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The Scalar Hexaquark uuddss: a Candidate to Dark Matter?
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It is conventionally argued that Dark Matter (DM) has a non-baryonic nature, but if we assume
that DM was frozen out before primordial nucleosynthesis and could not significantly impact pri-
mordial abundances this argument may be evaded. Then a hypothetical SU(3) flavor-singlet, highly
symmetric, deeply bound neutral scalar hexaquark S = uuddss, which due to its features has escaped
from experimental detection so far, may be considered as a candidate for a baryonic DM. In the
present work we calculate the mass and coupling constant of the scalar six-quark particle S by means
of the QCD sum rule method. Our predictions for its mass are mS = 1180+40

−26 MeV (ms = 95 MeV)

and m̃S = 1239+42
−28 MeV (ms = 128 MeV). Although these values of mass would produce thermally

the cosmological DM abundance, existence of this state may contradict to stability of the oxygen
nuclei, which requires further thorough analysis.

Introduction: From first days of the quark-parton
model and Quantum Chromodynamics (QCD), hadrons
with unusual quantum numbers and/or multiquark con-
tents attracted interest of physicists. The conventional
hadrons have quark-antiquark or three-quark composi-
tions. Their masses and quantum parameters JPC are
in accord with predictions of this scheme and can be cal-
culated using standard methods of particle physics. Un-
usual or exotic hadrons is expected to be built of four
and more valence quarks or contain valence gluons. A
main reason triggered intensive investigations of four-
quark states was a mass hierarchy inside the lowest scalar
multiplet, which found its explanation in the context of
the four-quark model suggested by R. Jaffe [1]. Start-
ing from 2003, i.e. from first observation of the exotic
meson X(3872) theoretical and experimental investiga-
tions of tetra and pentaquarks became one of the in-
teresting and rapidly growing branches of high energy
physics. Now, valuable experimental information col-
lected during past years, as well as theoretical progress
achieved to date, form two essential components of the
exotic hadrons physics [2–6].

Another interesting result about multiquark hadrons
with far-reaching consequences was obtained also by
R. Jaffe [7]. He considered six-quark (dibaryon) states
built of only light u, d, and s quarks that belong to fla-
vor group SUf(3). By combining the color and spin of
quarks and forming SUcs(6) ”colorspin” group, Jaffe an-
alyzed its representations and found that dibaryons only
from the singlet and octet representations of SUf (3) may
be light enough to be bound or resonant. Among six-
quark states from these two representations SUf(3) sin-
glet particles have zero spins. At the same time, all of
singlet and octet dibaryons are strange particles, there-
fore structures containing merely u and d quarks cannot
be bound and stable. Using the MIT quark-bag model
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for analysis, Jaffe predicted existence of a H-dibaryon,
i.e., of flavor-singlet and neutral six-quark uuddss bound
state with isospin-spin-parities I(JP ) = 0(0+). This
double-strange six-quark structure with mass 2150 MeV
lies 80 MeV below the 2mΛ = 2230 MeV threshold and
is stable against strong decays. It can decay through
weak interactions, which means that mean lifetime of H-
dibaryon, τ ≈ 10−10s, is considerably longer than that
of conventional mesons. The H-dibaryon with the mass
obeying this limit is loosely-bound state, a subject to
weak transformations.
The original work [7] was followed by numerous theo-

retical investigations, in which various models and meth-
ods of particle physics were used to calculate the H-
dibaryon’s mass [8–16]. As usual, results of these studies
are controversial: thus, calculations in the framework of
the corrected MIT bag model led to mH = 2240 MeV
which is just above the 2mΛ threshold [8], whereas in
a chiral model the authors [9] found mH = 1130 MeV.
To analyze Λ − Λ interaction and estimate ΛΛ binding
energy other quark models were invoked as well [10, 12–
14]. The H-dibaryon’s mass extracted from the QCD
two-point sum rules is consistent with the original result
of Jaffe [15, 16]. In fact, mH from Ref. [15] varies in
limits 2.0− 2.4 GeV and within an accuracy of the sum
rule method ∼ 20% agrees with the result of the quark-
bag model. Calculations in Ref. [16] also confirmed ex-
istence of a bound state lying 40 MeV below the 2mΛ

threshold. The lattice simulations performed in Ref. [17]
led to conclusion that mH was below the 2mN threshold
1880 MeV. In this paper the authors took into account
the stability conditions of the nucleus and extracted
mH ≈ 1850 MeV. The later lattice studies confirmed
existence of a bound-state H-dibaryon, and predicted its
binding energy ≈ 74.6 MeV [18] and (19± 10) MeV [19],
respectively. In the context of the holographic QCD H-
dibaryon was explored in Ref. [20], in which its mass was
estimated about mH = 1.7 GeV.
The hexaquark S (except for original papers, hereafter

we use a hexaquark instead of a six-quark state, and de-
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note it by S) was searched for by KTeV, Belle, and BaBar
collaborations in exclusive S → Λpπ− and inclusive
Υ(1S) and Υ(2S) decays, in processes Υ(2S, 3S) → SΛΛ
[21–24]. All these experiments could not find evidence for
the hexaquark S near the threshold 2mΛ and were able
only to impose limits on its mass mS the latest being
mS < 2.05 GeV.

