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1 Introduction

This course follows on from Geometry and Topology in Physics I, in which the basic notions

and formalism of differential geometry and topology were introduced. The aim of the second

part of this course is to go on to apply the formalism in a number of contexts of physics

interest, also developing the basic ideas further as and when the need arises during the

course. To begin, we present a brief overview of the essential aspects of differential forms,

which provide the basic tools we shall be using in the course. This is essentially material

covered in depth in Part I, and reference can be made to the course notes for that course.

1.1 Vectors and tensors

In physics we encounter vectors and tensors in a variety of contexts; for example the notion

of the position vector in three-dimensional vector analysis and its four-dimensional spacetime

analogue; the 4-vector potential in Maxwell theory; the metric tensor in general relativity,

and so on. The language in which all of these can be described is the language of differential

geometry. The first examples listed were rather special ones, in that the position vector is a

concept that is applicable only in the restricted case of a flat Euclidean space or Minkowskian

spactime. In general, the line joining one point to another in the space or spacetime is not

a vector. Rather, one must pass to the limit where one considers two points that are

infinitesimally separated. Now, in the limit where the separation tends to zero, the line

joining the two points can be viewed as a vector. The reason for this need to use a limiting

procedure is easily understood if one thinks of a familar non-Euclidean space, the surface

of the Earth. For example, the line joing New York to London is not a vector, from the

point of view of transformations on the surface of the Earth (i.e. on the 2-sphere). But in

the limit where one considers a line joining two nearby points on a street in New York, one

approaches more and more closely to a genuine vector on the 2-sphere. We shall make this

precise below.

With the observation that a vector is defined in terms of an arrow joining two points that

are infinitesimally separated, it is not surprising that the natural mathematical quantity

that describes the vector is the derivative. Thus we define a vector V as the tangent vector

to some curve in the manifold. Suppose that the manifold M has coordinates xμ in some

patch, and that we have a curve described by xμ = xμ(t), where t is some parameter along

the path. Then we may define the tangent vector

V =
∂

∂t
. (1.1)
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Note that V is defined here in a coordinate-independent fashion. However, using the chain

rule we may express V as a linear combination of the basis vectors ∂/∂xμ:

V = V μ ∂

∂xμ
= V μ ∂μ , (1.2)

where V μ = dxμ/dt. Note that in the last expression in (1.2), we are using the shorthand

notation of ∂μ to mean ∂/∂xμ. Einstein summation convention is always understood, so

the index μ in (1.2) is understood to be summed over the n index values labelling the

coordinates on M . The components V μ, unlike the vector V itself, are coordinate dependent,

and we can calculate their transformation rule under general coordinate transformations

xi −→ x′μ = x′μ(xν) by using the chain rule again:

V = V ν ∂ν = V ν ∂x′μ

∂xν
∂′

μ , (1.3)

where ∂′
μ means ∂/∂x′μ. By definition, the coefficients of the ∂′

μ in (1.3) are the components

of V with respect to the primed coordinate system, and so we read off

V ′μ =
∂x′μ

∂xν
V ν . (1.4)

This is the standard way that the components of a vector transform. Straightforward

generalisation to multiple indices gives the transformation rule for tensors. A p-index tensor

T will have components T μ1···μp , defined by

T = T μ1···μp ∂μ1 ⊗ · · · ⊗ ∂μp . (1.5)

From this, it follows by analogous calculations to those described above that the components

will transform as

T ′μ1···μp =
∂x′μ1

∂xν1
· · · ∂x′μp

∂xνp
T ν1···νp , (1.6)

under a change of coordinate frame.

1.2 Covectors and cotensors

We may also define quantities whose components carry downstairs indices. The idea here

is best introduced by considering a function f on the manifold. Using the chain rule, we

see that its differential df can be written as

df = ∂μf dxμ . (1.7)

We may think of df as a geometrical, coordinate-independent quantity, whose components

in a given coordinate basis are the derivatives ∂μf . In fact df is a special case of a covector.
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More generally, we can consider a covector U , with components Uμ, and define

U = Uμ dxμ . (1.8)

With U itself being a coordinate-independent construct, we may deduce how its components

Uμ transform under general coordinate transformations by following steps analogous to those

that we used above for vectors:

U = Uν
∂xν

∂x′μ dx′μ . (1.9)

By definition, the coefficients of dx′μ are the components U ′
μ in the primed coordinate frame,

and so we read off the transformation rule for 1-form components:

U ′
μ =

∂xν

∂x′μ Uν . (1.10)

One may again generalise to multiple-index objects, or cotensors. Thus, for example, we

can consider an object U with p-index components,

U = Uμ1···μp dxμ1 ⊗ · · · ⊗ dxμp . (1.11)

The transformation rule for the components Uμ1···μp under general coordinate transforma-

tions is again easily read off:

U ′
μ1···μp

=
∂xν1

∂x′μ1
· · · ∂xνp

∂x′μp
Uν1···νp . (1.12)

It is easy to see that because ωμ transforms “inversely” to the way V μ transforms

(compare (1.4) and (1.10)), the quantity ωμ V μ will be invariant under general coordinate

transformations:

ω′
μ V ′μ =

∂xν

∂x′μ
∂x′μ

∂xσ
ων V σ

=
∂xν

∂xσ
ων V σ

= δν
σ ων V σ = ων V ν . (1.13)

This is the scalar product, or inner product, of V with ω. It can be expressed more “geo-

metrically,” without reference to specific coordinates, as 〈ω, V 〉. The coordinate bases ∂μ

and dxμ for objects with upstairs and downstairs indices are defined to be orthonormal, so

that

〈dxμ, ∂ν〉 = δμ
ν . (1.14)

It follows from this that

〈ω, V 〉 = ωμ V ν 〈dxμ, ∂ν〉 = ωμ V ν δμ
ν = ωμ V μ , (1.15)
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and so indeed this gives the hoped-for inner product. Note that if we apply this inner

product to the differential df , we get

〈df, V 〉 = ∂μf V ν 〈dxμ, ∂ν〉 = V μ ∂μf = V (f) . (1.16)

In other words, recalling the original definition of V as a differential operator (1.1), we see

that in this case the inner product of df and V is nothing but the directional derivative of

the function f along the curve parameterised by t; i.e. 〈df, V 〉 = V (f) = ∂f/∂t.

1.3 Differential forms

A particularly important class of cotensors are those whose components are totally anti-

symmetric;

Uμ1···μp = U[μ1···μp] . (1.17)

Here, we are using the notation that square brackets enclosing a set of indices mean that

they should be totally antisymmetrised. Thus we have

U[μν] =
1
2!

(Uμν − Uνμ) ,

U[μνσ] =
1
3!

(Uμνσ + Uνσμ + Uσμν − Uμσν − Uσνμ − Uνμσ) , (1.18)

etc. Generally, for p indices, there will be p! terms, comprising the 1
2p! even permutations

of the indices, which enter with plus signs, and the 1
2p! odd permutations, which enter

with minus signs. The 1/p! prefactor ensures that the antisymmetrisation is of strength

one. In particular, this means that antisymmetrising twice leaves the tensor the same:

U[[μ1···μp]] = U[μ1···μp].

Clearly, if the cotensor is antisymmetric in its indices it will make an antisymmetric

projection on the tensor product of basis 1-forms dxμ. Since antisymmetric cotensors are

so important in differential geometry, a special symbol is introduced to denote an anti-

symmetrised product of basis 1-forms. This symbol is the wedge product, ∧. Thus we

define

dxμ ∧ dxν = dxμ ⊗ dxν − dxν ⊗ dxμ ,

dxμ ∧ dxν ∧ dxσ = dxμ ⊗ dxν ⊗ dxσ + dxν ⊗ dxσ ⊗ dxμ + dxσ ⊗ dxμ ⊗ dxν

−dxμ ⊗ dxσ ⊗ dxν − dxσ ⊗ dxν ⊗ dxμ − dxν ⊗ dxσ ⊗ dxμ ,(1.19)

and so on.
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Cotensors antisymmetric in p indices are called p-forms. Suppose we have such an object

A, with components Aμ1···μp . Then we expand it as

A =
1
p!

Aμ1···μp dxμ1 ∧ · · · ∧ dxμp . (1.20)

It is quite easy to see from the definitions above that if A is a p-form, and B is a q-form,

then they satisfy

A ∧ B = (−1)pq B ∧ A . (1.21)

1.4 Exterior derivative

The exterior derivative d acts on a p-form field, and produces a (p + 1)-form. It is defined

as follows. On functions (i.e. 0-forms), it is just the operation of taking the differential; we

met this earlier:

df = ∂μf dxμ . (1.22)

More generally, on a p-form ω = 1/p!ωμ1···μp dxμ1 ∧ · · · ∧ dxμp , it is defined by

dω =
1
p!

(∂νωμ1···μp) dxν ∧ dxμ1 ∧ · · · ∧ dxμp . (1.23)

Note that from our definition of p-forms, it follows that the components of the (p + 1)-form

dω are given by

(dω)νμ1···μp = (p + 1) ∂[ν ωμ1···μp] . (1.24)

It is easily seen from the definitions that if A is a p-form and B is a q-form, then the

following Leibnitz rule holds:

d(A ∧ B) = dA ∧ B + (−1)p A ∧ dB . (1.25)

It is also easy to see from the definition of d that if it acts twice, it automatically gives

zero, i.e. d2 ≡ 0. This just follows from (1.23), which shows that d is an antisymmetric

derivative, while on the other hand partial derivatives commute.

A simple, and important, example of differential forms and the use of the exterior

derivative can be seen in Maxwell theory. The vector potential is a 1-form, A = Aμ dxμ.

The Maxwell field strength is a 2-form, F = 1
2Fμν dxμ ∧ dxν , and we can construct it from

A by taking the exterior derivative:

F = dA = ∂μ Aν dxμ ∧ dxν = 1
2Fμν dxμ ∧ dxν , (1.26)
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from which we read off that Fμν = 2 ∂[μ Aν] = ∂μ Aν − ∂ν Aμ. The fact that d2 ≡ 0 means

that dF = 0, since dF = d2A. The equation dF = 0 is nothing but the Bianchi identity in

Maxwell theory, since from the definition (1.23) we have

dF = 1
2∂μ Fνρ dxμ ∧ dxν ∧ dxρ , (1.27)

hence implying that ∂[μ Fνρ] = 0. We can also express the Maxwell field equation elegantly

in terms of differential forms. This requires the introduction of the Hodge dual operator ∗.
This was discussed at length in Part I of the course, and we will not revisit all the details

again here. See the course notes for Part I for details.

For now, we shall move on to a very brief review of the basic notions of metrics, vielbeins,

spin connections and curvatures, which we shall then use extensively in the subsequent

chapters.
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2 Metrics, Connections and Curvature

A metric tensor provides a rule for measuring distances between neighouring points on a

manifold. It is an additional piece of structure that was not needed up until this point

in the discussion. The metric is a symmetric 2-index cotensor gμν , and in general it is a

field on the manifold M, which depends upon the coordinates xμ. The distance squared be-

tween two infinitesimally-separated points is denoted by ds2, and thus we have, generalising

Pythagoras’ theorem,

ds2 = gμν dxμ dxν . (2.1)

2.1 Spin connection and curvature 2-forms

Here, we gather together some basic results from part I of the course. We begin by “taking

the square root” of the metric gμν in (2.1), by introducing a vielbein, which is a basis of

1-forms ea = ea
μ dxμ, with components ea

μ, having the property

gμν = ηab ea
μ eb

ν . (2.2)

Here the indices a are a new type, different from the coordinate indices μ we have en-

countered up until now. They are called local-Lorentz indices, or tangent-space indices,

and ηab is a “flat” metric, with constant components. The language of “local-Lorentz”

indices stems from the situation when the metric gμν has Minkowskian signature (which is

(−,+,+, . . . ,+) in sensible conventions). The signature of ηab must be the same as that of

gμν , so if we are working in general relativity with Minkowskian signature we will have

ηab = diag (−1, 1, 1, . . . , 1) . (2.3)

If, on the other hand, we are working in a space with Euclidean signature (+,+, . . . ,+),

then ηab will just equal the Kronecker delta, ηab = δab, or in other words

ηab = diag (1, 1, 1, . . . , 1) . (2.4)

Of course the choice of vielbeins ea as the square root of the metric in (2.2) is to some

extent arbitrary. Specifically, we could, given a particular choice of vielbein ea, perform an

orthogonal-type transformation to get another equally-valid vielbein e′a, given by

e′a = Λa
b eb , (2.5)

where Λa
b is a matrix satisfying the (pseudo)orthogonality condition

ηab Λa
c Λb

d = ηcd . (2.6)
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Note that Λa
b can be coordinate dependent. If the n-dimensional manifold has a Euclidean-

signature metric then η = 1l and (2.6) is literally the orthogonality condition ΛT Λ = 1l. Thus

in this case the arbitrariness in the choice of vielbein is precisely the freedom to make local

O(n) rotations in the tangent space. If the metric signature is Minkowskian, then instead

(2.6) is the condition for Λ to be an O(1, n − 1) matrix; in other words, one then has the

freedom to perform local Lorentz transformations in the tangent space. We shall typically

use the words “local Lorentz transformation” regardless of whether we are working with

metrics of Minkowskian or Euclidean signature.

Briefly reviewing the next steps, we introduce the spin connection, or connection 1-forms,

ωa
b = ωa

bμ dxμ, and the torsion 2-forms T a = 1
2T a

μν dxμ ∧ dxν , defining

T a = dea + ωa
b ∧ eb . (2.7)

Next, we define the curvature 2-forms Θa
b, via the equation

Θa
b = dωa

b + ωa
c ∧ ωc

b . (2.8)

Note that if we adopt the obvious matrix notation where the local Lorentz transformation

(2.5) is written as e′ = Λ e, then we have the property that ωa
b, T a and Θa

b transform as

follows:

ω′ = Λω Λ−1 + Λ dΛ−1 ,

T ′ = ΛT , Θ′ = ΛΘ Λ−1 . (2.9)

Thus the torsion 2-forms T a and the curvature 2-forms Θa
b both transform nicely, in a

covariant way, under local Lorentz transformations, while the spin connection does not; it

has an extra inhomogeneous term in its transformation rule. This is the characteristic way

in which connections transform. Because of this, we can define a Lorentz-covariant exterior

derivative D as follows:

DV a
b ≡ dV a

b + ωa
c ∧ V c

b − ωc
b ∧ V a

c , (2.10)

where V a
b is some set of p-forms carrying tangent-space indices a and b. One can easily

check that if V a
b itself transforms covariantly under local Lorentz transformations, then so

does DV a
b. In other words, the potentially-troublesome terms where the exterior derivative

lands on the transformation matrix Λ are cancelled out by the contributions from the

inhomgeneous second term in the transformation rule for ωa
b in (2.9). We have taken the

example of V a
b with one upstairs and one downstairs tangent space index for simplicity,
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but the generalisation to arbitrary numbers of indices is immediate. There is one term like

the second term on the right-hand side of (2.10) for each upstairs index, and a term like

the third term on the right-hand side of (2.10) for each downstairs index.

The covariant exterior derivative D will commute nicely with the process of contracting

tangent-space indices with ηab, provided that we require

D ηab ≡ dηab − ωc
a ηcb − ωc

b ηac = 0 . (2.11)

Since we are taking the components of ηab to be literally constants, it follows from this

equation, which is known as the equation of metric compatibility, that

ωab = −ωba , (2.12)

where ωab is, by definition, ωa
b with the upper index lowered using ηab: ωab ≡ ηac ωc

b. With

this imposed, it is now the case that we can take covariant exterior derivatives of products,

and freely move the local-Lorentz metric tensor ηab through the derivative. This means that

we get the same answer if we differentiate the product and then contract some indices, or

if instead we contract the indices and then differentiate.

In addition to the requirement of metric compatibiilty we usually also choose a torsion-

free spin-connection, meaning that we demand that the torsion 2-forms T a defined by (2.7)

vanish. In practice, we shall now assume this in everything that follows. In fact equation

(2.7), together with the metric-compatibility condition (2.12), now determine ωa
b uniquely.

In other words, the two conditions

dea = −ωa
b ∧ eb , ωab = −ωba (2.13)

have a unique solution. It can be given as follows. Let us say that, by definition, the exterior

derivatives of the vielbeins ea are given by

dea = −1
2cbc

a eb ∧ ec , (2.14)

where the structure functions cbc
a are, by definition, antisymmetric in bc. Then the solution

for ωab is given by

ωab = 1
2(cabc + cacb − cbca) ec , (2.15)

where cabc ≡ ηcd cab
d. It is easy to check by direct substitution that this indeed solves the

two conditions (2.13).

The procedure, then, for calculating the curvature 2-forms for a metric gμν with viele-

beins ea is the following. We write down a choice of vielbein, and by taking the exterior
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derivative we read off the coefficients cbc
a in (2.14). Using these, we calculate the spin

connection using (2.15). Then, we substitute into (2.8), to calculate the curvature 2-forms.

Each curvature 2-form Θa
b has, as its components, a tensor that is antisymmetric in

two coordinate indices. This is the Riemann tensor, defined by

Θa
b = 1

2Ra
bμν dxμ ∧ dxν . (2.16)

We may always use the vielbein ea
μ, which is a non-degenerate n×n matrix in n dimensions,

to convert between coordinate indices μ and tangent-space indices a. For this purpose we

also need the inverse of the vielbein, denoted by Eμ
a , and satisfying the defining properties

Eμ
a eaaν = δμ

ν , Eμ
a eb

μ = δa
b . (2.17)

Then we may define Riemann tensor components entirely within the tangent-frame basis,

as follows:

Ra
bcd ≡ Eμ

c Eν
d Ra

bμν . (2.18)

Note that we use the same symbol for the tensors, and distinguish them simply by the kinds

of indices that they carry. (This requires that one pay careful attention to establishing

unambiguous notations, which keep track of which are coordinate indices, and which are

tangent-spave indices!) In terms of Ra
bcd, it is easily seen from the various definitions that

we have

Θa
b = 1

2Ra
bcd ec ∧ ed . (2.19)

From the Riemann tensor two further quantities can be defined; the Ricci tensor Rab

and the Ricci scalar R:

Rab = Rc
acb , R = ηab Rab . (2.20)

Note that the Riemann tensor and Ricci tensor have the following symmetries, which can

be proved straightforwardly from the definitions:

Rabcd = −Rbacd = −Rabdc = Rcdab ,

Rabcd + Racdb + Radbc = 0 , (2.21)

Rab = Rba .

2.2 Curvature in coordinate basis

For those more familiar with the “traditional” treatment of Riemannian geometry, we can

give a “dictionary” for translating between the two formalisms. In the traditional approach,
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we construct the Christoffel connection, Γμ
νρ from the metric tensor, using the expression

Γμ
νρ = 1

2gμσ
(
∂ν gσρ + ∂ρ gνσ − ∂σ gνρ

)
. (2.22)

This is used in order to construct the covariant derivative, ∇μ. Its action on tensors with

upstairs indices is defined by

∇μ V ν = ∂μ V ν + Γν
μρ V ρ , (2.23)

while for downstairs indices it is

∇μ Vν = ∂μ Vν − Γρ
μν Vρ . (2.24)

Acting on tensors with multiple indices, there will be one Γ term of the appropriate type

for each upstairs or downstairs index. The expression (2.22) for the Christoffel connection

is in fact determined by the requirement of metric compatibility, namely ∇μ gνρ = 0. The

covariant derivative has the property that acting on any tensor, it gives another tensor. In

other words, the object constructed by acting with the covariant derivative will transform

under general coordinate transformations according to the rule given in (1.6) and (1.12) for

upstairs and downstairs indices.

From the Christoffel connection we construct the Riemman tensor, given by

Rμ
νρσ = ∂ρ Γμ

σν − ∂σ Γμ
ρν + Γμ

ρλ Γλ
σν − Γμ

σλ Γλ
ρν . (2.25)

Although it is not immediately obvious, in view of the fact that Γμ
νρ is not itself a tensor,

the quantity Rμ
νρσ does in fact transform tensorially. This can be shown from the previous

definitions by a straightforward calculation.

To make contact with the curvature computations using differential forms in the previous

section, we note that the Riemman tensor calculated here is the same as the one in the

previous section, after converting the indices using the vielbein or inverse vielbein:

Rμ
νρσ = Eμ

a eb
ν Ra

bρσ . (2.26)

The coordinate components of the Ricci tensor, and the Ricci scalar, are given by

Rμν = Rρ
μρν , R = gμν Rμν . (2.27)

As usual, we can relate the tensors with tangent-space and coordinate indices by means of

the vielbein, so that we have Rμν = ea
μ eb

ν Rab.
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One further identity, easily proven from the definitions in this section, is that

∇[λ Rμ|ν|ρσ] = 0 , (2.28)

where the vertical lines enclosing an index or set of indices indicate that they are excluded

from the antisymmetrisation. An appropriate contraction of indices in the Bianchi identity

(2.28) leads to the result that

∇μ Rμν = 1
2∂ν R . (2.29)

A consequence of this is that if we define the so-called Einstein tensor

Gμν ≡ Rμν − 1
2R gμν , (2.30)

then it is conserved, i.e. ∇μ Gμν = 0.
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3 Schwarzschild Black holes

Having reviewed some basic preliminaries, let us now turn to the first of the applications

that we shall be considering, namely black holes. We shall begin by deriving the simplest

of the black holes, which is a static, spherically-symmetric solution of the pure vacumm

Einstein equations. It was found in 1916 by Karl Schwarzschild, much to Einstein’s surprise

because he never expected that such a complicated and non-linear system as the Einstein

equations would admit analytically-solvable non-trivial solutions. Having obtained the local

solution, we shall then embark on a study of its global properties, inparticular studying its

structure at infinity, on the event horizon, and at the curvature singularity. Having done so

we shall then move on to a more complicated example, which introduces new features and

subtleties, namely the Reissner-Nordström solution. This is a static, spherically-symmetric

solution of the coupled Einstein-Maxwell equations, and it represents a black hole carrying

electric (or magnetic) charge as well as mass. The global structure is significantly moree

subtle in this case than for the Schwarzschild solution. Another generalisation is to the case

of a rotating black hole; this is the Kerr solution. Finally, we can add charge as well and

consider the Kerr-Newman family of rotating, charged black holes.

The Einstein equations determine the way in which the geometry of spacetime is influ-

enced by the presence of matter. They take the form, in general,

Gμν ≡ Rμν − 1
2R gμν = 8π GTμν , (3.1)

where G is Newton’s gravitational constant, Rμν is the Ricci tensor, R is the Ricci scalar,

and Tμν is the energy-momentum tensor of whatever matter might be present in the system.

Gμν is called the Einstein tensor, and, as we observed in the previous section, it is conserved,

∇μ Gμν = 0. This is important since, as is well known, the energy-momentum tensor for

any isolated matter system is also conserved. In fact one of the problems that held Einstein

up for a while, more or less until the last minute when he published his major paper on

general relativity in 1915, was that he had not included the −1
2R gμν term on the left-hand

side of (3.1), and as a result he was running into inconsistencies.

This equation is analogous to the field equation of Maxwell electrodynamics, i.e. ∂μ Fμν =

−4π Jν , where Jμ is the current density 4-tensor, associated with whatever charged parti-

cles or fields are present in the system. One can study source-free solutions of the equation

∂μ Fμν = 0, as well as solutions where sources are present. Examples of source-free so-

lutions include electromagnetic waves. There are also other examples that are “almost”

source-free, such as point electric charges. These satisfy the source-free Maxwell equations
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almost everywhere, except at the actual point where the charge is located, where there is a

delta-function charge density term.

The source-free Einstein equations likewise have a variety of solutions. There are grav-

itational wave solutions, analogous to the electromagnetic waves of Maxwell theory. There

are also solutions that are “almost” source free, analogous to the notion of the point charge

in electrodynamics. In this gravitational case these have mass singularities rather than

charge singularities; they are black holes. Of course the non-linear nature of the Einstein

equations means that the various solutions are more complicated, and more subtle, than

their electrodynamical cousins. Also, the very essence of general relativity is that one is

using a description that is covariant with respect to arbitrary changes of coordinate system.

This means that one has to be very careful to distinguish between genuine physics on the

one hand, and mere artefacts of particular coordinate systems on the other. This is the

beauty and the subtlety of the subject. But, as Sidney Coleman has remarked, “In Gen-

eral Relativity you don’t know where you are, and you don’t know what time it is.” The

profundity of this observation should become apparent as we proceed.

3.1 The Schwarzschild solution

It can be argued on general symmetry grounds that a four-dimensional metric that is static

(time independent and non-rotating), and spatially spherically-symmetric, can be written

in the form

ds2 = −e2A dt2 + e2B dr2 + r2 (dθ2 + sin2 θdϕ2) , (3.2)

where A and B are functions of the radial coordinate r. The way to show this is to begin

by writing down the most general possibility for a static metric with rotational symmetry,

and then to exploit to the full the freedom to make coordinate transformations, in order to

reduce the metric to its simplest possible form. The essence of solution-hunting in general

relativity is to start from an ansatz for a symmetry-restricted class of metrics that have

been expressed in as simple a form as possible, and then grind through the calculation of

the curvature in order to plug into the left-hand side of the Einstein equations (3.1). In our

case we are looking for a vacuum solution where Tμν = 0, and so we just need to impose

that this left-hand side should be zero. Note that by taking the trace of Rμν − 1
2R gμν = 0

in D dimensions we get

R − 1
2D R = 0 , (3.3)
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and so, provided we are not in D = 2 dimensions we thus deduce that the source-free

Einstein equations imply R = 0, and hence

Rμν = 0 . (3.4)

Since R = 0 follows from this equation by tracing, this means that the entire content of the

vacuum Einstein equations in D ≥ 3 dimensions is contained in the Ricci flatness condition

(3.4).

We shall calculate the curvature for the metric (3.2) using the method of differential

forms. We begin by choosing the natural orthonormal vielbein basis,

e0 = eA dt , e1 = eB dr , e2 = r dθ e3 = r sin θ dϕ . (3.5)

Note that one has to be careful not to confuse indexed vielbeins such as ea (or even some-

times eA!) with exponentials of functions, such as eA. It should always be clear from

context, and in practice one usually has little trouble from this potential pitfall.

We now calculate the torsion-free spin connection ωa
b, using dea = −ωa

b ∧ eb, together

with antisymmetry ωab = −ωba. Calculating the exterior derivatives of the vielbeins, we get

de0 = A′ eA dr ∧ dt = −A′ e−B e0 ∧ e1 ,

de1 = 0 ,

de2 = dr∧dθ =
1
r

e−B e1 ∧ e2 ,

de3 = sin θ dr ∧ dϕ + r cos θ dθ ∧ dϕ =
1
r

e−B e1 ∧ e3 +
1
r

cot θ e2 ∧ e3 . (3.6)

Notice that having acted with the exterior derivative d we have then re-expressed the results

back in terms of the vielbeins, using (3.5). This is so that we are ready to take the next step,

where we read off the coefficients cab
c in (2.14). By inspection, we see that the non-vanishing

components are given by

c01
0 = A′ e−B , c12

2 = −1
r

e−B , c13
3 = −1

r
e−B , c23

3 = −1
r

cot θ . (3.7)

Note that since cab
c = −cba

c, we do not need to list components related to those given in

(3.7) by this symmetry, but it must be recalled that they are also non-zero.

Substituting (3.7) into (2.15), we obtain the following expressions for the spin connec-

tion:

ω01 = −A′ e−B e0 , ω02 = 0 , ω03 = 0 ,

ω23 = −1
r

cot θ e3 , ω13 = −1
r

e−B e3 , ω12 = −1
r

e−B e2 . (3.8)
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(In practice, it is usually a good idea at this stage in the calculation to pause and verify

that the calculated spin connection does indeed solve the equations dea = −ωa
b ∧ eb, to

guard against calculational errors.) Finally, we substitute the spin connection into (2.8), to

obtain the curvature 2-forms. After a little algebra, we find

Θ01 = (A′′−A′ B′+A′2) e−2B e0∧e1 , Θ02 =
A′

r
e−2B e0∧e2 , Θ03 =

A′

r
e−2B e0∧e3 ,

Θ23 =
1
r2

(1−e−2B) e2∧e3 , Θ13 =
B′

r
e−2B e1∧e3 , Θ12 =

B′

r
e−2B e1∧e2 . (3.9)

From these, it is easy to read off, using (2.19), that the non-vanishing vielbein components

of the Riemman tensor are given by

R0101 = (A′′ − A′ B′ + A′2) e−2B , R0202 =
A′

r
e−2B , R0303 =

A′

r
e−2B ,

R2323 =
1
r2

(1 − e−2B) , R1313 =
B′

r
e−2B , R1212 =

B′

r
e−2B . (3.10)

From the definition (2.20), we can now calculate the components of the Ricci tensor,

finding (in tangent-space indices)

R00 = R0101 + R0202 + R0303 =
(
A′′ − A′ B′ + A′2 +

2
r

A′) e−2B ,

R11 = −R0101 + R1212 + R1313 =
(
− A′′ + A′ B′ − A′2 +

2
r

B′) e−2B ,

R22 = −R0202 + R1212 + R2323 =
(
− A′

r
+

B′

r
+

1
r2

e2B − 1
r2

)
e−2B , (3.11)

R33 = −R0303 + R1313 + R2323 =
(
− A′

r
+

B′

r
+

1
r2

e2B − 1
r2

)
e−2B .

Thus the vacuum Einstein equations, which we saw above are simply the Ricci-flat

condition Rab = 0, imply that the functions A and B in the original metric ansatz (3.2)

must satisfy the following equations:

A′′ − A′ B′ + A′2 +
2
r

A′ = 0 ,

A′′ − A′ B′ + A′2 − 2
r

B′ = 0 , (3.12)

−A′

r
+

B′

r
+

1
r2

e2B − 1
r2

= 0 .

Subtracting the second from the first, we immediately find that A′ + B′ = 0. Since a

constant shift in A can simply be absorbed by a rescaling of the time coordinate in (3.2),

we can, without losing any generality, take the solution to be

B = −A . (3.13)
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The third equation in (3.12) then implies that 2r A′ = e−2A − 1, which can be integrated

immediatly to give

e2A = 1 − 2m
r

, (3.14)

where m is an arbitrary constant. It is then easily veified that the remaining unused

equation, which can be taken to be the first equation in (3.12) by itself, is satisfied. Thus

we have arrived at the Schwarzschild solution of the vacuum Einstein equations,

ds2 = −
(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1
dr2 + r2 (dθ2 + sin2 θ dϕ2) . (3.15)

For future puposes, we can now substitute the solutions for A and B back into the

expressions in (3.9) for the curvature 2-forms, to find:

Θ01 = −2m
r3

e0 ∧ e1 , Θ02 =
m

r3
e0 ∧ e2 , Θ03 =

m

r3
e0 ∧ e3 ,

Θ23 =
2m
r3

e2 ∧ e3 , Θ13 = −m

r3
e1 ∧ e3 , Θ12 = −m

r3
e1 ∧ e2 . (3.16)

Thus the non-vanishing tangent-space components of the Riemann tensor are given by

R0101 = −2m
r3

, R0202 =
m

r3
, R0303 =

m

r3
,

R2323 =
2m
r3

, R1313 = −m

r3
, R1212 = −m

r3
. (3.17)

Finally, we can compute the scalar curavture invariant |Riem|2 ≡ Rabcd Rabcd. From the

symmetries of the Riemann tensor, and the particular pattern of non-vanishing components

in this case, we can see that

|Riem|2 = 4
(
(R0101)2 + (R0202)2 + (R0303)2 + (R2323)2 + (R1313)2 + (R1212)2

)
, (3.18)

and hence, from (3.17), we find that the Schwarzschild metric has

|Riem|2 =
48m2

r6
. (3.19)

3.2 Global structure of the Schwarzschild solution

So far, we have been concerned here only with local considerations; writing down the metric

ansatz (3.2), calculating the curvature, and then solving the vacuum Einstein equations

(3.4). Now, the time has come to interpret the Schwarzschild solution (3.15), and to study

its global structure.
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3.2.1 Asymptotic structure of the Schwarzschild solution

Firstly, we may note that it looks very reasonable out near infinity. As r → ∞, the metric

tends to flat Minkowksi spacetime, where the spatial 3-metric is written in spherical polar

coordinates:

ds2 = −dt2 + dr2 + r2 (dθ2 + sin2 θ dϕ2) . (3.20)

What is more, the way in which it approaches Minkowski spacetime is very reasonable. If

we consider a weak-field and low-velocity approximation, any metric can, by suitable choice

of coordinates, be approximated by

ds2 = −(1 + 2φ) dt2 + (δij + hij) dxi dxj , (3.21)

where we split 4-dimensional indices as μ = (0, i), and φ and hij are functions of xi, with

|φ| << 1 and |hij << 1. It is rather easy to calculate the Christoffel connection (2.22) and

Riemann tensor (2.25) in this approximation, leading to the following dominant terms in

Γi
00 and in the Ricci tensor component R00:

Γi
00 = ∂i φ , (3.22)

R00 = ∇2 φ , (3.23)

where ∇2 = ∂i ∂i is the spatial Laplacian. Likewise, in this approximation the dominant

term in the energy-momentum tensor for any matter is T00 = ρ, where ρ is the mass density.

