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Abstract: The Dark Matter Particle Explorer (DAMPE) recently released measurements
of the electron spectrum with a hint of a narrow peak at about 1.4TeV. We investigate dark
matter (DM) models that could produce such a signal by annihilation in a nearby subhalo
whilst simultaneously satisfying constraints from DM searches. In our model-independent
approach, we consider all renormalizable interactions via a spin 0 or 1 mediator between
spin 0 or 1/2 DM particles and the Standard Model leptons. We find that of the 20
combinations, 10 are ruled out by velocity or helicity suppression of the annihilation cross
section to fermions. The remaining 10 models, though, evade constraints from the relic
density, collider and direct detection searches, and include models of spin 0 and 1/2 DM
coupling to a spin 0 or 1 mediator. We delineate the regions of mediator mass and couplings
that could explain the DAMPE excess. In all cases the mediator is required to be heaver
than about 2TeV by LEP limits.
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1 Introduction

The Dark Matter Particle Explorer (DAMPE) [1] recently measured the cosmic ray spec-
trum of high energy electrons and positrons [2]. These electrons and positrons are an
important potential probe of new physics such as dark matter (DM) decay or annihilation
within the Milky Way galaxy. The DAMPE measurement of the energy spectrum extends
previous direct measurements up to about 5 TeV. One of the most exciting aspects of the
DAMPE measurements is the confirmation of a spectral break somewhat below 1TeV. The
other exciting feature is due to the excellent energy resolution of DAMPE: there appears
to be a sharp resonant feature in the data at about 1.4TeV. This is despite the admittedly
sizeable statistical and systematic uncertainties.

While this feature could be a statistical fluctuation or may be due to standard astro-
physical sources, it could also be the first precursor of dark matter detection. The sharp
peak observed in the positron spectrum could originate from the annihilation of dark mat-
ter into electrons. Here we investigate the viability of particle dark matter models as an
explanation for this excess. We classify the new states and interactions that can explain the
excess, constructing a collection of simplified models, and check in each case whether the
signal can be achieved, while simultaneously fitting the relic density and evading a variety
of relevant experimental constraints that we identify.

To describe the excess of electrons, we assume that DM is leptophilic [3–29], that
is, at tree-level it couples only to leptons and possibly neutrinos. This is motivated by
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simplicity and since it ameliorates constraints from searches for DM in proton collisions
at the LHC and searches for elastic scatters between DM and nuclei in direct detection
(DD) experiments. Our DM candidate is a Weakly Interacting Massive Particle (WIMP)
that satisfies the required abundance of DM with an annihilation cross section at thermal
freezeout of about 〈σv〉 ≈ 10−26 cm3/s.

Self-annihilation of the dark matter particles could result in the injection of a resonant
source, δ(E −mχ), of charged particles in the Milky Way. The sharp injection spectrum
from such a source, however, is softened and smeared by diffusion in Galactic magnetic
fields, bremsstrahlung and inverse Compton scattering with CMB photons. The spectrum
can be described by a diffusion and loss equation,

∂ρ(t, x, E)

∂t
= ~∇ ·

[
d(E)~∇ρ(t, x, E)

]
+
∂ [l(E)ρ(t, x, E)]

∂E
+ J(t, x, E), (1.1)

where ρ(t, x, E) is the energy spectrum, d(E) is a diffusion coefficient, l(E) is an energy
loss coefficient, and J(t, x, E) is a source. Assuming that energy losses dominate diffusion
and a steady-state spectrum, for a resonance source, J(t, x, E) = J0δ(E −mχ), the energy
spectrum exhibits an endpoint,

ρ(E) =

{
J0
l(E) E ≤ mχ

0 otherwise,
(1.2)

rather than a sharp resonance, such as the source [30]. We thus require a nearby and
late-time injection of monochromatic electrons, such that losses do not dominate. We thus
assume a nearby source of DM annihilation, such as a subhalo within a few kpc [31–33].

After kinetic decoupling, DM forms gravitationally bound subhalo structures. These
structures predominantly merge into a DM halo, but subhalos may survive. Indeed, nu-
merical n-body simulations [34] predict numerous subhalo structures in a halo comparable
to that of the Milky Way. A signal from a subhalo with an annihilation cross section
〈σv〉 ≈ 〈σv〉v→0 ≈ 10−26 cm3/s could be enhanced by a substantial DM density, reaching
the observed amplitude of the DAMPE signal. Because electrons from a local subhalo
would, nevertheless, lose energy, we assume a DM mass slightly greater than the peak
observed by DAMPE in the electron energy spectrum, mχ ≈ 1.5TeV.