Recent activities around the S is inspired by renewed
suggestions to consider it as a possible candidate to
dark matter [25–29]. In accordance with this scenario
if mS ≤ 2(mp +me) = 1877.6 MeV the hexaquark is ab-
solutely stable, because all possible decay channels of a
free S is kinematically forbidden. For the mS obeying the
inequality mS < mΛ +mp +me = 2054.5 MeV the hex-
aquark decays through a double-weak interaction, but
even in this case its lifetime could be comparable with
the age of the Universe. The lower bound of mS is deter-
mined by a stability of ordinary nuclei, which are stable if
mS > mp+mn+me−2E, where 2E is a binding energy of
p+ n. Then, for masses 1860 < mS < 1880 MeV, which
assures a stability of the hexaquark and conventional nu-
clei, the S can explain both the relic abundance of the
DM in the Universe and observed DM to ordinary mat-
ter ratio with less than 15% uncertainty [29]. But even
S with the mass in the range 1.3 . mS . 2mp and with
radius (1/6− 1/4)rp, where rp ≈ 0.86 fm is the a proton
radius, is consistent with the stability of nuclei, with Λ
decays in double-strange hypernuclei and experimental
limits on existence of exotic isotopes of helium and other
nuclei [25]. There are, however, objections to this picture
connected with a production process of hexaquarks in the
early-universe [30], or with observed supernova explosion
[31].

The hexaquark S as a candidate to DM was recently
analyzed in Ref. [32] as well. In this work the mass
of S was evaluated by modeling it as a bound state of
scalar diquarks. Using the effective Hamiltonian to de-
scribe dominant spin-spin interactions in diquarks [4],
the authors expressed mS in terms of constituent di-
quark massesmij and chomomagnetic couplings kij . The
masses of diquarks and chomomagnetic couplings may
be extracted from analysis of baryon spectroscopy. Al-
ternatively, kij can also be fixed to reproduce masses of
the light scalar mesons f0(500), K∗(800) f0(980), and
a0(980) interpreted as tetraquarks [33]. It turns out that
spin-spin couplings in tetraquarks are about a factor of
four larger compared to the spin-spin couplings in the
baryons. Because the hexaquark itself is an exotic six-
quark meson for calculation of mS it is reasonable to
employ parameters estimated from analysis of the light
tetraquarks. Calculations carried out in Ref. [32] pre-
dict mS ≈ 1.2 GeV which reproduces the cosmological
DM abundance, but may contradict to stability of oxy-
gen nuclei.

Calculations: In the present work we calculate the
mass of S by treating it as a bound state of three scalar
diquarks. To this end, we employe the QCD two-point
sum rule approach, which is one of the powerful nonper-

turbative methods to explore hadrons. As starting point,
the method uses the correlation function

Π(p) = i

∫
d4xeipx〈0|T {J(x)J†(0)}|0〉, (1)

and extract from its analysis sum rules to compute spec-
troscopic parameters of the hexaquark. The main ingre-
dient of this analysis is the interpolating current J(x)
which we choose it in the following form

J(x) = ǫabc
[
uT (x)Cγ5d(x)

]a [
uT (x)Cγ5s(x)

]b

×
[
dT (x)Cγ5s(x)

]c
, (2)

where [qTCγ5q
′]a = ǫamn[qTmCγ5q

′
n] and a, b, c, m, n

are color indices with C being the charge-conjugation
operator.
As is seen, the hexaquark is composed of the scalar di-

quarks [qTCγ5q
′]a in the color antitriplet and flavor an-

tisymmetric states. These diquarks are most attractive
ones [34], and six-quark mesons composed of them should
be lighter and more stable than bound states of other
two-quarks. Mathematical manipulations to derive sum
rules for the mass and coupling of the hexaquark are car-
ried out in accordance with standard prescriptions of the
method. Thus, first we express the correlation function
Π(p) in terms of the hexaquark’s mass mS and coupling
fS , as well as its matrix element

〈0|J |S〉 = mSfS . (3)

Separating from each another the ground-state term and
contributions due to higher resonances and continuum
states for ΠPhys(p) we get

ΠPhys(p) =
〈0|J |S(p)〉〈S(p)|J†|0〉

m2
S − p2

+ · · · . (4)

The expression of the matrix element (3) allows us to
rewrite ΠPhys(p) in the form

ΠPhys(p) =
m2

Sf
2
S

m2
S − p2

+ · · · , (5)

where dots denote contributions of higher resonances and
continuum states.
To calculate the QCD or OPE side of the sum rules,

we insert the current J(x) to Eq. (1), contract relevant
quark fields and obtain ΠOPE(p) in terms of the quark
propagators:

ΠOPE(p) =

iδafδa
′f ′

δbdδb
′d′

δceδc
′e′

∫
d4xeipx{Tr[See′

d (x)

×γ5S̃
ff ′

s (x)γ5]Tr[S
aa′

u (x)γ5S̃
bb′

d (x)γ5]

×Tr[Scc′

u (x)γ5S̃
dd′

s (x)γ5]}+ 511 similar terms,

(6)
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where S̃(x) = CST (x)C. To proceed, we employ the
x-space light-quark propagator

Sab
q (x) = i

/x

2π2x4
δab −

mq

4π2x2
δab −

〈qq〉
12

(
1− i

mq

4
/x
)
δab

− x2

192
〈qgsσGq〉

(
1− i

mq

6
/x
)
δab

− igsG
µν
ab

32π2x2
[/xσµν + σµν/x]−

/xx2g2s
7776

〈qq〉2δab

−x4〈qq〉〈g2sG2〉
27648

δab +
mqgs
32π2

Gµν
ab σµν

[
ln

(−x2Λ2

4

)
+ 2γE

]

+ · · · , (7)

where q = u, d or s, γE ≃ 0.577 is the Euler constant,
and Λ is a scale parameter. We also use the notations
Gµν

ab ≡ Gµν
A tAab, A = 1, 2, · · · , 8, and tA = λA/2, with λA

being the Gell-Mann matrices.
After inserting the light-quark propagators into Eq.

