
 

Proposal for gravitational direct detection of dark matter
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The only coupling dark matter is guaranteed to have with the standard model is through gravity. Here we
propose a concept for direct dark matter detection using only this gravitational coupling. We suggest that an
array of quantum-limited mechanical impulse sensors may be capable of detecting the correlated
gravitational force created by a passing dark matter particle. We consider the effects of irreducible noise
from couplings of the sensors to the environment and noise due to the quantum measurement process. We
show that the signal from Planck-scale dark matter is in principle detectable using a large number of gram-
scale sensors in a meter-scale array with sufficiently low quantum noise and discuss some experimental
challenges en route to achieving this target.
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I. INTRODUCTION

Observations of galactic rotation curves [1], gravitational
lensing [2], the cosmic microwave background [3], galaxy
cluster collisions [4], and the large-scale structure of our
Universe [5] are inconsistent with a model of the Universe
containing only general relativity and the standard model of
particle physics. Positing the existence of cold dark matter
(DM) successfully explains these diverse, independent
observations (see [6] for a review). However, despite
decades of dedicated searches, dark matter has yet to be
directly detected in the neighborhood of Earth [7].
Existing approaches to direct detection are insensitive to

DM scattering via the gravitational force. Instead, these test
the additional hypothesis that DM interacts with visible
matter through much stronger nongravitational forces, and
that DM is in a range of relatively light masses. Here we
propose a new direct detection technique based entirely on
DM’s required gravitational interactions, completely inde-
pendent of any nongravitational couplings. If this target can
be achieved, it would open an entirely new mode of DM
search in a largely unexplored mass range.
Our proposed strategy is to build a three-dimensional

array of force sensors. A heavy DM particle passing

through the array will exert a small but correlated force
on the sensors nearest its trajectory. Much like tracking a
particle in a bubble chamber, we can then pick out this
correlated force signal along the DM “track” through the
array. In particular, this means that the detector gains
complete directional information, allowing for robust
rejection of many traditional DM detection backgrounds.
Since the gravitational interaction strength increases

linearly with mass of both the passing DM and the sensor,
we suggest the use of macroscopic mechanical force
sensing devices. Driven in large part by LIGO [8], the
last few decades have witnessed dramatic improvements in
the continuous quantum-limited sensing of mechanical
systems with masses ranging from single ions to tens of
kilograms. Numerous devices have been demonstrated with
sensing at the “standard quantum limit” (SQL) [9], and
advanced techniques such as the use of squeezed light
[10–12] or backaction evasion [13–18] have achieved even
lower noise levels.
The sensitivity of the array is set by various sources of

noise acting on the devices, and the core goal of this paper
is to study these noise limitations. In particular, we focus on
two key, irreducible noise sources: coupling of the sensors
to their thermal environment and quantum measurement
noise coming from the Heisenberg principle. While numer-
ous additional technical noise sources—stray fields, laser
instabilities, collective modes of an array, and so forth—
are inevitable, these are ultimately avoidable by suffici-
ently clever experimentalists. On the other hand, thermal
and quantum noise set the fundamental floor for any
experiment. Indeed, many experiments, for example,
advanced LIGO, now operate in a regime in which quantum
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measurement noise is the dominant factor setting their
sensitivity. Here we study the extent to which this funda-
mental noise floor would allow for gravitational direct
detection of dark matter.
In order to maximize the signal from the passing dark

matter, we suggest an array of gram-scale devices spaced at
centimeter-scale distances. At these scales, we find that
with well-isolated systems (e.g., at high vacuum and/or
dilution refrigeration temperatures), quantum noise at the
SQL dominates over thermal noise. This calls for the use of
advanced measurement techniques which can evade the
SQL, as we detail below. However, assuming the use of a
sufficiently noise-evading measurement protocol, we find
that an array of around 108–109 sensors could in principle
detect any DM candidate with mass heavier than around
mPl ∼ 1019 GeV.
There are many viable models of DM in our window of

detectability. Some examples include WIMPzillas [19–22],
Grand Unified Theory (GUT)-scale coannihilating particles
[23], Planckian interacting DM [24], composite “nuclear”
DM with large occupation numbers [25–28], dark quark
nuggets [29–34], Planckian relics from evaporated black
holes [35,36], or even small extremal black holes [37] (see
Fig. 1). While there are some recent proposals to detect the

