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In this work, we consider the implications of a phenomenological model of

quantum gravitational effects related to a minimal length, implemented via the

generalized uncertainty principle. Such effects are applied to the

Bekenstein–Hawking entropy to derive a modified law of gravity through

Verlinde’s conjecture. Implications on galactic scales, and in particular on

the shape of rotational curves, are investigated, exploring the possibility to

mimic dark matter-like effects via a minimal length.
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1 Introduction

Dark matter (DM) is one of the dominant components in the energy budget of the

Universe. Evidence for its existence ranges from galaxy clusters, rotational curves of

galaxies, and gravitational lensing all to the cosmic microwave background (CMB)

(Freese, 2009; Drees and Gerbier, 2012; Arbey and Mahmoudi, 2021). However,

effects related to DM have not been observed on the scale of the solar system,

whereas they become significant on galactic and intergalactic scales. Nonetheless, the

nature of DM remains one of the most debated problems in physics up to this day. Several

proposals and speculations concerning DM have been put forward, among which are

MACHOs, WIMPs, axions, sterile neutrinos, and modified Newtonian dynamics

(MOND) (Freese, 2009; Drees and Gerbier, 2012; Arbey and Mahmoudi, 2021; Oks,

2021). In this work, we propose an alternative explanation for DM. Specifically, we argue

that the phenomenology related to DM can be partially described in terms of quantum

gravitational effects.

The development of a theory of quantum gravity (QG) is an open problem in physics.

Several candidate theories have been proposed, and numerous thought experiments have

shaped the expected features of such a theory. However, none could have been directly

tested due to current experimental and technological limitations. For this reason,

phenomenological approaches have become some of the main tools to tackle the

problem of QG (Magueijo, 2006; Ali et al., 2011; Hamma and Markopoulou, 2011;

Dos Santos et al., 2013; Feller and Livine, 2016; Danshita et al., 2017; Haine, 2018; van de

Kamp et al., 2020) (see Addazi et al. (2022) for a recent review). Such approaches usually

consider the implications of features of a full QG theory on lower energy scales, possibly
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accessible to current experiments and observations. Among such

features, a common one is the existence of a fundamental

minimal length. Such a minimal length strongly opposes the

traditional Heisenberg uncertainty principle of quantum

mechanics, which should be properly modified approaching

the QG scale. The set of models corresponding to a modified

uncertainty relation is collectively referred to as the generalized

uncertainty principle (GUP) (Maggiore, 1993a; Maggiore, 1993b;

Maggiore, 1994; Kempf et al., 1996; Kempf, 1997; Scardigli, 1999;

Scardigli and Casadio, 2003; Ali et al., 2011; Pikovski et al., 2012;

Bosso et al., 2017; Scardigli et al., 2017; Bosso, 2018; Kumar and

Plenio, 2018; Gnatenko and Tkachuk, 2019; Luciano, 2021a;

Bosso, 2021; Bosso and Luciano, 2021; Das and Fridman,

2021; Giardino and Salzano, 2021; Gomes, 2022). Such models

are inspired from candidate theories of quantum gravity, such as

string theory and loop quantum gravity, in which an effective

minimal observable length appears in scattering experiments or

as a structural feature of space-time. The phenomenological

implications are then accounted for in terms of a minimal

uncertainty in position or non-commutativity of space-time.

The commutator corresponding to one of the most common

GUP models can be cast as (Kempf et al., 1996; Bosso, 2021):

xi, pj[ ] � iZ δij + β p2δij + 2pipj( )[ ] , (1)

where xi and pj are the position and momentum operators,

respectively, β ≡ β0/(MPc)2, where β0 is a dimensionless

parameter, and MP � ����
Zc/G

√
is the Planck mass. Such a

model implies a modification of the uncertainty relation

between the position and momentum, as found using the

Schrödinger–Robertson relation and thus leads to a minimal

uncertainty in the position. For example, in the one-dimensional

case, the modified uncertainty relation reads (Kempf et al., 1996):

ΔxΔp≳ Z 1 + 3βΔp2[ ]. (2)

In this study, we propose how minimal length

phenomenology can give rise to features similar to DM on

galactic scales. Specifically, we deduce effects from GUP that

contribute to the flatness of rotational curves. Such effects are

obtained as a consequence of the modifications to the

Bekenstein–Hawking entropy through the holographic

principle, induced by GUP (Cai et al., 2008; Zhu et al., 2009;

Awad and Ali, 2014; Giardino and Salzano, 2021; Buoninfante

et al., 2022; Das et al., 2022). Therefore, we obtain corrections to

the corresponding entropic force due to the presence of a

minimal length. Based on Verlinde’s conjecture (Verlinde,

2011), such a modified entropic force turns out as a modified

Newton’s law of gravity, thus providing a basis to study the

implications of a minimal length on gravitational systems.

