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ABSTRACT

A set of temporal singularities (transients) in the mass-energy density and pressure, bearing a specific
mathematical structure which represents a new solution to the continuity equation (i.e. conservation

of mass-energy) and satisfying the strong energy condition, is proposed to account for the expansion

history of a homogeneous Universe, and the formation and binding of large scale structures as a

continuum approximation of their cumulative effects. These singularities are unobservable because

they occur rarely in time and are unresolvably fast, and that could be the reason why dark matter
and dark energy have not been found. Implication on inflationary cosmology is discussed. The origin

of these temporal singularities is unknown, safe to say that the same is true of the moment of the Big

Bang itself. This work complements a recent paper, where a topological defect in the form of a spatial,

spherical shell of density singularity giving rise to a 1/r attractive force (to test particles of positive
mass) but zero integrated mass over a large volume of space, was proposed to solve the dark matter

problem in bound structures but not cosmic expansion. The idea also involved a negative density,

which is not present in the current model.

1. INTRODUCTION

Under the assumption of a spatially flat, homogeneous, and isotropic Universe, an appropriate line element for which

is of the Friedmann-Robertson-Walker form

ds2 = c2dt2 − a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2), (1)

the dimensionless ‘expansion factor’ is completely and consistently determined by substituting the metric tensor for

(1) into the Einstein field equations. Specifically, the ensuing pair of independent equations, known as the Friedmann

equations, are of the form
(

ȧ

a

)2

=
8πGρ

3
+

K

a2
;
ä

a
= −

4πG

3
(ρ+ 3p) (2)

where ρ and p are the density and pressure of the cosmic substrata. For a single fluid Universe, the ratio of w = p/ρ
is a dimensionless constant known as the equation of state parameter.

Although the FRW metric and the Friedmann equations form the backbone of modern Cosmology, there are sig-

nificant imperfections in the observational verification of its curremt solution which at least warrant the search for

alternatives.
The lowest order problems are the nature of dark matter and dark energy, namely in order to account for the

temperature anisotropy of the cosmic microwave background (CMB) (Efstathiou, Bond, & White 1992; Bennett et al

2003) and the SN1a extension of the Hubble diagram (Riess et al 1998; Perlmutter et al 1999; Brout et al 2022) the

cosmic substrata at z = 0 comprises 69.2 ± 1.2 % by mass of a component with w ≈ −1, formerly referred to as the

Cosmological constant and currently dark energy, ≈ 25.8± 1.1 % of a component with w ≈ 0 known as dark matter,
4.84±0.10 % are baryons with w ≈ 0, and a negligible contribution from radiation; see Table 9 of Planck Collaboration

(2016). The identities of both substrates remain unknown, with the dark matter problem being especially acute because

it has been exactly 100 years since the first documented suggestion of the existence of such particles was mad (Kapteyn

1922), yet they have not been found.
The next order problem is termed ‘Hubble tension’, which, tersely speaking, is the discrepancy between the SN1a

measurements at relatively low redshift z and the CMB measurements at high z of the Hubble constant H0, with the

former yielding values of H0 in the range 72−−74 (Riess et al 2022) and the latter 67−−68 (Alves et al 2020), both

expressed in units of km s−1 Mpc−1.

http://arxiv.org/abs/2503.08733v1
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The purpose of this paper is to propose another possible solution to the lowest order problems of dark matter and

dark energy, by showing that there exists a class of temporal singularities capable of driving an expansion history of

the Universe at least from the epoch of matter radiation equality onward, and potentially of relevance to the horizon

problem and structure formation as well. Our consideration stems from the premise that a time-inhomogeneous
Universe could possess multiple singularities beyond the Big Bang and cyclical cosmology, to include the possibility

of discretization in the expansion rate; more precisely, the expansion factor a(t) does not increase continuously with t

but in steps. It will be shown in this way that the observed expansion history of the Universe since matter-radiation

equality, i.e. during the epochs of deceleration and acceleration, can be reproduced without invoking dark matter

and dark energy.