nongravitational interactions of specific ultraheavy DM
candidates [38–40], most viable DM candidates in this
mass range have extremely feeble nongravitational inter-
actions with visible matter. A mature realization of our
concept can robustly test all such models without invoking
any nongravitational interaction.
We note two recent works looking to detect DM

gravitationally [41,42]. Both suggest using a single sensor
without a noise-evading measurement protocol, leading to
comparatively limited detection reach and lack of back-
ground event rejection.

II. DETECTOR PARADIGM

We begin by giving an overview of the detector concept
and methods for estimating its sensitivity to DM candidates
of various masses. The primary goal is to derive the
requirements on the detector such that it has nontrivial
detection reach to sufficiently heavy dark matter. We will
see that achieving this goal will require overcoming a
number of technical challenges, which are discussed in
detail in Sec. IV.
The essential idea is to continuously monitor a three-

dimensional array of mechanical sensors. Each sensor has
its position (or momentum) read out continuously, as done,
for example, in LIGO. When a heavy object passes through
the array, for example, a heavy dark matter particle, it will
exert a small gravitational force on each sensor, causing
slight deviation in the sensor motions. The sensors which
are nearest this passing object will have the largest
deviation, forming a track through the array. See Fig. 2
for some visualizations of this process.
Before discussing the array, we begin by studying the

interaction of a passing DM particle with a single sensor.
See Fig. 2 for a diagram of the kinematics. We are
interested in the Newton force FN ¼ GNmχmsr̂=r2

between a sensor of mass ms and DM particle of mass
mχ . A lab at rest on Earth sees the DM pass by with average
“wind speed” v ≈ 220 km=s. Thus, the DM imparts

FIG. 1. Broad classification of viable dark matter models
according to mass. In this work, we focus on dark matter
candidates around mpl ∼ 1019 GeV and above.

FIG. 2. Left: kinematics of the DM-sensor scattering event, viewed from above the scattering plane. Center left: schematic of (a cross
section of) the detector array, with suspended pendula used as mechanical resonators. As the DM passes through the array, it produces a
correlated impulse on the sensors nearest its track. This diagram suppresses the readout mechanism (see Fig. 4), for which there are
many potential implementations. Center right: simulation of an event on a 50 × 50 plane of sensors. The colors represent impulses; blue
are impulses to the left while red are to the right. The track of yellow red corresponds to the signal. Right: cartoon of single-sensor data
stream, with an event.

CARNEY, GHOSH, KRNJAIC, and TAYLOR PHYS. REV. D 102, 072003 (2020)

072003-2



momentum to the detector on a very short time scale τ. For
a representative impact parameter b of approximately a
millimeter, we have τ ≈ b=v ∼ 10−8 s.
The fundamental limitation to sensing this tiny

Newtonian force is the presence of other, noisy forces
acting on the sensor. The total force on the sensor is

FinðtÞ ¼ FsigðtÞ þ FTðtÞ þ FMðtÞ: ð1Þ

The noise terms Fnoise ¼ FT þ FM are random variables.
The measurement-added noise FM is a fundamental quan-
tum limitation and depends on the system observable we
probe and how precisely we perform the readout (see
Sec. IV B for details). Meanwhile, the thermal noise FT is
set by the ambient temperature T and the nature of the
thermal bath coupling to the detectors, but independent of
the measurement readout scheme.
In our continuous monitoring protocol, the data come in

the form of a time series FðtÞ for each sensor. For the
signal, we will take as our basic observable the total
impulse delivered to the sensor along the axis transverse
to the dark matter trajectory (see Fig. 2),

