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Abstract 
The Euclidean interpretation of special relativity provides an intuitive way to understand and 
derive the Lorentz transformations in the framework of a “natural” 4D Euclidean space-time 
geometry. In this article the conceptual basis for a purely metric generalization of the Euclidean 
view is laid. It consists of i) the assumption of spatial and directional variations of the speed of 
light (VSL), ii) a formulation of the principle of general covariance in 4D Euclidean geometry, 
and iii) a generally covariant motion law for point particles. For the gravitation model, which is 
developed on this basis, three out of four effects of the Schwarzschild solution are derived (shift 
of spectral lines, deflection of light, precession of perihelia of planetary orbits). The explanation 
of the Shapiro radar echo delay requires modifications of the space-time geometry of the sun’s 
environment. The additional effects brought forth by the respective model entail a possible 
account of the coronal heating problem and thus make the physics of the sun’s environment a 
test bed for the suggested Euclidean general relativity.  

 
Keywords: gravitation, general relativity, Euclidean space-time geometry, VSL (varying speed 

of light), coronal heating problem 

1 Introduction 
The Euclidean interpretation of special relativity [1-3] is an intuitive formulation of special 
relativity in a “natural” 4D Euclidean geometry, which is nothing but an extension of 3D spatial 
Euclidean geometry by a fully integrated real time dimension. Being just a different view of 
one-and-the-same theory, the Euclidean interpretation has no empirical implications. Things 
change, however, when the Euclidean viewpoint of special relativity is generalized towards 
what will be called the Euclidean general relativity (EGR).  

So far, the envisaged EGR is a standalone approach which cannot be directly linked to 
known gravitation theories. It differs from standard general relativity by the choice of the basic 
geometry, by its avoidance of singularities and by its potential extensibility to other fields in 
addition to gravitation. It also differs from VSL (varying speed of light) models1 implementing 
Lorentz-Poincaré type interpretations of relativity by fully subscribing to general covariance and 
by being purely metric.2  

In this article we lay EGR’s conceptual basis and develop an account of the gravitational 
field of a spherical massive body. The first model in our three step approach is described by the 
same equations of motion as Newtonian gravitation, but already explains gravitational red shift. 
The second model (the “reference model”) is built upon the first and allows us to derive the 
phenomena of light deflection and perihelion precession of planetary orbits known from the 
Schwarzschild solution. It does, however, not explain the Shapiro radar echo delay. The third 
model deals with the necessary geometric deviations from the reference model which have to be 
postulated for the sun’s environment. The additional effects following from the altered 
geometry suggest an account of the coronal heating problem. By this, the physics of the sun’s 

                                                 
1 For an overview, see Magueijo’s VSL survey article [4]. 
2 More specifically, EGR involves only one metric, while e.g. in Broekaert’s gravitation model [5] an „energy-
momentum metric“ is postulated in addition to the VSL-based space-time metric. 



environment becomes a theoretical and empirical test bed for the suggested Euclidean general 
relativity. 

2 Euclidean Special Relativity 
The geometric part of the Euclidean interpretation of special relativity can be summarized by a 
short statement: 

Special relativity can be fully understood and derived in 4D Euclidean space-time 
geometry, i.e. a geometry whose metric is defined by the line element 

222222 tczyxd ∆+∆+∆+∆= . (1)

In the light of Minkowski’s non-Euclidean representation of the Lorentz transformations, this 
may look truly absurd at first sight. In the following, we will illustrate the (geometrically trivial) 
validity of the above statement. 

2.1 Light Clocks 
The Euclidean view of special relativity is best introduced by the concept of a light clock. It 
serves us as a model for both the observer performing space and time measurements and for the 
object that is being measured.  

In figure 1 the light clock is introduced from the viewpoint of an observer, for whom the 
invariance of the speed of light is assumed. In addition to Einstein’s light clock a second photon 
is reflected between two mirrors, which are fastened at the end points of a stick. The photons are 
synchronized such that they always meet in the middle point M of the stick. By this, Einstein’s 
definition of synchrony holds for events A and B as well as for events C and D. 

ct

x

tick tick

A

D C

B

M

 

ct

x

A'

D'

C'

B'

M'

 

Fig. 1. A resting light clock consisting of two mirrors 
between which two photons are reflected. The light 
rays meet in the middle point M. Events A and B 
respectively C and D are simultaneous. 