2. EQUATION OF STATE; DIFFICULTY WITH NEGATIVE DENSITY

In an earlier paper, a topological defect in the form of massless spherical shells was proposed to explain how large-

scale structures, namely galaxies, groups, and clusters of galaxies, could remain as gravitationally bound systems even
if they do not possess dark matter (Lieu 2024). At that time, the emphasis was on the binding of structures; as a

result, no consideration was given to the cosmological expansion of space. Since structures which condensed out of the

Hubble flow of the cosmic substratum have observable density gradients are hence a preferred location, singularities

in space were enlisted to account for the existence in lieu of dark matter.

However, there was a controversy about the existence of negative density in the spherical shells. Specifically the
density of each of the many concentric shells postulated to exist in a galaxy, group, or cluster of galaxies was of the

form

ρ(r) =
A

r2
[δ(r − R) + rδ′(r −R)], (3)

which leads to an integrated mass over any spherical volume of radius r and centered at the origin of

M(r) =

∫ r

0

4πr′2ρ(r′)dr′ = 4πArδ(r −R). (4)

Hence the total enclosed mass M is only non-vanishing at r = R, ie the vast majority of the space is empty (apart

from baryons and radiation). Yet the acceleration is, by Poisson equation, F = −dΦ/dr = −4πGAδ(r − R)/r which,

being inversely proportional to r, yields the key signature of a flat rotation velocity curve for circular stellar orbits in

a galaxy for stars on the mass shell1 r = R, with the quantity 4πA having the meaning of the equivalent underlying
total mass responsible for the flat rotation. A weakness of this model is the presence of negative density arising from

the δ′(r − R) term of (3) at r = R + ǫ when the delta function derivative is interpreted in the usual manner as the

limiting case of the slope of a Gaussian profile centred at r = R.

There is a possible way out of the difficulty of the negative mass, however. It utilises the general version of the
spherically symmetric Poisson equation

∇2Φ =
1

r2
d

dr

(

r2
dΦ

dr

)

= ρ+ 3p, (5)

where p is the pressure of the fluid, by the following re-attribution of (3),

ρ(r) =
A

r2
δ(r −R); p(r) =

A

3r
δ′(r −R); A > 0. (6)

In this way, the mass-energy density ρ(r) (i.e. the time-time component of the stress-energy tensor) is positive definite,

but the pressure is negative (which is acceptable) for r → R+.

To calculate the pressure to density ratio of the fluid inside a large scale bound structure due to an ensemble of

concentric shells one may write, for the entire system,

ρS(r) =
1

r2

∑

j

Ajδ(r −Rj); pS(r) =
1

3r

∑

j

Ajδ
′(r −Rj); Aj > 0 for all j. (7)

1 The term ‘on mass shell’ is not to be confused with a similar terminology in quantum electrodynamics, which has a very different meaning.
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Assuming the shell spacing between consecutive pairs is much smaller than the radius of the shell, one may replace

the summation over shells by an integral, namely

ρS(r) =
A(r)n(r)

r2
; pS(r) =

1

3r

d

dr
[(n(r)A(r)], (8)

where n(r)dr is the number of shells having radii between r and r + dr. In this way one sees that for slowly varying

n(r)A(r) (a criterion satisfied by Lieu (2024)) the pressure of the fluid pS(r) is negligible compared to the density ρS ,
i.e. the fluid is in this respect similar to cold dark matter. The key difference is that (8) obeys a pressureless flow

equation

ρ̇S = −
2ṙ

r
(ρS + pS) (9)

where the right side carries the factor 2ṙ/r rather than the usual 3ṙ/r because the shells are two-dimensional surface

structures which undergo only a change in area when the radius is perturbed (shell thickness remains unresolvably

small).

Unfortunately (9) also spells out the other shortcoming of this model. Although the scenario ρS ≫ pS is symptomatic
of cold dark matter, (9) restricts the dynamics of singular shells to surface flows, whereas successful structure formation

simulations (Springel et al 2005; Pillepich et al 2018) all rely on dark matter particles moving in a full 3-dimensional

space. More importantly, the spatial shells are spherical concentric, indicative of a preferred position in space, while

the same dark matter, when considered as the cause of decelerated expansion of the entire Universe, is distributed
spatially without a center.

Nevertheless, a different approach from Lieu (2024) which retains the spirit of it has become apparent.