Fsig ¼
GNmχmsb

ðb2 þ v2t2Þ3=2 : ð2Þ

The total impulse is easy to calculate,

I ¼
Z

tint=2

−tint=2
dt FsigðtÞ → 2GNmχmsτ=b2 ¼ Fτ; ð3Þ

where tint is an integration window, F is the average force,
and we assume tint ≳ τ and sufficient incoming velocity so
that we can approximate theDMasmoving on a straight-line
track. Here we have chosen the transverse component
because its time integral is finite, but one could filter the
data FðtÞ with an appropriate function and use instead the
time integral of this filtered data. In this sense, one can look
for any particular component of the force. See Sec. IVD for
details on data processing issues.
Note that by the equivalence principle, only tidal forces

are observable. To use Eq. (2), it is critical that the readout
be referenced to a system sufficiently far from the sensor
such that the Newtonian acceleration produced on the
reference is negligible.
To estimate our sensitivity to the signal (2), we

need to compare its size to the noise acting on the sensors.
The noise is characterized by the variance hΔI2i ¼R R

dtdt0hFnoiseðtÞFnoiseðt0Þi. For stationary noise, this cor-
relation function is proportional to δðt − t0Þ. Thus, the rms
impulse grows as a square root in time,

ΔI2 ¼ αtint ð4Þ

for some constantα. This timedependence is characteristic of
Brownian motion. Since the integrated signal strength grows

approximately linearly in tint while the DM is nearby and the
noise only grows as

ffiffiffiffiffiffi
tint

p
, an appropriately chosen tint ≈ τ

serves to average out the fluctuations caused by the noise.
The signal-to-noise ratio of a single sensor during a

passing DM event is therefore SNR2 ¼ I2=ΔI2 ¼ F2τ=α.
Now consider constructing an array with Ndet of these
sensors. As the DM passes through the array, it will pass by
a track of N ∼ N1=3

det of the sensors. For sensors spaced far
enough from each other, thermal noise is uncorrelated
among the sensors, and we further assume that we
separately monitor each sensor so that measurement-added
noise is also uncorrelated. In practice, there will also be
some correlated sources of noise; here we assume this is
subdominant to the single-sensor noise and refer the reader
to Sec. IV C for a more extensive discussion. We then ask
the statistical question: given a fixed track of N sensors, did
they all receive enough impulse to be seen above their
individual noises? This is answered by adding the SNR of
each sensor in quadrature, so the standard error decreases
like 1=

ffiffiffiffi
N

p
, and the signal-to-noise ratio is given by

SNR2 ¼ NF2τ=α: ð5Þ

It is critical that the signal here is the entire, correlated track
of moving sensors. This in particular means that our
backgrounds—that is, events other than passing DM which
likewise trigger a correlated track of displacements—are
very different from traditional direct detection experiments
(see Sec. IVA for more details on background rejection). It
also means that the signal includes complete directional
information.
Our basic result (5) can be used to estimate the SNR for

any particular detector scheme. Given a target DM mass,
the SNR is set entirely by the noise on our detector.
Thermal coupling of the sensors to their environment sets
the ultimate, irreducible technical noise floor—one can
environmentally isolate the system as much as possible, but
never completely. On the other hand, measurement-added
noise can be reduced by a variety of techniques, as
discussed below. Thus, to understand the fundamental
limits on gravitational DM detection, we begin by estimat-
ing our SNR under the assumption that we have sufficiently
reduced measurement-added noise to be subdominant to
the thermal component. It is important to understand that
this is an ambitious experimental target—see Sec. IV B for
an extensive discussion on challenges to reaching the
thermal floor in macroscopic sensors.
For detectors mechanically coupled to a support struc-

ture at temperature T, we have αmech ¼ 4mskBTγ with γ the
detector’s mechanical damping rate [43]. For freely falling
detectors, we are limited instead by the latent gas pressure
P, which gives αgas ¼ PAd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
makBT

p
, where Ad is the cross-

sectional area of each detector andma is the mass of the gas
atoms [44]. Numerically, we thus obtain the following
estimates for the SNR:
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SNR2 ¼ G2
Nm