(6), we get the correlation function ΠOPE(p) in terms
of QCD degrees of freedom. The next step is to perform
the resultant Fourier integrals over four-x. Afterwards we
equate the invariant amplitudes ΠPhys(p2) and ΠOPE(p2)
to find the desired sum rule in momentum space. We
apply the Borel transformation to both sides of the ob-
tained sum rule to suppress contributions of the higher
resonances and continuum states, and using the quark-
hadron duality assumption, which is a quintessence of the
sum rule method, perform the continuum subtraction.
An equality derived after these manipulations, contains
the mass and coupling constant of the particle S. To find
the sum rules for mS and fS we need an extra expression
which can be obtained by acting d/d

(
−1/M2

)
to the first

equality. The sum rules for mS and fS derived by this
way have perturbative and nonperturbative components.
The latter contains vacuum condensates of various local
quark, gluon, and mixed operators, which appear after
sandwiching relevant terms in ΠOPE(p) between vacuum
states.
As the hexaquark is composed of six quarks, relevant

computations are lengthy and time consuming. In Ap-
pendix we explain some details of calculations, and write
down explicitly the Borel transformed and subtracted
invariant amplitude ΠOPE(M2, s0) including nonpertur-
bative terms up to dimension ten. The full expression
of ΠOPE(M2, s0) contains terms up to dimension thirty,
therefore we refrain from providing them here. In numer-
ical computations, we take into account all these higher
dimensional terms bearing in mind that they appear due
to the factorization hypothesis as product of basic con-
densates.
In analyses and computations, we utilize the quark,

gluon and mixed condensates

〈q̄q〉 = −(0.24± 0.01)3 GeV3, 〈s̄s〉 = 0.8 〈q̄q〉,
〈qgsσGq〉 = m2

0〈qq〉, 〈sgsσGs〉 = m2
0〈s̄s〉,

m2
0 = (0.8± 0.1) GeV2

〈αsG
2

π
〉 = (0.012± 0.004) GeV4, (8)

which are determined at the scale µ = 1 GeV. We work
in the approximation mu = md = 0, but keep a depen-
dence on ms. The parameter Λ is varied within the limits
(0.5, 1) GeV.

Since the S is tightly bound state with the radius much
smaller than usual hadrons, its parameters should be ex-
plored at relatively large momentum scales µ. Therefore,
we calculate the mass and coupling of the hexaquark at
µ = 2 GeV which corresponds to the radius 0.1 fm. To
reveal a sensitivity of mS and fS on the scale µ, we eval-
uate the same parameters at µ = 1 GeV as well.
The mass of the strange quark ms = 95+9

−3 MeV in

the MS scheme and at the scale µ = 2 GeV can be
found in Ref. [35]. We evolve the condensates (8) to this
scale and perform numerical computations. At the scale
µ = 1 GeV calculations are carried out by employing
(8) and the mass ms at this scale that differs from PDG
value by a factor 1.35.
Another important problem is a proper choice for the

the Borel M2 and continuum threshold s0 parameters.
First of them has been introduced upon Borel trans-
formation, the second one is necessary to separate the
ground-state and continuum contributions from each an-
other, as we previously have mentioned. These param-
eters are not arbitrary, but should meet the well-known
requirements. Thus, at maximum value of the Borel pa-
rameter the pole contribution (PC) should constitute a
fixed part of the correlation function, whereas at min-
imum of M2 it must be a dominant contribution. We
define PC in the form

PC =
ΠOPE(M2, s0)

ΠOPE(M2,∞)
, (9)

and atM2
max impose on it a restriction PC > 0.2, which is

usual for multiquark hadrons. The minimum of the Borel
parameterM2 is fixed from convergence of the sum rules,
i.e. atM2

min contribution of the last term (or a sum of last
few terms) cannot exceed, for example, 0.01 part of the
whole result. There is an another restriction on the lower
limit M2

min: at this M
2 the perturbative contribution has

to prevail over the nonperturbative one.
The sum rule predictions, in general, should not de-

pend on the parameter M2. But in real calculations mS

and fS demonstrate sensitiveness to the choice of M2

and one should find a plateau where this dependence is
minimal. The continuum threshold parameter s0 sepa-
rates a ground-state contribution from the ones arising
from higher resonances and continuum states. Stated
differently, s0 should be below the first excited state of
the hexaquark S. Parameters of conventional hadrons’
excited states are known either from experimental mea-
surements or from alternative theoretical studies. In the
lack of similar information for multiquark hadrons, one
fixes s0 to achieve a maximum for PC ensuring, at the
same time, fulfilments of other constraints, and keeping
under control a self-consistency of computations. The
self-consistent analysis implies that a gap between the
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mass mS and the parameter
√
s0 used for its extrac-

tion should be within reasonable limits of a few hundred
MeV.
Performed analysis allows us to determine the working

regions

M2 ∈ [1.3, 1.6] GeV2, s0 ∈ [2.5, 2.9] GeV2, (10)

which obey all aforementioned restrictions.