3. A ΛCDM UNIVERSE DRIVEN BY TEMPORAL SINGULARITIES

We start with one of the most important tenet of ΛCDM cosmology, namely local mass-energy conservation in a

homogeneous Universe. In General Relativity it is implied by the vanishing of the covariant derivative of the stress
energy tensor,

T µν
;ν = 0, (10)

where

T µν = (ρ+ p)uµuν − pgµν (11)

with gµν being given by (1), and ρ and p the mass-energy density and pressure of the cosmic subtratum. Specifically

we are referring to the µ = 0 case of (10), i.e.

T 0ν
;ν = 0 =⇒ ρ̇ = −

3ȧ

a
[ρ(a) + p(a)] (12)

which is the mass-energy continuity equation of a fluid undergoing a radial outflow drive solely by cosmic expansion

(i.e. no peculiar velocity, ui = dxi/dt = 0). Hitherto the only known solution to (12) is that of a single component

fluid with p/ρ = w, a constant. It is, assuming the expansion factor a has the value a0 = 1 at the present time t0,

ρ(a) =
ρ0

a3(1+w)
, p =

wρ0
a3(1+w)

; ρ0 > 0 and a > 0, (13)

and it suits a Universe in which the matter and energy are not only homogeneously distributed, but also omnipresent

during times after the initial singularity of the Big Bang, i.e. when a > 0.

Although (13) enforces local mass-energy conservation, it does run into a problem at the cosmic time origin a = t = 0,

because there has to be an initial creation of particles and quanta at t = a = 0. Thus, when (13) is extended to include
the a = 0 moment, it becomes

ρ(a) =
ρ0

a3(1+w)
θ(a), p =

wρ0
a3(1+w)

θ(a); ρ0 > 0 and a ≥ 0 (14)

with θ(a) being the Heaviside step function, which clearly violates (12) at t = a = 0. Now ΛCDM cosmology sidelines

the problem by appealing to quantum fluctuations in spacetime during the initial ≈ 10−44 s, the Planck time, or

the moment of ‘creation’, when there is well established evidence from diffraction limited quasar images of spacetime
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smoothness on scales beneath the Planck time (Lieu & Hillman (2003)). Moreover, all observable quantum effects

conserve mass-energy.

However, there is a simple way of restoring consistency between (14) and (12), namely by modifying (14) to include

an extra term to the expression for the pressure in (14),

ρ(a) =
ρ0

a3(1+w)
θ(a), p =

wρ0
a3(1+w)

θ(a)−
ρ0

3a2+3w
δ(a); ρ0 > 0 and a ≥ 0. (15)

When (15) is substituted into the right side of (1), the ensuing solutions for ȧ/a and ä/a would not differ from (14),

considering the fact the curvature of the very early Universe, i.e. the constant of integration K in (1), is arbitrary.

This time, in addition to reinstating (12), (15) with 1 +w ≥ 0 also obeys the weak energy condition, or the condition
which ensures positive mass-energy in any measurable volume of space and during any resolvable time interval, namely

〈ρ(a)〉 ≥ 0 and 〈ρ(a) + p(a)〉 ≥ 0 (16)

for all a ≥ 0 and where 〈· · ·〉 denote averaging over a finite interval of a. The case a > 0 is obvious; even for a = 0,

during which θ(a) = 1 but aδ(a) = 0, one sees that (16) still holds because ρ(a) > 0 and the ratio p(a)/ρ(a) → 0. The

real difficulty with the Big Bang scenario (15) is the non-detection of dark matter and dark energy - the indispensable

active ingredients which reconcile ΛCDM cosmology with observations.
To address the difficulty, it is the purpose of this paper to point out that, in the spirit of (15), there exists another

solution for ρ(a) and p(a) which also satisfies mass-energy conservation during fluid flow, (12), and the weak energy

condition (16). It is of the form

ρ(a) =
ξ(α)

a3
δ(a− α); p(a) = −

ξ(α)

3a2
δ′(a− α), (17)

where a = a(t) is the dimensionless expansion factor and ξ(α) is an arbitrary function, which is finite and positive

for all α > 0. As a result, the density ρ(a) ≥ 0. Evidently (17) implies the possibility of ρ and p assuming non-zero

values at more than one cosmic time (i.e. at multiple values of α). Yet because (17) obeys (12) at all times, it means

repeated bursts of matter and energy could occur without the need to create them from nowhere. Since the moments
of finite ρ and p are short, few, and far between, dark matter and dark energy are not omnipresent, which explains

why it is so hard to find them.