2
χ

v
L
d4

ms

kBTγ

≈ 10 ×

�
mχ

1 mg

�
2
�

ms

1 mg

��
1 mm
d

�
4

ð6Þ

in the case of detectors mechanically coupled to a support
structure, and

SNR2 ¼ 4G2
Nm

2
χ

v
L
d4

m2
s

PAd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
makBT

p

≈ 104 ×

�
mχ

1 mg

�
2
�

ms

1 mg

�
2
�
1 mm
d

�
4

ð7Þ

for freely-falling detectors. Here for simplicity we assumed
a cubical array of side length L (so that the number of
sensors nearest the DM path is N ∼ L=d and the total
number of sensors Ntot ¼ ðL=dÞ3) with L ¼ 1 m, and
assumed dilution fridge temperatures T ¼ 10 mK, helium
ion-pump vacuum pressures P ¼ 10−10 Pa, ma ¼ 4u [45],
mechanical damping γ ¼ 10−8 Hz [46], and typical solid
density ρs ∼ 10 g=cm3 for the detectors.
The signal-to-noise ratios (6), (7) represent our funda-

mental detection sensitivities. Crucially, the detection is
deterministic: if a sufficiently heavy DM particle passes
through the detector, and we demand our detector param-
eters are such that SNR > 5, it will always will be detected
with 5σ confidence. The number of DM events we have
per year is then entirely determined by the number density
of the DM. The observed local DM density ρχ ≈
0.3 GeV=cm3 [47] means that, for a detector array of total
cross section Ad, the rate of DM passing through the
detector is

R ¼ ρχvAd

mχ
∼

1

year

�
mPl

mχ

��
Ad

1 m2

�
: ð8Þ

In Fig, 3, we plot our predicted event rates with a variety of
detector geometries, with 109 detectors. With a billion
detectors at the gram scale, Planck-scale gravitational DM
detection is achievable. Reaching heavier masses can be
achieved with a sparser array.
The above estimates should be interpreted as a long-term

target subject to further possible developments. There are a
number of technical challenges which need to be overcome
to realize these estimates, which we discuss in detail in
Sec. IV. Our central message is really that the rules of
measurement in quantum mechanics allow for the required
sensitivities: it is not inconceivable that one could build an
appropriate apparatus and perform gravitational direct
detection searches of heavy dark matter.
We note also that there are numerous ways one can

imagine improving the situation from that considered here.
Advanced measurement techniques involving coherent

readout [48] or error correction [49,50] can significantly
improve the detection sensitivity. One can also relax the
need for 5σ detection of each individual track event and
look for statistics to build up over a long time (say, a few
years of exposure) for the evidence of tracks, analagous to
statistical evidence for WIMP events in a heavy noble
detector. Pursuing these types of techniques is a subject of
active work, beyond the scope of this introductory paper.

III. IMPLICATIONS FOR THE DM LANDSCAPE

Before moving on to discuss technical issues in the
experimental realization of these ideas, we make some brief
comments on the implications for such an experiment in the
broader search for dark matter. As emphasized above, the
scheme relies only on the gravitational coupling of DM to
visible matter, so if the required sensitivity can be achieved,
the experiment would either discover or rule out any dark
matter candidate in the appropriate range of mass.
Our detector concept is capable of searching for DM

candidates around and above the Planck mass. At this scale,
DM is presumably not a fundamental particle. Viable
options include composite objects like dark nuclei or dark
quark nuggets [25–31,31–34], extended objects like topo-
logical defects, or quantum gravity exotica like primordial
black hole remnants [35–37]. In the most optimistic
scenario, a large-scale version of our proposal could reach

FIG. 3. Detectable DM event rates, with a variety of detector
configurations. Thick lines correspond to number of events per
year, assuming all DM particles have mass mχ . The 1=mχ falloff
in the rate is due purely to number flux [see Eq. (8)]; by
construction, all DM candidates passing through the detector
are detected with 5σ confidence. Solid lines are labeled by the
array lattice spacing (mm, cm, or 10 cm) of the detector and
individual sensor masses (milligram in blue or gram in red).
Dashed lines labeled by temperature (4 K or 10 mK) demonstrate
the increased sensitivity of our scheme with improved environ-
mental isolation. Here we are assuming background gas-limited
environmental noise with the same fiducial parameters as in (7).
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down to feebly interacting GUT-scale DM candidates
[19–23], which could be fundamental particles.
A confirmed signal would then imply a rich cosmologi-

cal history for this sector, which must contain either a
modified inflationary potential, an early phase of DM self-
assembly, a nonthermal abundance generation mechanism,
or a dark-sector phase transition. At least one of these
mechanisms must be active to realize masses for the DM in
these scenarios. Conversely, a null result would have far
reaching consequences for this class of models by exclud-
ing a broad swath of DM candidate masses, independently
of their other nongravitational interactions.