Specifically, we require the holographic principle to hold, that

is, we consider spherically symmetric surfaces of area A = 4πR2

separating points in space. Such surfaces behave as the natural

place to store information about particles that are inside the

surfaces and that can move from one side to another. In this way,

the information about the location of particles is stored in

discrete bits on the surfaces. This naturally leads to the

assumption that the number Nb of bits on the screens can be

approximated with the number of particles Np enclosed by the

surfaces, that is, Nb ~ Np = N. Then, the total number N of bits of

the system, which is measured by its entropy S, can be naturally

assumed to be proportional to the surface area A, that is, N ~ S ~

A. The total energy E of the system inside the surfaces is

distributed on such bits and is related to the surface

temperature by the equipartition theorem (or the GUP-

modified version thereof). Such energy can be written in

terms of the uniformly distributed mass M inside the surface

as E = Mc2. It should be noticed that the aforementioned

reasoning can in principle be applied to any mass

distribution, as long as one defines a proper holographic

screen of radius R containing the whole distribution.

It turns out that a distance dependence for the GUP

parameter β0 must be assumed to provide a reasonable

mechanism to study minimal length effects on rotational

curves of galaxies. Such dependence has been proposed in

other works as well (see, for e.g., Ref. Ong (2018)) and

suggested by the different estimations of the GUP parameter

in tabletop experiments, where β0 > 0 (Pikovski et al., 2012; Bosso

et al., 2017; Scardigli et al., 2017; Kumar and Plenio, 2018; Das

and Fridman, 2021), and in astrophysical/cosmological

observations, where β0 < 0 (Jizba et al., 2010; Ong, 2018;

Buoninfante et al., 2019; Nenmeli et al., 2021; Das et al., 2022;

Jizba et al., 2022) (see also Luciano (2021b) for a recent review).

The article is structured as follows: in Section 2, a

modification to the equipartition theorem due to GUP is

introduced; in Section 3, a modified Newton’s law of gravity is

derived from the GUP-modified equipartition theorem and the

Bekenstein–Hawking entropy; in Section 4, we summarize our

results and include some final remarks.

2 GUP-modified equipartition
theorem

One of the reasons to introduce DM is the flatness of galactic

rotational curves, which deviate from the behavior predicted

based on Kepler’s model considering only luminous matter. In

particular, Kepler’s laws predict that the orbital velocities for stars

outside the bulge decrease as the square root of the distance from

the center, v(R)∝ 1/
��
R

√
. The observation that the orbital

velocities are approximately independent of the distance from

the center, v(R) ∝ const., even at distances comparable with the

galactic radius and beyond, suggests that either Newton’s law of

gravity does not hold at such scales, or that non-visible matter,

present in galaxies, affects stellar dynamics. As mentioned in

Introduction, here we will consider the former, with the intent of

studying the implications of a minimal length on galactic
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rotational curves. Specifically, following Verlinde (2011), we

introduce the gravitational force F as an entropic force, which

is given as:

FΔx � TΔS , (3)

where Δx � ηλC � η Z
mc is the displacement from the source of a

test particle in terms of its Compton wavelength λC,m is the mass

of the test particle, η is the modification factor (η = 1 if no

modification), T is the effective temperature at a given radius, and

ΔS = 2πkB is the minimal change in entropy, as stated by the

information theory (Adami, 2004), with kB being the Boltzmann

constant. The effective temperature T can be expressed in terms

of energy E of a thermodynamical system via the equipartition

theorem. In our case, we assume that the mass of the system is

contained within a sphere of radius R. However, when a minimal

length is introduced considering the effects of GUP on statistical

mechanics, the equipartition theorem presents some corrections.

To see this, we first notice that the GUP-modified density of

states in three spatial dimensions reads as (Das and Fridman,

2021),

g ε( ) � V 2m( )3/2ε1/2
4π2Z3

1 − 75
4
βmε( ) , (4)