Owing to the behavior of δ′(a − α), the pressure to density ratio w fluctuates from −∞ at a → α+ to ∞ at

a → α−. But there is no violation of causality because even though |P/ρ| > 1 the sound speed cs =
√

dP/dρ 6=
√

P/ρ.
Specifically during the intervals defined by the time shells, matter is released uniformly throughout space, i.e. δP =

δρ = 0 (if perturbations are present to seed structures, the ensuing δP and δρ would be finite, with |dP/dρ| < 1).

Likewise, the space shells of (Lieu 2024) are static and do not evolve with time, so that the concern of cs > 1 is as

irrelevant as the sound speed itself.

Moreover, during any measurable (i.e. finite, resolvable) time interval containing the instance when a = α, the average
of the ratio 3p(a)/ρ(a), namely 〈3p(a)/ρ(a)〉 = −〈αδ′(a − α)/δ(a − α)〉, evidently vanishes because the numerator is

an odd function while the denominator is even. By a similar argument, it is also clear that 〈ρ(a) + p(a)〉 ≥ 0. Since

〈ρ(a) + 3p(a)〉 ≥ ρmin(a)〈1 + 3p(a)/ρ(a)〉 = ρmin(a)(1 + 〈p(a)/ρ(a)〉) = ρmin = 0, the strong energy condition

〈ρ(a) + p(a)〉 ≥ 0; 〈ρ(a) + 3p(a)〉 ≥ 0, (18)

where the brackets 〈· · ·〉 denote average over a finite interval of a containing a = α, is satisfied.

Concerning the regularization of the delta functions, one does not yet know exactly how singular they are, but the
key is that they must be narrow enough to evade direct detection, i.e. in reality one only observes their aggregate

effect on space and time as detailed below (width estimates are provided after (20). This is the only way (17) could

play a useful role in accounting for the illusiveness of dark matter and dark energy. As far as structure formation and

stabilization go, they can proceed in the manner of standard simulations, and the flatness-and-horizon problem may
still be solved by introducing some form of cosmic inflation. The point is that neither dark matter nor dark energy

has to fill all of space at all times; if they exist only as short intermittent bursts, during which they fill all of space but

before and after which they disappear, they would evade detection but could nevertheless account for the expansion

history of the Universe as well as the binding of galaxies, groups, and clusters. In other words, to account for much
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of cosmological findings the presence of only temporal shells (i.e. transient particles or quanta) filling all space, is by

itself sufficient to offer a unifying account of the key observational phenomena of the Universe, without the need for

confinement of the mass-energy by spatially singular shells (Lieu (2024)) as well.

One may now construct the Friedmann equations (2) for a homogeneous Universe comprising a set of temporal shells,
namely

ä

a
= −

4πG

3

∑

j

ξ(αj)

[

δ(a− αj)

a3
−

δ′(a− αj)

a2

]

, (19)

and
(

ȧ

a

)2

=
8πG

3

∑

j

ξ(αj)
δ(a− αj)

a3
+

K

a2
. (20)

If the spacing between an adjacent pair of temporal discontinuity in ρ(a) and p(a) is small, δa = −δz/(1 + z)2 . 0.1,

and current observational data only allow one to measure averaged values of ä/a and (ȧ/a)2, values which match
ΛCDM predictions, i.e. they will not be able to detect any discreteness in the expansion which may exist on a redshift

resolution δz ≈ δa . 0.1. The width pf each temporal spike (as given by the delta functions of (17)) would then be

δz ≈ δa . 0.01, i.e. at least 10 times narrower than the spacing.