The result immediately generated considerable interest [31–33, 35–47] and particle dark
matter interpretations have already been investigated. In [31] they consider lepton portal,
lepton flavour and TeV right-handed neutrino models. In [32] they consider a specific model
that can explain both neutrino masses and the DAMPE excess, where the DM candidate is
a vector-like fermion, with a Z ′ mediator. In [46] they propose an electrophilic dark matter
candidate, which may be a fermion with scalar mediator or the dark matter candidate could
be a scalar with a fermion mediator but perform calculations only for the former. Finally
in [47] they consider simplified models that can explain the excess where the DM candidate
is a leptophilic fermion.

Our work, presented in this paper, is closest in spirit to [47], however we are considerably
more general. We present a set of simplified leptophilic models with scalar, Majorana and
Dirac fermions, that couple with either scalar or vector mediators. For the scalar mediator
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DM particle Mediator coupling to DM Mediator coupling to SM leptons

Scalar, `¯̀Φ Pseudoscalar, `γ5 ¯̀Φ

Real scalar Scalar, χrχrΦ PandaX LEP
Complex scalar Scalar, χ∗cχcΦ PandaX LEP
Dirac fermion Scalar, χdχdΦ σv ∼ v2 σv ∼ v2

Dirac fermion Pseudoscalar, χdγ5χdΦ LEP LEP
Majorana fermion Scalar, χmχmΦ σv ∼ v2 σv ∼ v2

Majorana fermion Pseudoscalar, χmγ5χmΦ LEP LEP

Vector, ¯̀γµ`Z
′µ Axial-vector, ¯̀γµγ

5`Z ′µ

Complex scalar Vector, χ∗c∂µχcZ ′µ σv ∼ v2 σv ∼ v2

Dirac fermion Vector, χdγµχdZ ′µ PandaX LEP
Dirac fermion Axial-vector, χdγµγ5χdZ

′µ σv ∼ v2 σv ∼ m2
`

Majorana fermion Axial-vector, χmγµγ5χmZ
′µ σv ∼ v2 σv ∼ m2

`

Table 1. Combinations of possible (spin 0 or 1) mediator couplings to SM leptons (columns) and
DM (rows). For each possibility, we indicate the strictest constraint on the parameter space explain-
ing the DAMPE excess (colored green) or indicate suppression that rules it out as an explanation
of the DAMPE excess (colored red).

we consider both scalar and pseudoscalar couplings to fermions and for the vector mediator
we consider vector and axial vector couplings to fermions, while for scalar dark matter we
consider cubic and quartic interactions with the mediator. We do not consider spin-1 DM
or a spin-2 mediator in this work. We systematically investigate each case to determine if
scenarios that fit the relic density can explain the DAMPE excess and if so, whether or not
those scenarios are consistent with other experimental constraints from dark matter direct
detection (DD) and indirect detection (ID) experiments, collider experiments, measure of
anomalous magnetic moments and neutrino experiments. We also consider future probes
of the scenarios which survive all constraints.

In Section 2 we present the set of simplified leptophilic models we investigate. Then in
Section 3 we discuss the constraints on these models that we will consider. In Section 4 we
present the results of our analysis and finally in Section 5 we give our conclusions.

2 Models

We model DM by a single species of WIMP which we assume is responsible for the DAMPE
signal and the DM abundance in our Universe. We assume that it interacts with Standard
Model (SM) leptons by a new massive mediator. Instead of specifying UV-complete models,
we study DM models that could explain DAMPE’s result in a model-independent way by
coupling scalar and fermionic DM particles, χ, to a massive scalar or vector mediator. We
require that the couplings between the mediator and the DM, and the mediator and SM
leptons satisfy only Hermiticity and Lorentz invariance, and that it is renormalizable.
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The scalar mediator, Φ, couples to the SM leptons by a scalar or pseudoscalar interac-
tion,

Lscalar–SM =
∑

`=e,µ,τ

¯̀
(
gs` + igp`γ

5
)
`Φ. (2.1)

There are no Yukawa couplings between the scalar and (only left-handed) neutrinos. In the
case of e.g., right-handed neutrinos and a see-saw mechanism, Yukawa interactions between
light mass eigenstates and the spin 0 mediator would be suppressed by the see-saw scale or
equivalently lightness of neutrino masses. We pick universal couplings between the mediator
and the SM leptons, g` = ge = gµ = gτ . The scalar couples to DM by either

