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 Abstract 

  

Presented is a theory in fundamental theoretical physics that establishes the relationship between 

time and energy.  This theory abandons the concept that mass is directly affected by relativistic motion and 

shows instead, that the energy related to an object undergoing such motion is a direct result of the effect time 

expansion has on velocity.  In support of this concept, new equations are introduced for both kinetic and total 

energy that replace those of special relativity.  Subsequent equations for momentum, distance, and 

acceleration are then derived that establish a direct link between time and energy.  A final consequence of this 

theoretical analysis is the discovery of a new Law of physics, “the Law of acceleration,” given in the order of its 
discovery.  

  

  

 

The Relation B/W Time & Energy 

 

 
1. Introduction 

This paper introduces a new physical science, one that does not distinguish between classical and 

relativistic principles.  It provides the final piece of the puzzle started by Newton with his Principia
 
 in 1687, 

and expanded by Einstein with his Special Theory of Relativity
 
 in 1905. 

What will be shown is the true relationship between time, acceleration, and velocity, and the affect 

this relationship has on energy and thus our perception of other physical phenomena.  We will see, once and 

for all, that time expansion is real, and its affect on energy is real, but the affects on mass (see appendix A) and 

distance are only perceptual.  We will accomplish this by directly deducing a correct equation for kinetic 

energy to replace the Newtonian equation and from it develop a correct equation for total energy that will 

replace Einstein’s.  In the process, the limitations of the former equations will be clearly demonstrated and the 
new equations will be validated.  The final result is new equations for kinetic and total energy that are valid 

from 0 to c.  With these new equations it is no longer necessary to distinguish between classical physics and 

relativistic physics.  In their place is the beginning of a new physics from which future discoveries may be 

anticipated. 

  

2. The New Kinetic Energy Equation 

Although the classical equation for kinetic energy seems to be supported by the evidence for low 

values of velocity, it is refuted by the evidence for high values of velocity especially in the area that represents 

a significant fraction of the speed of light.  At the other end of the spectrum is the relativistic equation that 

seems to be supported by the evidence for velocities that are a significant fraction of light speed, but as will be 

shown later, is not representative of very low velocities in the area of classical physics.  In fact, in both the real 

and theoretical sense, neither equation is truly correct at any velocity.  The causes are as follows: 



  

1. 1.     Relativistic effects were unknown during the development period of classical physics.  The 

problem is then compounded through indirect derivation of the classical kinetic energy 

equation that in turn obscures its true meaning. 

2. 2.     The relativistic effects, when discovered, were likewise used in an indirect derivation for the 

new kinetic energy equation that in turn obscured the true meaning that equation. 

  

To avoid such problems we must derive the classical equation in a manner that makes its true meaning 

unambiguous.  Then with our knowledge of relativity it becomes possible to correct the equation in such a 

manner as to make it properly represent the physical laws of nature at all values of velocity. 

In classical physics the following formulas are given for momentum, and constant acceleration: 

Where p is momentum, m is mass, and v is velocity, we are given, 

  

  

Where a is the rate of constant acceleration, and t is the time interval, we are given, 

  

  

And lastly, where d is the distance traveled by an object under constant acceleration we are given, 

  

  

Using the above formulas, we can formulate a new formula where the variable ka = momentum over 

distance traveled by an object under constant acceleration.  Thus we have, 

  

  

By substituting v/t for a in the above equation, we get, 
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Which simplifies to, 

  

  

Now, since the classical formula for kinetic energy is, 

  

  

we can state, 

  

  

and by substitution get, 

  

  

The reason for deriving the kinetic energy equation in this manner is to make it clear what the various 

variables and constant represent.  This last version of the equation can now be evaluated from a relativistic 

perspective and corrected to properly represent all values of velocity, v.  At this point it is necessary to call 

upon the s-l transformation factor, a derivative of the Lorentz transformation factor (Appendix B), 

  

  

This factor (see appendix B) is the equivalent of the Lorentz transformation factor, 
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Referring now to figure 1, we can compare the relativistic motion of a particle to the Newtonian 

motion when a constant force is applied.  Whereas in Newtonian motion the velocity increases without limit, 

in relativistic motion the velocity increases asymptotically as the object approaches the speed of light c, and of 

course the speed of light is never exceeded.  From what we understand about relativistic effects, the factors 

shown above are mathematical definitions of the behavior.  If time slows down in the moving frame of 

reference, it is not unreasonable to assume that this slowing of time directly affects the velocity of the moving 

object.  Thus, as velocity increases, time slows down causing further increases in velocity to require greater 

and greater amounts of energy.    With respect to kinetic energy this is a paradoxical contradiction of 