IV. TECHNICAL CHALLENGES

A detailed realization of the detector concept outlined
above will necessarily come with a large set of technical
challenges to be overcome. Many of these would depend
sensitively on the chosen sensor platform—microwave
versus optical domain, sensors which are superconducting
or not, and so forth. Here, we discuss a number of further
issues which would be largely independent of any particu-
lar experimental choices, again focusing on the fundamen-
tal limits to achieving the desired sensitivity. We discuss
backgrounds in the sense of a traditional particle physics
detection experiment, requirements for achieving the nec-
essary reduction in quantum measurement noise, correla-
tions between sensors, and make some preliminary remarks
about data processing and filtering issues. We end with a
few comments on possible choices of concrete sensor
architectures.

A. Backgrounds

In direct DM detection experiments, background events
pose a serious problem and need to be systematically
understood. For example, in a xenon-based detector, the
signal is that a DM particle scatters elastically off a xenon
nucleus, causing the xenon atom to recoil and emit a
photon. The photon is the signal. The issue is that any
number of other events, having nothing to do with DM,
could cause the same signal.
Unlike traditional direct DM detection experiments, the

signal in our proposal does not consist of a single recoiling
object, but rather a correlated track worth of displaced,
macroscopic objects. This allows for rejection of many
typical backgrounds. For example, cosmic rays only hit an
individual sensor. More challenging issues come from
correlated backgrounds like seismic noise or propagating
signals induced by sensor-sensor interactions. The latter
should be suppressed at the lattice spacings used here;
more generally, these types of backgrounds should have
vastly different propagation speed from our DM signal
v ∼ 220 km=s. While a detailed study of backgrounds will
be needed for a mature experimental realization, the basic

characteristics of the signal in our proposal offer an extremely
promising route to robust background rejection.

B. Achieving thermally limited sensitivities

Our optimal measurement sensitivities (6), (7) were
derived assuming that thermal noise dominates over meas-
urement-added noise. We now turn to an analysis of the
feasibility of achieving sufficiently low measurement noise
for this approximation to be accurate. For an introduction to
the topic of quantum measurement noise, we refer the
reader to the excellent review [43]. For a self-contained
treatment of noise in a linear optomechanical device, see
the appendix of [51].
In the continuous measurement of a quantum system,

noise arises through a combination of random fluctuations
in the probe and backaction of the probe on the central
system [9]. For example, in optomechanics, the system is a
mechanical element and the probe is an optical field mode.
The random probe fluctuations induce shot noise in the
readout, and backaction of the probe comes from random
radiation pressure of the input light exerting a random force
on the mechanics. The total quantum measurement-added
noise is the sum of these two noise contributions.
A standard benchmark level for this noise is known as

the standard quantum limit. The SQL is achieved by
optimizing the shot noise (which decreases with increasing
input laser power) and backaction (which increases with
increasing laser power) to find a total minimum. In the case
of a rapid impulse delivered to a mechanical sensor of mass
m and mechanical frequencyω, a detailed analysis gives the
benchmark value [52]

ΔI2SQL ¼ ℏmω: ð9Þ

This universal formula is easy to interpret: it is the size of
the ground-state momentum fluctuations of the oscillator.
Numerous devices exist which operate at or even below this
noise level, as we discuss in detail shortly.
In general, even in the absence of any other technical

noise, one has to deal with both thermal noise and
measurement-added noise. We can compare SQL-level
measurement-added noise to the thermal noise estimated
in Eq. (4). One has

ΔI2SQL
ΔI2T

¼
8<
:

ℏQ
4kTτ suspended

ℏm1=3ρ2=3s ω
PðmakTÞ1=2τ gas − limited:

ð10Þ

Using again mm, mg-scale detectors, and high vacuum,
dilution-refrigeration environments as above [see (6), (7)],
we find that the measurement-added noise at the level of the
SQL is substantially larger than the thermal noise (which,
in such an environment, is miniscule). This means that to
achieve thermally limited detection, one needs to go below