The the Einstein equation (3.1) can be written, by taking the trace and substituting for

R in terms of T ≡ Tμ
μ, as Rμν = 8π GTμν − 4π GT gμν , and hence, in the linearised

approximation, we find by looking at the R00 component of the Einstein equation that

∇2φ = 4π Gρ , (3.24)

showing that Einstein’s equations reduce to the equations of Newtonian gravity in the weak-

field low-velocity limit, and that the function φ in the linearised metric (3.21) is nothing

but the Newtonian gravitational potential.

Thus we see, looking at the form of the Schwarzschild metric (3.15) when r is large,

that m, which until now was simply a constant of integration that arose in solving the

Einstein equations, has precisely the interpretation of the mass of the object described by

the solution, and that the metric has the proper asymptotic form appropriate to the field

far from a gravitating object of mass m.

One could of course simply choose to interpret (3.15) in a restricted way, as the metric

outside a spherically-symmetric object composed of relatively “normal” material. For ex-

ample, at the surface of the Earth the quantity m/r is of order 10−9 (we are using units
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where Newton’s constant G and the speed of light c are both set equal to 1, so length,

mass and time have the same dimensions). Of course inside the Earth one would have to

match the exterior solution (3.15) onto another solution that takes into account the distri-

bution of matter within the Earth, but (3.15) is does properly describe the metric outside

a non-rotating spherically-symmetric object.

3.2.2 A first look at singularities

Of much greater interest to us here is to take the Schwarzschild metric seriously even at

small values of r, to see where that leads us. The first thing one notices about (3.15) is that

it becomes singular at r = 2m. This is in some sense unexpected, since when we started

out we looked for a spherically-symmetric solution that would be expected to describe the

geometry outside a “point mass” located at r = 0. There is indeed a singularity at r = 0,

of a rather severe nature. One can see that the metric becomes singular also at r = 0,

but, as we shall see below, one cannot judge a solution in general relativity just by looking

at singularities in the metric, because these can change drastically in different coordinate

systems. There is, however, a reliable indicator as to when there is a genuine singularity

in the spacetime, namely by looking at scalar invariants built from the Riemann tensor.

The point about looking at scalar invariants is that they are, by definition, invariant under

changes of coordinate system, and so they provide a coordinate-independent indication of

whether or not there are genuine singularities.

The simplest scalar invariant built from the Riemann tensor is the Ricci scalar, R =

gμν Rμν = gμν Rρ
μρν . However, this is not much help to us here since the Schwarzschild

metric satisfies the vacumm Einstein equations and hence, in particular, R = 0. Likewise,

the quadratic invariant Rμν Rμν would be no help to us either, since it too vanishes. We

need an invariant built from the full Riemann tensor, not from its contraction to the Ricci

tensor. Indeed, at the end of the previous section we calculated the sinmplest such quantity

in the Schwarzschild metric, where we found (3.19) that |Riem|2 = 48m2/r6. This tells

us instantly that r = 0 is a genuine singularity in the spacetime manfold, at which the

curvature diverges. This is in some sense analogous to the diverging of the electric field at

the location of a point electric charge. Note that we were fortunate here in finding that

|Riem|2 was divergent; this means that we can be sure that there is a genuine spacetime

singularity. The converse is not necessarily true; one can encounter circumstances where

the curvature is actually divergent, but |Riem|2 is not. This might seem odd, since |Riem|2
in (3.18) is obtained by squaring and summing all the components of the Riemann tensor.
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The point is that in our example of the Schwarzschild metric there are always an even

number of “0” indices on the non-vanishing components of the Riemann tensor. In more

general cases, there might be components with an odd number of “0” components, and

the squares of these would enter with minus signs in the calculation of |Riem|2, because

of the indefinite metric signature. Thus one could encounter circumstances where singular

behaviour cancelled out between different components of the Riemann tensor. There is a

rather intricate theory concerning the question of what set of scalar invariants built from

the curvature is sufficient to characterise all potential singularities in the curvature, but we

shall not dwell further on this here.

Let us now turn our attention to the singular behaviour of the Schwarzschild metric

(3.15) at r = 2m. It was decades after the original discovery of the Schwarzschild solu-

tion before this was properly understood, in in the early days people would speak of the

“Schwarzschild singularity” at r = 2m as if it were a genuine singularity in the spacetime. In

fact, as we shall see, there is physically nothing singular at r = 2m; the apparent singularity

in (3.15) is simply a consequence of the fact that the (t, r, θ, ϕ) coordinate system breaks

down there. There are many physically interesting phenomena associated with this region

in the spacetime, but there is no singularity. It is known, for reasons that will become clear,

as an “event horizon.”

The notion of a coordinate system breaking down at an otherwise perfectly regular point

or region in a space is a perfectly familiar one. We can consider polar coordinates on the

plane as an example, where the metric is

ds2 = dr2 + r2 dθ2 . (3.25)

This metric is singular at the origin; the metric component grr vanishes there, and the

determinant of the metric vanishes too. But, as we well know, a transformation to Cartesian

coordinates (x, y), related to (r, θ) by x = r cos θ and y = r sin θ, puts the metric (3.25)

into the standard Cartesian form ds2 = dx2 +dy2, and now we see that indeed r = 0, which

is now described by x = y = 0, is perfectly regular.

Before getting down to a detailed study of the global structure of the Schwarzschild

metric, let us pause to make sure that the discussion is not going to be purely academic. If

it were the case that an observer out at large distance could never reach the region r = 2m,

then one might question why it would be so important to study the global structure there.

On the other hand, if an observer can reach it in a finite time, then it is clearly of great

importance (especially to the observer!) to understand what he will find there. This is

actually already a slightly subtle issue because, as we shall see, an observer who stays safely
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out near infinity will never see the infalling observer pass through the event horizon at

r = 2m. What about the infalling observer? Is he actually inside the event horizon? In the

words of President Clinton, it all depends on what you mean by “is.”

3.2.3 An interlude on geodesics

A way to determine whether an observer can reach some region in a spacetime is to study the

so-called geodesic motion in the metric. Geodesics are the paths followed by freely-falling

particles, and they can be shown to be given by

d2xμ

dτ2
+ Γμ

νρ
dxν

dτ

dxρ

dτ
= 0 , (3.26)

where τ is the proper time and xμ(τ) is the path followed by the particle. The easiest way

to see why this must be the right equation is to invoke the equivalence principle. Namely,

we know that in flat Minkowski spacetime the correct equation of motion for a free particle

is d2xμ

dτ2 = 0, and so it must be that in an arbitrary spacetime with gravitational fields,

the equation of motion is the covariantised form of the Minkowski spacetime equation.

This must be true because no matter what spacetime we consider, it is always possible,

by a suitable general coordinate transformation, to change to a coordinate system where

gμν = ηmuν and Γμ
νρ = 0 at a point. Nearby to that point, the equalities will still be good

approximations.

Notice, by the way, that in the low-velocity weak-field approximation that we talked

about earlier, geodesic motion in the linearised metric (3.21), for which the Christoffel

connection components Γi
00 are given by (3.22), is therefore described by the equation

d2xi

dt2
= −∂i φ , (3.27)

since τ ≈ t in this limit. Equation (3.27) is otherwise known as Newton’s second law of

motion.

It is worth remarking here that, notwithstanding the 18’th century teachings of the 218

undergraduate physics class, the “gravitational force” is a frame-dependent concept, and

in Einstein’s theory it is the Christoffel connection Γμ
νρ that describes it. In other words,

the second term in (3.26) describes the tendency of an otherwise free particle to deviate

from straight-line motion, and it is this second term that therefore describes what we call

the “gravitational forces” that act on the particle. It is just as much a gravitational force

whether it is caused by an acceleration relative to Minkowski spacetime (i.e. centrifugal

forces are real gravitational forces), or whether it is caused by the presence of matter.

23



There are differences between these situations, which are measured by the vanishing or

non-vanishing of the Riemann tensor, but this has nothing to do with the existence or

non-existence of gravitational forces.

It is not hard to see that the equation of geodesic motion (3.26) can be derived from

the Lagrangian

L = 1
2gμν ẋμ ẋν , (3.28)

where we are using ẋμ as a shorthand notation for dxμ/dτ . To see this, just use the Euler-

Lagrange equations coming from varying xμ, i.e.

∂L

∂xμ
− d

dτ

( ∂L

∂ẋμ

)
= 0 , (3.29)

remembering that gμν is a function of the coordinates xμ, which are now themselves viewed

as functions of τ . From the definition (2.22), the result (3.26) now follows.

A further point to note is that for a physical particle the Lagrangian (3.28) actually takes

the value −1/2. This is because the proper time interval dτ is related to the proper distance

ds appearing in the metric interval by dτ2 = −ds2, and ds2 = gμν dxμ dxν = gμν ẋμ ẋν dτ2.

The fact that L = −1/2 for the physical particle immediately gives us a constant of the

motion, which helps considerably when solving the geodesic equation.

Let us now calculate the motion of radially-infalling geodesics in the Schwarzschild

metric. (We could consider more general geodesic motion with angular dependence too,

which would be relevant for considering planetary orbits, etc. From the point of view of

testing whether an observer crosses the event horizon, however, any non-radial component

to the motion would merely be a “time-wasting” manoeuvre, counter-productive from the

point of view of getting there as quickly as possible.) For radial motion, therefore, it follows

from (3.15) and (3.28) that we should consider the Lagrangian

L = −1
2

(
1 − 2m

r

)
ṫ2 + 1

2

(
1 − 2m

r

)−1
ṙ2 . (3.30)

The Euler-Lagrange equation for t gives(
1 − 2m

r

)
ṫ = E , (3.31)

where E is a constant. The constant of the motion L = −1/2 then gives us the equation

for infalling radial motion:

ṙ = −
(
E2 − 1 +

2m
r

)1/2
, (3.32)

where the choice of sign is determined by the fact that we are looking for the ingoing

solution. Note that for a particle coming in from infinity the constant E must be such that

E2 > 1.
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Suppose that at proper time τ0 the particle is at radius r0. It follows, by integrating

(3.32), that the further elapse of proper time for it to reach r = 2m is given by

τ2m − τ0 =
∫

dτ =
∫ 2m

r0

dr

ṙ
,

=
∫ r0

2m

dr√
E2 − 1 + 2m

r

. (3.33)

This is perfectly finite, and so the ingoing particle does indeed fall through the event horizon

in a finite proper time.

Notice, however, that an observer who watches from infinity will never see the particle

reach the horizon. Such an observer measures time using the coordinate t itself, and so his

calculation of the elapsed time will be

t2m − t0 =
∫

dt =
∫ 2m

r0

ṫ dr

ṙ
,

=
∫ r0

2m

E dr(
1 − 2m

r

)√
E2 − 1 + 2m

r

, (3.34)

which diverges. In fact as the particle gets nearer and nearer the horizon the time measured

in the t cooordinate gets more and more “stretched out,” and radiation, or signals, from the

particle get more and more red-shifted, but it is never seen to reach, or cross, the horizon.

Seen from infinity, infalling observers never die; they just fade away.

3.2.4 The event horizon

In order to test the suspicion that r = 2m is non-singular, and just not well-described

by the (t, r, θ, ϕ) coordinate system, let us try changing variables to a different coordinate

system. Of course it is not the (θ, ϕ) part that is at issue here, and in fact we can effectively

suppress this in all of the subsequent discussion. We really need only concern ourselves

with what is happening in the (t, r) plane, with the understanding that each point in this

plane really represents a 2-sphere of radius r in the original spacetime. To abbreviate the

writing, we can define the metric dΩ2 = dθ2 + sin2 θ dϕ2 on the unit-radius 2-sphere. To

establish notation, let us denote by g the original Schwarzschild metric (3.15), and denote

by M the manifold on which it is valid, namely,

M : r > 2m . (3.35)

(Actually, there are two disjoint regions where the metric is valid, namely 0 < r < 2m, and

r > 2m. Since we want to include the description of the asymptotic external region far from
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the mass, it is natural to choose M as the r > 2m region.) Together, we may refer to the

pair (M,g) as the original Schwarzschild spacetime.

The best starting point for the sequence of coordinate transformations that we shall be

using is to consider a null ingoing geodesic, rather than the timelike ones followed by massive

particles that we considered in the previous section. A null geodesic has the property that

gμν
dxμ

dλ

dxν

dλ
= 0 (3.36)

where λ parameterises points along its path, xμ = xμ(λ). Note that we can’t use the proper

time τ as the parameter now, since dτ = 0 along the path of a null geodesic (such as a

light beam), and so we choose some other parameterisation in terms of λ instead. From the

Schwarzschild metric (3.15) we can see that a radial null geodesic (for which ds2 = 0) must

satisfy

dt2 =
dr2(

1 − 2m
r

)2 . (3.37)

It is natural to introduce a new radial coordinate r∗, defined by

r∗ ≡
∫ r dr

1 − 2m
r

= r + 2m log
(r − 2m

2m

)
. (3.38)

This is known as the Regger-Wheeler radial coordinate, and it has the effect of stretching

out the distance to horizon, pushing it to infinity. Sometimes r∗ is called the “tortoise

coordinate,” although this is a bit of a misnomer since the fabled tortoise gets there in the

end.

We now define advanced and retarded null coordinates v and u, known as “Eddington-

Finkelstein coordinates:”

v = t + r∗ , −∞ < v < ∞ , (3.39)

u = t − r∗ , −∞ < v < ∞ . (3.40)

Radially-infalling null geodesics are described by v = constant, while radially-outgoing null

geodesics are described by u = constant. If we plot the lines of constant u and constant v in

the (t, r) plane, we can begin to see what is going on. (See Figure 1.) Out near infinity, we

have v ≈ t + r and u ≈ t − r, and the lines v = constant and u = constant just asymptote

to 45-degree straight lines of gradient −1 and +1 respectively. Light-cones look normal

out near infinity, with 45-degree edges defined by v = constant and u = constant. As we

get nearer the horizon, these light cones become more and more acute-angled, until on the

horizon itself they have become squeezed into cones of zero vertex-angle. Inside the horizon

they have tipped over, and lie on their sides.
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u=constant
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r=0 r=2m

Figure 1: Schwarzschild spacetime (M,g) .

The light cones are getting squeezed like this because we are trying to describe things

near the horizon using the time coordinate t which is really appropriate only for an observer

out at large distances. We have already seen that the use of the coordinate t to describe an

infalling particle leads to the misleading impression that it never actually reaches r = 2m,

let alone passes through it.

Guided by the behaviour of the light-cones, we are therefore led to try replacing the

coordinate t in the original Schwarzschild metric (3.15) by v, using (3.39) to set t = v − r∗.

Thus we find that the metric becomes

ds2 = −
(
1 − 2m

r

)
dv2 + 2dr dv + r2 dΩ2 . (3.41)

This now has no divergence at r = 2m, and, because of the constant cross-term 2dr dv, its

inverse is perfectly finite there too; in other words, the metric is non-singular at r = 2m.

We can now plot another spacetime diagram, where we use v and r as the coordinates on
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the plane. Since we know that out near infinity the v = constant lines are well thought-of

as being at 45-degrees with slope −1, it is natural to choose this as our plotting scheme

everywhere. This gives us the picture shown in Figure 2. We see now that the light-cones do

not degenerate on the horizon. They do, however, tilt over more and more as one approaches

the horizon, until at r = 2m itself they have tipped so that the future light-cone lies entirely

within the direction of decreasing r. In fact r = 2m is a null surface, and the spacetime

is not time symmetric. The surface r = 2m acts as a one-way membrane; future-directed

timelike and null paths can cross only in one direction, from r > 2m to r < 2m. They reach

the singularity at r = 0 in a finite proper time or affine distance. Past-directed timelike or

null curves in the region 0 < r < 2m, on the other hand, cannot reach the singularity at

r = 0. In other words a future-directed null ray has only one way to go; inwards. The fate

of a massive particle, whose path must lie inside the null cone, is the same.

v=constant

u=constant

u=constant

r

r=0 r=2m

Figure 2: Schwarzschild spacetime (M′,g′) .

Let us denote by g′ the metric (3.41). Since there is no metric singularity at r = 2m, we
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see that the range of the radial coordinate r, which was restricted to the region r > 2m in

the original spacetime (M,g) with metric g given by (3.15), can now be extended to cover

the entire region r > 0. Thus we have an analyic extension (M′,g′) of the Schwarzschild

spacetime, where

M′ : r > 0 . (3.42)

There is an alternative analytic extension of (M,g) that we can consider, where we

substitute for the time coordinate using the retarded Eddington-Finkelstein coordinate u

defined in (3.40), rather than the advanced coordinate v. This gives another form for the

Schwarzschild metric, which we shall call g′′:

ds2 = −
(
1 − 2m

r

)
du2 − 2du dr + r2 dΩ2 . (3.43)

This is again nonsingular at r = 2m, and is analytic on a manifold M′′ with

M′′ : r > 0 . (3.44)

However, although the region of analyticity here is the same as for the extension M′, the

two analytic extensions M′ and M′′ are quite different. The time asymmetry in the M′′

manifold is the opposite of that in M′. The surface r = 2m is again null, but this time it is

a one-way membrane acting in the opposite direction; it is now only past-directed timelike

or null curves that can cross from r > 2m to r < 2m. This is depicted in Figure 3.

It is clear that neither of the analytic extensions (M′,g′) or (M′′,g′′) by itself cap-

tures the entire structure of the full Schwarzschild geometry. We can, however, go one

stage further and construct a larger extension of the spacetime by using both the v and u

coordinates, in place of t and r. Thus from (3.15), (3.39) and (3.40) we obtain the metric

ds2 = −
(
1 − 2m

r

)
dv du + r2 dΩ2 . (3.45)

Here, we are now using r simply as a shorthand symbol for the quantity defined by

1
2(v − u) = r + 2m log(r − 2m) . (3.46)

Now define new coordinates ṽ and ũ, known as Kruskal coordinates, by

ṽ = e
v

4m , ũ = −e−
u

4m . (3.47)

In terms of these, we arrive at the metric g∗, given by

ds2 =
16m2 e−

r
2m

r
dṽ dũ + r2 dΩ2 , (3.48)
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Figure 3: Schwarzschild spacetime (M′′,g′′) .

It is useful also to define

t̃ = 1
2 (ṽ + ũ) , x̃ = 1

2 (ṽ − ũ) , (3.49)

in terms of which the metric g∗ becomes

ds2 =
16m2 e−

r
2m

r
(−dt̃2 + dx̃2) + r2 dΩ2 . (3.50)

The quantity r is defined implicitly by

t̃2 − x̃2 = ṽ ũ = −(r − 2m) e
r

2m . (3.51)

On the manifold M∗, defined by the coordinates (t̃, x̃, θ, ϕ) for t̃2 − x̃2 < 2m, the metric

g∗ given by (3.50) has components that are positive and analytic. We may draw a new

spacetime diagram, given in Figure 4, to represent the manifold M∗. The pair (M∗,g∗)

is the maximal analytic extension of the original Schwarzschild solution. The region I,
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defined by x̃ > |t̃|, is isometric to the original Schwarzschild spacetime (M,g), for which

r > 2m. The region x̃ > −t̃, corresponding to regions I and II in Figure 4, is isometric

to the advanced analytic extension (M′,g′). Similarly the region x̃ > t̃, corresponding to

regions I and II′ in Figure 4, is isometric to the retarded analytic extension (M′′,g′′).

r=0
t=constantr=2m

r=0
r=2m

r=constant >2m

r=constant >2m

r=constant <2m

x

t
~

~I

II

I’

II’

Figure 4: Schwarzschild spacetime (M∗,g∗) .

There is also a region I′, defined by x̃ < −|t̃|, which again is isometric to the exterior

spacetime (M,g). This is another asymptotically-flat universe, separated from “our” uni-

verse by a “throat” where the area 4π r2 of the 2-spheres in the (θ, ϕ) directions has shrunk

down to a minimum value of 16π m2 (i.e. r = 2m), and then expanded out again. In fact

one can see from Figure 4 that the regions I′ and II are isometric to the advanced Finkel-

stein extension of region I′, and that the regions I′ and II′ are isometric to the retarded

Finkelstein extension of I′. No timelike or null curves can cross from region I to region I′;

in fact any such curve that crosses from I′ into the region where r < 2m will necessarily

end up at the (upper) singularity at r = 0. So neither material objects, nor information,

can cross from I′ to I.

Finally, in our analysis of the maximal analytic extension of the Schwarzschild solution
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we can make one further transformation of the coordinates, which has the effect of bringing

infinity in to a finite distance, so that the entire spacetime can be fitted onto the back of a

postage stamp (times a 2-sphere sitting over each point, of course). We do this by making

use of the arctangent function, which has the property of mapping the entire real line into

the interval between −1
2π and +1

2π. Thus we define new coordinates V and U , in place of

ṽ and Ũ , where

V = arctan
( ṽ√

2m

)
, U = arctan

( ũ√
2m

)
, (3.52)

where

−π < V + U < π , and − 1
2π < V < 1

2π , −1
2π < U < 1

2π . (3.53)

With this mapping, the Kruskal maximal extension of Figure 4 turns into the so-called

Penrose diagram for the Schwarzschild spacetime, depicted in Figure 5. Note that we can

express r in terms of U and V as

tan V tan U = −(r − 2m) e
r

2m . (3.54)

i

i

ii 0

r=0 r=2m

r=2mr=0

r=infinity

r=infinity
r=infinity

r=infinity

r<2m

r>2m r>2m 0

+

-

i +

i -

I

I
I

I -

+

+

-

I

II

I’

II’

r<2m

Figure 5: The Penrose diagram for the Schwarzschild spacetime (M∗,g∗).

Essentially all that has been done in this last transformation is to bring infinity in to a

finite distance. However, by doing so a new feature has come to light, namely that there are

a number of different kinds of asymptotic infinity. These can be characterised as the places

where the various different kinds of particles come from, and where they end up. Thus

we have the places denoted by i−, which is where massive particles (which follow timelike
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geodesics) came from at r = ∞ in the distant past, and i+, which is where they end up

at r = ∞ in the distant future, if they are fortunate enough to have followed paths that

keep them away from the event horizon and the singularity of the black hole. The regions

denoted by I− (and pronounced, regretfully, as “scri”) are likewise the places that massless

particles (following null geodesics) came from at r = ∞ in the distant past, and I+ is where

the lucky ones end up at in the distant future. (Note that in Figure 5 the symbols for scri,

appearing on the outer diagonal borders of the diagram, appear just as italic I , owing to the

limited xfig skills of the author.) Finally, hypothetical particles of negative mass-squared

(tachyons) would follow spacelike geadesics, and these begin and end at i0. The regions

i± are known as future and past timelike infinity, the regions I± are known as future and

past null infinity, and i0 is known as spacelike infinity. Of course one should remember

that the effect of having squeezed the entire universe onto a postage stamp is that one

can gain a false impression of distance. In particular, for example, although i0 looks like

a single point in the Penrose diagram, it is actually an entire infinite region. (This is over

and above the now-familiar fact that each point in any of our two-dimensional spacetime

diagrams really represents a 2-sphere.) Likewise, the “points” labelled i− and i+ are infinite

in extent. Furthermore, another aspect of the Penrose diagram is that i+ and i−, at r = ∞,

appear to be coincident with the ends of the horizontal r = 0 lines, which represent the

spacelike curvature singularities. This is again an unfortunate impression created by the

foreshortening resulting from the arctangent mapping, and they are in actuality infinitely

separated. In the words of Douglas Adams, in The Hitchhiker’s Guide to the Galaxy, “The

universe is a big place.”

It should be remarked that the discussion in this section has been somewhat of an

idealisation, and the maximal analytic extension of the Schwarzschild solution is not what

would arise in a physical situation where a black hole formed as a result of gravitational

collapse. In particular, the “south-west” part of the Penrose diagram would be missing in a

realistic example where a star collapsed to form a black hole. This is perhaps just as well,

because the south-west part of the diagram really describes a “white hole” from our point

of view as dwellers in the eastern part of the diagram; particles and null rays can come

out of it, but they cannot go in. A Penrose diagram for a star that collapses to form a

Schwarzschild black hole is depicted in Figure 6. The shaded area represents the inside of

the star.
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Figure 6: The Penrose diagram for a collapsing spherically-symmetric star.

4 Charged Black Holes

4.1 The Reissner-Norström solution

The black holes that we studied in the previous chapter were the simplest variety, which are

characterised by only one parameter, namely their mass m. As was mentioned previously,

more complicated black holes can also arise, with additional parameters characterising them.

Within the framework of pure general relativity, with no matter fields present, there is

just one other possible quantity that can characterise a black hole, namely its angular

momentum J . There is an exact solution describing such rotating black holes, known as the

Kerr solution. We shall defer further discussion of this case for now, because it is technically

quite complicated, although it does have many new and interesting features in its global

structure. A simpler generalisation of the Schwarzschild black hole, which exhibits some

rather similar new features, is provided by considering spherically-symmetric solutions of

the coupled Einstein-Maxwell equations, where the gravitating object carries electric (or

magnetic) charge, as well as mass.

The Einstein part of the coupled Einstein-Maxwell equations is obtained by taking the

Einstein equations (3.1), with Tμν being the energy-momentum tensor for the Maxwell field

strength Fμν . The Maxwell equations must now be formulated in curved spacetime. By

the principal of equivalence, which essentially says that physics in an arbitrary coordinate

system should be described by generally-covariant equations that reduce to the familiar

flat-space ones when specialised to a Minkowski-spacetime metric, we can deduce that

the source-free Maxwell equation ∂μ Fμν = 0 must be replaced by the generally-covariant

equation ∇μ Fμν = 0.
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There is an elegant, and useful, way to derive the coupled set of Einstein-Maxwell

equations from a Lagrangian. Let us write the Lagrangian

L =
√−g (R − 1

4F 2) , (4.1)

where g denotes the determinant of the metric tensor gμν , F 2 means Fμν Fμν , and by

definition, Fμν here is a shorthand for ∂μ Aν − ∂ν Aμ. If we vary the action I =
∫

d4xL

with respect to the metric, then demanding that this be stationary will give the Einstein

equations, while demanding that the variation of I with respect to the Maxwell potential

Aμ be stationary will give the Maxwell equations. To carry out the variation with respect

to the metric, it is convenient to vary gμν rather than gμν . We need to note, from the theory

of matrices, that we will have

δ
√−g = −1

2

√−g gμν δgμν . (4.2)

Also, to calculate δR, we note that since R = gμν Rμν , we will have δR = gμν δRμν +

Rμν δgμν . Now, we also know that Rμν = Rρ
μρν , and that the Riemann tensor is given by

(2.25), with Γμ
νρ given by (2.22). Thus we can deduce that

δRμν = δRρ
μρν ,

δRμ
νρσ = ∇ρ δΓμ

σν −∇σ δΓμ
ρν ,

δΓμ
σν = 1

2gμλ (∇σ δgλν + ∇ν δgλσ −∇λ δgσν) . (4.3)

The last two lines can be verified by direct computation from the various definitions in

chapter 2. A way to save a lot of time is to note that although Γμ
σν is not a tensor, its

variation δΓμ
σν is a tensor (in fact the difference between any two Christoffel connections is a

tensor, since the inhomogeneous terms in their transformation rules cancel). Consequently,

when calculating δΓμ
σν from (2.22), it follows that the partial derivatives must conspire to

become covariant derivatives after the variation. Likewise, when calculating δRμ
νρσ from

(2.25), the partial derivatives and the bare Christoffel connections after the variation must

conspire to produce covariant derivatives.

The upshot from all this is that we eventually conclude that

δ(
√−g R) =

√−g (Rμν − 1
2R gμν −∇μ∇ν + gμν ∇ρ ∇ρ) δgμν . (4.4)

In the variation of the action I, the last two terms here will integrate to zero, since

they are total derivatives. Thus after including the variation of the metric in
√−g F 2 =

√−g Fμν Fρσ gμρ gνσ, we arrive at the Einstein equations

Rμν − 1
2R gμν = Tμν = 1

2(Fμρ Fν
ρ − 1

4F 2 gμν) . (4.5)
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This is precisely consistent with the general form (3.1), where we have, for convenience,

chosen units where 8π G = 1.

Varying the action with respect to the vector potential Aμ instead, we arrive at

∂μ

(√−g Fμν
)

= 0 . (4.6)

Although this does not at first sight look covariant, it actually is; it is straightforward to

show, using (2.22) and the definitions of the covariant derivative in chapter 2, that it is

equivalent to

∇μ Fμν = 0 . (4.7)

We are now in a position to look for our solution of the Einstein-Maxwell equations.

We again assume spatial spherical symmetry and time-independence, and so the ansatz for

the metric will be the same one (3.2) that we adopted when constructing the Schwarzschild

solution. For the potential, the spherically-symmetric time-independent ansatz for the

potential will be

A = φdt , (4.8)

where φ, the electrostatic potential, is taken to be dependent only on r. (We shall look for

an electrically-charged black hole here.) After straightforward calculations, one finds that

the Maxwell equation (4.6) gives

d

dr

(
r2 φ′ e−A−B

)
= 0 , (4.9)

and that the vielbein components of the energy-momentum tensor defined in (4.5) are

T00 = −T11 = T22 = T33 = 1
4φ′2 e−2A−2B . (4.10)

Equating these to the vielbein components of the Ricci tensor, which were found in (3.11),

we see that again the sum of the first two equations gives B = −A. Now (4.9) is easily

solved for φ, and hence the third of the Einstein equations from (3.11) can then be solved

for A. The final result is that the metric and potential are given by

ds2 = −
(
1 − 2m

r
+

e2

r2

)
dt2 +

(
1 − 2m

r
+

e2

r2

)−1
dr2 + r2 (dθ2 + sin2 θ dϕ2) ,

A = φdt =
2e
r

dt , (4.11)

where m and e are constants. In fact m is again the mass, and e is the electric charge. (The

unusual-looking factor of 2 in the expression for the potential is a consequence of our choice

of conventions.) This is the Reissner-Nordström solution, describing an electrically-charged,

spherically-symmetric, static black hole.
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4.2 Global structure of the Reissner-Nordström solution

The Reissner-Nordström solution that we obtained in the previous subsection has some

features in common with the Schwarzschild solution (3.15) of the previous chapter. There

are also some important differences, and, as we shall see, the global structure of the maximal

analytic extension of the Reissner-Nordström spacetime is quite different from that of the

Schwarzschild spacetime.

First, we note that the metric is free of curvature singularities everywhere except at

r = 0. In fact, a straightforward calculation shows that

|Riem|2 =
48m2

r6
− 96 e2 m

r7
+

56e4

r8
. (4.12)

The function (1− 2m
r + e2

r2 ) appearing in the metric has roots, possibly complex, of the form

r = r±, where

r+ = m +
√

m2 − e2 r− = m −
√

m2 − e2 . (4.13)

Consequently, we have three different regimes to consider, namely e2 < m2, e2 = m2 and

e2 > m2. For e2 < m2 there are two distinct real, positive, roots; these coalesce to one

double root at r = m if e2 = m2. Finally, if e2 > m2, the two roots are complex.

Let us first calculate the analogue of the Regge-Wheeler “tortoise” coordinate for the

Reissner-Nordström metric. In other words, we solve for radial null geodesics in the

Reissner-Nordström geometry, with 0 = ds2 = −(1 − 2m
r + e2

r2 ) dt2 + (1 − 2m
r + e2

r2 )−1 dr2.

