction cross
section. We closely follow the procedure in ref. [9] however we employ a slightly more
relaxed algorithm. The relevant quantity is the transfer cross section,

JT:/dQ 1 —cosf) ZQ

which characterizes interaction cross section weighted by momentum transfer. This regu-

(F.1)

lates the cosf — 1 divergence where dark matter scattering does not affect halo shapes.
There is no known analytical expression for the transfer cross section that is valid for the
entire parameter space. A large region of the parameter space corresponds to the resonant
regime where both quantum mechanical and non-perturbative effects become important,
as such a numerical solution to the non-relativistic Schrodinger equation is necessary.

We employ a partial wave analysis. The transfer cross section is related to the ¢t
partial wave phase shift, dp, by

—Z Z ¢4 1)sin® (841 — 8¢) - (F.2)
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The J; are, in turn, obtained by solving the radial Schrodinger equation (E.3) taking
M =m, /2 and p = mxv/2 where v is the relative velocity of the two-particle dark matter
system. d; is found by comparing with the asymptotic solution for Ry:

lim Ry(r) o< cos dpje(pr) — sin dene(pr) , (F.3)

=00

Eth

where j; (ng) is the spherical Bessel (Neumann) function of the £*" order. We again define

the function y, = r Ry along with the dimensionless variables

v axmy axmxyx
T =axmxr a=_— b= c= , (F.4)
205)( mq k

so that we can rewrite (E.3) as [81]

Q2 —2a,z/b)| xe(x) =0. (F.5)

@, A+ 2 1<c>22af(3/2—a)

— + (=
dz? "¢ z? a2z \x 'l —a)

Near the origin for o« > 1/2, the angular momentum term dominates over the potential.

+1 close to 2 = 0. When o < 1/2 and the potential becomes

This implies that xy x =
singular, our method breaks down and we cannot determine an initial condition. We choose
a normalization for the wavefunctions such that x¢(zo) = 1 and xj(zo) = (¢ + 1) /z¢ where
xo is a point close to the origin chosen to satisfy o < b and xg < (¢ 4 1) /a. We take xg
as the lower limit for the range in which we numerically solve the Schrédinger equation.

Similarly, to define the upper limit, we pick a point x,, satisfying the condition

c 2—2a —«
a’ > %% (x) %Q (2 — 20, 2/b). (F.6)

When z,, satisfies this condition, the potential term is negligible compared to the kinetic
term and the solution approaches

xe(x) o< 2™ (cos dyje(ax) — sin dymy(azx)) . (F.7)
The phase shift is then

me%(ajm)
X@(xm)

axmjé<axm) - /Bﬁjf(axm)
axmny(axm) — Bene(ax,)

tan o, = where Be = —1. (F.8)
For an initial guess of the range (xg, ,,) and the maximum number of partial waves required
for convergence, {inax, we calculate §; from (F.8). In ref. [9] x,, and z( are increased and
decreased respectively, recalculating &, until the differences of successive iterations converge
to be within 1%. This condition can be quite cumbersome numerically and is not strictly
required unless one wishes to do a fine grained scan over the parameter space. Instead, we
take the value of §; given by our initial guess. This method is sufficient to reproduce the
benchmark results in ref. [62].

We then sum (F.2) from ¢ = 0 to £ = {pax to obtain an estimate for op. Next we
increment fyax — fmax + 1 and repeat the procedure until successive values of o converge
to be within 1% and dy,,,, < 0.01. ref. [9] iterates max until o converged and &y, < 0.01
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ten consecutive times. We have found that the “StiffenessSwitching” method from the
NDSolveUtilities package in Mathematica to be particularly useful.

We employ this method to calculate the Sommerfeld enhancements as well. The en-
hancement factor is [72, 76]

o {(25;1)!!]2 (F.9)
where C? is
C? = (xf(2) = xi(w = 7/20)) . (F.10)
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any medium, provided the original author(s) and source are credited.
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