where V is the volume of the system and ε is the single particle

energy. Since the results in Das and Fridman, (2021) are valid up

to order β, the density of states presented previously, and its

consequences are understood to hold up to the same order. We

anticipate that the volume V will cancel out in our considerations

and does not affect the results. Furthermore, it is worth

mentioning that GUP is not expected to modify the value of

geometrical quantities such as volumes or areas. Since GUP is a

phenomenological model of quantum mechanics including a

minimal uncertainty in position, GUP only affects the

precision with which particles are localized, and therefore

the precision with which geometrical quantities are

determined, not their actual value. Returning to the

expression mentioned previously, it is worth noticing that

it reduces to the standard density of states for β → 0, and that

such a result is quantum in nature since it is based on the

quantum energy spectrum of a particle in a box. In the

classical limit ε − μ ≫ T, where μ is the chemical potential,

and assuming no particles are added or removed from the

system, μ = 0, the Bose–Einstein and Fermi–Dirac

distributions reduce to

fBE,FD ε( ) � 1

exp ε−μ
kBT
( ) ∓ 1

≈ f ε( ) � exp − ε

kBT
( ) , (5)

where the − and the + signs refer to the Bose–Einstein and

Fermi–Dirac distributions, respectively. The limit on the right

hand side of Eq. 5 is the Maxwell–Boltzmann distribution.

To proceed further, we compute the number of particles in

the system by considering the following ensemble average using

the GUP-modified density of states from Eq. 4 and the classical

limit for the particle distribution in Eq. 5. We then obtain

N � ∫∞
0

g ε( )fBE,FD ε( ) dε ≃ V 2m( )3/2
8π3/2Z3

kBT( )3/2

× 1 − 225
8

βm kBT( )[ ] ,

(6)

where the additional term with β represents the GUP correction

to the number of particles in the system, given the temperature T

of the system and the mass of the constituent particles m. The

energy of the system is obtained in a similar manner as the

number of particles in the system from Eq. 6. In this case, we find

E � ∫∞
0

εg ε( )fBE,FD ε( ) dε ≃ 3V 2m( )3/2
16π3/2Z3

kBT( )5/2

× 1 − 375
8

βm kBT( )[ ] .

(7)

The aforementioned formula represents the thermal energy

of a system in three spatial dimensions. We can recast the

expression for the thermal energy in a more familiar form by

combining Eqs 6, 7 to obtain the GUP-modified equipartition

theorem, which reads as

E � ns
2
NkBT 1 − 75

4
βm kBT( )[ ] , (8)

in ns-spatial dimensions.We are going to use this expression with

ns = 1, since the only relevant spatial degree of freedom in the

system contributing to the entropic force is the radial one. We

can then find an expression of the temperature T as a function of

the energy E up to the first order in β, that is,

T ~
2E
kBN

+ β
75mE2

kBN2
. (9)

Since this expression is derived from a quadratic equation,

two solutions in principle are allowed. However, only the

solution with the minus sign is considered since it is the only

one which returns the standard case as β→ 0. For the case of the

entropic force, the energy in Eq. 9 is not simply the thermal

energy of particles in a given volume but the total energy of the

system in that volume.

3 GUP-modified law of gravity

As shown in Verlinde (2011), one can derive Newton’s law of

gravity as an entropic force. The same procedure is applied here,

with the difference that one includes GUP corrections

everywhere they apply. A similar consideration has been

discussed in Sheykhi (2020), where a Tsallis entropy

modification to the Bekenstein–Hawking (BH) entropy has

been used to derive the modified law of gravity. Such an

entropy can be modified by GUP through the holographic
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principle as well (Awad and Ali, 2014; Das et al., 2022). It can

then be written as

S � c3kB
8ZG

A +
��������
A2 − βpA

√
− βp

2
[

× ln 1 − 2
βp

A +
��������
A2 − βpA

√( )( )] , (10)

where A is the area of the horizon and βp = 12πZ2β. Such a

modification implies a deformation of the temperature of the

system. To see this, first, we notice that the total number N of bits

of information on the surface of the holographic horizon can be

expressed in terms of the horizon entropy as follows (Verlinde,

2011):

N � 4S
kB

. (11)

Thus, substituting Eq. 11 and Eq. 10 in Eq. 9, we get

T � 2ZGE

kBc
3A

+ β0
6πZ3GE

kBM
2
pc

5A2 1 + ln 2 − M2
pc

2A

3πZ2β0
( )( )⎡⎣

+75Z
2G2mE2

kBM
2
pc

8A2
⎤⎦ .

(12)

It is worth noticing that the temperature T depends on the

area A of the holographic horizon and the total energy E of the

system. These quantities are related to the radius R of the horizon

and the mass M contained within that radius through A = 4πR2

and E = Mc2, respectively. The temperature from Eq. 12,

expressed in terms of R and M, and the aforementioned Δx
and ΔS are substituted in Eq. 3, where the GUP-modified

Compton wavelength with η � 1 + β0
m2

M2
p
(Carr et al., 2020) is

considered. Up to leading orders in β0, we obtain the GUP-

modified law of gravity, which is

F � GmM

R2 + β0
3Z2GmM

4M2
pc

2R4 1 + ln 2 − 4M2
pc

2R2

3Z2β0
( )( )⎡⎣

+75ZG
2m2M2

8M2
pc

3R4 − Gm3M

M2
pR

2
⎤⎦ .