It follows by integrating this that we will have ingoing and outgoing null geodesics with

r∗ = −t and r∗ = +t respectively, where

e2 < m2 : r∗ = r+
r2
+

r+−r−
log(r−r+)− r2−

r+−r−
log(r−r−) , (4.14)

e2 = m2 : r∗ = m log ((r−m)2)− m2

r−m
, (4.15)

e2 > m2 : r∗ = r+m log ((r−m)2+e2−m2)

−2(e2−2m2)√
e2−m2

arctan
[ r−m√

e2−m2

√
e2−m2

]
. (4.16)

We can dispose of the case e2 > m2 rather easily. The roots r± are complex, and hence

the function (1− 2m
r + e2

r2 ) has no zeros for r > 0. This means that the curvature singularity

at r = 0 is not hidden behind an horizon, and it can in fact be seen from infinity. This can be

demonstrated by looking at the r∗ coordinate given in (4.16). We see that an outgoing null

geodesic, which will satisfy r∗ = t, requires only a finite amount of coordinate time to travel

from r = 0 to any finite distance r. In other words, one can stand at a safe distance from

the singularity and look at it. More technically, we can say that null geodesics can emanate
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from the singularity and end up at I+. When this circumstance arises, the singularity

is called a Naked Singularity. By contrast, in the Schwarzschild solution, we saw that the

singularity was “hidden” behind the event horizon at r = 2m, and no timelike or null curves

could pass from r = 0 to the “outside.” In the 1960’s a conjecture was formulated, known as

the “Cosmic Censorship Hypothesis,” which asserted that no physically-realistic collapsing

matter system could ever end up having naked singularities; they would always be decently

clothed behind event horizons. This has subsequently been proven. In particular, it can be

shown that no realistic system can evolve to give an e2 > m2 Reissner-Nordström metric. In

the dimensionless natural units which we are using it is sometimes easy to forget what the

scales of the various quantities are. It is worth remarking, therefore, that if a macroscopic

black hole with e2 > m2 did exist, it would be a fearsome object carrying a gargantuan

amount of charge.

Let us postpone the discussion of the intermediate case e2 = m2 for now, and look

next at the situation when e2 < m2. The function (1 − 2m
r + e2

r2 ) now has two distinct,

real, positive, roots r±, given by (4.13). This means that there are in fact two distinct

event horizons; the outer horizon at r = r+, and the inner horizon at r = r−. These mark

the boundaries where the function (1 − 2m
r + e2

r2 ) passes through zero and changes sign,

implying that the time coordinate t is spacelike for r− < r < r+, while it is genuinely

timelike for r > r+ and for 0 < r < r−. We may short-circuit some of the intermediate

steps paralleling our discussion for the Schwarzschild metric, and first go directly to the

double-null coordinates

v = t + r∗ , u = t − r∗ , (4.17)

in terms of which the Reissner-Nordström metric becomes

ds2 = −
(
1 − 2m

r
+

e2

r2

)
dv du + r2 dΩ2 . (4.18)

At this stage, things start to get a little tricky. First, to simplify the formulae a bit, let

us define two constants κ±, by

κ± =
r± − r∓

2r2±
. (4.19)

The expression for the r∗ coordinate (4.14) now becomes

r∗ = r +
1

2κ+
log(r − r+) +

1
2κ−

log(r − r−) . (4.20)

Now introduce coordinates v± and u±, defined by

v± = eκ± v , u± = −e−κ± u . (4.21)
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These are analogous to the Kruskal coordinates (ṽ, ũ) that we used in the Schwarzschild max-

imal analytic extension, only here there we need two different pairs, (v+, u+) and (v−, u−),

which will cover different patches on the spacetime manifold. Note that we have the follow-

ing identities:

v+ u+ = −(r − r+) (r − r−)κ+/κ− e2κ+ r , dv+ du+ = −κ2
+ v+ u+ dv du , (4.22)

v− u− = −(r − r−) (r − r+)κ−/κ+ e2κ− r , dv− du− = −κ2
− v− u− dv du , (4.23)

Substituting into (4.18), we see that the metric becomes

ds2 = −(r − r−)1−κ+/κ−

κ2
+ r2

e−2κ+ r dv+ du+ + r2 dΩ2 , (4.24)

and so it is non-singular for r > r−, with a coordinate singularity at r = r−. In fact these

(v+, u+) coordinates cover a region looking very like the Kruskal diagram (Figure 4) for

Schwarzschild, except that the genuine r = 0 singularity in Figure 4 is now relabelled as

the r = r− coordinate singularity, and the r = 2m lines in Figure 4 become r = r+. This is

depicted in Figure 7.

r = r -

r < r +

r > r +I

II

IV

III

r = r +

v +
u+

Figure 7: The region r > r− in Reissner-Nordström.

The shortcomings of the (v+, u+) coordinates are overcome by using the (v−, u−) coor-

dinates instead, in terms of which the metric (4.18) becomes

ds2 = −(r − r+)1−κ−/κ+

κ2− r2
e−2κ− r dv+ du+ + r2 dΩ2 , (4.25)

This is non-singular for r < r+, with a coordinate singularity at r = r+. Since r+ > r−, this

means that the (v+, u+) and v−, u−) coordinate patches overlap. The Kruskal-type diagram
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for the (v−, u−) coordinates is depicted in Figure 8. Now, the two main diagonals represent

r = r+, and the singularity at r = 0 corresponds to the two vertical arcs on the left and

right hand sides of the diagram. The crucial point is that there is the region of overlap

between the validity of the (v+, u+) and the (v−, u−) coordinates, when r− < r < r+. This

means that region II in Figure 7 is actually the same as region II in Figure 8. On the other

hand, region III in Figure 7 is distinct from region III′ in Figure 8. However, since region II

in Figure 7 connects to an exterior spacetime in the past (namely regions I, III and IV), it

follows by time-reversal invariance that region III′ in Figure 8 must connect to an exterior

spacetime in its future. This argument then repeats indefinitely, so that we must go on

stacking up copies of Figure 7, then Figure 8, then Figure 7 again, and so on, into the

infinite past and future.

v-
u-

VI

III’

V

II

r = 0r = 0

0 < r < r -

r   < r  < r- +

 r = r-

Figure 8: The region 0 < r < r+ in Reissner-Nordström.

If we now make arctangent transformations of the kind we used for Schwarzschild, we

can make an entire Figure 7 plus Figure 8 pair fit onto a finite-sized piece of paper. However,

since we have to stack up an infinite number of such pairs, we will still have a Penrose dia-

gram that streches off to infinity along the vertical axis. We might say that if Schwarzschild

spacetime can be fitted onto a postage stamp, then for Reissner-Nordström we need an

infinite roll of stamps. This is depicted in Figure 9.

The most striking difference between the Reissner-Nordström and the Schwarzschild

maximal analytical extensions is that for Reissner-Nordström, the curvature singularities at

r = 0 are timelike, rather than spacelike. This means that an infalling timelike curve can

in fact avoid the singularity, and come out into another asymptotic region. For example,

in Figure 9 a particle (or observer) can start in region I, pass through regions II, VI and
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Figure 9: The maximal analytic extension of Reissner-Nordström.

III′, and come out into region I′. There is no possibility of returning, however, so if we

inhabited region I we could never receive reports of what was happening in region I′. By

the same token, however, it would be possible in principle for an observer to enter our region

I from region II, having started out on the next “postage stamp” down on the roll. Such an

observer would emerge from the outer horizon of the black hole. One should really view the

r = r+ boundary between regions II and I as the outer horizon of a white hole, in fact, since

future-directed particles or null rays can only come out of it; they cannot cross inwards.

Again, as in the Schwarzschild spacetime of the previous chapter, one should be cautious

about taking the entire maximal analytic extension too seriously as a physical spacetime,

since a realistic gravitational collapse will not give rise to the entire diagram.

The remaining case to consider is when e2 = m2. We see from (4.13) that the inner and
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outer horizons now coalesce, at r = m. The metric in this limit is known as the Extremal

Reissner-Nordström solution, and in terms of the original coordinates it takes the form

ds2 = −
(
1 − m

r

)2
dt2 +

(
1 − m

r

)−2
dr2 + r2(dθ2 + sin2 θ dϕ2) . (4.26)

This is singular at r = m, and so in the now familiar way, we change first to the appropriate

ingoing Eddington-Finkelstein type coordinates (v, r), where v = t + r∗ and r∗ is defined in

(4.15). This turns the metric into the form

ds2 = −
(
1 − m

r

)2
dv2 + 2dv dr + r2 dΩ2 , (4.27)

where again we use the abbreviated notation dΩ2 for the metric on the unit 2-sphere. This

is non-singular for all r > 0, including, in particular, the horizon at r = m. As usual, one

can easily show that infalling timelike geodesics can reach and cross the horizon in a finite

proper time.

The analysis of the maximal analytic extension proceeds in a similar fashion to the

previous discussion for e2 < m2. Essentially all that changes is that region II and its copies

II′, etc. all disappear, since r− and r+ are now both equal to m. Thus we arrive at the

maximal analytic extension depicted in Figure 10. This spacetime with e = m is known as

the extremal Reissner-Nordström solution. Note that the points marked by a “p” on the

left-hand vertical axis in Figure 10 are actually at r = ∞, and not at r = 0. This is again

one of the penalties exacted upon those who presume to fit the universe onto a scrap of

paper.

Note, incidentally, that the horizon at r = m, like all those that we have encountered,

has the property of being a null surface. A null surface is defined as follows. Suppose we

have a surface, or hypersurface, defined by f(x) = 0, where x represents the spacetime

coordinates xμ. It follows that the 1-form df , with components ∂μf , will be perpendicular

to the surface. If one now calculates the norm of this covector, namely |df |2 ≡ gμν ∂μf ∂νf ,

then the surface is defined to be null, timelike or spacelike according to whether this norm

is zero, positive or negative. In all our cases the equation defining the event horizon is of

the form f(r) = 0 (for example, in the present case of the extremal Reissner-Nordström

metric, it is f(r) ≡ r − m = 0, and so we have |df |2 = |dr|2 = grr. It is easily seen, either

in the original diagonal forms for the metrics, or in the Eddington-Finkelstein forms where

the metric has off-diagonal components, that grr vanishes at the horizons. For example, in

the present case we have grr = (1 − m/r)2, demonstrating that the event horizon is a null

surface.
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5 Rotating Black Holes

5.1 An interlude on Killing vectors

So far, the black-hole solutions that we have been considering have been spherically-symmetric,

and static. The term static should now be made a little more precise. First of all, it means

that everything (i.e. the metric, and any other fields, such as the Maxwell field in the case of

charged solutions) should be independent of time. But it also means more than this; there

should be no off-diagonal components in the metric tensor that mix between the asymp-

totic time coordinate t and any of the other coordinates. In other words, there should be

no off-diagonal components of the form gtr, gtθ or gtϕ. We can actually express this a little

more precisely and invariantly, if we first introduce another concept which will prove to be

useful later, namely that of a Killing vector.

Suppose we have a covector ω = ωμ dxμ, and we make an infinitesimal coordinate

transformation xμ −→ x′μ = xμ + ξμ; so δxμ ≡ x′μ − xμ = ξμ is infinitesimal. Being
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the infinitesimal difference between neighbouring coordinate values, ξμ is actually a vector.

Then we may consider the effect of this coordinate transformation on ωμ, :

δ ω = δ ωμ dxμ + ωμ dδ xμ

= ξν ∂ν ωμ dxμ + ωμ dξμ

= ξν ∂ν ωμ dxμ + ωμ ∂ν ξμ dxν

≡ Lξ ωμ dxμ . (5.1)

where in the last line we have defined the so-called Lie derivative of ω with respect to ξ.

Thus we have

Lξ ωμ = ξν ∂ν ωμ + ων ∂μ ξν . (5.2)

This generalises in the obvious way to multi-index cotensors, with one term like the last

one for each downstairs index:

Lξ Tμ1···μn = ξν ∂ν Tμ1···μn + Tν···μn ∂μ1 ξν + · · · + Tμ1···ν ∂μn ξν . (5.3)

Similarly, we may look at the infinitesimal transformation of tensors with upstairs indices,

making use of the easily-derived result that δ ∂μ = −∂μ ξν ∂ν . Hence we extend the definition

of the Lie derivative to vectors and tensors with upstairs indices:

Lξ V μ = ξν ∂ν V μ − V ν ∂ν ξμ ,

Lξ T μ1···μn = ξν ∂ν T μ1···μn − T ν···μn ∂ν ξμ1 − · · · − T μ1···ν ∂ν ξμn . (5.4)

The extension to tensors with upstairs and downstairs indices follows immediately from

(5.3) and (5.4). Note that the Lie derivative takes a tensor into another tensor.

Having introduced the Lie derivative, let us consider applying it to the metric itself.

From (5.3), it follows that we will have

Lξ gμν = ξρ ∂ρ gμν + gρν ∂μ ξρ + gμρ ∂ν ξρ . (5.5)

From the definitions (2.22) and (2.24), it is not hard to see that this can be re-expressed as

Lξ gμν = ∇μ ξν + ∇ν ξμ . (5.6)

Now, it can sometimes happen that the metric ds2 is actually left unaltered in form by

the infinitesimal transformation ξμ, implying, from (5.6), that we will have

∇μ ξν + ∇ν ξμ = 0 . (5.7)
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This equation is known as Killing’s equation, and a vector ξμ that satisfies it is known as

a Killing vector. If a Killing vector exists, it corresponds to the existence of a symmetry of

the metric.

Consider the example of the Schwarzschild metric (3.2). It is evident that sending

t −→ t + c is a symmetry, which leaves the form of the metric unchanged, where c is any

constant. Thus we may deduce that the vector Kμ with all components except vanishing

except for Kt = 1 is a Killing vector, and indeed it is straightforward to see that it satisfies

(5.7). (In fact it is much easier to look at (5.5), and to see that it has the property that

LK gμν = 0, since this calculation does not involve deriving the Christoffel symbols Γμ
νρ.)

Thus we have the Killing vector

K =
∂

∂t
(5.8)

in the Schwarzschild metric, corresponding to the time-translation invariance of the metric.

In fact the Schwarzschild metric has a total of four Killing vectors. The other three

are associated with the rotational invariance of the metric, which, it will be recalled, is

spherically symmetric. Thus the additional three Killing vectors correspond to the three-

parameter rotation group SO(3) that acts on the 2-spheres described by the coordinates

(θ, ϕ). Two of the three are slightly complicated, but the third is very simple, namely

L =
∂

∂ϕ
. (5.9)

This is in fact the generator L3 of the three rotation-group generators Li, and it corresponds

to the azimuthal symmetry transformation ϕ −→ ϕ + c, where c is a constant. Again,

it is manifest by inspection that this is a symmetry of the Schwarzschild metric. For

completeness, let us give the other two rotational Killing vectors:

L1 = sin ϕ
∂

∂θ
+ cot θ cos ϕ

∂

∂ϕ
,

L2 = cos ϕ
∂

∂θ
− cot θ sin ϕ

∂

∂ϕ
. (5.10)

One easily checks that together with L3 = L, the three Killing vectors Li generate the

SO(3) algebra: [Li, Lj] = εijk Lk. It is quite easy to show from (5.5) that L1 and L2 are

indeed Killing vectors. One can also straightforwardly show from the definitions that in

any spacetime, the commutator of any two Killing vectors must necessarily also be a Killing

vector (possibly zero).

The timelike Killing vector K given in (5.8) clearly commutes with the three spatial

rotation Killing vectors Li. Thus we have a factorised 4-parameter symmetry group IR ×
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SO(3) for the Schwarzschild metric, where the IR factor corresponds to time translations.

Of couse when we say that the Killing vector K is timelike, this statement is actually true

only when r > 2m. In fact the Killing vector K is easily seen to have magnitude-squared

|K|2 ≡ gμν Kμ Kν = gtt, and so it is timelike when r > 2m, null when r = 2m, and spacelike

when r < 2m.

The Reissner-Nordström metric has the same 4-parameter symmetry group. Again, we

see that the Killing vector K has magnitude-squared |K|2 given by gtt. This means that in

the e2 < m2 case it is timelike when r > r+ and also when 0 < r < r−; it is null on both

the horizons r = r− and r = r+, and it is spacelike in the intermediate region r− < r < r+.

Having introduced the notion of a Killing vector, we can now give a somewhat more

precise, if less transparent, definition of what is meant by a static spectime. A spactime

is said to be static if its metric admits a timelike Killing vector field that is orthogonal

to a family of spacelike surfaces. In particular we see that if the metric is such that ∂/∂t

is a Killing vector, and if all off-diagonal components gti of the metric vanish, then this

condition of staticity is satisfied.

5.2 The Kerr solution

Unlike the Schwarzschild and Reissner-Nordström solutions, the Kerr solution describes a

rotating black hole, and consequently it is not spherically symmetric, since it has a preferred

axis of rotation. In terms of the discussion of the previous subsection, it will still have the

Killing vector L = ∂/∂ϕ, corresponding to the azimuthal rotational symmetry, but it will no

longer have the other two Killing vectors L1 and L2 given in (5.10). The Kerr metric is still

time-independent, and it has K = ∂/∂t as a Killing vector, but it will no longer satisfy the

conditions for being static. Rather, it is what is known as stationary. An asymptotically

flat metric is said to be stationary if and only if it admits a Killing vector field that is

timelike near infinity.

We shall not derive the Kerr solution here, since it is actually a rather involved compu-

tation. It was found by Kerr in 1963, by solving the vacuum Einstein equations for metrics

that are stationary and azimuthally-symmetric. The resulting solution can be expressed in

Boyer-Lindquist coordinates in the form

ds2 = −(Δ − a2 sin2 θ)
ρ2

dt2 − 4mar sin2 θ

ρ2
dt dϕ

+

(
(r2 + a2)2 − Δ a2 sin2 θ

)
sin2 θ

ρ2
dϕ2 +

ρ2

Δ
dr2 + ρ2 dθ2 , (5.11)
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where

ρ2 ≡ r2 + a2 cos2 θ , Δ ≡ r2 − 2m r + a2 . (5.12)

One can also write the metric in a slightly different form, as

ds2 = ρ2
(dr2

Δ
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2 − dt2 +

2m r

ρ2
(a sin2 θ dϕ − dt)2 . (5.13)

The Kerr metric has a curvature singularity at ρ2 = 0, i.e. at

r = 0 , θ =
π

2
. (5.14)

This can be seen from the curvature invariant |Riem|2, which, after lengthy computations,

can be seen to be given by

|Riem|2 =
48m2 (r2 − a2 cos2 θ)(ρ4 − 16a2 r2 cos2 θ)

ρ12
(5.15)

It is evident that when the parameter a is set to zero, the metric reduces precisely to

the Schwarzschild solution. In general, it is invariant under the simultaneous replacements

t −→ −t and ϕ −→ −ϕ, which is what one would expect for an object that is rotating. In

fact it can be shown, by comparing the asymptotic form of the metric (5.11) at large distance

with the form of metrics in the Newtonian limit, that J = am is the angular momentum

as measured at infinity. The procedure for showing this is analogous to the weak-field

Newtonian analysis that we performed in scetion 3, for showing that the parameter m in

the Schwarzschild solution has the interpretation of mass. In fact here too, one finds that

m is the mass.

As with the Reissner-Nordström solution, here too we have three different cases to

consider, depending on the nature of the roots of the function Δ. Thus if a2 < m2 there

are two real roots, which coalesce if a2 = m2. If a2 > m2 the roots are complex, and so Δ

is nonvanishing for all real r.

Let us consider the case a2 > m2 first. The metric (5.11) is singular only at r = 0.

It is useful to introduce new coordinates (x, y, z, t̄), known as Kerr-Schild coordinates, and

defined by

x + i y = (r + i a) ei ϕ+ sin θ ,

z = r cos θ , t̄ = −r +
∫ (

dt + (r2 + a2)Δ−1 dr
)

, (5.16)

where

ϕ+ =
∫

(dϕ + aΔ−1 dr) . (5.17)
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In terms of these coordinates, the metric (5.11) becomes

ds2 = dx2 + dy2 + dz2 − dt̄2

+
2m r2

r4 + a2 z2

(r(x dx + y dy) − a (x dy − y dx)
r2 + a2

+
z dz

r
+ dt̄

)2
, (5.18)

where r is now determined implicitly by the equation

r4 − (x2 + y2 + z2 − a2) r2 − a2 z2 = 0 . (5.19)

As an aside, we can immediately see from this expression that the metric is flat if m = 0,

even if a is non-zero.

Equation (5.19) can be viewed as defining a surface in (x, y, z) space for each value of r.

In fact it describes what are known as confocal ellipsoids. For our purposes, we just need

to note that these degenerate at r = 0 to the disk

x2 + y2 ≤ a2 , z = 0. (5.20)

The boundary of the disk corresponds to θ = π/2, and hence we see from (5.14) that the

curvature singularity at r = 0 actually corresponds to the ring x2 + y2 = a2, z = 0.

One can actually analytically continue the r coordinate from positive to negative values.

This is done by introducing another plane, defined by coordinates (x′, y′, z′), with the top

side of the disk x2 +y2 < a2, z = 0 identified with the bottom side of the disk x′2 +y′2 < a2,

z′ = 0, and vice versa. After extending the metric (5.18) according to this scheme, one finds

from (5.16) that the metric in the region covered by (x′, y′, z′) is again of the form (5.11),

but with r now negative. It is evident therefore that at large negative values of r the metric

is again asymptotically flat, but now with a negative mass −m.

The magnitude-squared of the azimuthal-symmetry Killing vector L = ∂/∂ϕ is given by

|L|2 = gϕϕ, and so from (5.11) we see that when θ = π/2, we have

|L|2 = r2 + a2 +
2m a2

r
. (5.21)

Thus at points with small negative r, near to the ring singularity at r = 0, θ = π/2, we see

that L, which is normally spacelike, becomes timelike. But since ϕ is a periodic angular

coordinate, this means that the circles (t, r, θ) =constant become timelike in this region.

This means that there are closed timelike curves in the spacetime. In fact, since there are

no horizons when a2 > m2, these curves can be deformed to pass through any point in

the spacetime. This represents a violation of causality in the spacetime, opening up all the

usual science-fiction possibilities of attempting to bring about a paradox by killing one’s
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own grandmother, etc. In fact it is more than just grandmothers who are at risk in this

spacetime, since the absence of horizons implies that the ring singularity is visible from the

asymptotic region near r = ∞. This would be a naked singularity, implying a breakdown

of all predictability, and fortunately the formation of this a2 > m2 spacetime is ruled out

by the Cosmic Censor.

Let us turn now to the case when a2 < m2. The metric (5.11) is now singular not only

at r = 0, but also at the two roots r = r± of the function Δ:

r+ = m +
√

m2 − a2 , r− = m −
√

m2 − a2 . (5.22)

These surfaces are analogous to the r± surfaces in the Reissner-Nordström solution. To

extend the metric across these surfaces, we introduce the Kerr coordinates (r, θ, ϕ+, u+),

where

u+ = t +
∫ r (r′2 + a2) dr′

Δ(r′)
, ϕ+ = ϕ +

∫ r a dr′

Δ(r′)
, (5.23)

where Δ(r′) means r′2 − 2m r′ + a2. In terms of these coordinates, the metric (5.11) takes

the form

ds2 = ρ2 dθ2 − 2a sin2 θ dr dϕ+ + 2dr du+ −
(
1 − 2m r

ρ2

)
du2

+

+
(r2 + a2)2 − Δ a2 sin2 θ

ρ2
sin2 θ dϕ2

+ − 4amr

ρ2
sin2 θ dϕ+ du+ . (5.24)

It is easily seen that this is regular at r = r+ and r = r−. It again has a singularity at

r = 0, and a similar analysis to the one we carried out for a2 > m2 shows that here too,

the curvature singularity actually lies on a ring at r = 0.

The extended spacetime described by the metric (5.24) covers all values of r in the range

−∞ < r < ∞, with the exception of r = 0. Another extension is provided by introducing

instead the coordinates (r, θ, ϕ−, u−), where

u− = t −
∫ r (r′2 + a2) dr′

Δ(r′)
, ϕ− = ϕ −

∫ r a dr′

Δ(r′)
. (5.25)

This gives a metric simiar to (5.24), but with the replacements (ϕ+, u+) −→ (−ϕ−,−u−).

This again covers −∞ < r < ∞, but it is inequivalent to the analytic extension described

by (5.24). The situation is analogous to the two extensions (M′,g′) and (M′′,g′′) in

Schwarzschild, corresponding to the use of advanced and retarded Eddington-Finkelstein

coordinates respectively. We can again patch together the entire maximal analytic exten-

sion, by studying carefully what overlap there is between the regions covered in the two
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charts. We find a situation similar to that for the Reissner-Nordström solution, with an in-

finite chain of regions patched together along the time direction. This is depicted in Figure

11.
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Figure 11: The maximal analytic extension of a2 < m2 Kerr spacetime.

In the Schwarzschild and Reissner-Nordström spacetimes, the Killing vector K = ∂/∂t

is timelike for large r, and becomes null on the horizons at r = 2m and r = r+ respectively.

In Schwarzschild, it is then spacelike for all r in the range 0 < r < 2m, whilst for Reissner-

Nordström it is spacelike for r− < r < r+, null again on the inner horizon at r = r−, and

timelike for 0 < r < r−. One might think from these examples that the Killing vector that

is timelike at infinity is always null on horizons. However, this is not the case in the Kerr

spacetime, as we shall now discuss.
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Clearly the magnitude squared of K = ∂/∂t = Kμ ∂μ is given by gtt, since Kμ has just

the single non-vanishing component Kt = 1. Thus in the Kerr spacetime we see from (5.11)

that

|K|2 = gtt = −(r2 − 2m r + a2 cos2 θ) . (5.26)

This means that the Killing vector K becomes null on the surfaces

r = m ±
√

m2 − a2 cos2 θ . (5.27)

In particular, this means that there is a region between the outer horizon at r = r+ and the

so-called stationary limit surface at r = m +
√

m2 − a2 cos2 θ, within which K is spacelike.

This region outside the horizon where K is spacelike is called the ergosphere; this is depicted

in Figure 12. It is that part of the inside of an oblate ellipsoid that lies outside a sphere

which touches the ellipsoid at the north and south poles.

Symmetry axis 

Outer horizonInner horizon

Ergosphere

Ergosphere

r=r-
r=r+

Stationary limit surface

Figure 12: The Ergosphere.

The stationary limit surface represents the inner boundary of the region where particles

travelling on timelike curves can travel on an orbit of the Killing vector K = ∂/∂t. In other

words, for all points outside the stationary limit surface, it is possible for a particle to follow

a timelike path with r, θ and ϕ held fixed; that is to say, it is at rest as seen from infinity.

The stationary limit surface is a timlike surface at all points except these two points

of contact with the outer horizon. (Of course the outer horizon itself is a null surface

everywhere.) This can be seen by calculating the magnitude squared of the differential of
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the function f = r2 − 2m r + a2 cos2 θ whose vanishing defines the stationary limit surface:

df = 2(r − m) dr − 2a2 sin θ cos θ dθ = fr dr + fθ dθ ;

|df |2 = grr (fr)2 + gθθ f2
θ =

4Δ (r − m)2 + a4 sin2 2θ
ρ2

. (5.28)

(Since grθ = 0.) Hence, on the stationary limit surface defined by f = 0, we have

|df |2 =
4a2 m2 sin2 θ

ρ2
. (5.29)

This shows that the surface is timelike for all θ except for θ = 0 and θ = π, where it becomes

null.

Since the stationary limit surface is generically timelike, this means that it can be crossed

in both directions by particles following timelike paths. The only exception is at the north

and south poles, where it coincides with the outer event horizon. The situation can be

clarified with the aid of a diagram. Owing to the limitations of the 2-dimensional page,

we shall just take a section through the equatorial plane, θ = 1
2π. Figure 13 depicts this,

with r plotted radially, and ϕ as the angular coordinate. Black dots represent events where

flashes of light were emitted, and the circles show the light-fronts a short while later.

Stationary limit surface

Ergosphere
Singularity

Inner horizon

Outer horizon

Figure 13: Light-cones in equatorial plane.
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On the stationary limit surface, the point of emission lies on the light-front, since K

is null there. The light-front itself lies partially inside and partially outside the stationary

limit surface, since it is a timelike surface. Inside the ergosphere, the emission point lies

outside the lightfront, since K is spacelike. At r = r+ K is still spacelike, and so the

emission point still lies outside the wave-front. But now, for emssion points on r = r+, the

wave-fronts lie entirely within the horizon, since r = r+ is a null surface.

The third case to consider is the extremal situation when a2 = m2, implying that the

two roots r± = m±√
m2 − a2 become coincident, at r = m. The story is similar to that of

the extremal Reissner-Nordström solution with e2 = m2, and looking at Figure 11 we can

see that the effect of setting a2 = m2 is to squeeze down the Penrose diagram so that all

the regions II are removed. The result is presented in Figure 14.
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Figure 14: The maximal analytic extension of a2 = m2 Kerr spacetime.
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5.3 Killing horizons and surface gravity

5.3.1 Killing horizons

There are several useful concepts that it now becomes appropriate to introduce. First, is

the notion of a Killing Horizon,1 which is defined as follows. A null hypersurface N is a

Killing Horizon of a Killing vector field ξ if, on N , ξ is normal to N .

Now, if a hypersurface is defined by f = 0, then vector fields normal to this surface are

of the form

�μ = h gμν ∂νf , (5.30)

where h is any non-vanishing function. Consequently, the hypersurface is a Killing horizon

of a Killing vector ξ if, firstly, �μ �μ = 0 (i.e. it is null), and secondly ξμ = ψ �μ for some

non-vanishing function ψ(x).

A further observation is that the �μ is not only normal to the null surface N , but it is

also tangent to N . This follows from the fact that, by definition, any vector tμ tangent to

a surface is orthogonal to the normal vector �μ, i.e. tμ �μ = 0. But since �μ is null here,

it follows that it itself satisfies the condition for being a tangent vector. This means that

there must exist some curve xμ = xμ(λ) in N such that

�μ =
dxμ

dλ
, (5.31)

where λ parameterises the curve.

The curves xμ(λ) are in fact geodesics. To see this, recall that �μ = dxμ/dλ is given by

(5.30), and now calculate �ρ ∇ρ �μ:

�ρ ∇ρ �μ = (�ρ ∂ρh) gμν ∂μf + h gμν �ρ ∇ρ ∂ν f ,

= (�ρ ∂ρ log h) �μ + h gμν �ρ (∇ν ∂ρ f) ,

= �μ d log h

dλ
+ h �ρ ∇μ(h−1 �ρ) ,

= �μ d log h

dλ
+ �ρ ∇μ �ρ − �2 (∂μ log h) ,

= �μ d log h

dλ
+ 1

2∂μ (�2) − �2 (∂μ log h) . (5.32)

(The indices ρ and ν in the second term of the second line could be interchanged on account

of the fact that second covariant derivatives commute on scalar fields.) Now, we know that
1This does not, of course, allude to any lethal properties of the event horizon! Indeed, as we have seen,

one can pass through the event horizon of a black hole quite unscathed, and, while one might view the

unfolding developments with a measure of concern, it is only later that one’s situation becomes precarious.
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�μ is null on N , so �2 = 0 there. This does not mean that ∂μ(�2) vanishes on N , but the fact

that �2 = 0, which is constant, on N does mean that tμ ∂μ(�2) = 0 for any vector tμ tangent

to N . In view of the previous discussion, this means that ∂μ(�2) must be proportional to

�μ on N , and hence we have that

�ρ ∇ρ �μ
∣∣∣N = α �μ (5.33)

for some function α. Recalling that the function h in (5.30) is still at our disposal, we see

that by choosing it appropriately, we can make α vanish. This would imply that xμ(λ) on

N satisfies the geodesic equation

�ρ ∇ρ �μ =
d2xμ

dλ2
+ Γμ

ν ρ
dxν

dλ

dxρ

dλ
= 0 (5.34)

on N , with λ being an affine parameter. (The more general equation (5.33) is still the

geodesic equation, but with the parameter λ not an affine parameter.) One can define the

null geodesics xμ(λ) with affine parameter λ, for which the tangent vectors �μ = dxμ/dλ

are normal to the null surface N , to be the generators of N .

Let us now look at the event horizons in the Kerr spacetime. It is convenient to use the

metric given in (5.24), since this is valid on the two horizons. It is not difficult to calculate

the components of the inverse metric in this coordinate system, and in particular, that

gr u+ =
r2 + a2

ρ2
, grr =

Δ
ρ2

, grθ = 0 , gr ϕ+ =
a

ρ2
. (5.35)

Thus on the horizons, where Δ = 0, we have that the normal vectors are proprotional to

r2± + a2

ρ2

∂

∂u+
+

a

ρ2

∂

∂ϕ+
. (5.36)

Now it is easily seen from (5.25) that ∂/∂v = ∂/∂t and ∂/∂ϕ+ = ∂/∂ϕ, and hence we

deduce that the event horizons r = r± are Killing horizons of

ξ = K +
a

r2± + a2
L =

∂

∂t
+

a

r2± + a2

∂

∂ϕ
. (5.37)

In particular, we have that the outer horizon is a Killing horizon of the Killing vector

ξ =
∂

∂t
+ ΩH

∂

∂ϕ
(5.38)

where

ΩH ≡ a

r2
+ + a2

=
a

2m r+
. (5.39)
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In fact ΩH can be interpreted as the angular velocity of the horizon. To see this, we first

note that the angular velocity of a particle, as measured with respect to infinity, is given by

Ω =
dϕ

dt
=

dϕ/dτ

dt/dτ
=

Uϕ

U t
, (5.40)

where Uμ = dxμ/dτ is its 4-velocity. Thus we have

U = Uμ ∂μ = U t ∂

∂t
+ Uϕ ∂

∂ϕ
= U t

( ∂

∂t
+ Ω

∂

∂ϕ

)
. (5.41)

This means that particles moving on the orbits of ξ rotate with angular velocity ΩH with

respect to static particles that move on the orbits of K. In other words, particles moving on

the orbits of ξ have angular velocity ΩH relative to the stationary frame at infinity. Finally,

since we showed that the event horizon is a Killing horizon of ξ, it follows that the null

geodesic generators of the horizon themselves follow orbits of ξ. Thus the outer horizon

of the Kerr black hole is rotating with angular velocity ΩH with respect to the stationary

frame at infinity.