Lscalar–DM =



1
2κrχ

2
rΦ + 1

2λrχ
2
rΦ

2 Real scalar

κc|χc|2Φ + λc|χc|2Φ2 Complex scalar

χ̄d
(
gsχd + igpχdγ5

)
χdΦ Dirac fermion

1
2 χ̄m

(
gsχm + igpχmγ5

)
χmΦ Majorana fermion

(2.2)

for DM that is real scalar χr, complex scalar χc, Dirac fermion χd or Majorana fermion χm,
respectively. In the case of scalar DM with a scalar mediator, we define the dimensionless
couplings gχr,c ≡ κr,c/mχ so that we may compare it with the dimemsionless coupling to
SM leptons. The vector mediator, Z ′, couples to the SM leptons and left-handed neutrinos
by a vector or axial-vector interaction,

Lvector–SM =
∑

`=e,µ,τ

¯̀γµ (gv` + ga` γ5) `Z ′µ +
∑

ν=νe,νµ,ντ

gν ν̄γµPLνZ
′µ. (2.3)

As in the case of a scalar mediator, we assume universal lepton couplings. We furthermore
assume universal neutrino couplings gν = gνe = gµ = gντ . The vector couples to DM by
either

Lvector–DM =


igvχc(χ

∗
c∂µχc − χc∂µχ∗c)Z ′µ + (gvχc)

2|χc|2Z ′2 Complex scalar

χ̄dγµ
(
gvχd + gaχdγ5

)
χdZ

′µ Dirac fermion
1
2 χ̄mg

a
χmγµγ5χmZ

′µ Majorana fermion

(2.4)

We assume the scalar is complex, so it can be charged under the gauge symmetry. A vector
interaction vanishes for a Majorana fermion as the operator is odd under charge symmetry.
Our notation for the mediator couplings is that a superscript s denotes a scalar interaction,
p denotes pseudoscalar, v denotes vector and a denotes axial-vector. We implemented the
models defined in Eq. 2.2 and 2.4 in micrOMEGAs-4.3.5 [48, 49] via FeynRules-2.3.27 [50,
51] and calcHEP [52].

For simplicity, we initially make the following assumptions:

1. In each scenario, we assume there is a single species of DM and a single mediator.

2. We assume that the interactions between the scalar (vector) mediator and leptons or
DM is either completely scalar (vector) or completely pseudoscalar (axial-vector), but
not a mixture.
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3. As discussed, we assume lepton flavor universal couplings between the mediator and
SM leptons.

4. We assume that gχ = g`.

5. In keeping with assumption 2 we set gν = 0 rather than considering and the lepton
interaction simultaneously.

6. We assume no tree-level mixing between the Z ′ and the Z-boson and no tree-level
mixing between the SM Higgs boson and our spin 0 mediator. In principle, we could
tune tree-level couplings to cancel loop induced mixing that results in DM scattering
with quarks.

The resulting allowed combinations from assumptions 1 and 2 are listed in Table 1, along
with an indication of the result of our analysis which are presented in detail in section 4.

After this we relax a couple of these assumptions. First we relax assumption 4. In
most cases, the relic density Ωh2 and annihilation cross section 〈σv〉 depend on the product
of mediator couplings to DM and leptons, gχg`, and therefore this assumption has no
affect. However, if the mediator is lighter than the DM, DM can annihilate into on-shell
pairs of mediators. This process mainly depends on the mediator coupling with DM, gχ.
Furthermore constraints from LEP and ∆aµ, depend on only g`. Where relevant we discuss
the impact of this assumption and also present results that demonstrate the impact of
this assumption when it is most significant. Secondly while assumption 5 is useful to give
an indication of the impact of the lepton interaction alone, it is difficult to generate such
scenario in UV complete model, due to SU(2) gauge invariance. Therefore we subsequently
break this condition and study scenarios with both lepton and neutrino interactions.

3 Constraints

We wish to find points in the parameter spaces of our DM models that satisfy existing
experimental constraints from DM searches, predict the correct relic abundance of DM and
explain the DAMPE excess. We detail the relevant constraints in the following subsections.

3.1 Dark matter abundance

We require that the thermal relic density of DM, calculated in micrOMEGAs-4.3.5, satisfies
Ωh2 = 0.1199± 0.0022 in accordance with measurements from Planck [53]. This translates
into a strict relation between the mediator mass and couplings.