To compute the averaged expansion rates, we start with (19) by converting the right side to an integral over many
temporal shells, namely,

〈 ä

a

〉

= −
4πG

3

[
∫

∞

0

ξ(α)n(α)

a3
δ(a− α)−

ξ(α)n(α)

a2
δ′(a− α)

]

dα

= −
4πG

3

[

ξ(a)n(a)

a3
−

1

a2
d

da

∫

∞

0

ξ(α)n(α)δ(a − α)dα

]

= −
4πG

3

{

ξ(a)n(a)

a3
−

1

a2
d

da
[ξ(a)n(a)]

}

.

(21)

where n(α)dα is the number of temporal shells between expansion factors α and α+ dα, and the limits of integration

should be αmin and αmax if the episode of space expansion driven by the set of shells under consideration lasts only a

finite interval of time (assuming, as usual, that a = a(t) where t is the cosmic time). Similarly, one can integrate (20)

to obtain
〈

(

ȧ

a

)2
〉

=
8πG

3

ξ(a)n(a)

a3
+

K

a2
. (22)

How the Hubble parameter (ȧ/a)2 and the acceleration parameter ä/a evolves with cosmic time t would depend on

the exact functional form of ξ(a) and n(a).

By comparing (19) and (20) against (2), one infer the equivalent (or effective) density and pressure of the system of
temporal shells, as

ρS(a) =
ξ(a)n(a)

a3
; pS(a) = −

1

3a2
d

da
[ξ(a)n(a)]. (23)

Note that ρS(a) and pS(a) also obey the full 3-dimensional continuity equation in the form given by (12), because
the shells here are in the time dimension, i.e. there are no surface structures expanding in space, only entire volumes

expanding homogeneously in three dimensions. As to the constraints on ξ(a)n(a) to ensure a stable thermal history of

the Universe, it will be shown below, through the argument given below (31), that they are, for power law evolution,

ξ(a) > 0 and ξ(a)n(a) ∝ a3ǫ where ǫ ≥ 0.

We now demonstrate self-consistency in the above expressions for (ȧ/a)2 and ä/a. Starting with the latter, we may
integrate (19) once w.r.t. a to obtain

1
2 ȧ

2=

∫

äda (24)

=−
4πG

3

∑

j

ξ(αj)

∫
[

δ(a− αj)

a2
−

δ′(a− αj)

a

]

da+
K

2
(25)

=
4πG

3

∑

j

ξ(αj)

a
δ(a− αj) +

K

2
, (26)
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where K is a constant of integration. Next, assuming that there are many successive temporal shells, one may convert

the summation over j to an integral over α as before, resulting in (20).

From (21), (22), and (23) it is evident that an expansion of space driven predominantly by dark matter and dark

energy would correspond to the scenario

ξm(a)nm(a) = ρ0, or ξΛ(a)nΛ(a) = ρΛa
3 (27)

where ρ0 is a constant, being the density of dark matter at redshift z = 0 when the expansion factor is a(t0) = a0 = 1,

and ρΛ is also a constant, being the density of dark energy. The total matter density at z = 0 is then ρ0 + ρb while

the density of matter and dark energy combined is ρ0 + ρb + ρΛ at z = 0, where ρb is the presentbaryon mass density

(including radiation).

4. FLATNESS, STRUCTURE FORMATION, INFLATION

In the previous section it was demonstrated that the physical consequence of a time sequence of successive and

sudden release and disappearance of particles across all space in a manner consistent with mass-energy conservation
could, if temporally unresolved by an observer, manifest itself as a continuous expansion of space with properties

symptomatic of dark matter, dark energy, or matter having some other equation of state. Moreover, (19) and (20)

indicate that the total amount of mass-energy in these transient events, when integrated over a range of expansion

factor a(t), is the same as the scenario of genuine continuous expansion of space, after it is initially and homogeneously

filled with matter.
Thus, the bulk of ΛCDM cosmology remains robust in this model. Structure formation may be pursued by spatially

perturbing some cosmological parameters, exactly which ones would depend on the choice of gauge (Peebles 1980;