1.3

1.4

1.5

1.6

M2HGeV2
L

2.5

2.6

2.7

2.8

2.9

s0 HGeV2
L

0.0

0.5

1.0

PC

FIG. 1: Dependence of the pole contribution on M2 and s0.
The (red) surface PC = 0.2 is also shown.

In Fig. 1 we plot the pole contribution, when M2 and
s0 are varying within limits (10): at M2 = 1.3 the pole
contribution is 0.9, whereas atM2 = 1.6 it becomes equal
to 0.2. The predictions for the massmS is pictured in Fig.
2, where a mild dependence on the parameters M2 and
s0 is seen. The results for the spectroscopic parameters
of the hexaquark S read: at the scale µ = 2 GeV (for
ms = 95 MeV)

mS = 1180+40
−26 MeV, fS = 8.56+0.03

−0.26×10−6 GeV7, (11)

and at the scale µ = 1 GeV (for ms = 128 MeV)

m̃S = 1239+42
−28 MeV, f̃S = 9.18+0.03

−0.22×10−6 GeV7. (12)

Let us note that in computation of m̃S and f̃S the
Borel parameter has been varied within the limits M2 ∈
[1.34, 1.63] GeV2.
Theoretical uncertainties in the sum rule predictions

(11) and (12) appear mainly due to working windows
for the auxiliary parameters M2 and s0, and the scale
Λ. The ambiguities connected with various vacuum con-
densates are numerically small. We do not include into
errors of the mass and coupling corrections generated by
different choices of the scale µ, but keep (mS , fS) and

(m̃S , f̃S) as two sets of parameters. Let us note that
variation of the mass ∆mS(µ) ≈ 60 MeV is comparable
with other errors and does not exceed a few percent of
mS . It is not difficult to check also self-consistent charac-
ter of obtained results. Indeed, estimating

√
s0 −mS we

get [400, 525] MeV, which can be accepted as a normal
value for the mass difference between the ground-state
and first excited hexaquarks.

1.3

1.4

1.5

1.6

M2HGeV2
L

2.5

2.6

2.7

2.8

2.9

s0 HGeV2
L

1.0

1.1

1.2

1.3

mSHGeVL

FIG. 2: The mass of the hexaquark S as a function of the
Borel and continuum threshold parameters. The mass of the
strange quark is ms = 95 MeV.

Discussion and Conclusions: We have considered
the spin-0, parity-even, highly symmetric S-hexaquark
of uuddss with Q = 0, B = 2 and S = −2. Us-
ing the technique of QCD sum rule, we have found
that for the chosen interpolating current the intervals
M2 ∈ [1.3, 1.6] GeV2, s0 ∈ [2.5, 2.9] GeV2 for the aux-
iliary parameters fulfill the requirements of the method
discussed above. For these intervals, we could able to
reach [0.9− 0.2] pole contributions to the sum rules, and
have extracted mS = 1180+40

−26 MeV (ms = 95 MeV) and

m̃S = 1239+42
−28 MeV (ms = 128 MeV) for the mass of the

S-hexaquark. This range of the mass implies that the
hexaquark S is an absolutely stable particle.

It is worth noting that in the context of the sum rule
method the scalar six-quark particle was investigated in
Refs. [15, 16]. In Ref. [15], the authors explored differ-
ent interpolating currents and carried out calculations by
taking into account nonperturbative terms up to 〈q̄q〉4
and ms〈q̄q〉5 orders. Using ms = 0.2 GeV, and an ap-
proximation 〈q̄q〉 = 〈s̄s〉, for the mass of the hexaquark
they found mS = 2.4 GeV. But, because of uncertainties
of calculations, the authors could not determine whether
the mass of this particle lies above or below the ΛΛ
threshold, i.e. whether it is stable or not. In Ref. [16] the
two-point correlation function was found by employing
for the hexaquark a molecular type current. The authors
took into account only terms proportional to 〈q̄q〉2 and
〈q̄q〉4, and neglected the gluon and mixed condensates.
Prediction in Ref. [16] was made using the strange quark
mass ms = 150 MeV; it was found that the mass of the
hexaquark is mS ≈ 2.19 GeV which corresponds to a
bound state 40 MeV below the ΛΛ threshold.

The accuracy of calculations performed in the present
work considerably exceeds the accuracy of previous in-
vestigations. In this paper we have included into anal-
ysis not only the quark, but also the gluon and mixed
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condensates. In computations we took into account non-
perturbative terms up to dimension thirty, and for the
mass of the strange quark used its contemporary value
ms = 95+9

−3 MeV. Therefore, our result for the mass of S-
hexaquark differs from estimations of Refs. [15, 16], but
is in accord with output of the chiral model [9]. Our pre-
diction for mS (and m̃S) almost coincides with one made
recently in Ref. [32], in which it was obtained by model-
ing the S-hexaquark as a bound state of scalar diquarks
and using recent progress in theoretical and experimental
physics of multiquark hadrons.