Newton’s second and third Laws of motion.  Since kinetic energy is a direct function of velocity it will increase 

at a slower rate along with the velocity increases when at the same time it must increase at a greater and 

greater rate along with the energy causing the acceleration.  Obviously it cannot do both.  Of the two choices, 

reason and experience support the view that the kinetic energy must increase along with the input energy. 

  

  

If we now refer to the kinetic energy equation 8, we can see there are only two variables to choose 

from, should we wish to modify the formula to bring it into conformance with the evidence.  The choices are, 

mass and, velocity.  Einstein made what appeared to be a reasonable choice at the time and selected mass.  If 

mass increases with velocity, it would explain the observed behavior.  This, it will be shown, appears to have 

been the wrong choice and results in inaccuracies that are well hidden in the E = Mc
2
 equation, but are very 

apparent in the resulting relativistic kinetic energy equation, K = Mc
2 

- Moc
2
.  It will be shown now, that neither 

variable should be modified.  This is not to say that the kinetic energy equation itself should not be modified. 

Referring back to figure 1, and also to equations 2, 4, and 10, it can be seen that equation 10 must be 

modified in such a manner as to offset the relativistic effect that the motion has on velocity.  That is, if 

equation 10 is to produce the correct result for kinetic energy, the relativistic effect must be reversed.  The 

obvious conclusion is that we must factor the velocity by the reciprocal of the s-l factor, expression 11.  If we 

are right, however, we must also factor the fractional constant, ½, in equations 4 and 10.  This conclusion is 

supported as follows:  We know from equation 4 that the distance, d, traveled by an object under constant 

acceleration = ½ at
2
.  Referring to equation 3, we can see that this is the same as saying distance ½ vt.  In other 

words, the distance traveled by an object under constant acceleration = ½ times the velocity, v, achieved for 

Newtonian motion 

relativistic 

motion 
 

v 
 

t 
 

v = c 

FIGURE 1  The velocity of a particle starting at rest 

when a constant force is applied. 
 



the interval, t, during which the acceleration takes place.  However, when we study the relativistic motion 

curve in figure 1, we can see that as velocity increases toward c, there is less and less change in velocity over 

an interval of time.  Stated another way, as velocity increases toward c, the distance traveled by the object 

approaches ct, and not ½ vt.  This implies that the constant ½ should increase toward a value of 1.  But since at 

this point, v is not only near the value of c, but its value is being factored dramatically upward by the 

millennium factor, the constant ½ must actually be modified to decrease rather than increase in order to 

compensate and be in agreement with the evidence that supports relativity.  When these changes are 

properly implemented, the resulting kinetic energy equation is a correct equation for all values of v, and as 

stated earlier, replaces both the Newtonian and Einstein’s equations for kinetic energy. 
Proceeding now with the necessary modifications to equation 10, we derive, 

  

  

which reduces to, 

  

  

This equation replaces both, the Newtonian and Einstein’s equations for kinetic energy.  With it, there is no 
longer any need to differentiate between classical and relativistic physics.  (see appendix C). 

  

3. The New Total Energy Equation 

If we now add the internal energy term to equation 14, we arrive at a new equation for total energy 

that replaces Einstein’s E = Mc2
 equation.  Thus, where E is the total energy for an object in motion, 

  

  

produces a correct result for all values of v.  In view of these findings, it is no longer appropriate to refer to 

mass, m, as a rest mass, or for that matter the term, mc
2
 as the rest energy of an object.  As can be seen, mass 

is unaffected by velocity.  Nonetheless, the present theory is in agreement with the relativistic concept that 

matter does contain internal energy as defined by the expression, mc
2
. 