3.2 DAMPE excess

To accommodate the amplitude of the DAMPE excess, we require that the DM annihilation
cross section is not suppressed in the low-velocity limit. Thus, we have 〈σv〉v→0 & 〈σv〉 ≈
[2, 4] × 10−26 cm3/s — the annihilation cross section at freeze-out required for the correct
relic density. The necessary cross sections are doubled in the case that the DM is not self-
conjugate as the flux would reduce by a factor of two. For points that satisfy the DM relic
density constraint, we calculate the annihilation cross section 〈σv〉 in micrOMEGAs-4.3.5.
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Following [54], of the 20 combinations of operators that link DM with leptons in Table 1,
there are 8 in which the low-velocity annihilation cross section 〈σv〉 is suppressed by the
velocity, and 2 in which it is suppressed by helicity (see e.g. Table IV of [55]). In Table 1,
we denote models suppressed by velocity by σv ∼ v2 and models suppressed by helicity by
σv ∼ m2

` .

3.3 Dark matter direct detection

In DM direct detection experiments, leptophilic DM may predominantly scatter with bound
electrons in the target. The recoiling electrons are either ejected from the target atoms or
remain bound if the recoil is taken by the atom as a whole. In the former case, null results
from XENON100 constrain the scattering cross section to be σ0

χe . 10−34 cm2 [56] at the
90% confidence level. Of the interactions we consider, XENON100 is most sensitive [57] to
the axial-vector coupling (Eq. 2.2 and 2.4). The axial-vector coupling predicts that

σχe = 3gaχg
a
`

m2
e

πM4
Z′
≈ 3gaχg

a
`

(
MZ′

10GeV

)−4

× 3.1× 10−39 cm2. (3.1)

Thus, even for a mediator mass of 10GeV and couplings gaχga` = 1, the cross section would
be far lower than the XENON100 [56] limit.

Leptophilic DM can, however, scatter with quarks in DD experiments through lepton
loops. As discussed in [57], from the models satisfying our low-velocity annihilation cross
section requirement, only one model has a 1-loop cross section for scattering of DM on a
nucleus, and four models have 2-loop cross sections.

We calculate the loop induced χn → χn cross section σχn using expressions given
in [57],

σχn =
α2

emZ
2µ2

N

π3A2M4

∑
`=e,µ,τ

1
9

(
gvχg

v
` log

m2
`

µ2

)2
mediator:Z ′, DM:χd(

παemZµNv

6
√

2

)2
[(

gsχd,m
gs`

m`

)2

+ 2
3

(
gpχd,mg

s
`µNv

m`mχ

)2
]

mediator:Φ, DM:χd,m

1
4

(
παemZµNv

6
√

2

)2 (κr,cgs`
m`M

)2
mediator:Φ, DM:χr,c

(3.2)

where αem is the fine structure constant,M is the mediator mass, µN ≡ mNmχ/(mN +mχ)

is the reduced mass of the DM-nucleus two particle system, v = 0.001c is the velocity of
the DM near the Earth, µ is the scale at which the logarithmic divergence is cut off, mN ,
Z and A are the target nucleus’ mass, charge and mass number respectively. The most
stringent direct detection constraints on DM with mass larger than 10 GeV are currently
provided by PandaX [58, 59]. Therefore we take Z = 54, A = 131 and mN = 131GeV for a
target nucleus of Xenon and µ = M/

√
gvχg

v
` . We compare the predicted cross sections with

90% confidence limits on spin independent elastic DM-nucleon cross section.
The DD constraints on leptophilic DM scattering with quarks are equivalent to con-

straints upon mixing between the SM Z and Higgs bosons and our spin 1 and spin 0
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mediator, respectively. The DD constraints are, however, stronger than precision mea-
surements [60]. As noted in the introduction, though, DD constraints could be evaded by
fine-tuning the tree-level mixing against loop-induced corrections.

3.4 Dark matter indirect detection

As well as the potential signal from DAMPE, there are constraints on the annihilation of
DM from other ID experiments. In our scenarios, DM may annihilate to leptons. Hadronic
tau decays result in gamma-rays from pion decay. Amongst others H.E.S.S. [61], Fermi-
LAT [62] and IceCube [63] searched for photons and neutrinos from regions in which DM
may be abundant, such as the Galactic Centre, dwarf Spheroidal galaxies, and the Sun.