Fig. 2. A moving light clock. Events A’ and B’ 
respectively events C’ and D’ are simultaneous.  

While figure 1 shows a resting light clock, the light clock of figure 2 is in constant motion along 
the x-axis. For the moving clock, events A’ and B’ as well as events C’ and D’ are simultaneous. 

The clocks in figure 1 and figure 2 represent inertial observers holding their respective 
space-time frames. The rectangle ABCD respectively the parallelogram A’B’C’D’ can be 
regarded as the elementary cells of these frames. This construction can, of course, be extended 
to more than one space dimension (c.f. figure 9). 

2.2 Normalized Light Clocks and Measurement 
We call light clocks in arbitrary constant motion states normalized, if the Euclidean space-time 
volumes of their elementary cells are identical and if the respective observers agree to call the 



length of their own light clock 1 meter and the time span between two ticks 1 second/c. By this, 
the speed of light is c for all normalized light clocks.3 
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Fig. 3. Illustration of the Lorentz transformation as a 
combined stretching and compressing operation. 

Fig. 4. Two observers measure each other’s lengths 
simultaneously from their own point of view. 

Figure 3 shows the relation between the space-time cells of two normalized light clocks. 
Any combined stretching by some factor S along one light diagonal and compressing by the 
same factor S along the other light diagonal produces another normalized space-time cell. 
As can be shown very easily [1], the Lorentz transformations are valid for the measurements 
performed by normalized light clocks, if the results of space and time measurements are 
understood as ratios of Euclidean space-time distances as illustrated below.  
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Fig. 5. Two observers measure the time between two 
ticks of the other observer’s light clock. 

Fig. 6. The time intervals of photons emitted from a 
moving light clock obey the relativistic Doppler 
effect. 

The normalized light clocks in figure 4 measure each other’s lengths to the same value, for the 
following relations between Euclidean space-time distances are identical. 

2211 :: meterdmeterd =  (2)
The normalized light clocks in figure 5 measure each other’s time interval to the same value, for 
the following ratios of Euclidean space-time distances are identical. 

2211 :: tickdtickd ∆=∆  (3)
As a consequence of the geometrical properties (5), the statements (2) and (3) are still valid, if 
the whole scenario undergoes a Lorentz transformation. 

                                                 
3 Note that the invariance of the speed of light is mere convention at this stage (c.f. the assumption on 
“normalization” in section 3). 



2.3 Doppler Effect and Energy 
The Euclidean view of special relativity allows us to introduce relativistic energy relations on a 
mere geometric basis. Figure 6 shows a moving light clock that emits two photons in each 
direction. The time intervals reflect the relativistic Doppler effect when being measured by a 
resting observer. In a thought experiment, we let the whole energy of a physical body be emitted 
by radiation. The energy is now contained in the sum of the radiation energies which are 
proportional to their frequencies. It can be shown easily that this sum behaves like the total 
relativistic energy under Lorentz transformations. As a geometric measure for it we can take the 
time extension of a space-time cell. 
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This intuitive approach to relativistic energy will be sufficient for the mathematical treatment of 
energy conservation in the gravitation models in sections 5 and 6. 

2.4 Euclidean Geometry and the Lorentz Transformations 
Behind the suggested explanation of the relativity of space and time measurements stands a 
class of geometric properties, all of which are easy to show. 
After Lorentz transformations 

 parallel lines are still parallel, 
 sections of a line show the same ratios as before, 
 sections of an area show the same ratios as before, 
 sections of a 3D volume show the same ratios as before, 
 4D volumes show the same ratios as before. 