PROPOSAL FOR GRAVITATIONAL DIRECT DETECTION OF … PHYS. REV. D 102, 072003 (2020)

072003-5



the SQL. Numerically, with the same detector parameters,
we would need 10log10ΔISQL=ΔIT ≈ 35; 45 dB reduction
in the measurement noise for the case of a suspended or
free-falling detector, respectively. This is a fundamental
problem for achieving our desired sensitivities. Fortunately,
there are known ways to lower the measurement-added
noise to levels below the SQL.
One option is “squeeze” the quantum state of the readout

light [9–11]. Without any squeezing, the shot noise in the
probe light is limited by the light’s vacuum fluctuations. By
putting the light in a squeezed state, the variance in one of its
canonical variables is reduced (at the expense of an increase
in the conjugate variable, as required by Heisenberg uncer-
tainty). Performing measurements with this squeezed degree
of freedom can thus enable measurements below the SQL.
This technique is now used in many applications, including
gravitational wave detection [12] and searches for axion dark
matter with microwave cavities [53,54]. In practice, squeez-
ing has so far been limited to about 20 dB, typically due to
optical losses.
Another method to reduce measurement noise, which

can be used in tandem with squeezing, is a backaction eva-
ding or “quantum nondemolition” measurement [13–18].
Here, instead of modifying the state of the probe light, we
choose to couple it to an operator of the mechanical system
which enables noise reduction. In standard optomechanical
sensing, the optical field is coupled to the position variable
of the oscillator. However, one could instead try to couple
to the momentum variable. For a sufficiently fast signal
(such as the rapid impulse from a passing dark matter
particle), the slow mechanical sensor is essentially a free
particle over the course of a given event, and so its
Hamiltonian commutes with p. Thus, the measurement
adds no noise to a subsequent measurement, that is, the
measurement is “nondemolition.”
It was realized long ago that backaction evasion could be

used to reduce measurement noise below the SQL in a
mechanical system [13]. See Fig. 4 and [51] for a detailed
momentum sensing protocol which in principle should
exhibit around 30 dB of noise reduction below the SQL
with the sensor parameters and signal considered in this
paper. Experimental demonstrations of backaction evasion
exist (e.g., [15]), and LIGO-scale prototypes are under
current development [18]. The noise reductions achieved
have so far been modest and again are typically limited by
optical loss. However, utilization of this technique is
substantially unexplored, particularly in the sub-kg scale
devices considered here, so we hope that our proposal can
provide impetus for new developments.
To summarize, the fundamental technical noise floor in a

high-precision mechanical sensing protocol is set by the
irreducible coupling of the sensors to their thermal envi-
ronments. However, continuous quantum measurements
also induce a sizable source of noise. With the scale of
devices considered in this paper, substantial reduction of

the measurement-added noise will be required, at least a
few orders of magnitude beyond what has currently been
demonstrated. This presents the key challenge to realizing
our proposal (besides the large number of devices).
Although difficult, there is no reason in principle to believe
that these noise levels cannot be achieved.

C. Correlated noise between sensors

So far, we have assumed that the noise on a given sensor
is independent of the noise on other sensors, that is, there
are no sensor-sensor correlations. More precisely, we
assumed the uncorrelated noise dominates over correlated
noise. Here we make some simple estimates justifying this
assumption.
Given the macroscopic nature of our sensors and small

spacings, the most important effect to worry about is
coming from electromagnetic potentials which couple
the sensors to each other. The most important such
potentials come from “patch potentials” (surface imperfec-
tions which carry charge) and van der Waals/Casimir
forces. In fact, this is the key reason we chose our spacings
to be at least d ¼ 1 mm: it is well known from, for
example, torsion balance experiments that these forces
are sufficiently weak around this scale that they can be
safely ignored [55]. This is the basic reason that searches

FIG. 4. Top: circuit diagram depicting a backaction-evading
velocity measurement. A pulse γ1 imprints the mechanical
position x onto the light (described by its amplitude and phase
quadratures X, Y). This is done twice, with opposite phase and a
time delay td, leading to a velocity measurement. A second pulse
γ2 then enables a measurement of the impulse ΔI. Inset: concrete
realization of a single velocity measurement, using a pair of
optical ring cavities with a suspended mirror as the detector
[14,18,51]. The output light is read out via interferometry. Since
the photon imprints a momentum þp in the first cavity and −p in
the second, there is no net forcing of the mechanics: the
measurement produces no quantum backaction.