5.3.2 Surface gravity

We saw in the previous discussion that if N is a Killing horizon of the vector field ξ, then if

�μ is a normal vector to N in the affine parametrisation, implying �ν ∇ν �μ = 0, then there

exists a function ψ such that ξμ = ψ �μ. It then follows that on N we shall have

ξν ∇ν ξμ = κ ξμ , (5.42)

where

κ = ξν ∂ν log |ψ| . (5.43)

The surface gravity κ may be expressed in a variety of different ways, which can be

derived from (5.42). First, observe that if we view ξ as the 1-form ξ = ξμ dxμ, then the fact

that ξ is normal to N means that ξ ∧ dξ|N = 0. This is known as Frobenius’ theorem. This

can be rewritten in terms of indices as

ξ[μ ∂ν ξρ]

∣∣∣N = 0 . (5.44)

Now since ξ is a Killing vector, it follows from (5.7) that

∇μ ξν = ∇[μ ξν] = ∂[μ ξν] , (5.45)

and hence (5.44) can be rewritten as

ξρ ∇μ ξν = ξν ∇μ ξρ − ξμ ∇ν ξρ . (5.46)
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Multiplying by ∇μ ξν , we obtain

ξρ (∇μ ξν) (∇μ ξν)
∣∣∣N = −2(ξμ ∇μ ξν) (∇ν ξρ)

∣∣∣N ,

= −2κ (ξν ∇ν ξρ)
∣∣∣N ,

= −2κ2 ξρ

∣∣∣N , (5.47)

where we have twice made use of the equation (5.42). Thus aside from singular points on

N where ξρ vanishes, we have

κ2 = −1
2(∇μ ξν) (∇μ ξν)

∣∣∣N . (5.48)

In fact points where ξρ vanishes are arbitrarily close to points where it is non-zero, so by

continuity the expression (5.48) for κ is valid everywhere on N .

A simpler expression for κ can be given, which does not require the use of the covariant

derivative, using (5.45). Thus we obtain

κ2 = −1
2gμρ gνσ (∂[μ ξν]) (∂[ρ ξσ])

∣∣∣N . (5.49)

Another way of expressing κ, which can sometimes be useful for calculational purposes, is

obtained by first noting that any Killing vector satisfies the identity

∇μ ∇ν ξρ = Rσ
μνρ ξσ . (5.50)

This can be proven using the general result, following from the definitions in section 2, that

[∇μ,∇ν ]V ρ = Rρ
σμν V σ . (5.51)

By taking a covariant derivative of (5.7), and using this result and the cyclic identity for the

Riemann tensor, (5.50) follows. By taking a contraction of (5.50), we obtain the identity

ξμ = −Rμν ξν , (5.52)

valid for any Killing vector, where = ∇μ ∇μ is the covariant Laplacian. Now, noting that

ξ2 = 2(∇μ ξν) (∇μ ξν) + 2ξμ ξμ, where ξ2 means ξμ ξμ, we obtain the result that

κ2 = −1
4( ξ2 + 2Rμν ξμ ξν)

∣∣∣N . (5.53)

This formula is especially easy to use in cases where the spacetime is Ricci flat, such as in

the Kerr metric. Note also that the Laplacian of a scalar field φ is expressible in the simple

form

φ =
1√−g

∂μ

(√−g gμν ∂ν φ
)

, (5.54)
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allowing the first term in (5.53) to be evaluated without the need for explicit computation

of the Christoffel connection.

Finally, we can obtain the following even simpler expression for κ:

κ2 = (∂μ λ) (∂μ λ)
∣∣∣N , (5.55)

where λ2 ≡ −|ξ|2 = −ξμ ξμ. The proof is surprisingly tricky. We can rewrite the Frobenius

condition (5.44) that holds on the horizon as ξ[μ ∇ν ξρ] = 0. By simply writing out the three

terms in this, it is then easy to see that we can write the square of the Frobenius condition

as

3(ξ[μ ∇ν ξρ])(ξ[μ ∇ν ξρ]) = ξμ ξμ (∇ν ξρ)(∇ν ξρ) − 2(ξμ ∇ν ξρ)(ξν ∇μ ξρ) , (5.56)

which is valid everywhere. Now since ξ[μ ∇ν ξρ] vanishes on the horizon, it follows that the

gradient of the left-hand side of (5.56) vanishes on the horizon. On the other hand, we

know from (5.42) that the gradient of |ξ|2 does not vanish on the horizon, provided that

κ is non-zero. This means that by l’Hospital’s rule, it must be that we can divide (5.56)

by |ξ|2 and then take the limit as we approach the horizon, and the left-hand side will still

vanish. Thus we are able to deduce that in the limit of approaching the horizon, we have

(∇ν ξρ)(∇ν ξρ) =
2(ξμ ∇ν ξρ)(ξν ∇μ ξρ)

|ξ|2 . (5.57)

Having successfully negotiated this tricky step, the rest is plain sailing. The right-hand side

in (5.57) can be immediately rewritten as

∂ρ(ξν ξν) ∂ρ(ξμ ξμ)
2|ξ|2 , (5.58)

which is nothing but −1
2∂ρλ∂ρλ. From (5.48), the result (5.55) now immediately follows.

Note that from its definition so far, the normalisation for κ is undetermined, since it

scales under constant scalings of the Killing vector ξ. Once cannot normalise ξ at the

horizon, since ξ2 = 0 there, but its normalisation can be specified in terms of the behaviour

of ξ at infinity. It is conventional to define κ in terms of the Killing vector combination

of the form K + ΩH L, such as arises in (5.38) in the Kerr solution. More generally, this

can be stated as follows. There is a unique Killing vector (up to scale) that is timelike

at arbitrarily large distances in the asymptotically flat regions. (In our coordinates, this

is precisely K = ∂/∂t.) This vector, which we shall denote generically by K, may be

normalised canonically by requiring that it have magnitude-squared equal to −1 at infinity.

Then the Killing vector ξ of the Killing horizon is defined to be ξ = K+· · ·, where the ellipses

58



denote whatever additional spacelike Killing vectors appear in the calculated expression for

ξ.

Let us now examine why the quantity κ is called the surface gravity. It has the interpre-

tation of being the acceleration of a static particle near the horizon, as measured at spatial

infinity. One can see this as follows. Let us consider a particle near the horizon, moving on

an orbit of ξμ; this means that its 4-velocity uμ = dxμ/dτ is proportional to ξμ. Since the

4-velocity must satisfy uμ uμ = −1, this means that we must have

uμ = λ−1 ξμ , (5.59)

where, as above, we have defined the function λ by λ2 = −ξμ ξμ. Now, the 4-acceleration

of the particle is given by

aμ =
Duμ

Dτ
≡ dxν

dτ
∇ν uμ = uν ∇ν uμ . (5.60)

Using (5.59), we see that this gives

aμ = λ−2 ξν ∇ν ξμ − λ−3 ξμ ξν ∇ν λ

= −λ−2 ξν ∇μ ξν − 1
2λ−4 ξμ ξν ∇ν(ξρ ξρ)

= −1
2λ−2 ∂μ (ξν ξν) − λ−4 ξμ ξν ξρ ∇ν ξρ

= λ−1 ∂μ λ . (5.61)

In the steps above, we have used the fact that ∇μ ξν is antisymmetric in μ and ν, since ξ is

a Killing vector. The upshot from this is that the magnitude of the 4-acceleration is given

by

|a| =
√

gμν aμ aν = λ−1
√

gμν ∂μλ∂νλ . (5.62)

As the particle approaches the horizon, the factor
√

gμν ∂μλ∂νλ becomes equal to the

surface gravity (see (5.55)), but the prefactor λ−1 diverges, owing to the fact that ξ becomes

null on the horizon. Thus the proper acceleration of a particle on an orbit of ξ diverges on

the horizon (which is why the particle is inevitably drawn through the horizon). However,

suppose we measure the acceleration as seen by a static observer at infinity. For such

an observer, there will be a scaling factor relating the proper time τ of the particle to

the time t at infinity, since dτ2 = −gμν dxμ dxν . If the black hole were non-rotating, so

that ξ were simply ∂/∂t, we would have dτ2 = −g00 dt2, which could be written nicely as

dτ2 = −ξμ ξν gμν dt2. Clearly this latter expression, being generally covariant, will always

be valid, even in the rotating case, and so we will have dτ = λdt. Thus the acceleration of
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the particle, as measured by the static observer at infinity, will be |a| dτ/dt, which is λ |a|.
Consequently, the acceleration of a particle near to the horizon that is on an orbit of ξ, as

measured by a static observer at infinity, will be equal to κ. This explains why κ is called

the surface gravity.

It is straightforward, using (5.55), to calculate the surface gravity for the Kerr metric.

After some algebra, one finds that the result for the surface gravity on the outer horizon

r = r+ is expressible as

κ =
√

m2 − a2

2m r+
. (5.63)

Note that if we specialise to the case of the Schwarzschild solution, by setting a = 0, we get

κ = 1/(4m). This can indeed be seen, in a Newtonian limit, to be in accordance with one’s

expectations for the strength of the gravitational field on the horizon; one would expect a

Newtonian gravitational acceleration a = m/r2 at a distance r from a point mass m, and

so on the horizon r = 2m, this gives a = 1/(4m).

5.3.3 Non-degenerate Killing Horizons

It is instructive to look at the surface gravity in a little more detail. Firstly, we may observe

that κ is constant on the orbits of ξ. In other words, ξμ ∂μκ2 =. To see this, consider first

the derivative of κ with respect to any direction tμ tangential to N . Using (5.48 and (5.50),

we have

tρ ∂ρ κ2 = −(∇μ ξν) tρ ∇ρ ∇μ ξν

∣∣∣N = −(∇μ ξν) tρ Rσρμν ξσ
∣∣∣N . (5.64)

Note that we are allowed to take the derivative despite the restriction that (5.48) is defined

on the surface N precisely because the direction of the derivative tρ ∂ρ is tangential to N .

Now, as we have observed, ξμ itself is tangential to N , despite also being normal to N ,

owing to the fact that it is null on N . Thus we may apply (5.64) to the case tμ = ξμ,

whereupon we immediately obtain ξμ ∂μ κ2 = 0, by virtue of the antisymmetry of Rσρμν in

its first two indices.

A non-degenerate Killing horizon is defined to be one on which the surface gravity κ

is non-zero. In such circumstances a particular orbit of ξ, on which, as we have seen, κ is

equal to some (non-zero) constant, will coincide with only part of the null generator of N .

We can see this, and what it implies, in the following way. We can choose a parameter y

along the orbit of ξ in such a way that ξ = ∂/∂y. Since the orbit of ξ lies in N , this means

that we can think of y as one of the coordinates lying in the surface N . Now, we introduced

previously the normal �μ = dxμ/dλ to N , where λ is chosen to be an affine parameter so
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that (5.34) holds. It follows that on the orbit of ξ we have

ξ =
∂

∂y
=

dλ

dy

∂

∂λ
= ψ � , (5.65)

where ψ = dλ
dy satisfies

d log |ψ|
dy

= κ . (5.66)

(See equation (5.42), and the equation in the line below it.) Now, we have already estab-

lished that κ is constant on an orbit of ξ, and so this means that (5.66) can be integrated

to give ψ = ±κ eκ y. (We have, without losing generality, made a convenient choice of

integration constant.) One further integration then gives

λ = ±eκ y , (5.67)

where again we have, w.o.l.o.g., made a convenient choice of integration constant.

We see from (5.67) that for a specific choice of integration constant, the full range of the

coordinate y on the orbit of ξ, namely −∞ < y < ∞, covers only half of the full range of the

affine parameter λ, namely either 0 < λ < ∞ or −∞ < λ < 0, depending on the sign choice

made in (5.67). There is a bifurcation point at λ = 0, which is a fixed point of the orbit

of ξ (meaning that ξ vanishes there). It can be shown to correspond to a 2-sphere in the

spacetime. The full Killing horizon, generated by λ, comprises two parts, which bifurcate

at λ = 0. The full Killing horizon is known as a Bifurcate Killing Horizon, and λ = 0 is

known as the Bifurcation 2-sphere.

One easily sees now that if N is a bifurcate Killing horizon of ξ, then κ2 is constant on

N . We have already seen that κ2 is constant on the orbits of ξ, and that its value is equal

to its limiting value on the bifurcation 2-sphere B. We need only show that κ2 is constant

on this 2-sphere in order to complete the proof. We can do this by using equation (5.64)

again. Taking tμ to be any vector tangent to B, we immediately see that tμ ∂μκ2 = 0 on B,

and hence that κ2 is constant on B. Thus we have shown that κ2 is constant on the entire

bifurcate Killing horizon N .

An example is probably useful at this point. Let us consider in detail the horizon at

r = 2m in the Schwarzschild spacetime. As we saw in chapter 3, it is best to use the Kruskal

coordinate system with ṽ = ev/(4m) and ũ = −e−u/(4m), where v = t + r∗ and u = t − r∗.

The original radial coordinate r is given in terms of ṽ and ũ by ṽ ũ = −(r − 2m) er/(2m).

Thus the event horizon, at r = 2m, corresponds to ṽ ũ = 0, implying that at least one of ṽ

or ũ vanishes. In fact, as we see in Figure 4, the event horizon corresponds to the entire pair

of 45-degree ṽ and ũ axes. See Figure 15. From the definitions of the Kruskal coordinates,
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and by applying the chain rule, we see that the timelike Killing vector K = ∂/∂t in Kruskal

coordinates is

K =
∂

∂t
=

ṽ

4m
∂

∂ṽ
− ũ

4m
∂

∂ũ
. (5.68)

Now, let us consider the vector � normal to the horizon. Since the horizon is defined

by f(r) = 0, where f could be, for example, r − 2m, it follows that the differential of f is

proportional to dr. Since any function times a normal vector is, a priori, an equally good

normal vector we may as well think of the differential of f as being proportional to dr∗, or

in other words, proportional to dv − du. But this translates, in Kruskal coordinates, into a

differential of the form df = ṽ−1 dṽ− ũ−1 dũ. Our discussion of the horizon will concentrate

on the two arms of the cross, one specified by ũ = 0, and the other specified by ṽ = 0.

Clearly in either case, our differential diverges. So again we use the fact that we can make

functional rescalings of df , in order to make a choice that is non-singular on the horizon.

Thus for ũ = 0 we can simply rescale df by ũ before setting ũ = 0. This means that on the

ũ = 0 branch of the horizon, we have a differential of the form df = dũ (we use the same

symbol f , although of course this is different from the previous one; this is just to avoid

an unecessary proliferation of symbols). The normal vector is then obtained by raising the

index on the components of this differential. The only non-vanishing comonent is fũ = 1.

Bearing in mind that the metric in Kruskal coordinates has the off-diagonal structure given

in (3.48), we see that the only relevant non-zero component of the inverse metric will be

gũṽ, and thus the only non-vanishing component of the normal vector will be �ṽ. A similar

anaysis for the ṽ = 0 branch of the horizon shows that there we will have �ũ as the only

non-vanishing component of the normal vector.

In summary, we have the following normal vectors on the horizon:

ũ = 0 : � =
∂

∂ṽ
,

ṽ = 0 : � =
∂

∂ũ
. (5.69)

This might seem counter-intuitive, in that one might have imagined, for example, that the

vector normal to ũ =constant would be ∂/∂ũ, rather than ∂/∂ṽ. There is nothig mysterious

about this point, however; it is simply a consequence of the Minkowskian signature of the

spacetime metric, and the fact that the normal vector is null. Thus what is parallel is

perpendicular.

Of course we are free to multiply the normal vectors by any functions, and they will still

be normal vectors to the horizon. But by good luck the ones that we have written here are

actually the ones that we are looking for. Recall from our previous discussion that � = ∂/∂λ
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defines geodesic curves xμ(λ), and that it is convenient to choose the parameterisation so

that λ is an affine parameter, implying that �ν ∇ν �μ = 0. It is a straightforward matter

to check that our normal vectors (5.69) do indeed satisfy this condition. The verification

involves calculating the necessary Christoffel connection components using (2.22), and using

the definition of the covariant derivative given in (2.23).

Finally, we are ready to look at the surface gravity everywhere on the horizon. Consider

the branch ũ = 0 first. From (5.68), we see that the timelike Killing vector K becomes

K = ṽ
4m ∂/∂ṽ when ũ = 0. Comparing with (5.69), we see that this is proportional to the

normal vector, and thus ũ = 0 is a Killing horizon with respect to K. The function of

proportionality in the relation K = ψ � is ψ = ṽ/(4m). From (5.43) we therefore have that

the surface gravity on ũ = 0 is given by

κ = Kν ∂ν log
∣∣∣ ṽ

4m

∣∣∣ = ṽ

4m
d

dṽ
log

∣∣∣ ṽ

4m

∣∣∣ = 1
4m

. (5.70)

Note that this agrees with what we found earlier, when we set a = 0 in the result (5.63) for

the surface gravity in the Kerr spacetime.

Now let us repeat the computation for the ṽ = 0 branch of the event horizon. Now,

we have from (5.68) that the timelike Killing vector is K = − ũ
4m ∂/∂ũ. Again, this is

proportional to the normal vector � given in (5.69), this time with K = ψ � for ψ = −ũ/(4m).

This time the computation of the surface gravity using (5.43) gives

κ = Kν ∂ν log
∣∣∣− ũ

4m

∣∣∣ = − ũ

4m
d

dṽ
log

∣∣∣− ũ

4m

∣∣∣ = − 1
4m

. (5.71)

Thus the surface gravity is actually negative on the ṽ = 0 branch of the horizon. This is

intuitively reasonable (if anything involving white holes could be said to be either intuitive

or reasonable!), since we saw that actually this branch of the horizon represented a one-way

membrane for which future-directed timelike or null rays can cross only outwards, but not

inwards. The negative surface gravity implies, for example, that there is a tendency for

objects to be propelled outwards from the ṽ = 0 horizon into the region I in the Penrose

diagram 5. The situation is summarised in Figure 15.

The ũ = 0 and ṽ = 0 branches of the event horizon in this Schwarzschild example

together make up a bifurcate Killing horizon, of the kind that we discussed abstractly

previously. The intersection, or bifuraction point, at ũ = ṽ = 0, is the bifurcation 2-sphere

(remember the two suppressed coordinates θ and ϕ). We can indeed see from (5.68) that

it is a fixed-point of the orbits of the Killing vector K. We note also that, as we showed in

the previous general discussion, the value of κ2 is indeed constant over the entire bifurcate

63



u
~

v
~

B

r = 2m
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~
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~

κ = -1/(4m)

κ = 1/(4m)

Figure 15: The bifurcate horizon in Schwarzschild spacetime.

Killing horizon. The only point that perhaps we would not have foreseen without the aid

of an example is that although κ2 is constant, κ itself can take opposite signs on different

pieces of the horizon.

6 Black-Hole Thermodynamics

It was long believed that black holes are truely black, since nothing could escape from the

event horizon. In the words of a bumper sticker with a distinctly 60’s flavour, which used

to be seen occasionally, “Black holes are out of sight.” In fact, appropriately enough, it

was in the 1970’s that this picture of black holes was revolutionised by the work of Stephen

Hawking, who showed that once quantum effects are taken into account black holes actually

radiate particles, gradually losing their mass in the process. In fact Hawking showed that

they radiate with a black-body spectrum, at a temperature

T =
κ

2π
, (6.1)

where κ is the surface gravity.

The discovery that black holes emit black-body radiation was in a certain sense not

entirely unforeshadowed by previous developments. It had been known for some time that

classical black holes obey a set of laws that exhibit a remarkable parallelism to the basic

laws of thermodynamics. We shall not attempt to give a complete discussion of the laws of

black-hole dynamics here, nor shall we give a complete or rigorous treatment of the Hawking

results. One could base an entire lecture course on these topics in themselves. Instead, we

shall focus on one particular aspect of the classical dynamical laws for black holes, namely
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the analogue of the First Law of Thermodynamics. Armed with this, and with a relatively

simple alternative derivation of the black-body radiation result, we shall be able to discuss

some of the essential facts about the Hawking temperature and the entropy of black holes.

6.1 First Law of Black-Hole Dynamics

To begin, let us collect together a few results for the Kerr black hole. Several have already

been discussed, and the only new result we shall need is an expression for the area of the

outer horizon. Since this is defined by r = r+ = m +
√

m2 − a2, we can determine this by

looking at the metric on the surface r = r+ at constant time. In other words, we first set

dr = 0 and dt = 0 in (5.11), giving the two-dimensional metric

ds2 = ρ2 dθ2 +

(
(r2 + a2)2 − Δ a2 sin2 θ

)
sin2 θ

ρ2
dϕ2 . (6.2)

We now set r = r+, obtaining the metric

ds2 = ρ2
+ dθ2 +

(2m r+

ρ+

)2
sin2 θ dϕ2 (6.3)

on the outer horizon, where ρ2
+ = r2

+ + a2 cos2 θ. The area is therefore given by

A = 2m r+

∫
sin θ dθ dϕ = 8π m r+ . (6.4)

The other results that we need are for the surface gravity κ (5.63), the angular velocity

of the horizon ΩH (5.39), and the angular momentum J = am. It is straightfoward now to

show that the following identity holds:

m =
κA

4π
+ 2ΩH J . (6.5)

Of course just presented in isolation, this result appears to be somewhat ill-motivated,

since there are obviously many relations that can be written down involving the mutually-

dependent quantities appearing here. The point is that this particular relation arises if one

calculates the total energy E for a stationary black hole, using the ADM construction. This

can be re-expressed in the form of a so-called Komar integral, as E = − ∫ dSμν ∇μ Kν , where

the integral is taken over the two-dimensional boundary of a three-dimensional spacelike

hypersurface. (Which will be taken to be the future event horizon plus the boundary sphere

at infinity (i.e. at i0).) After some manipulations, it can be shown that the energy (equals

mass) is given by (6.5), which is known as the Smarr formula. The substitution of the

explicit expressions for κ, A, ΩH and J is then just giving a confirmation of the more

generally-derived result.
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Now, from (6.5), we can deduce the following First Law of Black Hole Dynamics. This

is concerned with what happens if we perturb a black hole with given mass m and angular

momentum J , having surface gravity κ and angular velocity ΩH , so that it adjusts to a

configuration with mass m + δm and angular momentum J + δJ . A crucial result, known

as the “No-hair theorem, asserts that if (M,g) is an asymptotically-flat, stationary, vacuum

spacetime that is non-singular on and outside the event horizon, then (M,g) must be a Kerr

solution. Consequently, there is a unique vacuum solution for a black hole with mass m and

angular momentum J . The proof of this result is a bit like a glorified version of the proof

in electrodynamics that a given distribution of charges and boundary condition results in a

unique electrostatic potential.

Now, using the uniqueness theorem, we know that m must be expressible as some

function of the area A of the horizon, and the angular momentum J ; thus m = m(A, J).

Since A and J both have dimensions of m2, it must be that m(A, J) is an homogeneous

function of degree 1
2 , and so by Euler’s theorem

A
∂m

∂A
+ J

∂m

∂J
= 1

2m

=
κ

8π
A + ΩH J , (6.6)

where the second line follows using the Smarr formula (6.5). Thus we have

A
(∂m

∂A
− κ

8π

)
+ J

(∂m

∂J
− ΩH

)
= 0 . (6.7)

Since A and J are treated as the independent variables here, it follows that the coefficients

of A and J must independently vanish in this equation, and hence we deduce that

dm =
κ

8π
dA + ΩH dJ . (6.8)

This is known as the first law of black-hole dynamics. Delving deep into one’s memory, one

can recognise this as being closely parallel to the first law of thermodynamics,

dE = T dS +
∑

i

Φi dXi , (6.9)

where T is the temperature, S is the entropy, and Φi represents the curiously-named chem-

ical potentials, with their conjugate thermodynamic variables Xi.

Let us remark at this point that there is relatively straightforward generalisation of the

Kerr solution to the so-called Kerr-Newman solution for a charged rotating black hole. The

metric is of the same form as (5.18), except that now the function Δ is given by

Δ = r2 − 2m r + a2 + e2 , (6.10)
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where e is the electric charge. This is a solution of the Einstein-Maxwell equations, with

the gauge potential A given by

A = φdt =
2e r

ρ2
(dt − a sin2 θ ∂ϕ) . (6.11)

It reduces to the Reissner-Nordström solution if the rotation parameter a is set to zero. If

one computes the expression analogous to (6.8) in this case, allowing now for the perturbed

black hole to settle down to a new value of e as well as m and J , one finds

dm =
κ

8π
dA + ΩH dJ + φH de , (6.12)

where φH is the value of the electrostatic potential on the horizon.

6.2 Hawking Radiation in the Euclidean Approach

Before the semi-classical quantum calculations by Hawking, the similarities between the first

laws of black-hole dynamics and thermodynamics were seen as curious parallels, but little

more than that. Hawking’s surprising result, that a black hole radiates like a thermodynamic

system at temperature T = κ/(2π), changed all that. It now became apparent that the

first law of black-hole dynamics is the first law of thermodynamics. It is the work of but a

moment to see that the entropy of the black hole is thus given by S = 1
4A, where A is the

area of the event horizon.

Hawking first derived the black hole radiation by means of a careful analysis of what

is meant by the vacuum in quantum field theory in curved spacetime, and in particular,

how the vacuum for an observer at I+ is related to the vacuum for an observer at I−. The

outcome from this analysis is that in the balck-hole background, a zero-particle initial state

becomes a state populated by a thermal distribution of particles with respect to the observer

at I+. Rather than going into the details of this derivation, which is quite involved, let

us instead follow a route that was developed later, once the thermodynamic implications

had been digested. It is a little heuristic, in the sense that it perhaps lacks a fully rigorous

justification, but it is elegant from the point of view of geometry and topology, which is, it

may be recalled, the theme of these lectures.

Let us begin by considering the Schwarzschild solution. We then perform a Wick rotation

of the time coordinate, by writing t = −i τ . The original metric (3.2) then becomes

ds2 =
(
1 − 2m

r

)
dτ2 +

(
1 − 2m

r

)−1
dr2 + r2 dΩ2 . (6.13)

Now, consider the following transformation of the radial coordinate:

R = 4m
(
1 − 2m

r

)1/2
, (6.14)
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in terms of which the metric (6.13) becomes

ds2 =
( r

2m

)4
dR2 + R2

( dτ

4m

)2
+ r2 dΩ2 . (6.15)

Now the coordinate R vanishes as r approaches the “horizon” at r = 2m. If we look at the

form of the metric (6.15) near r = 2m, we see that it approaches

ds2 = dR2 + R2
( dτ

4m

)2
+ 4m2 dΩ2 . (6.16)

This has a singularity at R = 0, but under appropriate conditions, namely if τ/(4m)

has period 2π, this is nothing but the familar coordinate singularity at the origin of two-

dimensional polar coordinates. (Compare with ds2 = dr2+r2 dθ2.) Of course, if τ is assigned

any other period there will be a genuine curvature singularity at R = 0, since then the metric

is like the metric on a cone, which has a delta-function singularity in its curvatuure at the

apex. However, if we proceed by making the assumption that this calculation is trying to

tell us something, then we would naturally choose to take τ to have the special periodicity

for which the nice singularity-free interpretation can be given. The upshot is that we arrive

at the interpretation of the Euclideanised Schwarzschild metric as the metric on a smooth

manifold defined by

0 ≤ τ ≤ 8π m , 2m ≤ r ≤ ∞ , (6.17)

with the angular coordinates θ and ϕ on the 2-sphere precisely as usual.

This Euclideanised Schwarzschild manifold is completely free of curvature singularities;

it makes no more sense to ask what happens for r less than 2m here than it does to ask

what happens for r less than zero in plane-polar coordinates. The manifold with r ≥ 2m is

complete. The interesting point is that in terms of the original Schwarzschild spacetime, we

have been led to perform a periodic identification in imaginary time, with period 8π m. Now,

those familiar with statistical mechanics may have encountered such a kind of periodicity

before. A statistical system in thermal equilibrium at temperature T can be described in

terms of Green functions and partition functions evaluated in states that are periodic in

imaginary time, with period β = 1/T . A very rough sketch of why this is the case, which can

easily be fleshed out with a little more effort, is the following. The time-evolution operator

in quantum mechanics is U = eiH t, where H is the Hamiltonian. Thus an evaluation of

operators between initial and final energy eigenstates at times differing by an amount iβ will

acquire a factor e−E β , which can be recognised as the Boltzmann factor e−E/T for a system

at temperature T = 1/β. Thus we arrive at the tentative conclusion that the Euclideanised
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Schwarzschild manifold is describing a system in thermal equilibrium at temperature

T =
1

8π m
. (6.18)

This is precisely the temperature already found by Hawking for the black-body radiation

emitted by the Schwarzschild black hole. Recall that in the Schwarzschild spacetime, we

saw previously that the surface gravity on the future horizon is given by κ = 1/(4m), and

so indeed the temperature is T = κ/(2π).

A similar calculation can easily be performed for the Reissner-Nordström solution. In

fact, it is quite instructive to do the calculation for a more general class of static metrics,

in order to bring out the relation between the surface gravity and the periodicity of τ more

transparently. Consider, therefore, a metric of the form

Minkowskian : ds2 = −f dt2 + f−1 dr2 + r2 dΩ2 , (6.19)

Euclidean : ds2 = f dτ2 + f−1 dr2 + r2 dΩ2 , (6.20)

where we give both its original Minkowskian-signature form, and its form after Euclideani-

sation. Let us suppose that f , which is taken to be a function only of r, has a zero at some

point r = r0. This would correspond to an event horizon. Let us then define a new radial

coordinate R = f1/2. Thus we have dR = 1
2f−1/2 f ′ dr, and hence, in the vicinity of r = r0,

the metric (6.20) approaches

ds2 =
4

f ′(r0)2
(
dR2 + 1

4f ′(r0)2 R2 dτ2
)

+ r2
0 dΩ2 . (6.21)

Thus we see that R = 0 is like the origin of polar coordinates provided that we identify τ

with period Δτ given by

Δτ =
∣∣∣ 4π
f ′(r0)

∣∣∣ . (6.22)

On the other hand, we can perform a calculation of the surface gravity on the horizon

at r = r0 in the metric (6.19). This is a Killing horizon with respect to the timelike Killing

vector K = ∂/∂t. Using the expression (5.55) we have λ2 = −gμν Kμ Kν = −gtt = f , and

hence

κ2 = gμν ∂μ λ∂ν λ = grr (f1/2)′
2
∣∣∣
r=r0

= 1
4f ′(r0)2 . (6.23)

Thus we see that κ = ±1
2f ′(r0), and thus comparing with (6.22) we have the relation

Δτ =
∣∣∣2π

κ

∣∣∣ . (6.24)

For a metric such as Kerr, which is stationary but not static, the calculation is a little

more tricky. The “Euclidean philosophy” now would be that we should consider operators
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that are sandwiched between in and out states that have coordinate values related by

(t, r, θ, ϕ) ∼ (t + iβ, r, θ, ϕ + iΩH β). Thus in the Euclideanised metric we should make

everything real by taking t = −i τ and ΩH = i Ω̃H , where Ω̃H is real. This means that we

should take the rotation parameter a to be imaginary, a = iα. Thus the Kerr metric (5.11)

Euclideanises to become

ds2 =
(Δ + α2 sin2 θ)

ρ2
dτ2 − 4m α r sin2 θ

ρ2
dτ dϕ

+

(
(r2 − α2)2 + Δ α2 sin2 θ

)
sin2 θ

ρ2
dϕ2 +

ρ2

Δ
dr2 + ρ2 dθ2 , (6.25)

where

ρ2 = r2 − α2 cos2 θ , Δ = r2 − 2m r − α2 . (6.26)

We shall want to examine the behaviour of this metric in the vicinity of r+ = m +
√

m2 + α2, where Δ first vanishes as one approaches from large r. We shall introduce a

new radial coordinate R, defined by R = Δ1/2, and then take the limit when R is very

small. We can in fact judiciously set r = r+ at the outset in certain places in the metric

(6.25), namely in those places where no singularity will result from doing so. Thus near to

r = r+, the metric approaches

ds2 =
(Δ + α2 sin2 θ)

ρ2
+

dτ2 − 4m α r+ sin2 θ

ρ2
+

dτ dϕ +
4m2 r2

+ sin2 θ

ρ2
+

dϕ2 +
ρ2
+

Δ
dr2 + ρ2

+ dθ2 ,

(6.27)

where ρ2
+ = r2

+ −α2 cos2 θ, and we have used the fact that r2
+ − α2 = 2m r+. Note that ρ2

+

is non-vanishing for all θ. The metric (6.27) can be reorganised, by completing the square,

so that it becomes

ds2 =
ρ2
+

Δ
dr2 +

Δ
ρ2
+

dτ2 +
4m2 r2

+ sin2 θ

ρ2
+

(dϕ − Ω̃H dτ)2 + ρ2
+ dθ2 , (6.28)

where Ω̃H = α/(2m r+) is the “angular momentum” on the horizon in his Euclideanised

metric (see (5.39)). Now, making our substitution R = Δ1/2, and noting that near to r = r+

we can consequently write 2R dR = d[(r − r+)(r − r−)] ∼ dr (r+ − r−) = 2
√

m2 + α2 dr, we

see that near r = r+ the Euclideanised Kerr metric approaches

ds2 =
ρ2
+

m2 + α2
dR2 +

R2

ρ2
+

dτ2 +
4m2 r2

+ sin2 θ

ρ2
+

(dϕ − Ω̃H dτ)2 + ρ2
+ dθ2 . (6.29)

We now have to examine in detail what happens as R approaches zero. If θ is equal to

0 or π, the prefactor of (dϕ − Ω̃H dτ)2 vanishes, and consequently we shall have a conical

singularity at R = 0 in the (R, τ) plane unless τ has the appropriate periodicity. Noting that
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at θ = 0 or θ = π we have ρ2
+ = r2

+ −α2 = 2m r+, we see that the relevant two-dimensional

part of the metric is

ds2 =
2m r+

m2 + α2

[
dR2 + R2

(m2 + α2

4m2 r2
+

)
dτ2

]
, (6.30)

and thus the conical singularity is avoided if τ is identified periodically with period

Δτ =
4π m r+√
m2 + α2

. (6.31)

If θ takes any other generic value 0 < θ < π, the prefactor of (dϕ − Ω̃H dτ)2 in (6.29) is

non-zero, and no further conditions arise.