There are a lot of constraints on the mass and radius
of the hexaquark as a candidate to the DM. They stem
from analyses of the different production modes of S-
hexaquark in high energy hadron and e−e+ collisions,
from its interactions with ordinary baryons, and from
analysis of cosmological processes [27, 28]. As we have
noted above, accelerator experiments could not observe
the hexaquark S near the threshold 2mΛ and only im-
posed limits on its mass mS < 2.05 GeV. There are some
reasons that make problematic detection of S-hexaquark
at colliders. In fact, the hexaquark is neutral and com-
pact particle and its mass is close to the mass of neutron,
which makes difficult to separate relevant signals from
ones generated by neutron. Additionally, as a flavor-
singlet particle, the S-hexaquark presumably does not
couple to a hadronic content of photon, pion and other
flavor-nonsinglet mesons, or such interactions are very
weak. It is possible that due to these features it escapes
detection in hadron collisions. Strategies for discover-
ing a stable hexaquark in various hadronic processes and
relevant problems were discussed in Ref. [27]. In accor-
dance with estimates of this work, within existing exper-
imental datasets should be a few hundred events with
S or its antiparticle S. For creation of the S-hexaquark
e−e+ collisions may be more promising than hadronic
processes, because flavor-singlet multi-gluon states copi-
ously produced in these collisions eventually may trans-
form to S particles [28]. In any case, the constraint
mS < 2.05 GeV extracted from collider processes does
not contradict to existence of a stable particle with the
mass mS ≈ 1.2 GeV.

As a particle carrying the baryon number B = 2, the S-
hexaquark interacts with other baryons and nuclei, and
these processes might be utilized to detect it. Param-
eters of such interactions have to be calculated using
perturbative or nonperturbative methods of QCD, and
confronted with available experimental data. There are
some active experiments designed for direct detection of
DM scattering on target materials of detectors [36–38].
Recently the XENON and SuperCDMS collaborations re-
ported about constraints on light DM-nucleon scattering
cross-section σDMN extracted from their studies [37, 38].
In accordance with Ref. [37], for DM particles with the
mass ∼ 1 GeV and a spin-independent DM −N interac-
tion the cross-section σDMN is σDMN ≈ 10−38 cm2; and
σDMp ≈ 10−32 cm2 and σDMn ≈ 10−33 cm2 if this inter-
action is spin dependent (see, Fig. 5 in Ref. [37] ). The

information provided by the SuperCDMS (see, Fig. 13 of
[38]) allows us to estimate σDMN ∼ 10−36 cm2. The limit
on DM-proton cross-section σDMp ≤ 0.6×10−30 cm2 was
extracted also in Ref. [39], in which the authors relied on
XDC data [40]. Results of other experiments devoted to
DM-nucleon scattering can be found in Refs. [37–39].

The theoretical investigation of the hexaquark-nucleon
scattering cross-section σNS should be performed in the
context of QCD, i.e., in a framework of the Standard
Model (SM). In this aspect, this task differs considerably
from the situation in theories, where DM particle and
a mediator of DM-nucleon interaction are introduced at
expense of various extensions of SM [41]. Because the
hexaquark is the particle composed of the conventional
quarks, a mediator of S − N interaction also should be-
long to ordinary hadron spectroscopy. It should be neu-
tral flavor-singlet scalar particle with a mass < 1 GeV:
There are few candidates to play a role of such media-
tor. The scalar mesons σ [in new classification f0(500) ],
f0(980), and a scalar glueballGmay couple to both S and
baryons, and carry this interaction. The σ and f0(980)
are singlets from the lowest nonet of scalar mesons. Dif-
ficulties in interpretation of these mesons as qq states
inspired suggestion about their diquark-antidiquark na-
ture [1]. Within this paradigm problems with low masses,
and a mass hierarchy inside the light nonet seem found
their solutions. The current status of relevant theoretical
studies can be found in Refs. [42–44]. The scalar glue-
ball G, in accordance with various estimations, has the
mass & 1 GeV, but due to mixing with quark component
would appear as a part of σ and f0(980) mesons [45].

Here, for the sake of concreteness, we analyze only σ-
exchange processes. Then, to evaluate the cross-section
σNS one has to compute strong couplings corresponding
to vertices NNσ and SSσ: This is necessary to evaluate
σNS using one of QCD approaches. The NNσ coupling,
actually, is known, and was calculated in the context of
the sum rule method in Refs. [46, 47]. In these arti-
cles the meson σ was treated either as mixed qq + G
or pure qq states. The coupling NNσ, where σ is the
diquark-antidiquark exotic meson or admixture of four-
quark and glueball components, as well as SSσ were not
calculated using available methods of QCD. It is clear,
that the hexaquark S is self-interacting particle, which
takes place through the same σ-exchange mechanism. In
other words, the S-hexaquark as the DM particle belongs
to class of self-interacting DM models. The cross-section
σSS for elastic S− S interaction can be computed us-
ing the strong coupling of the vertex SSσ. It is worth
noting that σNS was evaluated in Ref. [25] by model-
ing S − N interaction via one-boson exchange Yukawa
potential. The result obtained there put on σNS the
limit σNS . 10−3 mb or . 10−30 cm2. At high veloc-
ities of the interacting particles v ≈ c , naive estimates
for σNS and σSS led to constraints σNS ≥ 0.25σNN ≈
5 mb and σSS ≥ 0.25σNS ≈ 1.25 mb [28], respectively.
The restrictions on σDMp for spin-dependent interactions
10−27 cm2 < σDMp < 10−24 cm2 were obtained in Ref.
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[48]. A strong theoretical analysis, in accordance with
the scheme outlined above, is required to make a reli-
able prediction for σNS compatible or not with existing
experimental limits.