(5)

The listed geometrical properties may either be accepted as mere by-products of the Lorentz 
transformations or may motivate different derivations and interpretations of Einstein’s special 
relativity. The latter has been suggested in [1-3]. An appropriate minimal set of assumptions to 
derive the Lorentz transformations on the basis of the conservation of space-time volumes is the 
following.4 

 The speed of light is invariant for some inertial observer.5 
 Changing the speed of a physical object (in a non-destructive way) does not 

change the Euclidean space-time volume of its space-time cells. 
The relativity principle, though being technically replaced by the second assumption, is fully 
supported by this derivation and the connected interpretation. This will hold also for the 
generalization of the Euclidean approach. 

2.5 Arbitrary constant light speeds 
After introducing the Euclidean view of special relativity, there is just one more conceptual 
ingredient to EGR, namely the assumption of spatial and directional light speed variations. We 
get started by showing that the Euclidean perspective can easily handle scenarios where the 
speed of light is assumed to be different in opposite directions.  

                                                 
4 To be more precise, the assumption of the homogeneity of space and time should be added. 
5 As will become clear in the following, the presented approach is far away from “Lorentz-Poincaré type” 
interpretations of relativity theory involving an absolute rest frame. 
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Fig. 7. Combined stretching and compressing of a 
space-time cell in an environment with different 
light speeds in opposite directions. 

Fig. 8. The relation between areas A1 and A2 stays 
identical for infinitesimal time steps during acceleration. 

Figure 7 shows the space-time cells of two normalized observers located in an environment 
where the speed of light is faster in the positive x-direction and slower in the negative x-
direction. All the geometrical relations from (5) still hold, including the metaphor for the 
Lorentz transformations as a combined stretching and compressing operation. 

An intuitive proof for this statement goes as follows. Considering the role of the constant c in 
the Lorentz transformations, it is clear that special relativity still works if the speed of light 
takes a different constant value. This means for the light clock model that the space-time cell of 
the resting light clock may be stretched or compressed along the time (or space) axis. The 
statements (2) and (3), which express specific relations between Euclidean space-time distances, 
remain untouched by this operation. They are also still valid after a Euclidean rotation of a 
space-time diagram.  

In fact, any normalized space-time cell can be constructed from a given space-time cell by a 
combination of the following operations: 

 combined stretching and compressing along space and time axes, 
 Lorentz transformation (combined stretching and compressing along light diagonals), 
 Euclidean rotation. 

All three operations do not only conserve the space-time volume, they keep the relations from 
(5). The Euclidean rotation not only changes the light speeds, but makes them also depend on 
direction. However, all normalized observers measure their local light speed in all directions to 
the same value c. 

3 The Principles of the Euclidean General Relativity 
Generalizing the Euclidean view of special relativity is conceptually simple. Instead of 
confining to straight light trajectories, continuous and several times differentiable light 
trajectories are considered which are embedded in 4D Euclidean space-time geometry. 
According to the above arguments, special relativity works locally for small space-time regions.  

It should be noted, though, that EGR does not provide the concept of an accelerating 
observer in the first place, as only observers frames with straight coordinate axes are 
considered.6 These observer frames are abstracted from the measurements of local observers. As 
is more or less explicitly done in standard GRT and other approaches to gravitation, we will 

                                                 
6 The views of such observers have to be reconstructed by regarding their measurements as physical processes and 
describing them from the viewpoint of a normalized observer. 



take the perspective of a hypothetical distant observer who is unaffected by gravitation and 
resting relative to the field for the analysis of the suggested field models. 

3.1 Observer Concept and General Covariance 
Before formulating the Euclidean general covariance principle the concept of a space-time 
observer and the basic geometric properties are comprised.  

Space-time observer 

Space-time observers are represented by local light clocks. All space-time 
observers define space and time scales according to the extensions of their own 
light clock. By this convention, the speed of light is locally invariant for all space-
time observers.  

Assumption on the construction of Euclidean views 

On the basis of their local measurements7, space-time observer can construct 
Euclidean views of physical processes taking place in different space-time regions 
in consistent and coherent ways. 

Conservation laws for coordinate transformations between space-time observers 
Coordinate transformations between space-time observers conserve 

 ratios of sections of lines, 
 ratios of sections of areas, 
 ratios of sections of 3D volumes, and 
 ratios of 4D volumes. 