Comparing (6.31) with the expression for the surface gravity for the Kerr metric that

we obtained in (5.63), we see that the periodicity of τ is again given by

Δτ =
2π
κ

, (6.32)

where κ is given by (5.63) with a = iα.

6.3 Hawking Radiation in the Lorentzian Approach

We have already seen in the framework of the Euclideanisation approach that a black hole

seems to behave like a black body radiating with temperature T = κ/(2π), where κ is its

surface gravity. In this chapter, we shall look at this problem from a more traditional point

of view, by considering the behaviour of quantised matter fields in a black-hole background

geometry. This is the way Hawking first derived the result.

It is not the main intention in this course to study quantum field theory, and so we shall

not dwell too much on the fine points of the subject. We can, however, easily give a brief

review of the salient points. We shall, for simplicity, restrict attention to the case of a scalar

field theory; the extension to fermions, and to fields of higher spin, is straightforward, and

the eventual conclusions are similar.

6.3.1 Scalar quantum field theory in curved spacetime

Consider a real scalar field φ satisfying the massive Klein-Gordan equation

φ − m2 φ = 0 . (6.33)

One can define a natural inner product { , } on such fields, as

{φ1, φ2} ≡
∫
Σ

dΣμ φ1
↔
∂

μ
φ2 , (6.34)
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where Σ is some Cauchy 3-surface on which initial data, once specified for φi, evolves

deterministically according to the Klein-Gordan equation. The symbol ↔
∂

μ denotes the

“two-edged” derivative, φ1
↔
∂

μ φ2 ≡ φ1 ∂μ φ2−(∂μ φ1)φ2. The inner product is independent

of the choice of Cauchy surface Σ, as can be seen by considering two such surfaces Σ and

Σ′. In the usual way, one imagines that these two surfaces together form the boundary

of a closed 4-volume V in spacetime. Either they already do this as they stand, or else

the “deficit” that completes the bounding 3-surface consists of a hypersurface on which the

fields are all assumed to vanish. By Gauss’ law, the difference between the inner products

on the two Cauchy surfaces can then be turned into a 4-volume integral that vanishes:

{φ1, φ2}Σ − {φ1, φ2}Σ′ =
∫
Σ

dΣμφ1
↔
∂

μ
φ2 −

∫
Σ′

dΣμφ1
↔
∂

μ
φ2 =

∫
V
∇μ (φ1

↔
∂

μ
φ2) = 0 ,

(6.35)

where the last step follows upon use of the Klein-Gordan equation (6.33).

The inner product { , } is antisymmetric: {φ1, φ2} = −{φ2, φ1}. This is the well-

known feature of the scalar field, that it has an indefinite-signature inner product, leading

to negative-norm states, and so on. A basis φi, φ′
i for the solutions φ can be chosen so that

{φi, φ
′
j} = δij . If we group these pairs of real solutions into complex solutions,

ψi = 1√
2
(φi − iφ′

i) , ψ̄i = 1√
2
(φi + iφ′

i) , (6.36)

then we can define an inner product (ψi, ψj) by

(ψi, ψj) = i
∫
Σ

dΣμ ψ̄i
↔
∂

μ
ψj = δij , (6.37)

Of course the inner product here is still of indefinite signature, since we have

(ψi, ψj) = −(ψ̄i, ψ̄j) = δij , (ψi, ψ̄j) = (ψ̄i, ψj) = 0 . (6.38)

Note that this is sesquilinear, in the sence that for complex constants a and b, we have

(aψ, b φ) = ā b (ψ, φ).

Classical solutions can be expanded in a complete set of basis functions ψi and ψ̄i. Upon

second quantisation, the expansion becomes

Φ(x) =
∑

i

(ai ψi(x) + α†
i ψ̄i(x)) , (6.39)

where the “Fourier coefficients” ai and their Hermitean conjugates a†i are operators in a

Hilbert space, satisfying the commutation relations

[ai, a
†
j] = δij , [ai, aj ] = 0 = [a†i , a

†
j ] . (6.40)
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One then builds up the Fock space by defining a vacuum state |vac〉, such that

ai |vac〉 = 0 , 〈vac|vac〉 = 1 , (6.41)

and then acting with the creation operators a†i to get the basis

|vac〉 , a†i |vac〉 , a†i a†j |vac〉 , etc. . (6.42)

Note that the inner product 〈 | 〉 is positive-definite.

This choice of basis for the Hilbert space is determined by the choice of vacuum state

|vac〉, but this in turn depends on the choice of the basis ψi. This is not unique, and it is

clear that a new basis ψ′
i, related to ψi by

ψ′
i = Aij ψj + Bij ψ̄j (6.43)

will satisfy the same basis relations (6.38), provided that the constants Aij and Bij obey,

in the obvious matrix notation,

AA† − B B† = 1 , ABT − B AT = 0 . (6.44)

Note that (6.43) can be inverted, to give

ψi = A′
ij ψj + B′

ij ψ̄j , (6.45)

where

A′ = A† , B′ = −B† . (6.46)

(It is easy to check by substitution that this indeed gives the required inverse relation; it is

not so easy to derive (6.46).) Since A′ and B′ must themselves satisfy the same relations

as A and B in (6.44), it follows from (6.46) that

A† A − BT B̄ = 1 , A† B − BT Ā = 0 . (6.47)

If a spacetime is stationary, meaning that it admits a timelike Killing vector K, then

one can give a meaning to the notion of positive and negative freqency. Specifically, one

can choose a basis {ui} of positive-frequency solutions of the Klein-Gordan equation, which

satisfy the condition

K(ui) ≡ Kμ ∂μ ui = −iωi ui , ωi > 0 (6.48)

for each i. This follows from the fact that if ui is a solution of the Klein-Gordan equa-

tion, then so is Kμ ∂μ ui (prove by using the properties of Killing vectors to show that
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(Kμ ∂μ ui) = Kμ ∂μ ui). Furthermore, K is an anti-Hermitean operator, and so solu-

tions of the Klein-Gordan equation can be simultaneously eigenfunctions of K with imagi-

nary eigenvalues. One can choose a basis for ui such that (ui, uj) = δij . Of course we will

also have (ui, ūj) = 0, since ūj has a negative frequency, and eigenfunctions with different

frequencies are always orthogonal.

In this basis, the vacuum |vac〉 is the state of lowest energy, and a†i |vac〉, a†i a†j |vac〉
describe 1-particle, 2-particle, etc. states. The particle number is measured by the number

operator

N =
∑

i

a†i ai . (6.49)

6.3.2 Particle production in non-stationary spacetimes

Consider a spacetime that is stationary for t < t−, stationary for t > t+, and non-stationary

during the intervening period t− < t < t+. We may denote the associated components of

the total spacetime by M−, M+ and M0 respectively. We assume that the metrics in M−

and M+ are isometric.

In the region M−, we may expand a Klein-Gordan field Φ in terms of a complete set of

positive-frequency modes ui as defined previously, so that

Φ(x) =
∑

i

(ai ui(x) + α†
i ūi(x)) . (6.50)

Since the functions ui(x) are solutions of the Klein-Gordan equation in M− and in M+ (the

metrics are assumed to be the same in the two stationary regions), it follows that we can

also expand the Klein-Gordan field in M+ in terms of the same eigenfunctions. However,

since the ui(x) do not solve the Klein-Gordan equation in the intervening region M0, it

means that there will be some general rotation of the basis, of the form (6.43). In other

words, the Klein-Gordan field in the region M+ can be expanded as

Φ(x) =
∑

i

(ai vi + a†i v̄i) , (6.51)

where

vi = Aij uj + Bij ūj . (6.52)

Since the inner product ( , ) is independent of the choice of hypersurface, the coefficients

Aij and Bij must satisfy the conditions (6.44).

If we nonetheless choose to expand Φ(x) in the region M+ in terms of the original basis

ui, then we will have new expansion coefficients a′i and a′i
†,

Φ(x) =
∑

i

(a′i ui + a′i
†
ūi) . (6.53)
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Substitution of (6.51) and (6.52) immediately leads to the so-called Bogoliubov transforma-

tion

a′i = aj Aji + a†j B̄ji . (6.54)

It is a simple exercise to verify from this that the relations (6.44) imply and are implied by

the statement that both the unprimed and the primed operators (ai, a
†
i ) satisfy (6.40).

Not that in the special case where the Bogoliubov coefficients Bij vanish, the rotation

of basis (6.52) does not mix positive-frequency with negative-frequency modes, and the

transformation is a purely unitary one; as can be seen from (6.44) and (6.47), we have AA† =

A† A = 1. This just rotates the annihilation operators ai around amongst themselves, and

therefore it does not change the vacuum state |vac〉, which is defined by ai |vac〉 = 0.

Now let us look at the general case, when Bij is non-zero. The number operators for

particles in the i’th mode in the regions M− and M+ are given by

Ni = a†i ai , N ′
i = a′i

†
a′i , no sum , (6.55)

respectively. Suppose we consider the zero-particle state in M−, namely the vacuum |vac〉
defined by ai |vac〉 = 0. If we calculate the expectation value of N ′

i in the region M+, with

respect to this vacuum, is therefore given by

〈N ′
i〉 = 〈vac|N ′

i |vac〉 = 〈vac|a′i† a′i|vac〉 ,

= 〈vac|(aj Bji) (a†k B̄ki)|vac〉 ,

= 〈vac|aj a†k|vac〉Bji B̄ki ,

= 〈vac|[aj , a
†
k]|vac〉Bji B̄ki ,

= (B† B)ii , no sum . (6.56)

This is the expected number of particles in the i’th mode in region M+, measured with

respect to the vacuum state |vac〉 defined in M−. In other words, particles have been created

as a result of the non-unitary change of basis. The total number of particles, summed over

all modes, is
∑

i(B
† B)ii, or in other words tr(B† B). This vanishes if and only if B = 0,

since (B† B) is positive semi-definite.

6.3.3 Hawking radiation from Schwarzschild black hole

Consider a massless Klein-Gordan field Φ(x) in the Schwarzchild background. This satisfies

0 = Φ =
1√−g

∂μ (
√−g gμν ∂ν Φ) , (6.57)
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and hence, from the form of the Schwarzschild solution (3.15) obtained in section 3, we have

1
r2

∂

∂r

[
r2
(
1 − 2m

r

) ∂Φ
∂r

]
−
(
1 − 2m

r

)−1 ∂2Φ
∂t2

+
1
r2

∇2
(θ,ϕ) Φ = 0 , (6.58)

where ∇2
(θ,ϕ) denotes the usual Laplacian on the unit 2-sphere. Thus we can separate

variables by writing

Φ(x) = f(r) e−i ω t Y�m(θ, ϕ) , (6.59)

where the radial function f(r) satisfies

1
r2

d

dr

[
r2
(
1 − 2m

r

) df

dr

]
+
{
ω2
(
1 − 2m

r

)−1 − �(� + 1)
r2

}
f = 0 . (6.60)

This can be rewritten in terms of the coordinate r∗ defined in (3.38) as

1
r2

(
1 − 2m

r

)−1 d

dr∗
(
r2 df

dr∗
)

+
{
ω2
(
1 − 2m

r

)−1 − �(� + 1)
r2

}
f = 0 . (6.61)

Near the horizon at r = 2m, we see that the radial wave equation (6.61) becomes

approximately
d2f

dr∗2 + ω2 f = 0 , (6.62)

with solution f ∼ e±i ω r∗ . In particular, this means that an outgoing wavefunction near the

horizon will have form

Φω ∼ e−i ω u , (6.63)

where u = t − r∗ is the retarded Eddington-Finkelstein coordinate. (We suppress the

Y�m(θ, ϕ) factor, since it is inessential for this discussion.)

Consider an outgoing (massless) particle in the geometric optics approximation, which

means that it is viewed as a null geodesic, travelling on a path of constant u. (Recall the

discussion of radial null geodesics in Chapter 3.) Now we have the relation (3.47) between

the Eddington-Finkelstein and Kruskal coordinates, which becomes, using the expression

κ = 1/(4m) for the surface gravity,

ṽ = eκv , ũ = −e−κu . (6.64)

Thus the outgoing null geodesic ũ = 0 just grazes the future horizon H+, which corresponds

to ũ = 0 in the Kruskal representation of the horizon (see Figure 15). A null ray γ, which

reaches I+, must therefore have ũ < 0. Let us consider one that is close to H+, and thus

has ũ = −ε for some small positive constant ε, and trace it back from I+ into the star.

Thus on this ray we have u = −κ−1 log ε near to H+, and so the wavefunction near H+ is

of the form

Φω ∼ e
i ω
κ

log ε . (6.65)
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Note that since ũ is the affine parameter on the ingoing null geodesics, ε is the affine distance

from the ray γ to the ray γH at ũ = 0 that grazes the future horizon H+. Note that the

ray γH is the null geodesic generator of H+.

If we could solve for the wavefunctions exactly, in terms of special functions with known

analytic and asymptotic properties, it would be completely straightforward to study how

this outgoing late-time solution Φω matched on to a solution in the distant past at I−.

Since this cannot be done, we must resort to slightly indirect arguments to establish how

the matching works. In the geometric optics approximation, one just has to continue the

rays γ and γH back to I−. The ray γH will intercept I− at some fixed value of v; we may

as well let this value be 0, since no loss of generality is involved. Now, the affine distance

between the continuations of γH and γ to I− will ε. The affine parameter for outging null

geodesics at I− is v itself, since the metric there is just ds2 = −dv du + r2 dΩ2. Thus the

null ray γ has v = −ε. Consequently, (6.65) can be expressed as

Φω(v) ∼ e
i ω
κ

log(−v) , (6.66)

when v < 0. If v > 0, an ingoing null ray from I− goes through H+, and never makes it

out to I+. Thus we have Φω(v) = 0 for v > 0.

The Fourier transform of Φω(v) is therefore given by

Φ̃ω(ω′) =
∫ ∞

−∞
ei ω′ v Φω(v) dv ,

=
∫ 0

−∞
ei ω′ v+ i ω

κ
log(−v) dv . (6.67)

The integrand has a branch cut, which may be taken to lie along the positive v axis. When

ω′ is positive, the integration contour may be swung round in the complex v plane from

the negative v axis to the positive imaginary v axis, by defining v = ix with x real, and

running from ∞ to 0. Since we then have log(−v) = log(x e−i π/2) = log x− iπ/2, it follows

that

Φ̃ω(ω′) = −i e
π ω
2κ

∫ ∞

0
e−ω′ x+ i ω

κ
log x dx (6.68)

when ω′ > 0. On the other hand, when ω′ is negative we can instead swing the contour

round to the negative imaginary axis, by taking v = −ix, with x real and running from ∞
to 0. Thus we have

Φ̃ω(ω′) = i e−
π ω
2κ

∫ ∞

0
eω′ x+ i ω

κ
log x dx (6.69)

when ω′ < 0. Comparing these two expressions, we see that if ω′ is positive, we have

Φ̃ω(−ω′) = −e−
π ω
κ Φ̃ω(ω′) . (6.70)
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The upshot from the above calculation is that we have established that a pure single-

frequency mode of positive frequency ω on I+ at late times matches onto an entire chorus

of modes on I− at early times, having both positive and negative frequencies. The Fourier

transform Φ̃ω(ω′) gives precisely the Bogoliubov coefficients A and B that we discussed

previously, with

Aω ω′ = Φ̃ω(ω′) ,

Bω ω′ = Φ̃ω(−ω′) = −e−
π ω
κ Φ̃ω(ω′) , (6.71)

where ω′ here is taken to be positive. In particular, we deduce that

Bij = −e−
π ωi

κ Aij . (6.72)

Since the A and B matrices satisfy the relations (6.44), it follows, in particular, that

δij = Aik Ājk − Bik B̄jk ,

=
(
e

π(ωi+ωj)

κ − 1
)
Bik B̄jk . (6.73)

Consequently, we have

(B B†)ii =
1

e
2π ωi

κ − 1
. (6.74)

This is not yet quite what we want, since we have effectively worked out the “inverse”

of the desired result. Our calculation has related a single positive-frequency mode at late

times to a chorus of positive and negative frequency modes at early times. We should really

be looking at the problem the other way around, since we want to see what the distribution

of particle numbers is at late times, given a zero-particle vacuum state at the initial time.

This is achieved by using the inversion discussed in the previous subsection, and given in

(6.46). Thus from (6.56), we have that the occupancy number in the mode i at I+, given

an initial vacuum I−, is

〈Ni〉 = (B′† B′)ii = (B̄ BT )ii = (B B†)ii , (6.75)

where, in the last step, we have used the fact that B B† is real. Thus we arrive at the final

conclusion that the occupancy number in the i’th mode at I+ is

〈Ni〉 =
1

e
2π ωi

κ − 1
. (6.76)

This shows that the states are occupied in a Planckian distribution, corresponding to black-

body radiation at temperature

T =
κ

2π
. (6.77)
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7 Higher-Dimensional Theories, and Kaluza-Klein Reduc-

tion

So far, our discussion has been concerned with a relatively restricted class of theories in

four dimensions, namely pure Einstein gravity, and also gravity coupled to Maxwell the-

ory. There are, of course, many more complicated theories that one could consider already

in four dimensions, for example by considering Einstein gravity coupled to non-abelian

Yang-Mills theory rather than the abelian Maxwell theory, or by adding additional “mat-

ter fields,” which might include scalars with a variety of different possible couplings and

self-interactions. A priori, the possibilities for such theories are unlimited. There are, how-

ever, certain classes of theory that are singled out as being rather distinguished, if one

imposes further requirements based on symmetry principles. The most important of these

is supersymmetry, which is a symmetry that rotates bosons and fermions into each other.

These theories are very tightly constrained, especially when the number of supersymmetry

transformation parameters is large. Supersymmetric theories including gravity are known

as supergravities, and in four dimensions they exist with up to N = 8 supersymmetries.

One can also consider theories in more than four dimensions. A particular kind of

new possibility now arises, in which one generalises from Maxwell theory, which has a 2-

index antisymmetric tensor field strength, to fields with a larger number of antisymmetric

indices. It is really only when one is in higher dimensions that this gives genuinely “new”

possibilities, because one can always dualise an n-index antisymmetric tensor field strength

to one with (D − n) indices in D dimensions, using Hodge duality. Thus in some sense it

is really only in D ≥ 6 that one encounters genuinely new possibilities for field strengths

with n ≥ 3 antisymmetric indices. It should be remarked, however, that there are certain

subtleties about dualisation which mean that one cannot be too glib about replacing fields

by their duals; we shall see more on this later.

Considering higher-dimensional theories, and theories with higher-degree antisymmetric

tensor field strengths, is not just an idle academic exercise. Such theories are in fact precisely

what arise in string theory and in M-theory, which are at present our best candidates for

providing a unified description of all the fundamental forces in nature. For example, the

effective low-energy limit of M-theory is an eleven-dimensional field theory whose bosonic

sector comprises the metric tensor and a 4-index antisymmetric tensor field strength. The

entire low-energy theory contains a fermionic field of spin 3
2 as well, and together with the

bosonic fields gives rise to the long-known theory of eleven-dimensional supergravity. If we
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concentrate just on the bosons, the equations of motion can be derived from the Lagrangian

density

L =
√−g

(
R − 1

48FMNPQ FMNPQ
)

+
1

20736
εM1···M11 FM1···M4 FM5···M8 AM9···M11 , (7.1)

where as a 4-form, F = dA. In terms of indices, FMNPQ = 4∂[M ANPQ].

Two things are evident from the above discussion. Firstly, if the eleven-dimensional

theory, or string theories in ten dimensions, are truly funamental, then we should be in-

terested in all their predictions and consequences, including solutions in the higher dimen-

sions. Secondly, especially if we hope that one day they may allow us to describe our

four-dimensional world, we need to have a way of extracting four-dimensional physics from

higher-dimensional theories. A satisfactory by-product of learning how to perform dimen-

sional reduction is that we find that many of the lower-dimensional theories that we wish to

consider are derivable from simpler theories in a higher dimension. For example, the four-

dimensional N = 8 supergravity mentioned above can be derived by dimensional reduction

from eleven-dimensional supergravity. Contrary to what one might have thought, things

are immensely simpler in eleven dimensions than in four, and so this provides a very useful

way of learning about the four-dimensional theory.

To begin, therefore, let us make a preliminary study of how dimensional reduction works.

This will lead us on to a number of topics that will develop in various directions, including

the study of complex manifolds and Kähler geometry, and a study of coset spaces and

non-linear sigma models. Our first step, though, will be a relatively humble one, where

we perform a dimensional reduction in which the spacetime dimension is reduced by 1.

This is the original example considered by Kaluza and Klein, and although there have been

many developments and advances since their days, the general procedure for dimensional

reduction bears their names.

7.1 Kaluza-Klein reduction on S1

The higher-dimensional theories that we shall consider will all be theories of gravity plus

additional fields, and so a good starting point is to study how the dimensional reduction of

gravity itself proceeds. In fact this is really the hardest part of the calculation, and so once

this is done the rest will be comparitively simple.

Let us assume that we are starting from Einstein gravity in (D+1) dimensions, described

by the Einstein-Hilbert Lagrangian

L =
√−ĝR̂ , (7.2)
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where as usual R̂ is the Ricci scalar and ĝ denotes the determinant of the metric tensor.

We put hats on the fields to signify that they are in (D + 1) dimensions. Now suppose that

we wish to reduce the theory to D dimensions, by “compactifying” one of the coordinates

on a circle, S1, of radius L. Let this coordinate be called z. In principle, we could simply

now expand all the components of the (D + 1)-dimensional metric tensor as Fourier series

of the form

ĝMN (x, z) =
∑
n

g(n)

MN (x) ei n z/L , (7.3)

where we use x to denote collectively the D coordinates of the lower-dimensional spacetime.

If one does this, one gets an infinite number of fields in D dimensions, labelled by the Fourier

mode number n.

It turns out that the modes with n �= 0 are associated with massive fields, while those

with n = 0 are massless. The basic reason for this can be seen by considering a simpler toy

example, of a massless scalar field φ̂ in flat (D + 1)-dimensional space. It satisfies

ˆ φ̂ = 0 , (7.4)

where ˆ = ∂M ∂M . Now if we Fourier expand φ̂ after compactifying the coordinate z, so

that

φ̂(x, z) =
∑
n

φn(x) ei n z/L , (7.5)

then we immediately see that the lower-dimensional fields φn(x) will satisfy

φn − n2

L2
φn = 0 . (7.6)

This is the wave equation for a scalar field of mass |n|/L.

The usual Kaluza-Klein philosophy is to assume that the radius L of the compactifying

circle is very small (otherwise we would see it!), in which case the masses of the the non-

zero modes will be enormous. (By small, we mean that L is roughly speaking of order the

Planck length, 10−33 centimetres, so that the non-zero modes will have masses of order the

Planck mass, 10−5 grammes.) Thus unless we were working with accelerators way beyond

even intergallactic scales, the energies of particles that we ever see would be way below the

scales of the Kaluza-Klein massive modes, and they can safely be neglected. Thus usually,

when one speaks of Kaluza-Klein reduction, one has in mind a compactification together

with a truncation to the massless sector. At least in a case such as our compactification on

S1, this truncation is consistent, in a manner that we shall elaborate on later.

Our Kaluza-Klein reduction ansatz, then, will simply be to take ĝMN (x, z) to be inde-

pendent of z. The main point now is that from the D-dimensional point of view, the index
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M , which runs over the (D + 1) values of the higher dimension, splits into a range lying in

the D lower dimensions, or it takes the value associated with the compactified dimension

z. Thus we may denote the compoonents of the metric ĝMN by ĝμν , ĝμz and ĝzz. From the

D-dimensional viewpoint these look like a 2-index symmetric tensor (the metric), a 1-form

(a Maxwell potential) and a scalar field respectively.

We could simply define ĝμν , ĝμz and ĝzz to be the D-dimensional fields gμν , Aμ and φ

respectively. There is nothing logically wrong with doing this, and it would give perfectly

correct lower-dimensional equations of motion. However, as a parameterisation this simple-

looking choice is actually very unnatural, and the equations of motion that result look

like a dog’s breakfast. The reason is that this naive parameterisation pays no attention to

the underlying symmetries of the theory. A much better way to parameterise things is as

follows. We write the (D + 1) dimensional metric in terms of D-dimensional fields gμν , Aμ

and φ as follows:

dŝ2 = e2αφ ds2 + e2βφ (dz + A)2 , (7.7)

where α and β are constants that we shall choose for convenience in a moment, and A =

Aμ dxμ. All the fields on the right-hand side are independent of z. Note that this ansatz

means that the components of the higher-dimensional metric ĝMN are given in terms of the

lower-dimensional fields by

ĝμν = e2αφ gμν + e2βφ Aμ Aν , ĝμz = e2βφ Aμ , ĝzz = e2βφ . (7.8)

Thus as long as we choose β �= 0, this will adequately parameterise the higher-dimensional

metric.

To proceed, we make a convenient choice of vielbein basis, namely

êa = eαφ ea , êz = eβφ (dz + A) . (7.9)

(One should pause here, to take note of exactly which is a vielbein, and which is an expo-

nential! We are using latin letters a, b, etc. to denote tangent-space indices in D dimensions.

The use of z as the index associated with the extra dimension wil not, hopefully, create too

much confusion. Thus êz here means the z component of the (D+1)-dimensional vielbein.)

Notice, by the way, that if we had chosen the “naive” identification of D-dimensional fields

mentioned above, we would have been hard-pressed to come up with any way of writing

down a vielbein basis; it would be possible, of course, but it would have been messy.)

Using the formalism of chapter 2, it is now a mechanical, if slightly tedious, exercise

to compute the spin connection, and then the curvature. Our goal is to express the (D +
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1)-dimensional quantities in terms of the D-dimensional ones, so that eventually we can

express the (D + 1)-dimensional Einstein-Hilbert Lagrangian in terms of a D-dimensional

Lagrangian. For the spin connection, one finds that

ω̂ab = ωab + α e−αφ (∂bφ êa − ∂aφ êb) − 1
2Fab e(β−2α)φ êz ,

ω̂az = −ω̂za = −β e−αφ ∂aφ êz − 1
2Fa

b e(β−2α)φ êb , (7.10)

where ∂aφ means Eμ
a ∂μφ, and Eμ

a is the inverse of the D-dimensional vielbein ea = ea
μ dxμ.

Also, Fab denotes the vielbein components of the D-dimensional field strength F = dA.

The calculation of the curvature 2-forms proceeds uneventfully. Rather than present all

the formulae here, we shall just present the key results. Firstly, we can exploit our freedom

to choose the values of the constants α and β in the metric ansatz in the following way.

There are two things that we would like to achieve, one of which is to ensure that the

dimensionally-reduced Lagrangian is of the Einstein-Hilbert form L =
√−g R + · · ·. If the

values of α and β are left unfixed, we instead end up with L = e(β+(D−2)α)φ √−g R + · · ·.
Thus we immediately see that we should choose β = −(D − 2)α. Provided we are not

reducing down to D = 2 dimensions, this will not present any problem. The other thing

that we would like is to ensure that the scalar field φ acquires a kinetic term with the

canonical normalisation, meaning a term of the form −1
2

√−g (∂φ)2 in the Lagrangian.

This determines the choice of overall scale, and it turns out that we should choose our

constants as follows:

α2 =
1

2(D − 1)(D − 2)
, β = −(D − 2)α . (7.11)

With these choices for the constants in the metric ansatz, we can now present the results

for the vielbein components of the Ricci tensor:

R̂ab = e−2αφ
(
Rab − 1

2∂aφ∂bφ − α ηab φ
)
− 1

2e−2Dαφ Fa
c Fbc ,

R̂az = R̂za = 1
2e(D−3)αφ ∇b

(
e−2(D−1)αφ Fab

)
, (7.12)

R̂zz = (D − 2) a e−2αφ φ + 1
4e−2Dαφ F2 ,

where F2 means Fab Fab. From these, it follows that the Ricci scalar R̂ = ηAB R̂AB =

ηab R̂ab + R̂zz is given by

R̂ = e−2αφ
(
R − 1

2(∂φ)2 + (D − 3)α φ
)
− 1

4e−2Dαφ F2 . (7.13)

Now, finally, we calculate the determinant of the metric ĝ in terms of the determinant of g,

from the ansatz (7.7), finding√−ĝ = e(β+Dα)φ √−g = e2αφ √−g , (7.14)
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where the second equality follows using our relation between β and α given in (7.11). Putting

all the results together, we see that the dimensional reduction of the higher-dimensional

Einstein-Hilbert Lagrangian gives

L =
√−ĝ R̂ =

√−g
(
R − 1

2(∂φ)2 − 1
4e−2(D−1)αφ F2

)
, (7.15)

where we have dropped the φ term in (7.13) since it just gives a total derivative in L,

which therefore does not contribute to the field equations. In modern parlance, the scalar

field φ is called a dilaton.

If the scalar field in (7.15) were set to zero, we would simply have the Einstein-Maxwell

Lagrangian in D dimensions. This is in fact what Kaluza and Klein originally did (so one is

told; no living soul has ever actually looked at their papers). They were interested, of course,

in the idea that a unification of Einstein’s theory of gravity and Maxwell’s electrodynamics

could be achieved by reformulating them as pure gravity in five dimensions. However, it is

not actually allowed to set the scalar field to zero; this would be in conflict with the field

equation for φ. To see this, and for general future reference, let us pause to work out the

field equations coming from (7.15). They are

Rμν − 1
2R gμν = 1

2

(
∂μφ∂νφ − 1

2(∂φ)2 gμν

)
+ 1

2e−2(D−1)αφ
(
F2

μν − 1
4F2 gμν

)
,

∇μ
(
e−2(D−1)αφ Fμν

)
= 0 , (7.16)

φ = −1
2(D − 1)α e−2(D−1)αφ F2 ,

where we have defined F2
μν = Fμρ Fν

ρ. Actually, it is usually more convenient to eliminate

the −1
2R gμν term in the Einstein equation, by subracting out the appropriate multiple of

the trace, so that we get

Rμν = 1
2∂μφ∂νφ + 1

2e−2(D−1)αφ
(
F2

μν − 1
2(D − 2)

F2 gμν

)
. (7.17)

We see from the last equation in (7.16) that one cannot in general set φ = 0, since

there is a source term on the right-hand side of the equation, involving F2. In other

words, the details of the interactions between the various lower-dimensional fields prevent

the truncation of the scalar φ. Thus it is an Einstein-Maxwell-Scalar system that comes

from the consistent dimensional reduction of the higher-dimensional pure Einstein theory.