Mukhanov, Feldman, & Brandenberger 1992). Flatness and horizon problems, the former implying a small K in (20),

may still be solved by postulating a period of exponential expansion, i.e. inflation, in the early Universe, except that the
current approach allows inflation to commence or complete over any finite time interval without the need to dissipate

away any scalar field. This is because each individual temporal shell (17) separately satisfies the continuity equation,

i.e. there could conceivably be a group of shells satisfying the second of (27), and spanning some finite range of a to

mark the start and end times of inflation without producing any other physical problems, such as how the inflaton

scalar field was eventually dissipated to replenish the original content of the Universe.
In view of this realization, and the understanding that superhorizon perturbations do not grow in

the Newtonian (or longitudinal) gauge unless it enters the horizon at matter-radiation equality or later

(Mukhanov, Feldman, & Brandenberger 1992), it seems that a simpler approach to inflation is to assume that it

occurred at around equality (zeq ≈ 3,400, age teq ≈ 1.5 × 1012 s) and lasted at least ln(t0/teq) ≈ 12.5 e-folds, or a
duration 12.5teq ≈ 2×1013 s, such that the horizon scale at equality is inflated to match the present horizon or beyond,

i.e. such that teqe
t/teq = t0 where t0 ≈ 4.2× 1017 s is the present age of the Universe. The temperature of the Universe

during inflation would drop by the same 12.5 e-folds, as T ∝ a−1. Since the expected temperature of the Universe at

equality is ≈ 104 K, that means the temperature before inflation is about 2.8 ×109 K. Moreover, a 12.5 e-fold or longer

inflation period implies that a radius of curvature at t = teq of order the Hubble radius 1/Heq would, after inflation,
become ≈ 2.8 × 105 smaller than the present Hubble radius, which is well within the observational upper limit for

the curvature parameter K. This solves the horizon problem very simply, without invoking any inflaton dissipation

mechanisms (Kofman et al 1994, 1997; Brandenberger 1999).

The merit in pushing the inflationary epoch to a much later time than the conventional t ≈ 10−35 s is that, if the
post-inflationary thermal Universe in the absence of dissipative reheating is one which would evolve to z = 0 having

current observational properties, the temperature of the Universe at the Planck time t ≈ 5 × 10−44 s would have to

exceed the Planck temperature 1.42× 1032 K unless inflation took place far later than 10−35 s.

To be quantitative about the seeding of structure formation, one returns to the perturbed zero curvature2 FRW line

element, of the general form

ds2 = (1− 2Ψ)dt2 − 2aB,idtdx
i − a2[(1− 2Φ)δij + 2E,ij ]dx

idxj . (28)

Ignoring shear and anisotropic effects, one would then ignore the B,i and E,ij terms and set Ψ = Φ. In this case, it

was shown in previous literature (see e.g. the two references cited below) that the total curvature perturbation of the

2 It is assumed that any initial curvature is removed by an episode of inflation (see the last paragraph).
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inflaton and radiation energy density, expressed in Fourier (k) space and denoted by ρI and ρr respectively, such that

the stress-energy tensor of the Universe in the inflationary era is given by (11) with ρ = ρI + ρr and gµν as in (28),

namely

ζ = −Φ−H
δρ

ρ̇
, (29)

is gauge invariant even on superhorizon scales. In (29), H = ȧ/a, and Φ is related to the density perturbation (or

perturbation in ξ(a) in the second of (27)) by

Φ̇ +HΦ = −
H

2

δρ

ρ
. (30)

Now, in the Newtonian gauge ζ does not change with time while a perturbation mode is outside the horizon, i.e. while

k < 1/H . It was shown (see (Malik et al 2003; Lieu & Shi 2023)) that, in respect of standard inflation, if ζ assumes

the same constant value independent of k for all k < 1/H , i.e. if the small k power spectrum of ζ is flat in the Newtonian

gauge, all superhorizon modes will re-enter the horizon after post-inflationary reheating (when the thermal Universe is

reborn) with the same perturbation amplitude, albeit at different times with the modes of smaller k re-entering later.
All this applies to conventional theory. The question we must address is whether it also works when the inflaton

field as given by something close to the second of (27), which can disappear after the last time shell comes to pass, or

gradually fade away in strength from one shell to the next without dissipating into radiation. More precisely, if one

defines the parameter ǫ = 1+wI , where wI = pI/ρI is the equation of state index of the inflaton: ǫ = 0 would reduce
the inflaton field to dark energy, 0 < ǫ ≪ 1 marks the the era of inflation, while ǫ > 4/3 would mark the gradual end

of inflation unless there is a sudden disappearance of the corresponding time shells. Provided

ρI ≥ 0 and ǫ ≥ 0 (31)

which is always the case in the time shell model, the weak energy condition is universally satisfied, see

(Shlivko & Steinhardt 2024). The quantity ξ(a)nI(a) of (27) would then trend with a as ξ(a)n(a) ∝ a3ǫ, or

ξI(a)nI(a) = ρI0a
3ǫ, (32)

where the subscript I stands for the inflaton.