The formulation of the Euclidean general covariance principle on this basis is straightforward. 

The Euclidean general covariance principle (EGCP) 

The laws of physics can be expressed in terms of geometrical relations in a 4D 
Euclidean space-time geometry with signature (++++). They are covariant, if and 
only if these geometrical relations are conserved under coordinate transformations 
between any two space-time observers. 

The first application of this principle is the generalization of the concept of normalization of 
space and time scales used by different space-time observers. 

Normalized Space-time observers 

Two observers in the same space-time location are normalized, if their space-time 
cells exhibit identical space-time volumes, independent of their speeds. More 
generally, two observers located in arbitrary space-time regions are called 
normalized, if the relation between the volumes of their space-time cells equals the 
relation between the normalization parameters8 attributed to these regions. 

The physical meaning of normalization is given by the following assumption: 

If a physical object undergoes a non-destructive change of its speed or location, it 
will still be measured to the same space and time extensions in its new rest frame. 

The second application of the relativity principle is the formulation of a law of inertial motion 
(free fall) for point particles.  

                                                 
7 The measurement of radar echo times allows „local“ measurements of distant objects.  
8 C.f. eqs. (10) and (25) 



3.2 The Law of Inertial Motion 
In EGR the curvature of time-like lines is defined by a differential law, which expresses the 
conservation of a relation between certain space-time areas. In any space-time event, a point 
particle has a speed along each of the spatial axes, which can be written as a combination of the 
opposing light speeds along the respective spatial axis. 

( ) 101 ≤≤−+= −+ K     c Kc Kv
iii xxx

 (6)
The differential motion law describes how the speed of the particle changes according to the 
changes of the two opposing local light speeds. 
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The law expresses the conservation of a relation between two space-time areas located on the 
same space-time plane. While the areas may be different for different normalized observers, 
their relation is the same for all normalized observers.9 According to EPGC, the law is 
covariant, therefore. 

The space-time areas A1 and A2 in figure 8 are limited by two parabolic10 curves (one 
representing the particle trajectory, the other one a light trajectory) and a horizontal line 
connecting events that are simultaneous from the perspective of the observing frame. In event O 
the two photons have speeds c+ respectively c- while the particle’s speed v is a combination of 
both according to eq. (6).11  

4 The Construction of Field Models in EGR 
In EGR the space-time geometry of static fields is defined by the extensions and shapes of 
normalized space-time cells resting in different regions of the field. By doing so, the local light 
speeds in all directions and the normalization parameters are determined. The motion of point 
particles follows exclusively from this geometric definition of a field and the motion law. 

An important criterion to discriminate types of fields is the question whether inward and 
outward radial light speeds are equal for the field’s rest frame.12 In the first case, i.e. for our first 
two gravitation models, flat hyper-planes connecting simultaneous events can be defined for the 
whole field. In the second case, simultaneity hyper-planes are curved. 
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Fig. 9. A normalized space-time cell resting in the 
gravitational field. The x-axis is taken as the radial 
dimension. 

Fig. 10. A time shifted space-time cell in one 
space dimension. 

                                                 
9 To be precise, observers do not even have to be normalized to make this statement true. 
10 In section 3 we postulated that light curves are continuous and several times differentiable. For infinitesimally 
small time intervals, they can be modelled as parabolic curves therefore, i.e. curves with constant second time 
derivatives.  
11 It is a simple geometrical task to show that the relation between the areas A1 and A2 is conserved as long as the light 
trajectories are parabolic and the (as well parabolic) particle trajectory obeys the motion law. 
12 An asymmetry of tangent light speeds could be the geometric representation of spin. 



Illustrating the first case, Figure 9 shows a normalized space-time cell of a light clock that rests 
in some field from the perspective of a distant normalized observer who is unaffected by the 
field. The x-axis is taken as the radial dimension. The constant c stands for the speed of light in 
free space. 