Besides direct detection experiments, there are outer
space cosmic ray (CR) experiments, results of which can
be utilized to explore the Dark Matter through its decays
to SM particles. Such investigations may be helpful also
for studying matter-antimatter asymmetry in the Uni-
verse. The finished satellite-based PAMELA and ongo-
ing AMS-02 experiments provided information useful for
these purposes. The PAMELA was constructed to detect
galactic CRs, and mainly their positron and antiproton
components [49]. Measurements revealed a rise in the
positron-electron ratio e+/(e− + e+) at energies above
10 GeV. The abundance of positrons in CRs was con-
firmed by AMS-02 up to energies 350 GeV [50] and later
till 500 GeV. The similar enhancement was observed in
antiproton to proton ratio p/p, as well [51, 52]. A stan-
dard scenario implies that antiparticles are produced due
to inelastic interactions of CR nuclei with particles of the
interstellar gas. But rates of such processes are small,
therefore deviation of these ratios from expected small
values may be interpreted in favor of DM decaying to SM
particles. Collected data on antiparticle anomaly in the
Universe provide valuable information to verify different
DM models, and impose constraints on DM-SM inter-
actions [41]. Alternatively, the observed abundance of
high-energy positrons in CRs may be connected with ac-
celerating effects of nearby sources, such as a pulsar, su-
pernova remnants [53–55]. This mechanism implies some
anisotropy in detected antiparticle fluxes, whereas data
are consistent with their isotropic distributions: this is
significant obstacle in attempts to explain antiparticle
excess in CRs using local sources.

The hexaquark S produces leptons in the SS annihila-
tion and inelastic interactions with particles of the inter-
stellar gas. Productions of various groups of σ, f0(980),
π, and K mesons would be main channels at low energy
annihilations. At high energies these light mesons should
be accompanied by numerous baryons. Dominant decay
modes of the mesons σ, f0(980), π, and K, and rele-
vant branching ratios are well known [35], which can be
employed to estimate production rates of electrons and
positrons to account for discussed effects.

Important restrictions on the mass of the hexaquark
arise from observed cosmological abundance of the DM,
and DM to ordinary matter ratio in the Universe. The
concept of DM is necessary (excluding models with modi-
fied theory of gravity) to account for observed astrophys-
ical effects, such as rotation curves of galaxies, gravita-
tional lensing, and other phenomena. Direct evidence for
the existence of DM came from analysis of bullet clusters
[56]. All these phenomena can be explained within the
concept of DM provided DM particles are stable. The
hexaquark with massmS ≈ 1.2 GeV reproduces observed
DM abundance and DM/matter ratio, while a larger mS

gives a smaller relic abundance [32]. The S-hexaquark

is the stable particle, and its self-interaction and elas-
tic scattering on ordinary matter does not reduce the
total mass of DM in some location, which is crucial to
describe aforementioned phenomena. Of course, interac-
tion of S with baryon and photon fluids may alter matter
power spectrum and the cosmic microwave background,
but they are not strong enough to generate significant ef-
fects [32]. Contrary, the S-baryon (i.e., DM-galactic gas)
interactions may produce a DM disk embedded within
the spherical galactic halo, lead to co-rotation of DM
with the gas and forming DM density structure similar
to that of the gas [28]. Parameters of the DM disk in a
galaxy, it thickness, for example, depend on the mass of
DM and the cross-section σDMN [57].
Another constraint on mS is connected with stability

of conventional nuclei. The reason is that very small
mass of the hexaquark may contradict to stability of ex-
isting nuclei, because for small mS nucleons inside nu-
clei would bind to the S state faster than what is al-
lowed by observed stability of these nuclei. This process
runs through double-weak production of the off-shell Λ∗

baryons by a pair of nucleons pn, pp or nn. Because our
estimate for the mass of the hexaquark is mS ≈ 1.2 GeV,
the main sources of the virtual Λ∗ baryons are the weak
decays p → Λ∗π+, n → Λ∗π0, and an internal conversion
(udd) → (uds). Generated by this way virtual Λ∗s after-
wards through the strong-interaction process Λ∗Λ∗ → S
form the hexaquark S.
The matrix element of the reaction NN → SX can

be written as a product of the amplitude for the nucle-
ons’ double-weak transitions to a pair of virtual Λ∗s, and
matrix element for creation of the S from the Λ∗s [26]

M(NN → SX) ≈ M(NN → Λ∗Λ∗X)M(Λ∗Λ∗ → S).