An excess of gamma rays was reported by the Large Area Telescope (LAT) on board
the Fermi Gamma Ray Space mission [64–71]. The origin of this relatively low energy
(2-3 GeV) gamma ray flux was thought to be the Galactic Center. Their source is un-
der extensive debate in the literature [54, 72–183]. The most recent Fermi Collaboration
paper, however, claims that the excess emission is also present in “control regions along
the Galactic plane, where a dark-matter signal is not expected” [184]. Assuming that the
above excess is explained by standard astrophysical sources, the most stringent limits on
dark matter annihilation into a pair of gamma rays comes from Fermi-LAT observations of
dwarf spheroidal satellite galaxies (dSphs) of the Milky Way. This is because it is assumed
that dark matter dominated these dwarf galaxies. The Fermi-LAT upper limit on the dark
matter annihilation cross section combines the analysis of 15 Milky Way dSphs [62]. The
latter provides the most stringent constraint for dark matter annihilating into τ leptons
(or quarks). Additional, comparably strong limits come from AMS-02 and the cosmic mi-
crowave background (CMB) and [185]. All these limits, however, are fairly weak for a DM
mass of a TeV.

Observation of charged cosmic leptons hinted anomalies for more than a decade. The
electron and positron fluxes have been especially controversial for some time [186–206].
The growth of the positron-to-electron fraction and the increase of the positron spectral
index above 100 GeV in the Fermi-LAT data are both considered as signs of unexplained
sources [202, 203]. The nature of these new cosmic ray sources is still a subject of de-
bate. They may be standard astrophysical sources (supernova remnants and/or pulsars),
or sources harboring new physics (dark matter annihilation) [207–209]. Our work is moti-
vated by the latter interpretation.

3.5 Anomalous magnetic moments of leptons

Since the mediators couple to leptons, they could have a significant impact on the anomalous
magnetic moments of the leptons. Since we consider a lepton universal coupling, we consider
only the magnetic moment of the muon; we do not consider weaker constraints on the
anomalous magnetic moments of the electron or tau. The discrepancy between experiment
and the SM prediction for the magnetic moment of the muon is about [210–212]

∆aµ = 28.8± 5.4± 3.3± 4.9× 10−10, (3.3)
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where the first error is statistical, the second is systematic and the last is the estimated
theoretical uncertainty in the SM calculation given in [212]. Combining these errors in
quadrature one obtains a total uncertainty of 8.0 ± 10−10, making the deviation between
experiment and the SM prediction approximately 3.6σ. However it is important to note
that the SM calculation and the associated uncertainty involve challenging estimates of the
hadronic contributions, and different values can be found in the literature [213–216]. While
the estimates cited here all show a significant deviation, it is not universally accepted in
the wider community that the hadronic uncertainties are under control. Moreover the SM
is not regarded as excluded, so it would seem strange to rule out BSM theories which lie
between the SM prediction and the experimentally measured one.

For this reason we consider two constraints. First we directly use the combined un-
certainty given above to form a 2σ interval within which the BSM model can explain the
deviation. Secondly to make a much more conservative exclusion, which reflects more con-
servative views about the hadronic uncertainty, we consider a theoretical uncertainty of
25×10−10 where most of the deviation between the theory prediction and the experimental
value is covered by the theory uncertainty. While this is a very conservative estimate of the
theory uncertainty, it still provides a non-trivial constraint on BSM models, allowing one
to exclude models.

The one-loop BSM contribution to the magnetic moment, from diagrams involving the
mediator, can be approximated by [93, 217],

∆aµ =
( mµ

2πM

)2
{

1
3(gv` )2 − 5

3(ga` )2 Vector mediator

−
(

7
12 + ln

mµ
M

)
(gs` )

2 +
(

11
12 − ln

mµ
M

)
(gp` )

2 Scalar mediator
(3.4)

for a vector and vector mediator, respectively, where mµ is the muon mass and M is the
mediator mass and we have neglected terms1 of order O(m3

µ/M
3). For a vector mediator, a

vector interaction with electrons improves agreement with measurement, whereas an axial-
vector one worsens it. For a scalar mediator, a pseudo-scalar interaction with electrons
improves agreement, whereas a scalar one worsens it.

3.6 Collider searches

Whilst there were no dedicated searches for leptophilic Z ′ bosons at LEP, searches in the
framework of four-fermion operators [219] require that [19, 220, 221]

gs,pe .