While radial light speeds in figure 9 are symmetric, figure 10 shows the radial component of 
a space-time cell representing a field that involves asymmetric radial speeds. Such a field will 
be discussed in model C. As will become clear in the following, symmetry of radial light speeds 
makes radial acceleration of point particles independent of particle speeds while asymmetry 
causes speed dependence of acceleration. 

Before developing the three field models we shortly summarize their respective purposes in 
the present context and their properties.  

Model A - Reconstruction of Newtonian gravitation 
The first model which assumes equal effects on radial and tangent light speeds is a 
reconstruction of Newtonian gravitation including an explanation of spectral shift. It shows how 
the geometric approach to relativistic energy introduced in section 2.3 connects to the 
conservation of Newtonian energy. The differential equations which are (in compliance with the 
motion law) derived from the conservation of relativistic energy are identical to the classical 
equations.  

Model B – The reference model 
While model A assumes identical effects on radial and tangent light speeds, model B leaves 
tangent light speeds untouched. The phenomena of perihelion precession and light deflection 
follow from this difference. Due to its simplicity, we call this model the “reference model” 
describing pure gravitation. It does not explain the Shapiro radar echo delay, though. In EGR, 
the decrease of light travel time in the sun’s environment is not a gravitational effect and 
requires variations of the space-time geometry. 

Model C – Speed dependence of acceleration 
Model C which involves asymmetric radial light speeds explains the Shapiro delay without 
destroying the effect of light deflection from the reference model. It will be suggested to regard 
the actual field of the sun as a combination of models B and C. 

The asymmetry of radial light speeds implies an outward acceleration of particles emitted by 
the sun and an asymmetric acceleration behavior of particles with different speeds. It will be 
argued that model C might thus provide an account of the coronal heating problem.  

5 Model A: Reconstruction of Newtonian Gravitation 
The space-time geometry of model A can be defined by the use of figure 9. Depending on the 
distance r to the center of gravity and on the Schwarzschild radius s the space-time cells of the 
resting normalized space-time observers have the following extensions.  
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Radial and tangent light speeds are equal. 
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The normalization parameter N(r) holds the volume of a space-time cell in the respective 
location in comparison to the volume of an identical13 cell located far away from the center of 
gravity. 
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13 C.f. section 3.1. 



Gravitational time dilation 
In the Schwarzschild solution a gravitational time dilation and consequently a red shift of 
spectral lines follows from the time component of the line element. For models A, B, and C, the 
time dilation can be read from the time extension of a normalized space-time cell. The 
difference between GRT and EGR results can be neglected for small values of s, as in this case 
the following two expressions yield almost identical values. The first expression describes the 
time dilation for the Schwarzschild solution, the second one the time dilation for the three EGR 
models. 
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The first order approximations for frequency relations in two locations are identical. 
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Radial acceleration 
Applying the motion law (eq. (7)) implies the equality of the radial acceleration of particles and 
the radial acceleration of light. Radial particle acceleration does not depend on the factor K and 
thus on the particle’s speed.  
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This leads to the first part of the differential equation system for particle motion in a polar 
coordinate system: 
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Tangent acceleration 
A useful statement about the evolution of the tangent particle speed can be derived from the 
motion law.  
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Inserting this to eq. (7) yields an expression for the change of the tangent particle speed in terms 
of the change of the tangent light speed and the relation between particle and light speeds. 
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From this it follows that the tangent particle acceleration is proportional to the tangent particle 
speed. We can write 

ϕϕ &&&& ),( rrf= . (17)
Instead of deriving the missing function f directly from the motion law, we derive the respective 
tangent differential equation from the radial differential equation (eq. (14)) and the conservation 
of relativistic energy. As the result satisfies eq. (17) and holds for light (i.e. is in accordance 
with the geometry), it complies with the motion law. 

Thought experiment: Energy conservation during free fall 
Relating to the considerations on relativistic energy from section 2.3, the conservation of the 
total relativistic energy of a free falling body in a gravitational field can be illustrated by a 
thought experiment. 