One would not notice this subtlety if one simply made the ansatz (7.7) but with φ = 0, and

plugged the resulting Ricci scalar into the higher-dimensional Einstein-Hilbert Lagrangian.

What one would be failing to notice is that such an ansatz would be inconsistent with the

higher-dimensional equations of motion, specifically, with the R̂zz component of the higher-

dimensional Einstein equation. Neglecting some of the content of the higher-dimensional
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equations of motion is, from a modern viewpoint, a philosophically unattractive thing to

do, since it would be denying the fundamental significance of the higher-dimensional theory.

Thus the transgression of Kaluza and Klein is at least deserving of censure, even if it does

not rise to the level of an impeachable offence.

After this little cautionary tale, one might wonder whether we ourselves might be guilty

of exactly the same offence. Recall that early on, we set all the non-zero modes in the Fourier

expansion (7.3) of the metric to zero. Suppose we had kept them instead, and eventually

worked out the analogue of (7.15) with the entire infinite towers of massive as well as

massless fields. Might we not have found that the equations of motion of the massive fields

would forbid us from setting them to zero? The answer is that a little bit of (elementary)

group theory saves us. The mode functions eim n z/L in the Fourier expansion (7.3) are

representations of the U(1) group of the circle S1. The mode n = 0 is a singlet, while the

non-zero modes are all doublets, in the sense that the modes with numbers n and −n are

complex conjugates of each other. When we truncated out all the non-zero modes, what we

were doing was keeping all the group singlets, and throwing out all the non-singlets. This

is guaranteed to be a consistent truncation, since no amount of multiplying group singlets

together can ever generate non-singlets. To put it another way, the label n is like a U(1)

charge, and there is a charge-conservation law that must be obeyed. Each term in field

equation for any particular field labelled by n will necessarily have net charge equal to n,

and so at least one factor in each term in the equation must have non-zero charge whenever

n is non-zero. Thus provided we truncate out all the non-zero modes, the consistency is

guaranteed.

In more complicated Kaluza-Klein reductions, where the compactifying manifold is not

simply a circle or a product of circles (a torus), the issue of the consistency of the truncation

to the massless sector is a much more tricky one. It is a question that is usually ignored

by those who do compactifications on K3 or Calabi-Yau manifolds, but there is always a

lurking suspicion (or hope?) that one day their sins will catch up with them.

Having obtained the lower-dimensional theory described by the Lagrangian (7.15), we

could go on to study spherically-symmetric black-hole solutions, and so on. This is actually

a very important subject, but we shall postpone looking into it for a while. For now, let

us continue with the easier part of a Kaluza-Klein dimensional reduction, where we see

what happens when an antisymmetric tensor field strength is reduced from (D + 1) to D

dimensions. Suppose we have an n-index field strength in the higher dimension, which we

denote by F̂(n). Suppose, furthermore, that this is given in terms of a potential Â(n−1), so
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that F̂(n) = dÂ(n−1). In terms of indices, it is clear that after reduction on S1 there will

be to kinds of D-dimensional potentials, namely one with all (n − 1) indices lying in the

D-dimensional spacetime, and the other with (n − 2) indices lying in the D-dimensional

spacetime, and the remaining index being in the direction of the S1. This is most easily

expressed in terms of differential forms. Thus the ansatz for the reduction of the potential

is

Â(n−1)(x, z) = A(n−1)(x) + A(n−2)(x) ∧ dz . (7.18)

Now, let us calculate the field strength. Clearly, we will have

F̂(n) = dA(n−1) + dA(n−2) ∧ dz . (7.19)

One might naively be tempted to identify dA(n−1) and dA(n−2) as the lower-dimensional field

strengths F(n) and F(n−1). There is nothing logically wrong with doing so, but it is not a

very convenient choice. Much better is to add and subtract a term in (7.19), so that we get

F̂(n) = dA(n−1) − dA(n−2) ∧ A(1) + dA(n−2) ∧ (dz + A(1)) ,

≡ F(n) + F(n−1) ∧ (dz + A(1)) , (7.20)

where A(1) is the Kaluza-Klein potential that we encountered in the metric reduction. We

have appended a subscript (1) to it now, in keeping with our general notation to indicate

the degrees of differential forms. Thus the D-dimensional field strengths are given by

F(n) = dA(n−1) − dA(n−2) ∧ A(1) , F(n−1) = dA(n−2) . (7.21)

This is in a sense a purely notational change from the “naive” choice mentioned above; it is

entirely up to us to decide what particular combination of quantities will be dignified with

the name F(n). The point is that the specific choice in (7.21) has a particular significance,

which becomes apparent when we calculate the higher-dimensional kinetic term F̂ 2
(n) in terms

of the lower-dimensional fields.2 The calculation is most easily done in the vielbein basis,

since then the metric is just the diagonal one ηAB . Consequently, in view of the definition

of the vielbeins in (7.9), the vielbein components of the (n − 1)-form field strength in D

dimensions will be the ones where the n’th index is a vielbein z index, not a coordinate

z index, meaning that we should read off F(n−1) from F(n−1) ∧ (dz + A(1)), and not from

2The mathematicians have, curiously, attached the name “transgression” to the process by which these

extra modifications to field strengths arise. The etymology is unclear, but here there is not meant to be any

connotation even of a matter worthy of censure.
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F(n−1) ∧ dz. It is now easily seen from (7.9) and (7.21) that in terms of vielbein components

we shall have

F̂ =
1
n!

F̂A1···An êA1 ∧ · · · ∧ êAn

=
enαφ

n!
F̂a1···an ea1 ∧ · · · ∧ ean +

e((n−1)α+β)φ

(n − 1)!
F̂a1···an−1z ea1 ∧ · · · ∧ ean−1 ∧ (dz + A(1)) ,

≡ 1
n!

Fa1···an ea1 ∧ · · · ∧ ean +
1

(n − 1)!
Fa1···an−1 ea1 ∧ · · · ∧ ean−1 ∧ (dz + A(1)) , (7.22)

implying that

F̂a1···an = e−nαφ Fa1···an , F̂a1···an−1z = e(D−n−1)αφ Fa1···an−1 , (7.23)

where we have used (7.11) to express β in terms of α. It is now easy to see, bearing in mind

the relation (7.14) between the determinants of the metrics in (D + 1) and D dimensions,

that the kinetic term for the (D + 1)-dimensional n-form field strength F̂(n) will give, upon

Kaluza-Klein reduction to D dimensions,

L = −
√

−ĝ

2 n! F̂ 2
(n) = −

√−g
2 n! e−2(n−1)αφ F 2

(n) −
√−g

2 (n−1)! e2(D−n)αφ F 2
(n−1) . (7.24)

At this point, let us pause for a moment in order to find a nicer way to present the

Lagrangians that we are encountering. There are two reasons for doing so; firstly, on

general aesthetic grouds, but also, and more importantly, to make the process of varying

the Lagrangian to obtain the equations of motion as simple and straightforward as possible.

The advantage of doing this is already evident if we consider what happens when we want to

vary the reduced Lagrangian (7.24) with respect to the potential A(n−2). Not only does this

potential appear in its “own” field strength F(n−1), but it also appears in the “transgression”

term in F(n) (see equation (7.21)). Already in this example, therefore, it is apparent that

getting the right signs, combinatoric factors, etc. when working out the equation of motion

in index notation will be a tedious and wearisome business. It is highly preferrable to be

able to work with the language of differential forms.

Recall that we define the Hodge dual of the basis for p-forms in D dimensions by

∗(dxμ1 ∧ · · · ∧ dxμp) ≡ 1
q!

εν1···νq
μ1···μp dxν1 ∧ dxνq , (7.25)

where q = D − p. Here, εμ1···μD
is the totally antisymmetric Levi-Civita tensor, whose

components are ±√|g| or 0, given by

εμ1···μD
=
√
|g| εμ1···μD

, (7.26)

87



where εμ1···μD
is the totally antisymmetric Levi-Civita tensor density, with

εμ1···μD
≡ (+1,−1, 0) (7.27)

according to whether μ1 · · · μD is an even permutation of the canonically-ordered set of

index values, an odd permutation, or no permutation at all. A natural canonical ordering

of indices would be 0, 1, 2, . . ., but it is, of course, ultimatley a matter of pure convention.

It is also sometimes useful to define a totally antisymmetric tensor density with upstairs

indices, and components given numerically by

εμ1···μD ≡ (−1)t εμ1···μD
, (7.28)

where t is the number of timelike coordinates. Note that this is the one and only time

that we ever introduce a pair of objects for which we use the same symbol, but where the

one with upstairs indices is not obtained by raising the indices on the one with downstairs

indices using the metric. In terms of εμ1···μD , the Levi-Civita tensor with upstairs indices

is given by

εμ1···μD =
1√|g| εμ1···μD . (7.29)

This, of course, is obtained from εμ1···μD
simply by raising the indices using the metric.

It is easy to see from the definition (7.25) that if we apply the Hodge dual to a p-form

A, we get a (D − p)-form B = ∗A with components given by

Bμ1···μq =
1
p!

εμ1···μq
ν1···νp Aν1···νp , (7.30)

where q ≡ D − p. (Note the order in which the indices appear on the epsilon tensors in

(7.25) and (7.30).) As a partiucular case, we see that the Hodge dual of the pure number

1 (a 0-form) is the D-form whose components are the Levi-Civita tensor, and thus we may

write

∗1 = ε = 1
D! εμ1···μD

dxμ1 · · · dxμD ,

=
√
|g| dx0 · · · dxD−1 =

√
|g| dDx . (7.31)

Thus ∗1 is nothing but the generally coordinate invariant volume element. Note that owing

to the tiresome, but unavoidable, (−1)t factor in (7.28), we have

dxμ1 ∧ · · · ∧ dxμD = (−1)t εμ1···μD dDx = (−1)t εμ1···μD

√
|g| dDx . (7.32)

From the above definitions, the following results follow straightforwardly. If A and B

are any two p-forms, then

∗A ∧ B = ∗B ∧ A =
1
p!

|A · B| ε =
1
p!

|A.B| ∗1 , (7.33)
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where

|A · B| ≡ Aμ1···μp Bμ1···μp , (7.34)

is the inner product of A and B. Also, applying ∗ twice, we have that if A is any p-form,

then

∗ ∗ A = (−1)pq+t A , (7.35)

where as usual we define q ≡ D − p.

A Lagrangian density L is something which is to be multiplied by dDx and then inte-

grated over the spacetime manifold to get the action. For example, the Einstein-Hilbert La-

grangian density is
√−g R, and this is integrated to give

∫
R
√−g dDx. From a differential-

geometric point of view, it is really not 0-forms, but rather D-forms, that can be integrated

over a D-dimensional manifold. Thus we can really think of the Einstein-Hilbert action as

being obtained by integrating the D-form R ∗1 over the manifold. This is a convenient way

to think of things, and so typically, from now on, when we speak of a Lagrangian we will

mean the D-form whose integral gives the action.

It is now easily seen from the previous definitions that the D-form Lagrangian corre-

sponding to the circle reduction of the Einstein-Hilbert Lagrangian, which we obtained in

the “traditional” language in (7.15), is given by

L = R ∗1 − 1
2∗dφ ∧ dφ − 1

2e−2(D−1)αφ ∗F(2) ∧ F(2) , (7.36)

where we have put a (2) subscript on the Maxwell field strength to remind us that it is a

2-form. Similarly, we see that the Lagrangian (7.24) becomes, when written as a D-form,

L = −1
2e−2(n−1)αφ ∗F(n) ∧ F(n) − 1

2e2(D−n)αφ ∗F(n−1) ∧ F(n−1) . (7.37)

Note that the previous n! combinatoric denominator, associated with the kinetic term for an

n-form field strength, is nicely eliminated in the Lagrangians written as differential forms.

It is now a completely straightforward matter to vary the Lagrangian for any gauge

field, and to get the combinatorics and signs correct without headaches. The only rule

one ever needs, apart fom the usual ones for carrying differential forms over each other,

is that the variation of an expression of the form X(p) ∧ dA(q) with respect to A(q) gives,

after integration by parts, −(−1)p dX(p) ∧A(q), when X(p) is a p-form. This is just the usual

minus sign coming from integration by parts, accompanied by an additional (−1)p factor

coming from the fact that the exterior derivative has to be taken over a p-form.
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For example, if we look at the equations of motion coming from varying the Lagrangian

(7.37) with respect to the potential A(n−1) we get

δL = −e−2(n−1)αφ ∗F(n) ∧ dδA(n−1) −→ (−1)D−n d
(
e−2(n−1)αφ ∗F(n)

)
∧ δA(n−1) , (7.38)

where the arrow indicates that the result is obtained after integration by parts. Varying

instead with respect to A(n−2) gives

δL = −e2(D−n)αφ ∗F(n−1) ∧ dδA(n−2) + e−2(n−1)αφ ∗F(n) ∧ dδA(n−2) ∧A(1) , (7.39)

−→ (−1)D−n+1 d
(
e2(D−n)αφ ∗F(n−1)

)
∧ δA(n−2) − (−1)D d

(
e−2(n−1)αφ ∗F(n) ∧A(1)

)
δA(n−2) .

The first lesson to note from this example is that when varying an expression such as

−1
2∗F(n) ∧ F(n) that is quadratic in F(n), the terms coming from varying the potentials in

each F(n) always simply add up, nicely removing the 1
2 prefactor. The second lesson is that

the chief remaining subtleties in varying Lagrangains are associated with the occurrence

of the transgression terms in the various field strengths, as we have here in the definition

of F(n) in (7.21). Having now got the variation expressed as δL = X ∧ δA for some X,

one simply reads off the field equation as X = 0. In our example here, note that the field

equation for F(n) can be used to simplify the field equation for F(n−1), leading simply to

d
(
e−2(n−1)αφ ∗F(n)

)
= 0 ,

d
(
e2(D−n)αφ ∗F(n−1)

)
+ (−1)D e−2(n−1)αφ ∗F(n) ∧ F(2) = 0 . (7.40)

7.2 Lower-dimensional symmetries from the S1 reduction

In the case where we started just from pure Einstein garvity in (D+1) dimensions, we ended

up with an Einstein-Maxwell-Scalar system in D dimensions. Thus the higher-dimensional

theory had general coordinate covariance, while the lower-dimensional one has general co-

ordinate covariance and the local U(1) gauge invariance of the Maxwell field. In fact, as can

be seen from (7.15), it also has another symmetry, namely a constant shift of the dilaton

field φ, accompanied by an appropriate constant scaling of the Maxwell potential:

φ −→ φ + c , Aμ −→ ec(D−1)α Aμ . (7.41)

At first sight, therefore, one might think that the lower-dimensional theory had more sym-

metry than the higher-dimensional one. Of course this is not really the case; the point

is that the local general coordinate symmetry in the higher dimension involves coordinate

reparameterisations by arbitrary functions of (D + 1) coordinates, while the local general
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coordinate and U(1) gauge transformations in the lower dimension involve arbitrary func-

tions of only D coordinates. Thus in effect the symmetries of the D-dimensional theory

really constitute only an infinitesimal residue of the (D + 1)-dimensional general coordi-

nate symmetries. We can understand this better by looking in detail at the Kaluza-Klein

reduction ansatz (7.7) for the (D + 1)-dimensional metric.

The original (D + 1)-dimensional Einstein theory is invariant under general coordinate

transformations, which can be written (see section 5.1) in infinitesimal form as

δx̂M = −ξ̂M , δĝMN = ξ̂P ∂P ĝMN + ĝPN ∂M ξ̂P + ĝMP ∂N ξ̂P . (7.42)

As yet, the parameters ξ̂M are arbitrary functions of all (D+1) coordinates. Now, the form

of the Kaluza-Klein ansatz (7.7) will not in general be preserved by such transformations.

In fact, it is rather easy to see that the most general allowed form for transformations that

preserve (7.7) will be

ξ̂μ = ξμ(x) , ξ̂z = c z + λ(x) , (7.43)

where the (D + 1)-dimensional index on ξ̂M is split as ξ̂μ and ξ̂z, with μ a D-dimensional

index. The coordinates x̂M are split as (xμ, z), and the x arguments on ξμ(x) and λ(x) indi-

cate that these functions depend only on the D-dimensional coordinates xμ. The parameter

c is a constant. Note that from (7.7) we have that the components of the (D+1)-dimensional

metric ĝMN are given in terms of the D-dimensional metric gμν , gauge potential Aμ and

dilaton φ by

ĝμν = e2αφ gμν + e2βφ Aμ Aν , ĝμz = ĝzμ = e2βφ Aμ , ĝzz = e2βφ , (7.44)

where β = −(D − 2)α.

Let us look first at the local transformations, namely those parameterised by ξμ(x) and

λ(x) (so we take the constant c = 0 for now). We shall see that these are the parame-

ters of D-dimensional general coordinate transformations, and U(1) gauge transformations,

respectively. Under these transformations, we see first from (7.42) that

δĝzz = ξρ ∂ρĝzz + ĝzz , (7.45)

where we have dropped those terms that give zero by virtue either of the form of the metric

ansatz (7.7), or by our assumption for now that c is zero. From (7.44), we thus deduce that

δφ = ξρ ∂ρ φ , (7.46)

91



implying that φ is indeed transforming as a scalar under the D-dimensional general coor-

dinate transformations parameterised by ξμ, and that is it inert (as it should be) under the

U(1) gauge transformations parameterised by λ.

Next, looking at the (μz) components in (7.42), we see that

δĝμz = ξρ ∂ρ ĝμz + ĝρz ∂μ ξρ . (7.47)

Substituting from (7.44), what we already learned about the transformations of φ, we deduce

that Aμ transformas as

δAμ = ξρ ∂ρ Aμ + Aρ ∂μ ξρ + ∂μ λ . (7.48)

This shows that Aμ transformas properly as a covector under general coordinate transfor-

mations ξρ, and that it has the usual gauge transformation of a U(1) gauge field, under the

parameter λ.

Finally, looking at the (μν) components in (7.42), we have

δĝμν = ξρ ∂ρ ĝμν + ĝρν ∂μ ξρ + ĝμρ ∂ν ξρ + ĝzν ∂μ ξz + ĝμz ∂ν ξz . (7.49)

Using what we have now learned about the transformation rules for φ and Aμ, we find,

after substituting from (7.44) that

δgμν = ξρ ∂ρ gμν + gρν ∂μ ξρ + gμρ ∂ν ξρ , (7.50)

showing that the D-dimensional metric indeed has the proper transformation properties

under general coordinate transformations ξρ, and that it is inert, as it should be, under the

U(1) gauge transformations λ.

We have now taken care of the local parameters in (7.43). We have seen that the subset

of the original (D+1)-dimensional general coordinate transformations ξ̂M that preserve the

form of the Kaluza-Klein metric ansatz (7.7) include the D-dimensional general coordinate

transformations ξμ, and the D-dimensional U(1) local gauge transformations of the Kaluza-

Klein vector potential Aμ. The remaining parameter to consider is the constant c in (7.43).

This is associated with the constant shift symmetry of the dilaton φ, given in (7.41). To

see how this symmetry comes out of (7.43), we have to introduce one further ingredient in

the discussion.

The higher-dimensional equations of motion, namely the Einstein equations R̂MN −
1
2 R̂ ĝMN = 0, actually have an additional global symmetry in addition to the local general

coordinate transformations. This is a symmetry under which the metric is scaled by a
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constant factor, ĝMN −→ k2 ĝMN . From the definitions in chapter 2, it is easily seen that

the various curvature tensors transform under this constant scaling as

R̂M
NPQ −→ R̂M

NPQ , R̂MN −→ R̂MN , R̂ −→ k−2 R̂ . (7.51)

In other words, the Riemann tensor with its coordinate indices in their “natural” positions

is inert. No metric is needed in order then to construct the Ricci tensor, R̂MN = R̂P
MPN ,

and so it too is inert. However, the construction of the Ricci scalar then requires the use

of the inverse metric, R̂ = ĝMN R̂MN , and so it acquires the scaling given above in (7.51).

The upshot is that the Einstein equation is actually invariant under the scaling.

The reason for discussing this scaling symmetry in terms of the equations of motion is

that, as is easily seen, it is not a symmetry of the Lagrangian itself. Clearly, we will have
√−ĝ −→ kD+1

√−ĝ in (D +1) dimensions, and hence the Einstein-Hilbert Lagrangian will

scale as
√−ĝ R̂ −→ kD−1

√−ĝ R̂. The crucial point is, however, that this is a uniform

constant scaling of the Lagrangian. Now, the equations of motion that follow from two

Lagrangians that are related by a constant scale factor are the same, and hence we can

understand the invariance of the equations of motion from this viewpoint too. In certain

less trivial examples, notably elven-dimensional supergravity, on also finds that there is

such a uniform scaling symmetry of the Lagrangian, and hence a scale-invariance of the

equations of motion. It is less trivial in this example, because the various terms in the

Lagrangian (7.1) must all conspire to scale the same way.

Returning now to our discussion of the symmetries of teh Kaluza-Klein reduction of

(D+1)-dimensional Einstein theory, we have learned that there is the additional symmetry

ĜMN −→ k2 ĝMN in the original (D + 1)-dimensional theory, where k is a constant. In

infinitesimal form, this translates into the statement that δĝMN = 2a ĝMN , where a is

an infinitesimal constant parameter. Thus if we write out the residual general-coordinate

transformations (7.43), specialised to include just the constant parameter c, and include

also the scaling symmetry, we will have the following infinitesimal global symmetry:

δĝMN = c δz
M ĝzN + c δz

N ĝMz + 2a ĝMN . (7.52)

Note that the δ symbols on the right-hand side are Kronecker deltas, non-vanishing only

when the m or N index takes the (D + 1)’th value z.

Plugging in the form of the metric ansatz (7.44), and taking (MN) to be (zz), (zμ) and

μν) successively, we can read off the transformation rules for φ, Aμ and gμν , finding

β δφ = a + c , δAμ = −cAμ , δg − μν = 2a gμν − 2α gμν δφ . (7.53)
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It is now evident that we can use the scaling transformation a as a compensator for the

dilaton-shift transformation c, in such a way that under the appropriate combined trans-

formation the metric gμν is inert, i.e. δgμν = 0. Clearly to to this, we should choose

a = − c

D − 1
, (7.54)

bearing in mind that the constants α and β in the Kaluza-Klein ansatz (7.7) were chosen

so that β = −(D − 2)α. Thus we arrive at the global transformation

δφ = − c

α (D − 1)
, δAμ = −cAμ , δgμν = 0 . (7.55)

After a constant scaling redefinition of the parameter c, this can be seen to be precisely the

dilaton shift symmetry given in (7.41).

Of course since we have just made use of a particular linear combination of the origi-

nal two global symmetries, with parameters a and c related by (7.54), it follows that the

“orthogonal” combination is still also a symmetry of the D-dimensional theory. This other

combination is nothing but a uniform scaling symmetry of the entire D dimensional theory.

What we have done by taking combinations of the a and c transformations is to diago-

nalise the two symmetries, one of which, given by (7.55), is a purely internal symmetry

that leaves the lower-dimensional metric invariant and acts only on the other fields. The

other combination is a scaling symmetry that acts on all fields that carry indices; in this

case, on gμν and Aμ. In fact the general rule for the scaling symmetries, if they are present

in a particular theory, is that each fundamental field is scaled according to the number of

indices it carries:

gμν −→ k2 gμν , Aμ1···μn −→ kn Aμ1···μn . (7.56)

Thus in our example of the D-dimensional Lagrangian (7.15), one can easily verify that it

is invariant under

gμν −→ k2 gμν , Aμ −→ kAμ . (7.57)

Furthermore, it is easily established from the combined transformations (7.53) that we

can indeed find a combination of the parameters, namely a = −c, that gives (7.57) in

its infinitesimal form. This is precisely the combination that leaves φ invariant, which

is consistent with the general rule (7.56) since φ has no indices. These kinds of scaling

transformations have been referred to as “trombone” symmetries.

To complete the story of S1 reductions, let us consider the dimensional reduction of D =

11 supergravity down to D = 10. In our new, improved notation, the eleven-dimensional
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Lagrangian can be written as the 11-form

L11 = R ∗1 − 1
2∗F(4) ∧ F(4) + 1

6dA(3) ∧ dA(3) ∧ A(3) . (7.58)

Substituting all the previous results, we find that we can write L11 = L10 ∧ dz, with the

ten-dimensional Lagrangian given by

L10 = R ∗1 − 1
2∗dφ ∧ dφ − 1

2e
3
2
φ ∗F(2) ∧ F(2)

−1
2e

1
2
φ ∗F(4) ∧ F(4) − 1

2e−φ ∗F(3) ∧ F(3) + 1
2dA(3) ∧ dA(3) ∧ A(2) , (7.59)

with F(2) = dA(1) being the Kaluza-Klein Maxwell field, and F(3) = dA(2) and F(4) =

dA(3) − dA(2) ∧ A(1) being the two field strengths coming from the 4-form F(4) in D = 11.

Note that the final term in the ten-dimensional Lagrangian comes from the cubic term

dA(3) ∧ dA(3) ∧ A(3) in D = 11, and that this requires no metric in its construction. This

ten-dimensional theory is the bosonic sector of the type IIA supergravity theory, which is

the low-energy limit of the type IIA string.

Note that the eleven-dimensional theory has the “trombone” symmetry described above,

namely a symmetry under the constant rescaling gμν −→ k2 gμν and Aμνρ −→ k3 Aμνρ.

Consequently, the ten-dimensional theory has the global internal symmetry φ −→ φ + c,

together with

A(1) −→ e−
3
4
c A(1) , A(3) −→ e−

1
4
c A(3) , A(2) −→ e

1
2
c A(2) . (7.60)

7.3 Kaluza-Klein Reduction of D = 11 supergravity on T n

It is clear that having established the procedure for performing a Kaluza-Klein reduction

from D + 1 dimensions to D dimensions on the circle S1, the process can be repeated for

a succession of circles. Thus we may consider a reduction from D + n dimensions to D

dimensions on the n-torus T n = S1 × · · · × S1. At each successive step, for example the

i’th reduction step, one generates a Kaluza-Klein vector potential Ai
(1), and a dilaton φi

from the reduction of the metric. In addition, p-form potential already present in D + i

dimensions will descend to give a p-form and a (p − 1)-form potential, by the mechanism

that we have already studied. As a result, one obtains a rapidly-proliferating number of

fields as one descends through the dimensions.

Let us consider an example where we again begin with D = 11 supergravity, and now

reduce it to D dimensions on the n = (11 − D) torus, with coordinates zi. As well as the

set of Kaluza-Klein vectors Ai
(1) and dilatons φi, we will have 0-form potentials or “axions”
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Ai
(0)j coming from the further reduction of the Kaluza-Klein vectors. Since such an axion

cannot be generated until the Kaluza-Klein vector Ai
(1) has first been generated at a previous

reduction step, we see that the axions Ai
(0)j will necessarily have i < j. In addition, the

potential A(3) A(3) in D = 11 will give, upon reduction, the potentials A(3), A(2)i, A(1)ij and

A(0)ijk. Here, the i, j, . . . indices are essentially internal coordinate indices corresponding to

the torus directions. Thus these indices are antisymmetrised.

We will not labour too much over the details of the calculation of the torus reduction.

It is clear that one just has to apply the previously-derived formulae for the single-step

reduction of the Einstein-Hilbert and gauge-field actions repeatedly, until the required lower

dimension D = 11− n is reached. If one does this, one obtains the following Lagrangian in

D dimensions (see hep-th/9512012, hep-th/9710119):

L = R ∗1l − 1
2∗d�φ ∧ d�φ − 1

2e�a·�φ ∗F(4) ∧ F(4) − 1
2

∑
i

e�ai·�φ ∗F(3)i ∧ F(3)i

−1
2

∑
i<j

e�aij ·�φ ∗F(2)ij ∧ F(2)ij − 1
2

∑
i

e
�bi·�φ ∗F i

(2) ∧ F i
(2) − 1

2

∑
i<j<k

e�aijk ·�φ ∗F(1)ijk ∧ F(1)ijk

−1
2

∑
i<j

e
�bij ·�φ ∗F i

(1)j ∧ F i
(1)j + LFFA . (7.61)

where the “dilaton vectors” �a, �ai, �aij , �aijk, �bi, �bij are constants that characterise the cou-

plings of the dilatonic scalars �φ to the various gauge fields. They are given by

FMNPQ vielbein

4 − form : �a = −�g ,

3 − forms : �ai = �fi − �g ,

2 − forms : �aij = �fi + �fj − �g , �bi = −�fi , (7.62)

1 − forms : �aijk = �fi + �fj + �fk − �g , �bij = −�fi + �fj ,

where the vectors �g and �fi have (11 − D) components in D dimensions, and are given by

�g = 3(s1, s2, . . . , s11−D) ,

�fi =
(

0, 0, . . . , 0︸ ︷︷ ︸
i−1

, (10 − i)si, si+1, si+2, . . . , s11−D

)
, (7.63)

where si =
√

2/((10 − i)(9 − i)). It is easy to see that they satisfy

�g · �g = 2(11−D)
D−2 , �g · �fi = 6

D−2 , �fi · �fj = 2δij + 2
D−2 . (7.64)

Note also that ∑
i

�fi = 3�g . (7.65)
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Note that the D-dimensional metric is related to the eleven-dimensional one by

ds2
11 = e

1
3�g·�φ ds2

D +
∑

i

e2�γi·�φ (hi)2 , (7.66)

where �γi = 1
6�g − 1

2
�fi, and

hi = dzi + Ai
1 + Ai

0j dzj . (7.67)

There are, of course, a number of subtleties that have been sneaked into the formulae

presented above. First of all, as we already saw from the single-step reduction from D+1 to

D dimensions, one acquires transgression terms that modify the leading-order expressions

F(n) = dA(n−1) + · · · for the lower-dimensional field strengths. This can all be handled in a

fairly mechanical, although somewhat involved, manner. After a certain amount of algebra,

one can show that the various field strengths are given by

F(4) = F̃(4) − γi
j F̃(3)i ∧ Aj

(1) + 1
2γi

k γj
� F̃(2)ij ∧ Ak

(1) ∧ A�
(1)

−1
6γi

� γj
m γk

n F̃(1)ijk ∧ A�
(1) ∧ Am

(1) ∧ An
(1) ,

F(3)i = γj
i F̃(3)j + γj

i γk
� F̃(2)jk ∧A�

(1) + 1
2γj

i γk
m γ�

n F̃(1)jk� ∧ Am
(1) ∧An

(1) ,

F(2)ij = γk
i γ

�
j F̃(2)k� − γk

i γ�
j γm

n F̃(1)k�m ∧ An
(1) , (7.68)

F(1)ijk = γ�
i γm

j γn
k F̃(1)�mn ,

F i
(2) = F̃ i

(2) − γj
k F̃ i

(1)j ∧ Ak
(1) ,

F i
(1)j = γk

j F̃ i
(1)k ,

where the tilded quantities represent the unmodified pure exterior derivatives of the corre-

sponding potentials, F̃(n) ≡ dA(n−1), and γi
j is defined by

γi
j = [(1 + A0)−1]ij = δi

j −Ai
(0)j + Ai

(0)k Ak
(0)j + · · · . (7.69)

Recalling that Ai
(0)j is defined only for j > i (and vanishes if j ≤ i), we see that the series

terminates after a finite number of terms. We also define here the inverse of γi
j, namely

γ̃i
j given by

γ̃i
j = δi

j + Ai
(0)j . (7.70)

Another point still requiring explanation is the term denoted by LF F A in (7.61). This

is the D-dimensional descendant of the term 1
6dA(3) ∧ dA(3) ∧ A(3). Again, the calculations

are purely mechanical, and we can just present the results:

D = 10 : 1
2 F̃(4) ∧ F̃(4) ∧ A(2) ,

D = 9 :
(

1
4 F̃(4) ∧ F̃(4) ∧ A(1)ij − 1

2 F̃(3)i ∧ F̃(3)j ∧ A(3)

)
εij ,
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D = 8 :
(

1
12 F̃(4) ∧ F̃(4)A(0)ijk − 1

6 F̃(3)i ∧ F̃(3)j ∧ A(2)k − 1
2 F̃(4) ∧ F̃(3)i ∧ A(1)jk

)
εijk ,

D = 7 :
(

1
6 F̃(4) ∧ F̃(3)iA(0)jkl − 1

4 F̃(3)i ∧ F̃(3)j ∧ A(1)kl + 1
8 F̃(2)ij ∧ F̃(2)kl ∧ A(3)

)
εijkl ,

D = 6 :
(

1
12 F̃(4) ∧ F̃(2)ijA(0)klm− 1

12 F̃(3)i ∧ F̃(3)jA(0)klm + 1
8 F̃(2)ij ∧ F̃(2)kl ∧ A(2)m

)
εijklm ,

D = 5 :
(

1
12 F̃(3)i ∧ F̃(2)jkA(0)lmn + 1

48 F̃(2)ij ∧ F̃(2)kl ∧ A(1)mn (7.71)

− 1
72 F̃(1)ijk ∧ F̃(1)lmn ∧ A(3)

)
εijklmn ,

D = 4 :
(

1
48 F̃(2)ij ∧ F̃(2)klA(0)mnp − 1

72 F̃(1)ijk ∧ F̃(1)lmn ∧ A(2)p

)
εijklmnp ,

D = 3 : − 1
144 F̃(1)ijk ∧ F̃(1)lmn ∧ A(1)pq εijklmnpq ,

D = 2 : − 1
1296 F̃(1)ijk ∧ F̃(1)lmnA(0)pqr εijklmnpqr .