{
2.7× 10−4MΦ/1GeV MΦ & 200GeV

7.3× 10−4MΦ/1GeV 100GeV .MΦ . 200GeV
(3.5)

for a scalar mediator, and

gve .

{
2.0× 10−4MZ′/1GeV MZ′ & 200GeV

6.9× 10−4MZ′/1GeV 100GeV .MZ′ . 200GeV
(3.6)

1The exact expressions can be found in [217, 218].
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gae .

{
2.4× 10−4MZ′/1GeV MZ′ & 200GeV

6.9× 10−4MZ′/1GeV 100GeV .MZ′ . 200GeV
(3.7)

for a vector mediator. The latter case covers Z ′ bosons lighter than the maximum LEP
centre-of-mass energy, 209GeV. In this regime, the constraint may be much stronger if the
Z ′ boson mass lies close to one of the LEP centre-of-mass energies, which were 130, 136,
161, 172, 183, 189, and 192–209 GeV. LEP monophoton constraints [222], on the other
hand, are irrelevant since our DM mass is well above the maximum LEP centre-of-mass
energy.

At a future e+e− collider, such as ILC with a centre-of-mass energies up to 1TeV [223],
these constraints are expected to increase significantly. The reach of ILC with a luminosity
of 500 fb−1 are [19]

gs,pe .

{
3.4× 10−5MΦ/1GeV MΦ & 1TeV

9.1× 10−5MΦ/1GeV 100GeV .MΦ . 1TeV
(3.8)

for a scalar mediator, and

gve .

{
2.2× 10−5MZ′/1GeV MZ′ & 1TeV

7.6× 10−5MZ′/1GeV 100GeV .MZ′ . 1TeV
(3.9)

gae .

{
2.7× 10−5MZ′/1GeV MZ′ & 1TeV

7.6× 10−5MZ′/1GeV 100GeV .MZ′ . 1TeV
(3.10)

for a vector mediator.
The LHC could be sensitive to a leptophilic Z ′ or scalar mediator produced as brem-

sstrahlung from a lepton produced by Drell-Yann. The mediator could subsequently decay
to combinations of lepton pairs and MET. A detailed study [3], however, found that the
limits were negligible for MZ′ & 100GeV. We assume that the limits for a scalar media-
tor would be similar (see e.g., [224, 225]). A leptophilic scalar mediator could potentially
modify Higgs branching ratios ifMΦ ≤ mh/2; however, we assume no coupling between the
Higgs and mediator at tree-level.

3.7 Trident production

Constraints from so-called trident production, νµN → νµµµN [226], place severe restrictions
on the Z ′ coupling to muons for gµ,

gµ .
MZ′

1TeV
. (3.11)

This constraint applies only if the Z ′ couples to neutrinos.

4 Results

The scan of the DM models was performed with the EasyScan_HEP setup used in [227].
In Fig. 1, we show properties of a real (top) and complex (bottom) scalar DM particle
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Figure 1. A scalar mediator scalar coupled to real scalar DM (top) and complex scalar DM
(bottom). The mediator coupling with leptons is scalar (left) or pseudoscalar (right). Each panel
shows DM properties as a function of mediator mass.

interacting with SM leptons via a spin 0 mediator. In each of the four panels, the first
two stacked plots show the product of mediator couplings to the DM and SM leptons and
the annihilation cross section 〈σv〉v→0 to electrons against the mediator mass for masses
and couplings that predict the correct relic density. There is a pronounced resonance at
2mχ ≈MΦ, at which annihilation proceeds through an s-channel resonance and a reduced
coupling is required for the relic density. When the resonance is almost exactly on-shell in
the low-velocity limit, it enhances 〈σv〉v→0 � 〈σv〉 as the latter is reduced upon thermal
averaging. Following the resonance, though, there is a region with reduced 〈σv〉v→0. In this
region, in the low-velocity limit the resonance is off-shell but the thermally averaged cross
section averages over the on-shell resonance, and thus 〈σv〉v→0 � 〈σv〉. This region cannot
explain the DAMPE result. Regions of mediator mass that are consistent with experimental
data and could explain the DAMPE excess lie above and below the resonance (indicated
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Figure 2. A scalar mediator pseudoscalar coupled to Dirac fermion DM (top) and Majorana
fermion DM (bottom). The mediator coupling with leptons is scalar (left) or pseudoscalar (right).
Each panel shows DM properties as a function of mediator mass.