We assume that resting observers who are represented by normalized space-time cells are 
located at different distances to the center of gravity. These observers communicate by 
exchanging light of certain frequencies. After locally measuring the total relativistic energy of a 
falling body, an observer codes the result into the frequency of the light waves he sends to the 
other observers. In this scenario, conservation of energy means that all observers always receive 
light of the same frequency for one falling body. 

The mathematical formulation of energy conservation takes into account i) the r-dependence 
of the time extension of the normalized space-time cells and ii) the fact that local speed 
measurements put the speed of the moving body in relation to the local light speeds.14 
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Going to polar coordinates, we get: 
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The substitution for r&&  in the time derivative of eq. (19) according to eq. (14) allows us to 
complete the differential equation system for point particles: 
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This complies with the tangent motion law, because tangent acceleration is proportional to 
tangent speed (eq. (17)) and because the law perfectly describes photon trajectories that are 
directly defined by the geometry. This can be shown by deriving the same result from light 
speed conservation instead of from energy conservation.  
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For later comparison with the reference model we list the expressions for the conserved classical 
quantities L (angular momentum per mass) and E (energy per mass) that follow from the 
differential equations.  
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6 Model B: The Reference Model 
The space-time geometry of model B differs from model A’s geometry only by the non-effect on 
tangent light speed. 
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The normalization parameter calculates to 
2/5
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The differential equations are derived by the same procedure as for model A. While the radial 
component is the same, the energy expression differs from that of model A: 

                                                 
14 C.f. the illustration of measurements in figs. 4 and 5. 
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For the resulting complete differential equation system  
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the conservation laws 
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can be found. For photons the time distance T vanishes, which leads to the energy expression 
for light: 
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Orbital characteristics for particles (including photons) will be calculated on the basis of the 
conservation laws (eqs. (28)) by integrating the following expression, respectively by 
developing approximations. 
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For weak fields we can use a first order approximation for the power 3 expression: 
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This leads to:  
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Perihelion precession of planetary orbits 
The calculations in this and the following sections use standard techniques (e.g. [6]). 
After setting  
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for the radial distances of the flexion points r0 (perihelion) and r1 (aphelion) the angular 
perihelion shift ϕ∆  is given by: 
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The substitutions 
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in eq. (32) lead to 
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and consequently (according to eq. (34)) to: 
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The polynomial under the square root has two real roots at u0 and u1, therefore it must have a 
third real root u2. We can write the polynomial as 
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and get for the parameters: 
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The power series expansion for δ gives us the first order approximation: 
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After the replacement of δ, the substitution 
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leads to the new integration interval [-π/2, π/2]. We can now integrate: 
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Going back to r0 and r1 and substituting from classical theory (ε stands for the eccentricity and a 
for the length of the semi-major axis of ellipse), 
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allows us to calculate the GRT result for the perihelion precession from eq. (37): 
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Light Deflection 
Writing r0 for the point of closest approach of a photon passing by the sun, the deflection angle 
ϕ∆  is given by 
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We use a reformulation of eq. (32) 
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and get 
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The photon energy E, which has already been determined (eq. (29)), does not depend on r0. The 
calculation of L is done for r=r0 and approximated: 
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From eq. (48) we get: 
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the new integration interval is [1, ∞]. Eq. (51) writes now as: 
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The power series expansion of eq. (53) for ε yields the first order approximation 
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which allows us to calculate the GRT result for light deflection: 
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7 Model C: Speed dependence of acceleration 
The reference model does not explain the Shapiro radar echo delay. Quite to the contrary, it 
explicitly assumes higher radial light speeds and leads therefore to shorter radar echo times. The 
variations of the reference model that are necessary to produce the Shapiro delay involve a 
certain amount of speed dependence of radial acceleration.  