(13)

Using the expression for the centripetal force F � mv2

R at

radius R, we can then find the GUP-modified rotational velocity,

which is

v �

���������������������������������������������������������
GM

R
+ β0

3Z2GM
4M2

pc
2R3

1 + ln 2 − 4M2
pc

2R2

3Z2β0
( )( ) + 75ZG2mM2

8M2
pc

3R3
− Gm2M

M2
pR

⎡⎣ ⎤⎦√√
.

(14)

The test particle, of mass m, can in principle be anything,

from a subatomic particle to a large star. However, when a

composite system is considered, GUP effects are reduced by

the number n of constituents (Amelino-Camelia, 2013). In the

present case, this amounts to replacing the modification

parameter β0 by the reduced parameter scaling with the

square of the inverse number of constituents, that is, β0 → β0/

n2. It should be noted that n corresponds to the number of

constituent particles of the test mass which is different from N,

introduced in Eq. 6, which corresponds to the number of bits of

information on the holographic screen.

The last term in Eq. 13 that dominates at galactic distances,

compared to other correction terms, can be easily verified.

Therefore, Eq. 13 can be rewritten as

F ≃
GmeffM

R2
, (15)

where we have defined an effective gravitational mass

meff � m[1 − β0
n2

m2

M2
p
]. We notice that this implies a potential

GUP-induced violation of the weak equivalence principle, since

meff ≡ mg ≠ m ≡ mi, where mg is the gravitational mass and mi is

the inertial mass (see also Casadio and Scardigli, (2020)). Since in

our framework β0 < 0, we have mg > mi, which might partially

justify the higher galaxy rotation velocities with respect to

standard cosmological predictions.

From Eq. 14, the GUP-modified velocity for large distances is

given as

v ≃

��������������
GM

R
1 − β0

n2
m2

M2
p

⎡⎣ ⎤⎦√√
with β0 < 0 . (16)

We point out here that other terms in Eqs 13, 14 dominate at

smaller scales, where the GUP effects are significantly smaller.

Furthermore, it is worth noticing that, due to the scaling of the

modification parameter in Eq. 16, the mass of a star orbiting with

velocity v is scaled by the number of fundamental constituents.

Assuming that such constituents correspond to the elements in

the plasma (mostly electrons and protons for a typical main

sequence star), the quantity m/n is of the order of the proton

mass regardless of the actual values ofm and n. Such assumption

will be considered in the following estimations.

It turns out that a distance dependence of the GUP parameter

β0 must be assumed to properly describe the flatness of rotational

curves of galaxies. In fact, as can be noticed from Eq. 16, a

constant GUP parameter simply shifts the orbital velocity at any

given radial position by a constant factor. The assumption that

the GUP parameter β0 takes a distance dependence is compatible

with the fact that similar effects are not observed at the solar

system scale, at which Kepler’s laws hold, while effects usually

associated with DM tend to become relevant approaching

galactic and intergalactic scales. This suggests that the GUP

parameter β0 must be distance-dependent since DM effects

appear to be distance-dependent. Such an assumption is also

supported by Ong (2018) and the difference between estimations

of the quadratic GUP parameter in tabletop experiments, where

β0 > 0 (Pikovski et al., 2012; Bosso et al., 2017; Scardigli et al.,

2017; Kumar and Plenio, 2018; Das and Fridman, 2021), and in

astrophysical/cosmological observations, where β0 < 0 (Jizba

et al., 2010; Ong, 2018; Buoninfante et al., 2019; Nenmeli
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et al., 2021; Das et al., 2022; Jizba et al., 2022). We propose

different models of a distance-dependent β0:

• Model 1: β0(R) � γ R
Rp,

• Model 2: β0(R) � γ R2

Rp2,

• Model 3: β0(R) � γ ln(1 + R
Rp), and

• Model 4: β0(R) � γ 2
π arctan( R

Rp),

where γ < 0 is a constant parameter and Rp ~ 1ly is the scale

at which effects, associated with DM, become significant. We

consider a toy model galaxy with the following matter

distribution (Freeman, 1970):

ρ R( ) � ρ0e
− R
Rd , (17)

where we chose ρ0 = 2 × 10–19 kg/m3 for the central density and

Rd = 16,000 ly for the galaxy scale parameter. We use the matter

distribution from Eq. 17 to obtain the mass of the galaxy within a

certain radius M(R), used in Eq. 16, to obtain Figure 1.