by blue).
The third stacked panel shows the strictest experimental constraint, which is PandaX

for scalar interactions (left) and LEP searches for pseudoscalar interactions (right) between
the mediator and SM leptons. Only the resonance region survives the PandaX constraint
on the SI cross section for scalar interactions, as the t-channel interaction with quarks is not
enhanced by the resonance. The resonance region, however, cannot produce a substantial
〈σv〉v→0 and is thus not of interest. For the pseudoscalar interaction, the DD constraints are
weaker as there is no loop induced SI cross section and the SD cross section is momentum-
suppressed, and LEP provides the strongest constraints. The survived region can be further
probed in future DD experiments and e+e− colliders. For example, the forthcoming LZ
experiment [228] will almost fully cover the scalar interaction cases, while ILC can detect
mediators with a mass larger than 2mχ for all cases, with only a very small part of the
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Figure 3. A vector mediator vector coupled to Dirac fermion DM (top), axial-vector to Dirac
fermion DM (bottom left) and Majorana fermion DM (bottom right). The mediator coupling with
leptons is vector (top left) or axial-vector (others). Each panel shows DM properties as a function
of mediator mass.

resonance region that could escape.

In Fig. 2, we show the same story as in Fig. 1 but for a spin 0 mediator interacting
with Dirac and Majorana fermionic DM. The interaction between the fermionic DM and
mediator is pseudoscalar as the annihilation cross section with a scalar interaction (not
shown) is velocity suppressed and thus not of interest. The plots tell a similar story to a
spin 0 mediator interacting with scalar DM, though in this case LEP is the most powerful
constraint for scalar and pseudoscalar interactions between the mediator and SM leptons
as SI and SD cross sections are momentum suppressed or absent.

We consider vector mediators coupled to fermionic DM in Fig. 3. The top row shows
vector interactions between a Dirac fermionic DM particle and a vector mediator (this vec-
tor interactions is forbidden for Majorana fermions). Combined with a vector interaction
between the mediator and SM leptons, we find unsuppressed SI cross sections and thus se-
vere constraints from PandaX. The forthcoming DD experiments, such as XENONnT and
LZ, will be sensitive to almost all of the small remaining viable region. For an axial-vector
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Figure 4. A scalar mediator scalar coupled to complex scalar DM and pseudoscalar coupled to
leptons with κc/mχ = 2gp` (left) or κc/mχ = 5gp` (right). Each panel shows DM properties as a
function of mediator mass.

interaction, though, LEP constraints are most powerful as SI interactions are momen-
tum suppressed. In the bottom row we show results for axial-vector interactions between
fermionic DM and a vector mediator. In this case the annihilation cross section to fermions
is helicity-suppressed, thus we see 〈σv〉 ≈ 10−30 cm3/s, which is far too small, and annihi-
lation to on-shell mediators (Z ′Z ′), which is unsuppressed, dominates if it is kinematically
allowed. Although final-state radiation could lift the suppression, it would soften the posit
on spectrum. The axial-vector interaction with DM and scalar with SM leptons (not shown)
is velocity suppressed.

In Fig. 4, we relax our assumption that the mediator couplings to DM and SM leptons
are equal for scalar mediator with a scalar interaction to scalar DM and pseudoscalar
interaction to SM leptons. By decreasing the mediator coupling with SM leptons, we may
evade LEP constraints. However, in doing so we reduce the rate at which DM annihilates
to electrons. We see that once annihilation to pairs of on-shell mediators is kinematically
impossible (at about mΦ = 1.5TeV), the required coupling slightly increases. This is most
pronounced when we permit the coupling to leptons to be five times smaller (right) though
visible when it is two times smaller (left). In the lowest stacked panels, we see that the
LEP constraint is now considerably weaker than in Fig. 1.

The lepton current in Eq. 2.3 can be translated into a gauge invariant current associated
with a left-handed weak isospin doublet and a right-handed isospin singlet, gL/R` = gv` ∓ ga` .
As a consequence, in any SU(2) invariant theory, the coupling between a vector mediator
and neutrinos gν is in general non-zero, including in our scenarios with gv` = 0 or ga` = 0.
Thus, in Fig. 5, we show the cases of vector mediator with gauge invariant lepton current,
i.e., gν = gv` if ga` = 0 and gν = −ga` if gv` = 0. Compared with Fig. 3, we see that the cross
section of DM annihilating into leptons is slightly diluted by annihilation into neutrinos,
but can still reach 10−26 cm3/s. Although the constraints from trident production restrict
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Figure 5. A vector mediator vector coupled to complex (left) and axial-vector (right) coupled to
leptons and neutrinos simultaneously. Each panel shows DM properties as a function of mediator
mass.