A look at figure 10 makes clear that the two-way speed of light which is relevant for radar 
echo experiments depends only on the ratio of X(r) and T(r), creating a free choice for the time 
shift parameter τ. The extensions Y(r), Z(r), and T(r) are left the same compared to model B. As 
will be shown, the new expression for X(r) leads to the delay term from GRT. 
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With c1 as the speed of outgoing light and c2 as the speed of ingoing light we get: 
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A useful choice for τ must result in radial accelerations for low speeds that are comparable to 
Newtonian gravitation. An appropriate solution follows from assuming 
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The power series expansion of the time derivatives of the two light speeds makes clear that for 
K=1/2 in the motion law (which is the case for a small negative speed) the overall radial 
acceleration is almost identical to Newton’s law: 
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More generally, it follows from eqs. (59) that  
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This speed dependence is, however, strong enough to exclude the validity of model C for 
distances from the sun of 1 AU or more (e.g. the radial speeds of comets near the earth can be 
higher). 

Light travel time 
The Shapiro experiment can only measure the two-way travel time of light. For the following 
approximation of the respective result for model C we multiply the radial speed expression from 
the reference model (a reformulation of the energy law from eq. (28)) by the factor  
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which expresses the ratio of the two-way light speeds of model C and of the reference model. 
For our purpose E and L can be taken from the reference model, which leads to: 
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The power series expansion for 
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yields a first order approximation and allows us to estimate the average travel time of light on a 
two-way trip: 
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The only difference to the GRT expression is a missing extra term which is experimentally 
irrelevant, though. 

8 Different field types and the coronal heating problem 
Neither the reference model nor model C alone can explain all the experimentally confirmed 
“gravitational” effects. What is required is a continuous combination of the two models, which 
has to provide i) approximately Newton radial acceleration for small speeds at all distances from 
the center, ii) shrinking or vanishing speed dependence of acceleration at larger distances, and 
iii) shrinking two-way light speeds for smaller distances. As an illustration of the fact that these 
requirements do not contradict each other the following example for small speed dependence 
can be taken:  
The choice of radial light speeds  
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leads to the light speed accelerations: 
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Although outgoing light is accelerated outwards, the overall acceleration of a particle shows 
only small speed dependence compared to eq. (60). There would be no acceleration for outgoing 
particles with speeds around ¾ c, if s/r is supposed to be much smaller than unity.  

The combination of models B and C might be regarded as a mere pragmatic way of dealing 
with all the different aspects of gravitation which are in need of explanation. What looks as a 
drawback in the first place, allows us to locate a first theoretical and empirical test bed for the 



presented approach to gravitation. As has been shown, the simple geometry of the reference 
model must be supplemented by a different geometry for the sun’s environment. Model C, 
which implements this geometric requirement, shows a property in addition to the requested 
radar echo delay, namely speed dependence of acceleration. More specifically, particles that 
move away from the field’s center with more than a certain speed are accelerated outwards 
instead of being attracted by the field. A natural candidate for this behavior is solar wind, which 
is emitted from the sun (respectively somewhere in its closer environment) into the heliosphere 
at speeds cv /  of the same order as 

sunrs / , which is in good accordance with eqs. (59, 60). 
Going one step further, model C might provide a solution to the so-called coronal heating 

problem: The transition region and especially the corona of the sun are much hotter (up to 
several Million° Kelvin) than the sun’s photosphere (around 6000° Kelvin). While the 
ionization of H-atoms (which mostly form the solar wind) is seen as being due to the enormous 
heat, it remains an open question15 how to explain the required energy increase. From the 
perspective of EGR, the high amount of energy is the result of asymmetric acceleration and can 
be read from the first terms of the two light accelerations in eqs. (59), which cancel out only for 
low particle speeds. 

9 Conclusions 
We presented the foundations of a generally covariant geometric generalization of the Euclidean 
interpretation of special relativity. In the suggested Euclidean general relativity, static fields are 
defined by a location-depending scaling factor for normalized space-time cells (the 
normalization parameter) and by the distribution of light speeds, which depend not only on 
location, but also on direction. The behavior of point particles has been described for three 
gravitation models. The first model shows the connection to Newtonian gravitation and already 
explains gravitational red shift. The second model explains the perihelion precession of 
planetary orbits and the deflection of light, but falls short of producing Shapiro’s radar echo 
delay. The necessary geometric adaptations lead to a third model, whose side effects are 
reminiscent of phenomena in the sun’s environment and suggest an account of the coronal 
heating problem.  
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