  

4. Comparison of the Relativity Equations with the new Energy Equation  

Under close evaluation it will be seen that the relativity equation for kinetic energy becomes erratic at 

low values of v.  This behavior is apparent at velocities as high as 100,000 km/hr and becomes very noticeable 

as the velocity drops below 1000 km/hr.  It continues to intensify as the velocity drops below 100 km/hr, and 

at approximately 16-20 km/hr, the equation produces a result of zero.  Obviously then, this equation is not 
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reliable at those velocities where most of our experience resides.  There we have to rely on the Newtonian 

equation for accurate results.  The Newtonian equation, however, is non-relativistic and therefore losses 

accuracy as the velocity increases.  Subsequently, neither equation provides a good program for analyzing the 

entire range of velocities.  To make matters worse, it is unclear where reliance on the Newtonian equation 

should end and reliance on the relativity equation should begin. 

Figure 2 is an actual graph comparing the new kinetic energy equation to the relativity equation for 

velocities below 50 km/hr.  At these velocities, and with the 15 decimal place precision used, the ‘Aryan curve’ 
is indistinguishable from, and therefore synonymous with, the Newtonian curve.  Very evident in the graph is 

the erratic behavior of the relativity equation as previously discussed. 

  

Interestingly, analysis of the two total energy equations shows the new results to be identical to the 

relativity results throughout their entire range.  The reason for this is simple.  At the lower end of the scale, 

the kinetic energy is insignificant in comparison to the internal energy, MC
2
, contained in the equations.  Thus 

the relativity equation for total energy obscures the fact that the kinetic energy result is incorrect.  Since the 

internal energy is also a component of the energy equation, and since it is very significant at low velocities, 

both, equations will produce the same values for the level of precision used.  On the other hand, at the high 

end of the scale, the kinetic energy component is the most significant component of both equations.  And, as 

was alluded to earlier, at the higher levels of velocity, the relativity kinetic energy equation becomes more and 

more accurate.  Therefore, it is not surprising that both total energy equations produce identical results. 

  

  

5. The New Momentum and Distance Equations 

Referring back to equation 13, and remembering that the top of the right side of the equation 

represents momentum over distance traveled, we can place it = to pd, where p is momentum and d is 

distance.  

  



  

Now we can rearrange the right side of the resulting equation and separate the momentum component from 

the distance component as follows: 

  

  

By removing the left component on the right side of the equation and placing it equal to p, we obtain the 

equation for momentum. 

  

  

Here Einstein was only partially correct.  Although the most apparent difference between the new energy 

equation and the older relativity equation is the use of the s-l factor in place of the Lorenz factor, there is a 

more important difference.  In the new equation it is the velocity that is operated on by the factor.  In 

Einstein’s equation it is the rest mass that is operated on.  This, of course is a profound distinction between 
the two theories. 

If we now take the remaining component from the right side of equation 17 and place it = to d, we 

have one form of the distance equation for an object under constant acceleration,  

  

  

which simplifies to, 

  

  

Since, v = at, for an object under constant acceleration, by way of substitution in equation 20, we obtain, 
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This gives us the alternate form of the new equation for the distance traveled by an object under constant 

acceleration. 

  

6. The New Acceleration Equations 

Now that we understand how the velocity of an object under constant acceleration is affected by the 

millennium factor, we can formulate new equations for constant acceleration. 

Thus, where, 

  

  

it follows that, 

  

  

This is an important result because, time, t`, in the moving frame of reference is equal to time, t, in the 

stationary frame multiplied by the s-l factor.  Thus it can be seen that, 

  

  

where, t`, is the time in the moving frame of reference.  This result is consistent with requirement that the 

rate of acceleration be constant relative to an initially faster frame of uniform motion moving in the same 

direction as the accelerating object at the instant the object surpasses its velocity.  In such a frame, time, t`= t, 

and the rate of acceleration will be the same as it was initially in the stationary frame.  This result thus 

validates the logic used in deriving these equations.  This is strong evidence in support of the present theory. 

Going back to equation 22 and solving for the variable a, we get, 

  

  

for the rate of acceleration, a. 

If we now solve for the variable v, we get, 
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where, v, is the velocity of an object under constant acceleration. 

  

7. Consistency with Newton’s Second Law of Motion 

According to Newton’s second law of motion, where F is the applied force, the acceleration of a 
particle is given by, 

  

  

while according to the present theory, a, taken from equation 24 may be expressed as, 

  

  

(For true enlightenment, compare this equation with equation 3 while bearing in mind that the statement, t` = 

t, is always true in the moving frame, and only true in the stationary frame when v = 0.  In view of these 

findings, it is not unreasonable to suggest that equation 28 is worthy of elevation to the status, “Law of 
acceleration.”) 