CARNEY, GHOSH, KRNJAIC, and TAYLOR PHYS. REV. D 102, 072003 (2020)

072003-6



for fifth forces or modified Newtonian potentials tend to be
sensitive only down to around the 50 μm scale [56].
Given that we can neglect these electromagnetic corre-

lations, another question arises: what about sensor-sensor
interactions from gravity? Indeed, by design, our sensors
are capable of measuring the sensor-sensor gravitational
interactions. The question then is what is the nature of the
noise generated by this interaction. The sensor-sensor
coupling is

V¼GNm2
s

d
x1x2
d2

≡msΩ2x1x2; Ω¼
ffiffiffiffiffiffiffiffiffiffiffiffi
GNms

d3

r
≲0.1mHz;

ð11Þ

where x1, x2 are the displacements from equilibrium of the
two sensors. The bound comes from assuming a reasonable
solid density. Each sensor position responds to input
forces according to the usual linear-response relation
xiðνÞ ¼ χmðνÞFðνÞ, where χmðνÞ¼½msððν−ωsÞ2−iγωsÞ�−1
is the mechanical response function for a damped harmonic
oscillator.
The sensor-sensor coupling (11) allows for correlated

noise, namely, the input noises on sensor 2 can be trans-
mitted to sensor 1 and vice versa. The question then is how
the scale of this correlated noise compares to the uncorre-
lated noise. We write FiðνÞ; i ¼ 1, 2 for the noise acting
separately on each sensor. Then sensor 1, for example, has
two noise terms

x1ðνÞ ¼ χmðνÞF1ðνÞ þ χmðνÞmsΩ2χmðνÞF2ðνÞ; ð12Þ

where the second term is due to (11). But then for high-
frequency signals like the fast impulses we are concerned
with, we see that the correlated second term is suppressed
relative to the first by a factor Ω2=ν2 due to the high-
frequency behavior of the additional response function. For
our gravitational problem with signals ν ∼ 1 MHz, this
factor is on thus of order ð10−4=106Þ2 ¼ 10−20 and utterly
negligible compared to the uncorrelated noise terms.
The above considerations stem from the interactions

between the mechanical elements in the sensors. In a
practical realization, there can also be coupling through,
for example, the support structure which may connect the
sensors. Although important to understand, a serious study
would require a detailed implementation. In particular, one
may be concerned about collective modes in the array
which could mimic the track signal considered above.
Standard phononic engineering techniques (see, e.g., [57])
should be capable of controlling and/or mitigating these
effects. Since this goes beyond the simple approximations
of a uniformly spaced lattice as we are using here, we
postpone a detailed study for further work.
In addition to the above concerns, we note also the

existence of environmental noise sources which have

characteristic wavelength long enough to affect multiple
sensors in the array. Given millimeter or larger spacing, the
dominant source of such noise would be seismic noise and
gravity gradients (see, e.g., [58]). These types of noise
would necessarily be at low (sub-10 Hz) frequencies and
thus do not contribute to the range of frequencies of the DM
signal (∼1=τ ≳MHz).
Finally, we note that correlations between sensors could

be purposefully engineered, as a mechanism for enhancing
the sensitivity of the total detector. While relatively unex-
plored, this idea has been suggested as a promising route to
a number of sensing goals; see, for example, [59–61].