(13)

Then lifetime of the nucleus N decaying to N ′ and the
hexaquark is

τ(N → N ′SX) ≃ 3yr

|M(Λ∗Λ∗ → S)|2 , (14)

which should be confronted with the Super-Kamiokande
(SK) limit for the oxygen nuclei

τ(16O8 → N ′SX) & 1026yr. (15)

Equation (14) is rather rough estimate for τ , which is
seen from treatment, for instance, of the matrix ele-
ment |M(Λ → N)|2 used to derive it [26]). This ma-
trix element was calculated there in the harmonic oscil-
lator model, and was also inferred from phenomenological
analysis: obtained results differ from each other by ap-
proximately 10 times. The prediction (14) was made by
employing an average value of |M(Λ → N)|2.
The situation with |M(Λ∗Λ∗ → S)|2 is even worst than

in the previous case. The matrix element |M(Λ∗Λ∗ →
S)|2 describes the strong process Λ∗Λ∗ → S and plays a
crucial role in theoretical estimations of the 16O8 lifetime.
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In Ref. [26] the M(Λ∗Λ∗ → S) was calculated as overlap
integral of the final hexaquark and initial Λ∗Λ∗ baryons’s
wave functions, the latter being factored into wave func-
tions of the two Λ∗ baryons, and a wave function of two
nucleons inside nucleus. The Λ∗ baryon and hexaquark
S wave functions were written down using the Isgur-Karl
(IK) nonrelativistic harmonic oscillator quark model [58]
and its generalization to six-quark system [26]. These

functions depend on parameters αB(S) = 1/
√
〈r2B(S)〉,

where 〈r2B〉 and 〈r2S〉 are mean charge radii of the Λ∗

baryon and hexaquark S, respectively. The features of
the two nucleons inside nucleus were modeled in Ref. [26]
using Brueckner-Bethe-Goldstone (BBG) wave function.
A wide class of the two-nucleon wave functions including
the BBG, the Miller-Spencer wave functions, and ones
extracted from results of Ref. [59], was employed in Ref.
[32] to study the stability of the oxygen nucleus.

The IK wave functions used to model the Λ∗ baryons
and the hexaquark S suffer from serious drawbacks.
Thus, the parameter αB = 0.406 fm−1 necessary to

describe the mass splitting of lowest lying 1
2

+
and 3

2

+

baryons corresponds to radius of the proton 0.49 fm,
whereas to reproduce the experimental value 0.86 fm one
needs αB = 0.221 fm−1. In other words, the IK func-
tions could not explain simultaneously the mass splitting
of positive parity baryons and the proton radius. Usage
of such nonrelativistic wave function to describe the Λ∗

baryon, moreover an attempt to generalize and apply it
to the relativistic multiquark system like the hexaquark
is, at least, questionable. Existing problems of the IK
model were emphasized already in the original paper [26]
and repeated in Ref. [32], nevertheless in both of them
these wave functions were employed to carry out numer-
ical computations.

Calculations demonstrate that the matrix element
|M(Λ∗Λ∗ → S)|2 is highly sensitive to the choice of the
parameters αB and αS , and is suppressed if the hex-
aquark S has a small radius rS/rN ≪ 1, where rN is the
nucleon radius. The radius of the hexaquark was esti-
mated in Ref. [29] as 0.1 ≤ rS ≤ 0.3 fm which implies
rS/rN = 0.11−0.34. Then, for example, for rS ≈ 0.13 fm
and, as a result, for the ratio rN/rS ≈ 6.6 the BBG
wave function with the core radius c ≃ 0.4 fm, and
αB = 0.406 fm−1 satisfies the constraint |M(Λ∗Λ∗ →
S)|2 . 10−25 necessary to evade the SK bound (see, Fig.
1 in Ref. [26]). At the same parameters of the hexaquark,
but for αB = 0.221 fm−1 the core radius in the BBG
model should be larger to achieve required suppression
of the matrix element |M(Λ∗Λ∗ → S)|2.
To update predictions for |M(Λ∗Λ∗ → S)|2, the au-

thors in Ref. [32] used the new two-nucleon wave func-
tions. The latter were extracted by utilizing an in-
formation on the two-nucleon point density inside nu-
clei ρNN (r) [59]. The original calculations of ρNN (r)
were performed by employing the nonrelativistic Hamil-
tonian, where the phenomenological NN potential in-
cludes electromagnetic and one-pion-exchange terms, and

also contains phenomenological contributions to repro-
duce nucleon-nucleon elastic scattering. The new wave
functions, of course, present a more detailed picture of a
nucleus, but are nonrelativistic quantities and do not take
into account dynamical effects of quark-gluon interac-
tions in nuclei. The updated results for |M(Λ∗Λ∗ → S)|2
are presented in Fig. 5 of Ref. [32] as a function of the
ratio rS/rN . Unfortunately, the authors did not show
the region rS/rN = 0.11 − 0.2, in which the restriction
on the matrix element |M(Λ∗Λ∗ → S)|2 . 10−25 may be
satisfied.
As it has been just emphasized above, |M(Λ∗Λ∗ →

S)|2 critically depends on a behavior of the relevant wave
functions at small inter-nucleon distances r . 1 fm. At
these distances nucleons are not the suitable degrees of
freedom, and quark-gluon content of the nucleons be-
comes essential to describe correctly processes inside nu-
clei. Neither the Isgur-Karl type wave functions of the
Λ∗ baryon and S-hexaquark, nor the two-nucleon wave
functions discussed till now contain detailed information
on relativistic and nonperturbative interactions of quarks
and gluons at distances r . 1 fm and high densities.
Therefore, the predictions for |M(Λ∗Λ∗ → S)|2 made in
Refs. [26, 32] cannot be considered as credible ones and
used to confirm or exclude existence of the hexaquark S.
Only after thorough exploration of aforementioned prob-
lems, we can get serious estimate for |M(Λ∗Λ∗ → S)|2
and see whether the requirement rS << rN–necessary
for stability of 16O8 in the present picture–survives or
not. Then we will be able to answer the question moved
to the title of the present article as well.