We may now ask the analogous question to the one we considered in the single-step S1

reduction, namely what are the symmetries of the dimensionally-reduced theory, and how do

they arise from the original higher-dimensional symmetries. Although the discussion above

was aimed at the specific example of the T n reduction of D = 11 supergravity,. it is obvious

that much of the general structure, for example in the reduction of the Einstein-Hilbert

term, is applicable to any starting dimension.

Let us consider the higher-dimensional general coordinate transformations, which, in in-

finitesimal form, are paramameterised in terms of the vector ξ̂M as before: δx̂M = −ξ̂M(x̂).

The difference now is that we have n reduction coordinates zi, and so the higher-dimensional

coordinates x̂M are split as x̂M = (xμ, zi). As in the S1 reduction, we must first identify

the subset of these higher-dimensional general coordinate transformations that leaves the

structure of the dimensional-reduction ansatz (7.66) invariant. (In other words, we need

to find the transformations which allow the metric still to be written in the same form

(7.66), but with, in general, transformed lower-dimensional fields gμν , Ai
(1), Ai

(0)j and �φ.

The crucial point is that only those higher-dimensional general coordinate transformations

that preserve the zi-independence of the lower-dimensional fields are allowed.)

It is not hard to see, using the expression (7.42) for the infinitesimal general coordinate

transformations of ĝMN , that the subset that preserves the structure of (7.66) is

ξ̂(x, z) = ξμ(x) , ξ̂i(x, z) = Λi
j zj + ξi(x) , (7.72)

where the quantities Λi
j are constants. This generalises the expression (7.43) that we

obtained in the case of the S1 reduction. Clearly, we can expect that ξμ(x) will again

describe the general coordinate transformations of the lower-dimensional theory. The n

local parameters ξi(x), which generalise the single local parameter λ(x) of the S1-reduction
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case, will now describe the local U(1) gauge invariances of the n Kaluza-Klein vector fields

Aiμ.

This leaves only the global transformations, parameterised by the constants Λi
j to inter-

pret. These generalise the single constant c of the S1 reduction example. In that case, we

saw that after taking into account the additional scaling symmetry of the higher-dimensional

equations of motion, which could be used as a compensating transformation, we could ex-

tract a symmetry in the lower dimension that left the metric invariant, and described a

constant shift of the dilaton, combined with appropriate constant rescalings of the gauge

fields. In group-theoretic terms, that was an IR transformation; the group parameter c took

values anywhere on the real line.

In our present case with a reduction on the torus T n, we have n2 constant parameters Λi
j

appearing in (7.72). They act by matrix multiplication on the “column vector” composed

of the internal coordinates zi on the torus,

δzi = −Λi
j zj . (7.73)

The matrix Λi
j is unrestricted; it just has n2 real components. This is the general linear

group of real n × n matrices, denoted by GL(n, IR). There is, of course, again also the

uniform scaling symmetry of the higher-dimensional equations of motion. One can use

this as a “compensator,” to allow all of the Λi
j transformations to become purely internal

symmetries, which act on the various lower-dimensional potentials and dilatons, but which

leave the lower-dimensional metric invariant. This can be seen by calculations that are

precisely analogous to the ones for the S1 reduction in the previous section.

The conclusion, therefore, from the above discussion is that when the Einstein-Hilbert

action is dimensionally reduced on the n-dimensional torus Tn, it gives rise to a theory in

the lower dimension that has a GL(n, IR) global symmetry, in addition to the local general

coordinate and gauge symmetries generated by ξμ(x) and ξi(x). In fact, the GL(n, IR)

transformations are also symmetries of the theory that we get when we include the other

terms in the eleven-dimensional sueprgravity Lagrangian. This is a rather general feature;

any theory with gravity coupled to other matter fields will, upon dimensional reduction

on T n, give rise to a theory with a GL(n, IR) global symmetry. (Strictly speaking, one

can only be sure of SL(n, IR) as an internal symmetry that leaves the metric invariant;

getting the full GL(n, IR) depends on having the extra homogeneous scaling symmetry of

the higher-dimensional equations of motion; note that GL(n, IR) ∼ SL(n, IR) × IR.)

Actually, as we shall see later, the reduction of eleven-dimensional supergravity on T n

actually typically gives a bigger global symmetry than GL(n, IR). The reason for this is that
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there is actually a “conspiracy” between the metric and the 3-form potential of D = 11, and

between them they create a lower-dimensional system that has an enlarged global symmetry.

The phenomenon first sets in when one descends down to eight dimensions on the 3-torus,

for which the global symmetry is SL(2, IR) × SL(3, IR), rather than the naively-expected

GL(3, IR). By the time one considers a reduction from D = 11 to D = 3 on the 8-torus,

the naively-expected GL(8, IR) is enlarged to an impressive E8. We won’t study all the

deatils of how these enlargements occur, but we will look at some of the elements in the

mechanism. First, let us consider the simplest non-trivial example of a global symmetry,

which arises in a reduction of pure gravity on a 2-torus.

7.4 SL(2, IR) and the 2-torus

Let us consider pure gravity in D + 2 dimensions, reduced to D dimensions on T 2. From

the earlier discussions it is clear that we will get the following fields in the dimensionally-

reduced theory: (gμν ,Ai
(1),A1

(0)2,
�φ). The notation is a little ugly-looking here, so let us

just review what we have. There are two Kaluza-Klein gauge potentials Ai
(1), and then

there is the 0-form potential, or axion, A1
(0)2. This is what comes from the dimensional

reduction of the first of the two Kaluza-Klein vectors, A1
(1), which, at the second reduction

step gives not only a vector, but also the axion. We can make things look nicer by using

the symbol χ to represent A1
(0)2. From the previous results, it is not hard to see that the

dimensionally-reduced Lagrangian is

L = R ∗1 − 1
2∗d�φ ∧ d�φ − 1

2

∑
i

e�ci·�φ ∗F(2)i ∧ F(2)i − 1
2e�c·�φ ∗dχ ∧ dχ , (7.74)

where the dilaton vectors are given by

�c1 =
(
−
√

2D
D−1 ,−

√
2

(D−1)(D−2)

)
, �c2 =

(
0,−

√
2(D−1)

D−2

)
,

�c =
(
−
√

2D
D−1 ,

√
2(D−2)

D−1

)
. (7.75)

The field strengths are given by

F1
(2) = dA1

(1) − dχ ∧ A2
(1) , F(2) = dA2

(1) . (7.76)

Things simplify a lot if we rotate the basis for the two dilatons �φ = (φ1, φ2). Make the

orthogonal transformation to two new dilaton combinations, which we may call φ and ϕ:

φ = −1
2

√
2D

D−1 φ1 + 1
2

√
2(D−2)

D−1 φ2 , ϕ = −1
2

√
2(D−2)

D−1 φ1 − 1
2

√
2D

D−1 φ2 . (7.77)
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After a little algebra, the Lagrangian (7.74) can be seen to become

L = R ∗1− 1
2∗dϕ∧dϕ− 1

2∗dφ∧dφ− 1
2eφ+qϕ ∗F1

(2)∧F1
(2)− 1

2e−φ+qϕ ∗F2
(2)∧F2

(2)− 1
2e2φ ∗dχ∧dχ ,

(7.78)

where q =
√

D/(D − 2).

Note also that from the expression (7.66) for the dimensionally-reduced metric, we have

ds2
D+2 = e

− 2√
D(D−2)

ϕ
ds2

D+e
√

(D−2)/D ϕ
(
eφ (dz1+A1

(1)+χdz2)2+e−φ (dz2+A2
(2))

2
)

. (7.79)

This shows that the scalar ϕ has the interpretation of parameterising the volume of the 2-

torus, since it occurs in an overall multiplicative factor of the internal compactifying metric,

while φ parameterises a shape-changing mode of the torus, since it scales the lengths of the

two circles of the torus in opposite directions. In fact φ and χ completely characterise the

moduli of the torus. The moduli are parameters that change the shape of the torus, at fixed

volume, while keeping it flat. One can see that as φ varies, the relative radii of the two

circles change, while as χ varies, the angle between the two circles changes.

Let us now look at the scalars in the Lagrangian (7.78), namely φ, ϕ and χ, descrined

by the scalar Lagrangian

Lscal = −1
2(∂ϕ)2 − 1

2 (∂φ)2 − 1
2e2φ (∂χ)2 . (7.80)

It is evident that ϕ is decoupled from the others. It has a global shift symmetry, ϕ −→ ϕ+k.

This gives an IR factor in the global symmetry group. Now look at the dilaton-axion system

(φ, χ). This is best analysed by defining a complex field τ = χ + i e−φ. The Lagrangian for

φ and χ can then be written as

L(φ,χ) ≡ −1
2(∂φ)2 − 1

2e2φ (∂χ)2 = −∂τ · ∂τ̄

2 τ2
2

, (7.81)

where τ2 means the imaginary part of τ ; one commonly writes τ = τ1 + i τ2. Now, it is not

hard to see that if τ is subjected to the following fractional linear transformation,

τ −→ a τ + b

c τ + d
, (7.82)

where a, b, c and d are constants that satisfy

a d − b c = 1 , (7.83)

then the Lagrangian (7.81) is left invariant. But we can write the constants in a 2 × 2

matrix,

Λ =

(
a b

c d

)
, (7.84)
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with the condition (7.83) now restated as detΛ = 1. What we have here is real 2 × 2

matrices of unit determinant. They therefore form the group SL(2, IR). This SL(2, IR) is a

symmetry that acts non-linearly on the complex scalar field τ , as in (7.82).

Thus we have seen that the scalar Lagrangian (7.80) has in total an IR×SL(2, IR) global

symmetry. This makes the GL(2, IR) symmetry that was promised in the previous section.

Note that the SL(2, IR) transformation (7.82) can be expressed directly on the dilaton and

axion, where it becomes

eφ −→ eφ′
= (c χ + d)2 eφ + c2 e−φ ,

χ eφ −→ χ′ eφ′
= (aχ + b)(c χ + d) eφ + a c e−φ . (7.85)

To complete the story, we should go back to analyse the full Lagrangian (7.78) that

includes the gauge fields F i
(2). First of all, it is helpful to make a field redefinition A1

(1) −→
A1

(1) + χA2
(1), which has the effect of changing the expression for the field strength F1

(2), so

that instead of (7.76) we have

F1
(2) = dA1

(1) + χdA2
(1) , F(2) = dA2

(1) . (7.86)

In other words, the derivative has bee shifted off χ, and onto A2
(1) instead. The statement

of how the SL(2, IR) transformations act on the gauge fields now becomes very simple; it is(A2
(1)

A1
(1)

)
−→ (ΛT )−1

(A2
(1)

A1
(1)

)
, (7.87)

where Λ was defined in (7.84). This transformation on the potentials is to be performed at

the same time as the transformation (7.85) is performed on the scalars. (If one spots the

right way to do this calculation, the proof is not too difficult.) Note that while the scalars

transform non-linearly under SL(2, IR), the two gauge potentials transform linearly, as a

doublet. In other words, they just transform by matrix multiplication of (ΛT )−1 on the

column vector formed from the two potentials.

7.5 Scalar coset Lagrangians

Many of the features of the 2-torus reduction that we saw in the previous section are rather

general in all the toroidal dimensional reductions. In particular, one thing that we encoun-

tered was that the global suymmmetry of the lower-dimensional Lagrangian was already

established by looking just at the scalar fields, and their symmetry transformations. Show-

ing that the full Lagrangian had the symmetry was then a matter of showing that the terms

in the full lower-dimensional Lagrangian that involve the higher-rank potentials (the two
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1-form gauge potentials, in our 2-torus reduction example) also share the same symmetry.

It is in fact essentially true in general that the extension of the global symmetry to the

entire Lagrangian is “guaranteed,” once it is eastablished as a symmetry of the scalar sec-

tor. Furthermore, the higher-rank potentials always transform in linear representations of

the global symmetry group, while the scalars transform non-linearly. One can, for example,

show without too much further trouble that if one reduces D = 11 supergravity on the

2-torus, so that now the 3-form gauge potential is included also, the resulting additional

gauge potentials in D = 9 will again transform linearly under the GL(2, IR) global symme-

try. These additional gauge potentials will comprise A(3), transforming as a singlet under

the SL(2, IR) subgroup, two 2-forms A(2)i, transforming as a doublet, and one 1-form, A(1)12,

transforming as a singlet. Under the IR factor of GL(2, IR), which corresponds to the con-

stant shift symmetry of the other dilaton ϕ, all the potentials will transform by appropriate

constant scaling factors.

To understand the structure of the global symmetries better, we need to study the nature

of the scalar Lagrangians that arise from the dimensional resuction. This is instructive not

only in its own right, but also because it leads us into the subject of non-linear sigms models,

and coset spaces, which are of importance in many other areas of physics too. Let us begin

by considering the SL(2, IR) example from the previous section. It exhibits many of the

general features that one encounters in non-linear sigma models, while having the merit of

being rather simple and easy to calculate explicitly.

The group SL(2, IR) is the non-compact version of SU(2), and consequently, its associ-

ated Lie algebra (the elements infinitesimally close to the identity) is essentially the same

as that of SU(2). Thus we have the generators (H,E+, E−), staisfying the Lie algebra

[H,E±] = 2E± , [E+, E−] = H . (7.88)

H is the Cartan subalgebra generator, while E± are the raising and lowering operators. A

convenient representation for the generators is in terms of 2× 2 matrices:

H =

(
1 0

0 −1

)
, E+ =

(
0 1

0 0

)
, E− =

(
0 0

1 0

)
. (7.89)

(So H = τ3, E± = 1/2(τ1 ± i τ2, where τi are the Pauli matrices.)

Consider now the exponentiation of the H and E+, and define

V = e
1
2
φ H eχ E+ , (7.90)

where φ and χ are thought of as fields depending on the coordinates of a D-dimensional
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spacetime. A simple calculation shows that

V =

(
e

1
2
φ χ e

1
2
φ

0 e−
1
2
φ

)
. (7.91)

We now compute the exterior derivative, to find

dV V−1 =

( 1
2dφ eφ dχ

0 − 1
2dφ

)
= 1

2dφH + eφ dχE+ . (7.92)

Let us define also the matrix M = VT V. It is easy to see from (7.91) that we have

M =

(
eφ χ eφ

χ eφ e−φ + eφ χ2

)
, M−1 =

(
e−φ + eφ χ2 −χ eφ

−χ eφ eφ

)
. (7.93)

Thus we see that we may write a scalar Lagrangian as

L = 1
4tr
(
∂M−1 ∂M

)
= −1

2(∂φ)2 − 1
2e2φ (∂χ)2 . (7.94)

This is nothing but the SL(2, IR)-invariant scalar Lagrangian that we encountered in the

previous section. The advantage now is that we have a very nice way to see why it is

SL(2, IR) invariant.

To do this, observe that if we introduce an arbitrary constant SL(2, IR) matrix Λ, given

by

Λ =

(
a b

c d

)
, a d − b c = 1 , (7.95)

then if we send V −→ V ′′ = V Λ, we get M −→ (V ′′)T V ′′ = ΛT

vT V Λ = ΛT MΛ, which manifestly leaves L invariant:

L −→ 1
4tr
(
Λ−1 ∂M−1 (ΛT )−1 ΛT ∂MΛ

)
= 1

4tr
(
∂M−1 ∂M

)
. (7.96)

The only trouble with this transformation is that when we sent V −→ V ′′ = V Λ we actually

did something improper, because in general the transformed matrix V ′′ is not of the upper-

triangular form that the original matrix V given in (7.91 is. Thus by acting with Λ, we

have done something that cannot, as it stands, be expressed as a transformation on the

fields φ and χ. Happily, there is a simple remedy for this. What we must do is make a

compensating local transformation O that acts on V from the left, at the same time as we

multiply by the constant SL(2, IR) matrix from the right. Thus we define a transformed

matrix V ′ by

V ′ = OV Λ , (7.97)
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where, by definition, O is the matrix that does the job of restoring V ′ to the upper-triangular

gauge. There is a unique orthogonal matrix that does the job, and after a little algebra,

one finds that it is

O = (c2 + e2φ (c χ + a)2)−1/2

(
eφ (c χ + a) c

−c eφ (c χ + a)

)
. (7.98)

The matrix O that we have just constructed does the job of restoring the SL(2, IR)-

transformed matrix V to the upper-triangular gauge of (7.91), which means that we can

now interpret the action of SL(2, IR) in terms of transformations on φ and χ. But does

it give us an invariance of the Lagrangian (7.94)? The answer is yes, and this is easily

seen. The matrix O is the specific one thta does the job of compensating for the SL(2, IR)

transformation with constant paraneters a, b, c and d. It is itself local, since it depends not

only on the constant SL(2, IR) parameters but also on the fields φ and χ themselves. This

does not cause trouble, howvere, because, crucially, O is an orthogonal matrix. This means

that when we calculate how M = VT V transforms, we find

M −→ M′ = (V ′)T V ′ = ΛT VT OT OV Λ = ΛT VT V Λ = ΛT MΛ . (7.99)

Thus the local compensating transformation cancels out when the transformed M matrix

is calculated, and hence the previous calculation (7.96) demonstrating the invariance of the

Lagrangian goes through without modification.

After a little algebra, it is not hard to see that the transformed fields φ′ and χ′, defined

by (7.97), are precisely the ones that we obtained in the previous section, given in (7.85).

It is not hard to see that at a given spacetime point (i.e. for fixed values of φ and χ), we

can use the SL(2, IR) transformation to get from any pair of values for φ and χ to any other

pair of values. This means that SL(2, IR) acts transitively on the scalar manifold, which is

the manifold where the fields φ and χ take their values.

Let us take stock of what we have found. We have parameterised points in the scalar

manifold in terms of the matrix V in (7.91). We have seen that acting from the right

with an SL(2, IR) matrix Λ, we can get to any other point in the scalar manifold. But

we must, in general, make a compensating O(2) transformation as we do so, to make sure

that we stay withing our original parameterisation scheme in terms of the upper-triangular

matrices V. Thus we may specify points in the scalar by the coset SL(2, IR)/O(2), consisting

of SL(2, IR) motions modulo the appropriate O(2) compensators. Thus we may say that

the scalar manifold for the (φ, χ) dilaton/axion system is the coset space SL(2, IR)/O(2),

and that it has SL(2, IR) as its global symmetry group.
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In this example, the points in the SL(2, IR)/O(2) coset were parameterised by the coset

representative V, given in (7.91). We obtained this by exponentiating just two of the

SL(2, IR) generators, namely the Cartan generator H and the raising operator E+. Things

don’t always go quite so smoothly and easily as this, but in the case of the various scalar coset

manifolds that arise in the toroidal compactifications of eleven-dimensional supergravity

they do. Let us, therefore, pursue these examples a bit further.

Our discussion above was for the reduction of the Einstein-Hilbert action on T 2, staring

in any dimension D+2 and ending up in D dimensions. We could generalise this to include

some additional antisymmetric tensors in D + 2 dimensions, and we would find in general

that they give rise to sets of fields in D dimensions that transform linearly under SL(2, IR).

In the case where we start with supergravity in D = 11, we would have an additional 3-

form potential, therefore. After reduction to D = 9 on T 2, we would get the fields discussed

above in from the gravity sector, together with fields A(3), A(2)i and A(1)12 that descend

from A(3). One finds that A(3) is a singlet under SL(2, IR), the two A(2)i form a doublet,

and A(1)12 is again a singlet.

The situation changes if we descend from D = 11 on a higher-dimensional torus. The

reason is that we now start to get additional axionic scalar fields from the descendants of

A(3), over and above the scalars that come from the eleven-dimensional metric. For example,

if we descend on T 3 to D = 8, we now have not only the three dilatons �φ, and three axions

Ai
(0)j , but also one additional axion A(0)123. Now the scalars �φ and Ai

(0)j have a Lagrangian

with the “expected” GL(3, IR) global symmetry. In fact, they parameterise points in the

six-dimensional coset manifold GL(3, IR)/O(3). But what happens with the symmetry is

the following. We saw in D = 9, in the T 2 reduction, that the IR factor in the GL(2, IR)

symmetry “factored off” from the rest of the SL(2, IR). The same thing happens here, and

there is one dilaton which contributes the IR factor in GL(3, IR), and which is decoupled

from the remaining five scalars that form the SL(3, IR)/O(3) coset. It does, however, couple

to the the additional axion, A(0)123, coming from the reduction of A(3). In fact they form a

dilaton/axion system with an SKL(2, IR) global symmetry, working just like the SL(2, IR)

that we saw in the T 2 reduction. Thus the final conclusion is that the reduction of D = 11

supergravity on T 3 to D = 8 gives a theory whose scalars parameterise the coset

SL(3, IR)
O(3)

× SL(2, IR)
O(2)

, (7.100)

and so there is an SL(3, IR) × SL(2, IR) global symmetry.

To see the details in this eight-dimensional example, let us consider just the scalar sector

106



of the dimensionally-reduced theory. From (7.61), we will have

L8 = −1
2∗d�φ ∧ d�φ − 1

2

∑
i<j

e
�bij ·�φ ∗F i

(1)j ∧ F i
(1)j − 1

2e�a123·�φ ∗F(1)123 ∧ F(1)123 , (7.101)

where

F1
(1)2 = dA1

(0)2 , F2
(1)3 = dA2

(0)3 , F1
(1)3 = dA1

(0)3−A2
(0)3 dA1

(0)2 , F(1)123 = dA(0)123 .

(7.102)

From the general results for the dilaton vectors, it is not hard to see that after performing

an orthogonal transformation to make things look nicer, we can make the dilaton vectors

become

�b12 = (0, 1,
√

3) , �b23 = (0, 1,−
√

3) , �b13 = (0, 2, 0) ,

�a123 = (2, 0, 0) . (7.103)

Thus we see that indeed the axion A(0)123 and the dilaton φ1 form an independent SL(2, IR)/O(2)

scalar coset, which is decoupled from the rest of the scalar sector.

This leaves the SL(3, IR) part of the scalar coset still to understand. Perhaps the easiest

way to see what’s happening here is to recall a couple of facts about group theory. The

generators of a Lie algebra G can be organised into Cartan generators, �H, which mutually

commmute with each other, and raising and lowering operators E�α. If the rank of the

algebra is n, then there are n Cartan generators, �H = (H1, . . . ,Hn). The raising and

lowering operators have the commutation relations

[ �H,E�α] = �α E�α (7.104)

with the Cartan generators, where �α are called the root vectors associated with the gener-

ators E�α. One sets up a scheme for defining root vectors to be positive or negative. The

standard way to do this is to look at the components of the root vector �α = (α1, . . . , αn),

working from the left to the right. The sign of the root vector is defined to be the sign

of the first non-zero component that is encountered. Generators with positive root vectors

are called raising operators, and those with negative roots are called lowering operators. It

is easily seen from (7.104) that if the commutator of two non-zero-root generators E�α and

E�β
is non-vanishing, then it will be a generator with root vector �α + �β. Thus in general we

have

[E�α, E�β
] = N(α, β)E

�α+�β
, (7.105)

for some constant (possibly zero) N(α, β).
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The classification of all the possible Lie algebras is quite straightforward, but it is a

lengthy business, and we shall not stray into it here. Suffice it to say that it turns out that

the Lie algebras can be classified by classifying all the possible root systems, which means

determining all the possible sets of roots that satisfy certain consistency requirements. In

turn, these root systems can be characterised in terms of the simple roots. These are defined

to be the subset of the positive roots that allow one to express any positive root in the system

as a linear combination of the simple roots with non-negative integer coefficients. One can

show that the number of simple roots is equal to the rank of the algebra. In other words,

there are as many simple roots as there are components to the root vectors.

In the example of SL(2, IR), which has rank 1, we had the single Cartan generator H,

and the single positive-root generator E+, with the single-component “root vector” 2, as in

(7.88). In general, SL(n + 1, IR) has rank n, and so for SL(3, IR) we have rank 2. Thus we

expect two Cartan generators �H, and 2-component root vectors. In fact this is just what we

are seeing in our eighet-dimensional scalar Lagrangian. Forgetting now about the SL(2, IR)

part, which, as we have seen, factors off from the rest, we have two dilatons �φ = (φ2, φ3),

and 2-component dilaton vectors

�b12 = (1,
√

3) , �b23 = (1,−
√

3) , �b13 = (2, 0) . (7.106)

(These follow from (7.103) by dropping the first component of each dilaton vector; i.e. the

component associated with the decoupled SL(2, IR) part.) We can recognise the �bij dilaton

vectors as the positive roots of SL(3, IR), with �b12 and �b23 as the two simple roots, and
�b13 = �b12 +�b23. We may introduce positive-root generators Ei

j, defined for i < j, associated

with the root-vectors �bij , and Cartan generators �H, with the commutation relations

[ �H,Ei
j ] = �bij Ei

j , [Ei
j, Ek

�] = δj
k Ei

� − δ�
i Ek

j . (7.107)

Note that the only non-zero commutator among the positive-root generators here is [E1
2, E2

3] =

E1
3.

One can represent the various generators here in terms of 3 × 3 matrices. For Ei
j, we

define it to be the matrix with zeroes everywhere except for a 1 at the position of row i and

column j, and so

E1
2 =

⎛⎜⎜⎝
0 1 0

0 0 0

0 0 0

⎞⎟⎟⎠ , E2
3 =

⎛⎜⎜⎝
0 0 0

0 0 1

0 0 0

⎞⎟⎟⎠ , E1
3 =

⎛⎜⎜⎝
0 0 1

0 0 0

0 0 0

⎞⎟⎟⎠ . (7.108)

The two Cartan generators �H = (H1,H2) are then diagonal, with

H1 = diag (1, 0,−1) , H2 = 1√
3

diag (1,−2, 1) . (7.109)
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The strategy for constructing the SL(3, IR)/O(3) coset Lagrangian is now to follow

the same path that we used for SL(2, IR). We write down a coset representative V, by

exponentiating the Cartan and positive-root generators of SL(3, IR), with the dilatons and

axions as coefficients. We do this in the following way:

V = e
1
2
�φ· �H e

A2
(0)3

E2
3

e
A1

(0)3
E1

3

e
A1

(0)2
E1

2

. (7.110)

Note that there are obviously many different ways that one could organise this exponen-

tiation; here, we exponentiate each generator separately, and then multiply the results

together. An alternative would be to exponentiate the sum of generators times fields. This

would, in general, give a slightly different expression for V, since if A and B are two matrices

that do not commute, then eA eB �= eA+B . (One can use the Baker-Campbell-Hausdorf for-

mula to relate them.) The different possibilities correspond to making different choices for

exactly how to parameterise points in the coset space, and eventually one choice is related

to any other by making redefinitions of the fields. Thus any choice is equally as “good” as

any other. The choice we are making here happens to be convenient, because it happens to

correspond exactly to the choice of field variables in our eight-dimensional Lagrangian.

It is not hard to establish that with the coset representative V defined as in (7.110)

above, one has

dV V−1 = 1
2d�φ · �H +

∑
i<j

e
1
2
�bij ·�φ F i

(1)j Ei
j , (7.111)

where the 1-form field strengths F i
(1)j are given in (7.102). In particular, the transgression

term in F1
(1)3 comes from the fact that the commutator of E1

2 and E2
3 is non-zero, as given

in (7.107). (One needs to use the following matrix relations in order to derive the result:

deX e−X = dX + 1
2 [X, dX] + 1

6 [X, [X, dX]] + · · · ,

eX Y e−X = Y + [X,Y ] + 1
2 [X, [X,Y ]] + · · · . (7.112)

Only the first couple of terms in these expansions are ever needed, since the multiple com-

mutators of positive-root generators rapidly expire.)

It is also straightforward to calculate M = VT V, and hence the Lagrangian

L = 1
4tr
(
∂M−1 ∂M

)
. (7.113)

(In practice, Mathematica is handy for this sort of calculation.) After a little algebra, one

finds that it is given by

L = −1
2∗d�φ ∧ d�φ − 1

2

∑
i<j

e
�bij ·�φ ∗F i

(1)j ∧ F i
(1)j . (7.114)
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In other words, we have succeeded in writing the part of the eight-dimensional scalar La-

grangian (7.101) in a manifestly SL(3, IR)-invariant fashion.

To make the SL(3, IR) symmetry fully explicit, we should really repeat the steps that we

followed in the case of the SL(2, IR) example. Namely, we should consider a general global

SL(3, IR) transformation Λ acting via right-multiplication on the coset representative V.

This will in general take us out of the upper-triangular gauge of (7.110), and so we should

then show that there exists a local, field-dependent, compensating O(3) transformation O,

such that

V ′ = OV Λ (7.115)

is back in the upper-triangular gauge. This means that one can then interpret V ′, via the

definition (7.110), as the coset representative for a different point in the coset manifold,

corresponding to the transformed fields with primes on them. The matrix M = VT V
that is used to construct the scalar Lagrangian (7.113) then transforms nicely as M −→
M′ = ΛT MΛ, hence implying the invariance of the Lagrangian under global SL(3, IR)

transformations.

In this particular case, it is perfectly possible to do this calculation explicitly, and to

exhibit the required O(3) compensator (again, Mathematica can be handy here). However,

it is clear that in more complicated examples it would become increasingly burdensome to

construct the compensator O. Furthermore, we don’t actually really need to know what it

is; all we really need is to know that it exists. Luckily, there is a general theorem in the

theory of Lie algebras, which does the job for us. It is known as the Iwasawa Decomposition,

and it goes as follows. The claim is that every element g in the Lie group G obtained by

exponentiating the Lie algebra G can be uniquely expressed as the following product:

g = gK gH gN . (7.116)

Here gK is in the maximal compact subgroup K of G, gH is in the Cartan subalgebra of G,

and gN is in the exponentiation of the positive-root part of the algebra G.3

This is precisely what is needed for the discussion of the cosets that arise in these

supergravity reductions. Our coset representative V is constructed by exponentiating the

Cartan generators, and the full set of positive-root generators (see (7.90) for SL(2, IR), and

(7.110) for SL(3, IR)). Thus our coset representative is written as V = gH gN . Now, we act
3Actually, as we shall see later, this statement of the Iwasawa decomposition is appropriate only in the

rather special circumstance we have here, where G is maximally non-compact. We shall give a more general

statement later.
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by right-multiplication with a general group element Λ in G. This means that V Λ is some

element of the group G. Now, we invoke the Iwasawa decomposition (7.116), which tells

us that we must be able to write the group element V Λ in the form gK V ′, where V ′ itself

is of the form g′H g′N . This does what we wanted; it assures us that there exists a way of

pulling out an element O of the maximal compact subgroup K of G on the left-hand side,

such that we can write V Λ as OV ′.

We are now in a position to proceed to the lower-dimensional theories obtained by

compactifying eleven-dimensional supergravity on torii of higher dimensions. We can benefit

from the lessons of the previous examples, and home in directly on the key points. Let us

first, for reasons that will become clear later, consider the cases where the n-torus has n ≤ 5,

meaning that we end up in dimensions = 11− n ≥ 6. The full set of axionic scalars will be

Ai
(0)j and A(0)ijk in each dimension. From our T 2 and T 3 examples, we have seen that the

dilaton vectors�bij and �aijk for these axions form the positive roots of a Lie algebra, and that

by exponentiating the associated positive-root generators, with the axions as coefficients,

and exponentiatiing the Cartan generators, with the dilatons as coefficients, we constructed

a coset representative V for G/K, where G is the Lie group associated with the Lie algebra,

and K is its maximal compact subgroup.

How do we identify what the group G is in each dimension? If we can identify the subset

of the dilaton vectors that corresponds to the simple roots of the Lie algebra then we will

have solved the problem. Bu this is easy; we just need to find what subset of the dilaton

vectors �bij and �aijk allows us to express all of the dilaton vectors as linear combinations of

the simple roots, with non-negative integer coefficients. The answer is very straightfoward;

the simple roots are given by

�bi,i+1 , for 1 ≤ i ≤ n − 1 , and �a123 . (7.117)

To check that this is correct, it is only necessary to look at the results in (7.63)-(7.65). It

is manifest from the fact that �bij = −�fi + �fj that any �bij can be expressed as multiples of

the �bi,i+1, with non-negative integer coefficients. It is also clear that by adding appropriate

integer multiples of the �bi,i+1 to �a123, all of the �aijk can be constructed.