D. Data processing

As described above, the detector concept involves
continuously monitoring a large number of devices and
then looking for tracks in the data. Brute force implemen-
tation of this would be a computationally intensive process.
Although looking for tracks with a billion sensors may
seem daunting, it is worth noting that the next generation
CMS detector at the LHC has of order 2 billion pixels and
will be used to search for substantially more complex track
signals than the simple straight-line trajectories considered
here. Understanding the computational requirements and
efficient implementation of the algorithms, including com-
pression, is a subject of current work by us. Here we make a
few preliminary remarks.
Data filtering is a key component of our proposal. We are

interested in searching for a signal of known temporal
shape in a noisy time series. This problem is essentially the
same as faced by LIGO in the search for gravitational
waves, and we suggest borrowing a technique from them
(and many other signal-processing applications) known as
matched filtering [62]. Here one takes the output data FiðtÞ
with i ¼ 1;…; N labeling the individual sensors and
convolves the data OðteÞ ¼

P
i

R
Fiðt − teÞfiðtÞdt with a

filter designed so that the convolution peaks on the tracks
we are looking for. Here te means the time of an event,
which must be scanned over. In our problem, fðtÞ would
roughly match the time-dependent force (2) we are looking
for; as described above, we could, for example, use such a
filter to look for any particular component of the force, not
just the component perpendicular to the DM track [51]. The
effects of compression on the time series data are control-
lable and should present a minor fractional change in the
sensitivity [63–65], although a detailed analysis of this
issue in the context studied here will be an important piece
of future work. A particularly appealing method could be to
use discrete pulse-based measurements instead of a con-
tinuous measurement scheme [66].
The convolution over multiple sensors represents

the major computational challenge in our problem.
Implementing it efficiently is an important challenge which
we are currently studying. We note here one key option to
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reduce the overhead could be to use Radon-transformed
data.1 The Radon transformation maps functions f∶R3 →
R on the detector array to the integral of the function
RfðγÞ ¼ R

γ dλfðλÞ along a given track γ through the
detector. Since our fundamental observable is really the
impulse delivered to a track worth of sensors, it is natural to
look in Radon space. This substantially reduces the
computational cost because instead of looking at N3

sensors one needs only to scan over the set of ∼N2

independent tracks. The Radon transformation, including
matched filtering, could in principle be implemented in
hardware (see, e.g., [67,68]), which would reduce the
complete computational cost to a maximization scan over
N2 pixels of Radon space. We are currently studying a
prototype of this idea, the details of which will appear in a
separate publication.

E. Architectural choices

Mechanical sensing devices operated in the classical or
quantum regime come in a wide variety of architectures.
These include torsion balances [46,69,70], suspended
mirrors [8], stretched membranes [16], levitated dielectrics
[71,72] or superconductors [73,74], liquid helium [75], and
more. The choice of which specific type of device to use for
an experiment like the one described here is well beyond
the scope of this paper, but here we make a few remarks
about basic issues to be considered.
The most familiar example of an optomechanical force

sensor consists of a suspended mirror monitored by light, as
in LIGO [8]. One may be concerned about the use of an
enormous number of lasers in a small volume; to eliminate
the need for these, one can instead use electromechanical
couplings or fiber-coupled devices [76]. An alternative
approach would be to use a single laser to interrogate
multiple devices; this could potentially be used to
coherently read out the system.

Support structures will thermally load on the sensors; to
eliminate this, one could periodically drop the detectors and
allow them to freely fall for some short time, so that thermal
noise comes only from collisions with ambient gas. The
essential duty cycle is schematically depicted in the circuit
diagram of Fig. 4. In the first step, we turn off the trap [77]
and allow the sensor to fall. We then measure the
momentum of the sensor, wait for a time of order the
DM flyby time τ to let the potential DM interact with the
sensor, and perform a second momentum measurement,
yielding the change in momentum I ¼ Δp. Given the short
times of interest, the sensor will fall an essentially negli-
gible amount, so this cycle can be repeated.

V. OUTLOOK AND CONCLUSIONS

We have presented a radically new DM direct detection
strategy involving a meter-scale array of high precision
force sensors. Unlike traditional searches for dark matter,
our technique requires no ad hoc assumptions about DM
beyond its required gravitational coupling to other par-
ticles. Reaching the required sensitivity presents a clear
target for development of quantum impulse measurement
protocols, a concept with many applications beyond those
discussed here. Although significant further work will be
required to realize our scheme in detail, the potential
payoff—the possibility of a direct DM detection method
with no reliance on nongravitational coupling—is enormous.
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