Appendix: Details of calculations and the correlation

function ΠOPE(M2, s0)

In this appendix we present some details of calcula-
tions, which are necessary to derive the sum rules for the
mass and coupling of the hexaquark. It is evident that a
main problem is calculation of the QCD side of the sum
rules ΠOPE(p). Using explicit expressions for the light
quarks propagators and inserting relevant ones into Eq.
(6), we get the Fourier integrals of following types:

T [l,m] =

∫
d4xeipx

[1, xµ, xµxν , ...](x
2)l

[
ln
(

−x2Λ2

4

)]m

(x2)n
.

(A.1)

For simplicity, let us consider the case l = 0 and m = 0.
After a Wick rotation in the Euclidean space for T [0, 0] ≡
T , one finds

T = −i(−1)n
∫

d4xE
e−ipExE

(x2
E)

n
. (A.2)

By applying the Schwinger parametrization

1

An
=

1

Γ(n)

∫ ∞

0

dt tn−1e−tA, A > 0, (A.3)
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it is not difficult to recast T into the form

T = −i(−1)n
1

Γ(n)

∫ ∞

0

dt tn−1

∫
d4xE e−ipExEe−tx2

E .

By performing the resultant Gaussian integral over four-
x, we obtain

T = −i(−1)n
π2

Γ(n)

∫ ∞

0

dt tn−3e−p2

E
/4t. (A.4)

The next step is to apply the Borel transformation with
respect to p2E to suppress contributions of the higher res-
onances and continuum states. To this end, we utilize
the formula

BMe−p2

E
/4t = δ

(
1

M2
− 1

4t

)
, (A.5)

which leads to

BMT = −i(−1)n
π2

Γ(n)

∫ ∞

0

dt tn−3δ

(
1

M2
− 1

4t

)
.

(A.6)
By carrying out the integration over t, we immediately
get

BMT = −i(−1)n
π2

Γ(n)

(
M2

4

)n−3

. (A.7)

Afterwards we apply the continuum subtraction proce-
dure using the replacement

(
M2

)N → 1

Γ(N)

∫ s0

0

dse−s/M2

sN−1, N > 0, (A.8)

where s0 is the continuum threshold parameter. Then
for the Borel transformed and subtracted integral T , we
get

BMT = −i(−1)n
π243−n

Γ(n)Γ(n− 3)

∫ s0

0

dse−s/M2

sN−1,

(A.9)
Calculations of the other terms T [l,m] in QCD side of
the sum rule can be performed in a similar manner. In
the general case of T [l,m], for continuum subtraction one
should use more complicated formulas, full list of which
can be found in Ref. [60]

As a result, for ΠOPE(M2, s0) we get

ΠOPE(M2, s0) =
1

147 · 41252π10

∫ s0

0

dss7e−s/M2

+

30∑

i=3

Π(i)(M2, s0), (A.10)

where the first term is the perturbative contribution.
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For the nonperturbative (3)− (10) dimensional terms we get:

Π(3) =
7ms〈ss〉
334952π8

∫ s0

0

dss5e−s/M2

,

Π(4) =
〈g2sG2〉

2 · 41152π10

∫ s0

0

dss5e−s/M2

,

Π(5) =
ms

2 · 3341152π8
[2〈qgsσGq〉

×
∫ s0

0

dss4
[
12783− 2340 ln

(
s/Λ2

)]
e−s/M2

+ 〈sgsσGs〉
∫ s0

0

dss4
[
346 + 120 ln

(
s/Λ2

)]
e−s/M2

]
,

Π(6) =
1

2 · 33475π6

[
2〈qq〉2 + 〈ss〉2 + 12

(
2〈ss〉〈qq〉+ 〈qq〉2

)] ∫ s0

0

dss4e−s/M2

,

Π(7) =
ms〈g2sG2〉
33411π8

[
5〈qq〉

∫ s0

0

dss3
[
−311 + 60 ln

(
s/Λ2

)]
e−s/M2

+ 〈ss〉
∫ s0

0

dss3
[
865− 36 ln

(
s/Λ2

)]
e−s/M2

]
,

Π(8) = − 1

2 · 34415π10

[
1429〈g2sG2〉2 + 21576π4m2

0

(
181〈qq〉2 + 5〈ss〉2 + 342〈qq〉〈ss〉

)] ∫ s0

0

dss3e−s/M2

,

Π(9) =
ms

2 · 34412π8
〈g2sG2〉m2

0

∫ s0

0

dss2
[
−77464〈qq〉+ 13922〈ss〉 − (27320〈qq〉 − 748〈ss〉) ln

(
s/Λ2

)]
e−s/M2

− ms

2 · 3344π4

[
−12〈ss〉2〈qq〉+ 14〈ss〉〈qq〉2 + 24〈qq〉3

] ∫ s0

0

dss2e−s/M2

,

Π(10) =
〈g2sG2〉
3349π6

[
386〈qq〉2 + 34〈ss〉2 + 636〈ss〉〈qq〉

] ∫ s0

0

dss2e−s/M2 − m4
0

3 · 49π6

[
27〈qq〉2 + 〈ss〉2

] ∫ s0

0

dss2e−s/M2

.

(A.11)

In Π(i)(M2, s0) we have assumed 〈uu〉 = 〈dd〉 and denoted both of them as 〈qq〉. We do not provide explicit expressions
of the terms (i) > (10).
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