LM–SM LM–DM DAMPE signal ∆aµ PandaX LEP Combined

`¯̀Φ χrχrΦ /∈ [3001, 3330] > 361 ∈ [2971, 3240] > 2010 ∈ [2971, 3001]

`¯̀Φ χ∗cχcΦ /∈ [3002, 3270] > 420 ∈ [2970, 3180] > 2160 ∈ [2970, 3002]

`¯̀Φ χdγ
5χdΦ /∈ [3001, 3270] > 361 > 276 > 2010 /∈ [3001, 3270]& > 2010

`¯̀Φ χmγ
5χmΦ /∈ [3001, 3331] > 301 > 241 > 1770 /∈ [3001, 3331]& > 1770

`γ5 ¯̀Φ χrχrΦ /∈ [3001, 3300] > 391 – > 1980 /∈ [3001, 3300]& > 1980

`γ5 ¯̀Φ χ∗cχcΦ /∈ [3002, 3270] > 450 – > 2160 /∈ [3002, 3270]& > 2160

`γ5 ¯̀Φ χdγ
5χdΦ /∈ [3001, 3270] > 420 – > 2010 /∈ [3001, 3270]& > 2010

`γ5 ¯̀Φ χmγ
5χmΦ /∈ [3001, 3331] > 330 – > 1770 /∈ [3001, 3331]& > 1770

¯̀γµ`Z
′µ χdγµχdZ

′µ /∈ [3000, 3330] > 61 ∈ [2940, 3270] > 2130 ∈ [3270, 3000]
¯̀γµγ

5`Z′µ χdγµχdZ
′µ /∈ [3000, 3330] > 270 – > 1890 /∈ [3000, 3330]& > 1890

Table 2. Regions in mediator mass permitted by experimental constraints for combinations of
mediator couplings to the SM leptons and DM. The final column shows mediator masses that may
explain DAMPE and simultaneously satisfy all experimental constraints. All masses are in units of
GeV.

the muon coupling if the mediator couples to muon neutrinos, the strictest limits in the
gν = gv` and gν = ga` cases are PandaX and LEP, respectively, which are similar to the
simplified cases.

We do not show vector mediators coupling to scalar DM as 〈σv〉v→0 is velocity sup-
pressed. We summarize the regions of mediator mass that are excluded in Table 2. There
one can see that the most important constraints come from LEP and PandaX, along with a
small constraint from DAMPE in the resonance region. The region where one can explain
the deviation between the SM calculation and experiment for the anomalous magnetic mo-
ment of the muon is entirely excluded by the LEP limit. At the same time the limit from the
more conservative assumption about theory errors discussed in section 3.5 is much weaker
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than the LEP limit. For simplicity we only show the latter in Table 2. An overview of
our findings are presented Table 1. This shows the combinations of operators with velocity
or helicity suppressed 〈σv〉, which are therefore not of interest, other combinations with
unsuppressed scattering cross sections that are in tension with DD experiments, and finally
that for the remaining models LEP has the largest impact, but that these models are still
allowed.

5 Conclusions

We performed a model-independent analysis of particle dark matter explanations of the peak
in the DAMPE electron spectrum and whether they can simultaneously satisfy constraints
from other DM searches. We assumed that the signal originated from DM annihilation in a
nearby subhalo with an enhanced density of DM. To account for the inevitable energy loss,
we assumed a DM mass of about 1.5TeV, which is slightly greater than the location of the
observed peak. Rather than working in a specific UV-complete model, we investigated all
renormalizable interactions between SM leptons, DM of spin 0 and 1/2, and mediators of
spin 0 and 1.

Our results are summarized in Tables 1 and 2. We found that 10 of 20 possible com-
binations of operators are helicity or velocity suppressed and cannot explain the DAMPE
signal. Of the remaining combinations, PandaX strongly constrains the unsuppressed scat-
tering cross sections in three models and LEP strongly constrains the mass of the mediator
in the other 7. The remaining candidates are (1) a spin 0 mediator coupled to scalar DM,
(2) a spin 0 mediator pseudoscalar coupled to fermionic DM, and (3) a spin 1 mediator
vector coupled to Dirac DM. LEP constraints on four-fermion operators force the mediator
mass to be heavy, & 2TeV, in all of these scenarios.
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