From Figure 1, we can see that the model which best

describes the flatness of rotational curves is model 1, since the

Compton correction term dominates at large distances, and the

linear model 1 renders it constant. As for the natural logarithm

and arc tangent models, they require a much higher peak for the

rotational velocities in order to explain the flatness of the curves.

Since observations of rotational curves of galaxies show no

significant discrepancy from standard Newton’s theory up to

about the peak of the curve, such models are not able to fit the

observations. The quadratic model 2 can potentially constitute a

good description for a different choice of the parameters γ and

Rp. Since models 2 and 4 do not describe the DM effects

satisfactorily, we are left with models 1 and 2. For these

models, we can consider the two different parameters γ and

Rp as only one parameter γ/Rp and γ/Rp2 for models 1 and 2,

respectively. The values for these parameters, which were used to

obtain the aforementioned graphs, are γ/Rp = −1.9, ×, 1033 ly−1

and γ/Rp2 � −3.6 × 1027 ly−2 for models 1 and 2, respectively.

These values constitute upper bounds for such parameters,

namely, |γ/Rp| ≤ 1.9 × 1033 ly−1 and |γ/Rp2|≤ 3.6 × 1027 ly−2,
respectively.

4 Conclusion

Newton’s law of gravity can be derived as an entropic force

through the holographic principle (Verlinde, 2011). In the

present work, we have revised the derivation considering the

influence of GUP. Specifically, we have considered the influence

of GUP on the temperature T in the equipartition theorem, the

Bekenstein–Hawking entropy, and the Compton wavelength.

The GUP-corrected law of gravity has then been used to

provide an explanation for the flatness of the rotational curves

of galaxies. Specifically, alongside the proposed DM content in

galaxies, we proposed that GUP effects can contribute to the

observed shape of rotational curves. In the case that the GUP

parameter β0 remains constant, the rotational curves of

galaxies only get magnified by a constant factor. Therefore,

for GUP to effectively influence the rotational curves, we

argued that the GUP parameter must be distance-dependent.

This claim is directly supported by the work from Ong (2018)

and indirectly by a comparison of positive bounds of

quadratic GUP parameters estimated from laboratory

experiments (Pikovski et al., 2012; Bosso et al., 2017;

Scardigli et al., 2017; Kumar and Plenio, 2018; Das and

Fridman, 2021) and negative bounds estimated from

astrophysical/cosmological observations (Jizba et al., 2010;

Ong, 2018; Buoninfante et al., 2019; Nenmeli et al., 2021; Das

et al., 2022; Jizba et al., 2022).

We have proposed different models concerning the distance

dependence for the GUP parameter β0 and introduced a new

scale parameter Rp at which GUP effects start to contribute to the

shape of the rotational curves of galaxies. Here, we note that the

GUP length scale need not be of the order of the Planck length ℓp

but can be any intermediate length scale
��
β0

√
ℓp between the

electroweak and Planck scales, determined by the GUP

parameter β0. For the cases of models 1 and 2, we introduce

parameters γ/Rp and γ/Rp2, respectively, since we cannot obtain

bounds for γ and Rp separately. Models 3 and 4 were found to be

inadequate to explain the observed DM effects, and there would

also be no possibility to combine parameters γ and Rp in a similar

fashion as for models 1 and 2.

Models 1 and 2 constrain the newly defined parameters to |γ/

Rp| ≤ 1.9 × 1033 ly−1 and |γ/Rp2|≤ 3.6 × 1027 ly−2, respectively.
However, these models can explain the flatness of rotational

curves of galaxies only up to an extent. For example, we notice

that for model 1 the rotational velocities would remain constant

for R→∞, while for model 2 they would diverge for R→∞ for

FIGURE 1
Galactic rotational curves for different models of R-
dependence of β0.
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any values of the parameters. Furthermore, the approximations

used to obtain Eqs 12, 13 break down at sufficiently large R.

The contribution of GUP effects to the shape of rotational

curves of galaxies should be determined, once more information

on the exact nature of particle DM and its abundance in galaxies

is known. Furthermore, the feature of a distance-dependent GUP

parameter, leading toward a partial explanation of galactic

rotational curves, can be considered a possible additional

structure of models of quantum mechanics with a minimal

length having astrophysical and cosmological consequences.

Finally, it is worth exploring the correspondence between our

results and those presented by Ong (2018), Gnatenko and

Tkachuk, (2019), and Gnatenko and Tkachuk, (2020), which

still exhibit the possibility of a mass-dependent GUP parameter.
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