Now it was shown in(Malik et al 2003; Lieu & Shi 2023) that the evolution of ζ during inflation is given by a pair

of equations, namely

ζ̇ =
3H

ρ̇
[(wI − wr)ρ̇I + ǫ̇ρI ](ζ − ζI), (33)

or

ζ̇ =
3H

ρ̇
(wr − wI)ρ̇r(ζ − ζr), (34)

where wr = 1/3 for radiation, either of which is a valid equation for ζ̇. After some e-folds of inflation, however,

ρI ≫ ρr and so ζ ≈ ζI ; the first relation ensures ζ̇ ≈ 0 by (34) while the second ensures ζ̇ ≈ 0 by (33). If inflation
ends with neither inflaton dissipation nor the violation of energy conservation (as explained earlier, only the time shell

solution of the mass-energy continuity equation can achieve this), which can take place by a rapid increase in ǫ or by

the notion of a ‘last time shell’, then, at all subsequent times when the cosmic substratum comprises radiation (with

ρr ≫ ρb ≫ ρI), then, (33) becomes irrelevant but (34) still yields a vanishing ζ̇ because ζ is now given by ζ = ζr.

The conclusion is therefore that the same curvature perturbation ζ which existed during inflation is also found in the
post-inflationary thermal Universe, without any dissipation mechanism necessary.

5. CONCLUSION

Motivated by an earlier work on concentric spherical shells of density singularity, which give rise to zero integrated

total mass but a 1/r on-shell attractive force (Lieu 2024), this paper proposes an improved version of the model,
which is also radically different. The new model can account for both structure formation and stability, and the

key observational properties of the expansion of the Universe at large, by enlisting density singularities in time that

uniformly affect all space to replace conventional dark matter and dark energy. Whether the temporal singularities

mimic dark matter or dark energy when their effects are manifested in continuum form to an observer unable to resolve
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them would depend on the interplay between the number density of the singularities and their amplitude. The space

shells of (Lieu 2024) may still be responsible partly for the binding of structures, and fully for the existence of giant

rings and walls on Gpc scales cited in (Lieu 2024).

Another notable advantage of the model is that because each individual temporal singularity satisfies the continuity
equation, it can appear and disappear at arbitrary discrete cosmic times, with arbitrary amplitude. For singularities

which mimic dark energy, this means they can be present within a certain finite interval of cosmic history, i.e. one does

not have to account for the ‘rise and fall’ of dark energy by (as is usually done) postulating a prehistoric scalar field

which eventually dissipates into thermal particles ((Kofman et al 1994, 1997; Brandenberger 1999)). The consequence

for inflationary cosmology is that the flatness and horizon problem, as well as primordial density perturbations which
seeded density perturbations, could all be solved rather simply by postulating 15 e-folds of exponential expansion as

driven by a group temporal singularities located at about the time of matter-radiation equality. This means that

before inflation the Universe was radiation dominated by 12− 13 e-folds.

The physical origin of the proposed temporal singularities is currently unknown, as topological defects of the early
Universe ((Kibble 1976)) only give rise to domains, walls, and cosmic strings, which are discontinuities in space but

not in time. Nonetheless, the singularities are at least viable in the sense that they satisfy mass-energy conservation

and the strong energy condition. Moreover, the ideas presented in this paper are not any more presumptuous standard

ΛCDM, which predicates on the temporal singularity of the Big Bang as the moment of creation, so one must also

acknowledge that the ultimate physical origin of ΛCDM cosmology is, ahead of the availability of a robust quantum
gravity theory, likewise unknown. The only difference between this work and the standard model is that the temporal

singularity occurred only once in the latter, but more than once in the former.
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