Continuing on now, by way of substitution, we can then state that, 

  

  

Since it is found that v/t` is a constant, (* as a result of the asymptotic nature of v) this relationship between 

force, mass, and acceleration is consistent with the present theory.  In accordance with the present theory, an 

object under constant acceleration does not experience an increase in mass.  Thus, if the acceleration is 

constant, and the mass is constant, the applied force is constant.  Because of time expansion, however, it does 

require greater amounts of energy than can be attributed to velocity alone to maintain a constant force on the 

object undergoing the acceleration.  In other words, a small amount of energy, in a frame of reference that is 

moving at a significant fraction of the speed of light, is equal to a large amount of energy, as defined by the 

energy equations, in the stationary frame of reference.  This is a phenomenon of which there are countless 

analogies in everyday life, involving only Newtonian physics.  Consider for example a bullet fired from a gun.  If 

you are in the frame of reference in which the gun was fired and tried to stop the bullet with your hand, you 

couldn’t because of its large amount of kinetic energy.  Yet, if you were ahead of the bullet moving at, say, one 
kilometer per hour slower than the bullet, you would have no trouble at all of stopping it.  That is, in your 

frame of reference the bullet has very little kinetic energy.  Relativistic effects on energy are nothing more 

than an extension of this principle.  The only thing that makes it strange is that we are approaching light 

speed, the standard of measure by which time itself is gauged.  This causes time to slow down, which in turn 
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causes required energy increases, to maintain a constant velocity, to be greater than that predicted by 

Newtonian physics alone. 

  

*  (Since v is asymptotic, the velocity v attained during time interval t when expressed as v/t, cannot be a 

constant.  This is because v increases at a slower rate than t.  On the other hand t`, does increase at the same 

rate as v, and thus, v/t` is constant.) 

  

8. Conclusion 

The evidence presented here strongly supports the view that mass is not affected by acceleration.  The 

evidence shows convincingly that only those things that are a function of time are affected by the slowing of 

time.  This includes velocity and acceleration.  Mass is a function of the quantity of matter contained in an 

object, and this quantity is not a function of time.  These conclusions are not only sensible and logical, but they 

appear to be self-evident.  Time and distance (space), however, have no physical presence and it appears 

equally self-evident that their quantitative values are interdependent on the activity (motion) of the matter 

upon which they are referenced to.  Even here, it appears that only the variance of time is a real fact of 

Nature.  It was earlier pointed out that the shrinking of distance is not a real effect but rather a perspective 

effect related to the slowing of time. 

Of equal importance here, is the Time-Energy relation challenging the theory of relativity.  This 

connection was established with the derivation of equation 24.  This provides strong supporting evidence as to 

the validity of both theories and suggests that the variance of time may be the unifying element of all physical 

science. 

  

  

  

  

  

  

Appendix 

  
A. For the purpose of this paper mass is defined as a quantitative measure of matter.  Mass is detectable through either its 

gravitational, or inertial force which have been conveniently set equal to each other at the earth’s surface by use of the 

gravitational constant G.  To be useful as a quantitative measure, however, it is recognized that apparent changes of mass 

due to changes in velocity or gravitational field must be taken into account.  Thus it is recognized that even on earth, 

variances of the gravitational field or the experience of g forces imposed by acceleration cause only an apparent change of 

mass, and not a real change.  True mass in the sense meant here is that which is experienced in an isolated system outside 

of any gravitational field.  In such a system it is the inertial resistance such mass offers to acceleration.  
  

B. The s-l factor* is direct derivation of the Lorentz factor. By using the same evidence the Lorentz factor can also be arrived, 

but it requires more mathematical steps. Thus the s-l factor is just another form of the Lorentz factor. The Lorentz factor 

can be used in place of the millennium factor in equation 13.  After simplification, the result will still be equation 14. 

*s-l factor stands for Shivraj-Lorentz factor. 
  

C. Although equation 14 may appear a bit more complicated then the special relativity counterpart, one is reminded that K = 

Mc
2 

- Moc
2
 is really an abbreviated form of,  

  



  

Similar is true for the special relativity total energy equation, E = Mc
2
 which in the unabbreviated form is, 
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