Having found the simple roots, it is easy to determine what the Lie algebra is. All the

Lie algebras are classified in terms of their Dynkin diagrams, which encode the information

about the lengths of the simple roots, and the angles between them. The notation is as

follows. The angle between any two simple roots can be only one out of four possibilities,

namely 90, 120, 135 or 150 degrees. The simple roots are denoted by dots in the Dynkin

diagram, and the angle between two roots is indicated by the number of lines joining the
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corresponding dots. The rule is no line, 1 line, 2 lines or 3 lines, corresponding to 90, 120,

135 or 150 degrees. The lengths of the simple roots are either all equal (such groups are

called simply laced), or they have exactly two different lengths, in groups that are called,

unimaginitively, non-simply-laced. In this latter case, the dots in the Dynkin diagram are

filled-in to denote the shorter roots, and unfilled for the longer roots. In our case, it turns

out that the roots are all of the same length. From the expressions in (7.64), it is easily

seen that our simple roots are characterised by the Dynkin diagram

�b12
�b23

�b34
�b45

�b56
�b67

�b78

o — o — o — o — o — o — o

|
o

�a123

This diagram is telling us that all the angles that are not 90 degrees are 120 degrees,

and that all the simple roots have equal lengths. The understanding is that in a given

dimension D = 11 − n, only those dilaton vectors which are defined for i ≤ n arise. Those

familiar with group theory and Dynkin diagrams will be able to recognise the diagrams for

the various n values as follows. For n = 2, we have just �b12, and the algebra is SL(2, IR).

For n = 3, we have (�b12,�b23,�a123), and the algebra is SL(3, IR) × SL(2, IR). These are the

two cases that we have already studied in detail. For n = 4, we have (�b12,�b23,�b34,�a123), and

the Dynkin diagram is that of SL(5, IR). For n = 5, we have (�b12,�b23,�b34,�b45,�a123), and the

Dynkin diagram is that of D5, or O(5, 5). We shall postpone the discussion of n ≥ 6 for a

while.

From our previous discussion of the T 2 and T 3 reductions, we expect now that we

should introduce the appropriate positive-root generators associated with each of the dilaton

vectors �bij and �aijk. For the �bij , we just use the same notation as before, with generators

Ei
j, except that now the range of the i and j indices is extended to 1 ≤ i < j ≤ n. For the

�aijk, we introduce generators Eijk. The commutation relations for these, and the Cartan

generators �H, will be

[ �H,Ei
j] = �bij Ei

j , [ �H,Eijk] = �aijk Eijk no sum (7.118)

[Ei
j , Ek

�] = δj
k Ei

� − δ�
i Ek

j , (7.119)

[E�
m, Eijk, ] = −3δ[i

� E|m|jk] , (7.120)
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[Eijk, E�mn] = 0 , (7.121)

We can recognise the commutation relations for the �H and the Ei
j as being precisely those

of the Lie algebra SL(n, IR). This is reasonable on two counts. Firstly, since these are the

generators associated with the fields coming from the reduction of pure gravity, namely
�φ and Ai

(0)j, we already expected to find a GL(n, IR) symmetry after reduction on the n-

torus. (One never really sees the extra IR factor of GL(n, IR) ∼ IR×SL(n, IR) in the Dynkin

diagrams; it is associated with the fact that there is one extra Cartan generator over and

above the (n− 1) that are needed for SL(n, IR).) Another way of seeing why this SL(n, IR)

subgroup is reasonable is by looking at the Dynkin diagram above; if we delete the simple

root �a123, then the remaining simple roots �bi,i+1 do indeed precisely give us the Dynkin

diagram of SL(n, IR).

The extra commutation relations involving Eijk extend the algebras from SL(n, IR) to

the larger ones discussed above. Thus in addition to the D = 9 and D = 8 cases discussed

previously, in D = 7 we will have the scalar coset SL(5, IR)/O(5), and in D = 6 we will

have O(5, 5)/(O(5)×O(5)). In each case, in accordance with our discussion of the Iwasawa

decomposition, the denominator group in the coset is the maximal compact subgroup of

the numerator. The coset representatives in all cases n ≤ 5 are constructed as follows:

V = e
1
2
�φ· �H (∏

i<j

e
Ai

(0)j
Ei

j)
exp

( ∑
i<j<k

A(0)ijk Eijk
)

, (7.122)

where the ordering of terms is anti-lexigraphical, i.e. · · · (24)(23) · · · (14)(13)(12), in the

product. With this specific way of organising the exponentiation, it turns out that, with

the commutation relations given above, one has

dV V−1 = 1
2d�φ · �H +

∑
i<j

e
1
2
�bij ·�φ F i

(1)j Ei
j +

∑
i<j<k

e
1
2
�aijk ·�φ F(1)ijk Eijk , (7.123)

where the various 1-form field strengths, with all their transgression terms, are precisely

as given in equation (7.68). (It is quite an involved calculation to show this!) In all the

cases with n ≤ 5, one can define the matrix M = VT V, and it will follow that the scalar

Lagrangian can be written as L = 1
4tr (∂M−1 ∂M).

7.6 Scalar cosets in D = 5, 4 and 3

Aficionados of group theory will easily recognise that if we consider the cases n = 6, 7

and 8, corresponding to reductions to D = 5, 4 and 3 dimensions, the Dynkin diagrams

above will be those of the exceptional groups E6, E7 and E8. One does not need to be
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much of an aficionado, however, to see that as things stand, there is something wrong

with the counting of fields. After reduction on an n torus there will be 1
2n(n − 1) axions

Ai
(0)j , and 1

6n(n − 1)(n − 2) axions A(0)ijk. For n = (2, 3, 4, 5, 6, 7, 8), we therefore have

(1, 4, 10, 20, 35, 56, 84) axions in total. On the other hand, the numbers of positive roots for

the groups indicated by the Dynkin diagrams above are (1, 4, 10, 20, 36, 63, 120). Thus the

discrepancies set in at n = 6 and above. We appear to be missing some axionic scalar fields.

Consider first the situation where this arises, when n = 6, implying that we have dimen-

sionally reduced the D = 11 theory to D = 5. From the counting above, we are missing one

axion. The explanation for where it comes from is in fact quite simple. Recall that among

the fields in the reduced theory is the 3-form potential A(3), with its 4-form field strength

F(4). Now, in D = 5, if we take the Hodge dual of a 4-form field strength, we get a 1-form,

and this can be interpreted as the field strength for a 0-form potential, or axion. This is

the source of our missing axion.

Before looking at this in more detail, let’s just check the counting for remaining two

cases. When n = 7, we have reduced the theory to D = 4, and in this case it is 2-form

potentials that dualise into axions. The 2-form potentials are A(2)i, and so when n = 7

there are seven of them. This is precisley the discrepancy that we noted in the previous

paragraph. Finally, when n = 8 we have a reduction to D = 3, and in this case it is 1-form

potentials that are dual to axions. The relevant potentials are A(1)ij and Ai
(1), of which

there are 28+8 = 36 when n = 8. Again, this exactly resolves the discrepancy noted in the

previous paragraph.

Now, back to D = 5. As usual, we shall concentrate just on the scalar sector, since

this governs the global symmetry of the entire theory. Now, of course, we must include

the 3-form potential too, since we are about to dualise it to obtain the “missing” axion.

In fact, to start with, we may consider just those terms in the five-dimensional Lagrangian

that involve the 3-form potential. From the general results in (7.61) and the associated

formulae, we can see that the relevent terms are

L(F(4)) = −1
2e�a·�φ ∗F(4) ∧ F(4) − 1

72A(0)ijk dA(0)�mn ∧ F(4) εijk�mn , (7.124)

where F(4) = dA(3). In the process of dualisation, the rôle of the Bianchi identity, which

is dF(4) = 0 here, is interchanged with the role of the field equation. The easiest way to

achieve this is to treat F(4) as a fundamental field in its own right, and impose its Bianchi

identity by adding the term −χdF(4) to the Lagrangian, where we have introduced the field
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χ as a Lagrange multiplier. Thus we consider

L(F(4))′ = −1
2e�a·�φ ∗F(4) ∧ F(4) − 1

72A(0)ijk dA(0)�mn ∧ F(4) εijk�mn − χdF(4) . (7.125)

Clearly, the variation of this with respect to χ gives the required Bianchi identity. We note

that F(4), which is now treated as a fundamental field, has a purely algebraic equation of

motion. Varying L(F(4))′ with respect to F(4), we get the equation of motion

e�a·�φ ∗F(4) = dχ − 1
72A(0)ijk dA(0)�mn εijk�mn . (7.126)

We may define this right-hand side as our new 1-form field strength,; let us call it G(1):

G(1) ≡ dχ − 1
72A(0)ijk dA(0)�mn εijk�mn . (7.127)

Thus we have F(4) = e−�a·�φ ∗G(1). Substituting this back into the Lagrangian (which is

allowed, since it is a purely algebraic, non-differential equation), we find that L(F(4))′ has

become

L(F(4))′ = −1
2e−�a·�φ ∗G(1) ∧ G(1) . (7.128)

In other words, we have successfully dualised the potential A(3), with field strength F(4) =

dA(3), and replaced it with the axion χ, whose field strength G(1) is given in (7.127). Note

that its dilaton vector, −�a, is the negative of the dilaton vector �a of the field prior to

dualisation. This sign reversal always occurs in any dualisation. Notice that one effect of

the dualisation is that the FFA term in the Lagrangian (7.124) has migrated to become

a trangsression term in the definition of the new dualised field strength G(1) in (7.127).

This interchange between FFA terms and transgression terms is a general feature in any

dualisation.

Having found the missing axion, we must now consider the algebra, and the construction

of the coset representative V. We need one more generator, over and above the usual Cartan

generators �H and positive-root generators Ei
j and Eijk. In fact we are missing one further

positive-root generator, in this D = 5 example; let us call it J . It satisfies the following

commutation relations, which extend the set given already in equations (7.118)-(7.121):

[ �H, J ] = −�a J , [Ei
j, J ] = 0 , [Eijk, J ] = 0 ,

[Eijk, E�mn] = −εijk�mn J . (7.129)

The last commutator here is a reflection of the fact that in D = 5, the sum of dilaton vectors

�aijk + �a�mn, when i, j, k, �,m, n are all different, is equal to −�a, as can be seen from (7.62)

and (7.65). Note that this depends crucially on a specific feature of reduction on a torus of
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dimension 6, since then we have that �aijk + �a�mn =
∑

i
�fi − 2�g since all of i, j, k, �,m, n are

different, and hence this equals �g.

The coset representative is now constructed as follows:

V = e
1
2
�φ· �H (∏

i<j

e
Ai

(0)j
Ei

j)
exp

( ∑
i<j<k

A(0)ijk Eijk
)

eχ J . (7.130)

After some algebra, one can show that now we have

dV V−1 = 1
2d�φ · �H +

∑
i<j

e
1
2
�bij ·�φ F i

(1)j Ei
j +

∑
i<j<k

e
1
2
�aijk ·�φ F(1)ijk Eijk + e−�a·�φ G(1) J , (7.131)

where the 1-form field strengths F i
(1)j and F(1)ijk are given in (7.68), and G(1) is given in

(7.127). As in the previous examples, the transgression terms in all the field strengths come

out to be precisely correct, and arise from the various non-vanishing commutators among

the positive-root generators.

From the previous general discussion, we can expect that the coset representative V can

be used to construct an E6-invariant scalar Lagrangian, and that this will be the Lagrangian

of the scalar sector of D = 11 supergravity reduced on T 6. In particular, we can act on V
from the right with a global E6 transformation Λ , and then the Iwasawa decomposition

theorem assures us that we can find a compensating field-dependent transformation O that

acts on the left, such that V ′ = OV Λ is back in the “upper-triangular” gauge. In this case,

the maximal compact subgroup of E6 is USp(8), and so O is a USp(8) matrix. Actually,

a better name for the gauge is really the Borel gauge. The Borel subgroup of any Lie

group is the subgroup generated by the positive-root generators and the Cartan generators.

Obviously this is a subgroup, since negative roots cannot be generated by commutation of

non-negative ones. Sometimes, it is useful also to be able to talk of the strict Borel subgroup,

defined to be the subgroup generated by the strictly-positive-root generators. In our cases,

we obtain our coset representatives by exponentiating the entire Borel subalgebra, including

the Cartan subalgebra.

Because the maximal compact subgroup in this E6 case is no longer orthogonal, the way

in which the Lagrangian is constructed from the coset representative V is slightly different.

In general, the construction is the following. One defines the so-called Cartan involution

τ , which has the effect of reversing the sign of every non-compact generator in the algebra

G, while leaving the sign of every compact generator unchanged. If we denote the positive-

root generators, negative-root generators and Cartan generators by (E�α, {E−�α, �H), where

�α ranges over all the positive roots, then for our algebras τ effects the mapping

τ : (E�α, E−�α, �H) −→ (−E−�α,−E�α,− �H) . (7.132)
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It should perhaps be remarked at this point that the groups that we are encountering in

the toroidal compactifications of eleven-dimensional supergravity are somewhat special, in

that they are always maximally non-compact. It is always the case, in any real group, that

the generator combinations (Eα − E−α) are compact while the combinations (Eα − E−α)

are non-compact.4 (Thus if there are N positive roots, then there are N compact and N

non-compact generators formed from the non-zero roots.) But in our case, we also have that

all the Cartan generators are non-compact. Thus the group En that we encounter upon

compactification on an n-torus is actually En in its maximally non-compact form, denoted

by En(+n). It has the n “extra” non-compact Cartan generators, in addition to the 50/50

split of compact/non-compact generators coming from the non-zero-root generators. We

shall normally not bother with the extra annotation of the (+n) in the subscript, but its

presence will be implicit.

Getting back to the Cartan involution, we may use this to construct the required gener-

alisation of the M = VT V construction that worked when the maximal compact subgroup

was orthogonal. Thus we may define a “generalised transpose” X# of a matrix X, by

X# ≡ τ(X−1) . (7.133)

From the definition of τ , and its action on the various generators, it is evident that X# is

nothing but XT in cases where the compact generators give rise to an orthogonal group.

If the compact generators form a unitary group, then X# will be X†. In the case of E6,

the maximal compact subgroup is USp(8), which is the intersection of SU(8) and Sp(8).

A detailed discussion of the generalised transpose in this case would take us off into a

digression about symplectic invariants, and is probably inappropriate here. Some further

details can be found in hep-th/9710119.

Suffice it to say that with the generalised transpose defined as above, the scalar La-

grangian in D = 5 can now be written as

L = 1
4tr
(
∂M−1 ∂M

)
, (7.134)

where M = V# V. The proof of the invariance under global E6 transformations is then

essentially identical to that in the previous examples that we discussed. Note that another
4By the real form of a group, we mean that the Hermitean generators are all formed by taking real

combinations of the raising and lowering operators, not complex ones. For example, SL(2, IR) is the real

form of A1, since E+ ± E− and H are Hermitean, whereas SU(2) is the complex form of A1, since its

Hermitean generators are the complex combinations τ1 = E+ + E−, τ2 = i E+ − i E− and τ3 = H .
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way of writing the Lagrangian, which follows directly by substitution of M = V# V into

(7.134), is

L = −1
2tr
(
∂V V−1 (∂V V−1)# + ∂V V−1 (∂V V−1)

)
. (7.135)

The stories for the compactifications of D = 11 supergravity on T 7 and T 8 to D = 4

and D = 3 proceed in a very similar manner. Full details can be found in hep-th/9710119.

As we already mentioned, in order to achieve the full E7 or E8 global symmetries one must

dualise the seven 2-form potentials A(2)i to 0-forms χi in D = 4, whilst in D = 3, one must

dualise the 28 + 8 1-form potentials Aιij and Ai
(1) to 0-forms χij and χi in D = 3. Thus

in D = 4 we must introduce seven extra generators Ji for the duals of the A(2)i. They

will have associated root vectors −�ai (remember that dualisation reverses the signs of the

dialton vectors), and sure enough, these are precisely the addition positive roots that can

be constructed by taking non-negative-integer linear combinations of the simple roots �bi,i+1

and �a123 in this case. In addition to the standard dimension-independent commutation

relations (7.118)-(7.121), there will now be the further commutators involving Ji:

[ �H, Ji] = −�ai Ji , [Ei
j, Jj ] = δk

i Jj , [Eijk, J�] = 0 ,

[Eijk, E�mn] = εijk�mnp Jp . (7.136)

We then form a coset representative by exponentiation, appending an additional factor

Vextra = eχi Ji (7.137)

to the right of the standard dimension-independent expression given in (7.122). One then

finds, after extensive algebra, that the scalar Lagrangian for the four-dimensional reduction

from D = 11 can be written in the form (7.134)( or (7.135), and that it has an E7 global

symmetry. The coset is E7/SU(8) in this case.

Finally, in D = 3, one introduces extra generators Jij and J i for the axions χij and χi

coming from dualising A(1)ij and Ai
(1). In addition to the dimension-independent commuta-

tors (7.118)-(7.121), there will now in addition be

[ �H, Jij ] = −�aij Jij , [ �H, J i] = −�bi J
i , [Ei

j, Jk�] = −2δj
[k J�]i , [Ei

j, Jk] = −δk
i Jj ,

[Eijk, J�m] = −6δ[i
[� δj

m] J
k] , [Eijk, J�] = 0 , (7.138)

[Eijk, E�mn] = −1
2εijk�mnpq Jpq .

In this case, the coset representative V is constructed by appending

Vextra = eχi Ji
e

1
2
χij Jij (7.139)
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to the right of the usual dimension-independent terms given in (7.122). The scalar La-

grangian can then be shown to be given by (7.134) or (7.135), and its global symmetry is

E8. The coset in this case is E8/SO(16).

To summarise this discussion of the scalar cosets coming from the toroidal reductions

of eleven-dimensional supergravity, we may present a table listing the coset spaces in each

dimension. The numerator group G, and the maximal compact denominator subgroup K,

are listed in each case.

G K

D = 10 O(1, 1) -

D = 9 GL(2, IR) O(2)

D = 8 SL(3, IR) × SL(2, IR) SO(3) × SO(2)

D = 7 SL(5, IR) SO(5)

D = 6 O(5, 5) O(5) × O(5)

D = 5 E6(+6) USp(8)

D = 4 E7(+7) SU(8)

D = 3 E8(+8) SO(16)

Table 1: Scalar cosets for maximal supergravities in D dimensions

7.7 General remarks about coset Lagrangians

As we have already remarked, the scalar cosets that we encountered in the toroidal com-

pactifications of eleven-dimensional supergravity are somewhat special, in the sense that

the numerator groups (i.e. the global symmetry groups themselves) are all maximally non-

compact. In addition, our way of parameterising the cosets involved making a specific

“gauge choice,” which in our case was achieved by choosing the coset representative V to

be in the Borel gauge. One can perfectly well, in principle, make some other gauge choice.

Alternatively, one is not obliged to make any choice of gauge at all. One could simply

exponentiate the entire Lie algebra of the global symmetry group G. This would give too

many fields, of course, since the dimension of the coset G/K is dim(G) − dim(K), and so

there should be this number of scalar fields, rather than the dim(G) fields that one would

get if no gauge choice were made. The resolution is a simple one, and it is essentially

something that we have already seen: two points V1 and V2 on the coset manifold G/K
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that are related by left-multiplication by an element of K, i.e. V1 = OV2, are actually the

same point. Thus if one constructs V by exponentiating the entire algebra, then there will

be local “gauge” symmetries associated with the entire group K that remove the surplus

degrees of freedom. Our way of constructing the scalar cosets in the supergravity theories

exploited the fact that in those cases it was actually very simple to use these local gauge

symmetries explicitly, to fix a gauge in which the redundant fields were simply set to zero.

We shall not delve here into the details of how one handles the construction of coset

Lagrangians in general, for example in cases where the local K invariance is left unfixed.

We shall, however, make some general remarks about how to handle a wider class of cosets

in the gauge-fixed formalism, namley in those cases where the numerator group G is not

maximally non-compact. To illustrate the point, let us consider the family of examples of

cosets

Mp,q =
O(p, q)

O(p) × O(q)
, (7.140)

where O(p, q) is the group of pseudo-orthogonal matrices that leaves invariant the indefinite-

signature diagonal matrix η = diag (1, 1, . . . , 1,−1,−1, . . . ,−1), where there are p plus signs

and q minus signs. Thus O(p, q) matrices Λ satisfy

ΛT η Λ = η . (7.141)

For a given value of n = p + q, the algebras O(p, q) are all just different forms of the same

underlying algebra, which would be Dn/2 in the Dynkin classification if n were even, and

B(n−1)/2 if n were odd. However, the partition into compact and non-compact generators is

different for different partitions of n = p+q. In fact, the denominator groups O(p)×O(q) are

the maximal compact subgroups in each case, telling us that of the total of 1
2(p+q)(p+q−1)

generators of O(p, q), there are 1
2p(p−1)+ 1

2q(q−1) compact generators, with the rest being

non-compact. Evidently, then, the dimensions of the cosets are different depending on the

partition of n = p + q; simple subtraction gives us

dim (Mp,q) = 1
2(p + q)(p + q − 1) − 1

2p(p − 1) − 1
2q(q − 1) = p q . (7.142)

When n = p + q is even, the rank of O(p, q) is 1
2n, and ones finds that the dimension p q

of the coset space is equal to the dimension of the Borel subalgebra, which is 1
2n+ 1

2 (1
2n(n−

1) − n/2) = 1
4n2, only if p = q. Thus when n = p + q is even, only the cosets of the form

O(p, p)/(O(p) × O(p)) are maximally non-compact. (We encounted such a coset in D = 6,

where the scalar Lagrangian was O(5, 5)/(O(5) × O(5)).) A similar analysis for the case

n = p + q odd shows that only the case O(p, p + 1)/(O(p) × O(p + 1)) (or, equivalently,
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O(p + 1, p)/(O(p + 1) × O(p))) is maximally non-compact. These are the cases where, for

a given n, the dimension of Mp,q is largest.

Clearly, if we consider a coset of the form (7.140) that is not maximally non-compact,

then if we are to construct a coset representative V in a gauge-fixed form, we must expo-

nentiate only an appropriate subset of the Borel generators of O(p, q). The general theory

of how to do this was worked out by Alekseevski, in the 1970’s. It again makes use of the

Iwasawa decomposition, but this is now a little more complicated when the group G is not

maximally non-compact. The decomposition asserts that there is a unique factorisation of

a group element g as

g = gK gA gN , (7.143)

where gK is in the maximal compact subgroup K of G and gA is in the maximal non-

compact Abelian subgroup of G. The factor gN is in a nilpotent subgroup of G, which

is defined as follows. It is generated by that subset of the positive-root generators that

are strictly positive with respect to the maximal non-compact Abelian subalgebra (whose

exponentiation gives gA).

Now, if the group G were maximally non-compact, then all the Cartan subalgebra

generators would be non-compact, and hence all the positive-root generators would be

included in the nilpotent subalgebra. We would then be back to the previous statement

of the Iwasawa decomposition for maximally non-compact groups, where we exponentiated

the entire Borel subalgebra.

Here, however, we are by contrast considering a case where only a subset of the Cartan

generators are non-compact. Accordingly, only a subset of the positive-root generators

pass the test of having strictly positive weights with respect to this subset of the Cartan

generators. In this more general situation, the subalgebra of the Borel algebra, comprising

the non-compact Cartan generators A and the positive-root generators N that have positive

weights under A, is known as the Solvable Lie Algebra of the group G.

We can now build a coset representative V by exponentiationg the non-compact Cartan

generators, and the nilpotent subalgebra generators. By the modified Iwasawa decomposi-

tion (7.143), it follows that a global transformation consisting of a right-multiplication by

an element of G can be compensated by a local field-dependent left-multiplication by an

appropriate element of the maximal compact subgroup, thereby giving a V ′ in the same

“nilpotent” gauge, corresponding to a G-transformed point in the coset G/K. Thus we

again have a procedure for constructing the scalar Lagrangian for the coset, in this more

general situation where G is not maximally non-compact.
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Let us close this discussion with an illustrative example. There is string theory in D =

10, known as the heterotic string, whose low-energy effective Lagrangian is different from the

ten-dimensional theory that comes by S1 reduction from eleven-dimensional supergravity.

For our present purposes, it suffices to say that the Lagrangian in D = 10 can be taken to

have the general form

L10 = R ∗1 − 1
2∗dφ1 ∧ dφ1 − 1

2eφ1 ∗F(3) ∧ F(3) − 1
2e

1
2
φ1

N∑
I=1

∗GI
(2) ∧ GI

(2) , (7.144)

where Gi
(2) = dBi

(1) are a set of N 2-form field strengths, and

F(3) = dA(2) + 1
2BI

(1) ∧ dBI
(1) . (7.145)

(Actually, in the heterotic string itself N = 16, and the 16 gauge fields BI
(1) are just in the

U(1)16 Cartan subgroup of a 496-dimensional Yang-Mills group, which can be E8 × E8 or

SO(32). But for our purposes it suffices to consider the Abelian subgroup fields, and also

we can generalise the discussion by allowing N to be arbitrary.)

Clearly there is a global O(N) symmetry in D = 10, under which the N gauge fields are

rotated amongst each other. If one performs a Kaluza-Klein dimensional reduction of the

theory on T n, then it turns out that the resulting theory in D = 10−n has an O(n, n + N)

global symmetry, and that the scalar manifold is the coset

O(n, n + N)
O(n) × O(n + N)

. (7.146)

These cosets are of precisely the type that we discussed above, which can be parameterised

by means of an exponentiation of their solvable Lie algebras. To keep things simple, let

us consider the case n = 1. Thus we shall reduce (7.144) on a circle, and show that the

scalar sector in D = 9 has an O(1, N + 1)/O(N + 1) coset structure. (Actually, there will

be another IR factor too, associated with an extra scalar that decouples from the rest.)

Let us denote the dilaton of the d = 10 to D = 9 reduction by φ2. After performing the

reduction, using the standard rules that we established previously, we find, after making a

convenient rotation of the dilatons, that the nine-dimensional Lagrangian is

L9 = R ∗1 − 1
2∗dφ ∧ dφ − 1

2∗dϕ ∧ dϕ − 1
2e

√
2 ϕ
∑

I

∗dBI
(0) ∧ dBI

(0) − 1
2e−

√
8
7

φ ∗F(3) ∧ F(3)

−1
2e−

√
2
7

φ
(
e
√

2 ϕ ∗F(2) ∧ F(2) + e−
√

2 ϕ ∗F(2) ∧ F(2) +
∑

I

∗GI
(2) ∧ GI

(2)

)
, (7.147)

where F(2) is the Kaluza-Klein gauge field, and F(2) and Gi
(1) = dBI

(0) are the dimensional

reductions of F(3) and Gi
(2) respectively. The various field strengths are given in terms of
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potentials by

F(3) = dA(2) + 1
2BI

(1) dBI
(1) − 1

2A(1) dA(1) − 1
2A(1) dA(1) ,

F(2) = dA(1) , GI
(2) = mdBI

(1) + dBI
(0) A(1) , (7.148)

F(2) = dA(1) + BI
(0) dBI

(1) + 1
2BI

(0) BI
(0) dA(1) .

(A field redefinition has been made here, to move the derivative off the axionic scalars

BI
(0); thi is analogous to the one we did in the nine-dimensional theory coming from the

T 2 reduction of eleven-dimensional supergravity.) Note that we are omitting the wedge

symbols here, to avoid some clumsiness in the appearance of the equations.

Let us just focus on the scalar part of the Lagrangian, namely

L = −1
2∗dφ ∧ dφ − 1

2∗dϕ ∧ dϕ − 1
2e

√
2 ϕ
∑

I

∗dBI
(0) ∧ dBI

(0) . (7.149)

We may first observe that the dilaton φ is decoupled from the rest of the scalar Lagrangian;

it just contributes a global IR symmetry of constant shift transformations φ −→ φ + c. We

shall ignore φ from now on. The rest of the scalar manifold can be described as follows. First,

introduce a Cartan generator H, and positive-root generators EI , with the commutation

relations

[H,H] = 0 , [H,EI ] =
√

2 EI , [EI , EJ ] = 0 . (7.150)

We define the coset representative V as

V = e
1
2
ϕH e

BI
(0)

EI . (7.151)

It is easily seen that

dV V−1 = 1
2dϕH + dBI

(0) EI . (7.152)

Now, we wish to argue that H and EI generate a subalgabra of O(1, N +1). In, fact, we

want to argue that they generate the solvable Lie algebra of O(1, N + 1). The orthogonal

algebras O(p, q) divide into two cases, namely the Dn series when p + q = 2n, and the Bn

series when p + q = 2n + 1. The positive roots are given in terms of an orthonormal basis

ei as follows:

Dn : ei ± ej , i < j ≤ n ,

Bn : ei ± ej , i < j ≤ n , and ei , (7.153)

where ei · ej = δij . It is sometimes convenient to take ei to be the n-component vector

ei = (0, 0, . . . , 0, 1, 0, . . . , 0), where the “1” component occurs at the i’th position. The
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Cartan subalgebra generators, specified in a basis-independent fashion, are hei , which sat-

isfy [hei , Eej±ek
] = (δij ± δik)Eej±ek

, etc. Of these, min(p, q) are non-compact, with the

remainder being compact. It is convenient to take the non-compact ones to be hei with

1 ≤ i ≤min(p, q).

Returning now to our algebra (7.150), we find that the generators H and EI can be

expressed in terms of the O(1, N + 1) basis as follows:

H =
√

2 he1 ,

E2k−1 = Ee1−e2k
, E2k = Ee1+e2k

1 ≤ k ≤ [ 12 + 1
4N ] , (7.154)

E1+ 1
2
N = Ee1 , if N is even .

It is easily seen that he1 and Ee1±ei , together with Ee1 in the case of N even, are precisely

the generators of the solvable Lie algebra of O(1, N + 1). In other words, he1 is the non-

compact Cartan generator of O(1, N +1), while the other generators in (7.154) are precisely

the subset of positive-root O(1, N + 1) generators that have strictly positive weights under

he1 . Thus it follows from the general discussion at the beginning of this section that the

scalar Lagrangian for the D = 9 theory is described by the coset5 (O(1, N+1)/O(N+1))×IR.

(Recall that there is the additional decoupled scalar field φ with an IR shift symmetry.)

5It should be emphasised that the mere fact that one can embed the algebra (7.150) into the Lie algebra

of a larger Lie group G does not, of itself, mean that the group G acts effectively on the scalar manifold.

Only when (7.150) is the solvable Lie algebra of the group G can one deduce that G has an effective group

action on the scalar manifold.
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8 Complex Manifolds and Calabi-Yau Spaces

8.1 Introduction

In the previous chapter, we studied in some detail the process of Kaluza-Klein dimensional

reduction on an n-dimensional torus. Other possibilities for dimensional reduction exist also,

in which the compactifying manifold is taken to be a certain kind of complex manifold,

known as a Calabi-Yau manifold. Complex manifolds have made appearances in other

branches of theoretical physics too, but probably the most important is in the framework of

string compactifications. There are various reasons why they can be regareded as preferable

to simple toroidal compactifying manifolds, principally because they offer some prospect

of yielding lower-dimensional spacetime theories with more phenomenologically promising

characteristics.

A n-dimensional manifold M is a topological space together with an atlas, i.e. a collection

of charts (Ui, xj) where Uj are open subsets of M and the xj are one-to-one maps of the

corresponding Uj to open subsets of IRn. In other words, xj represents a set of coordinates

xμ
j , 1 ≤ μ ≤ n, which covers the open region Uj in M . The compete atlas of charts covers

the entire manifold M , but in general, no single chart can cover all of M . If two of the

regions Jj and Uk have an overlap, then the map obtained by composing xj · x−1
k takes us

from one copy of IRn to the another. Put another way, this means that in the overlap region,

one can view the coordinates xμ
j as functions of the xν

k, i.e. xμ
j = fμ

jk(x
ν
k). The manifold is

said to be Cr if the transition functions are r-times differentiable. Normally, one considers

manifolds that are C∞.

A complex n-manifold is a topological space M of complex dimension n with a holomor-

phic, or complex-analytic, atlas. Thus one now has a collection of charts (Uj, zj), where in

every non-empty intersection the maps zj · z−1
k are holomorphic. Of course the zj are now

maps into Cn. Thus the transition functions are now required to be holomorphic functions

of the complex coordinates in the two overlapping charts: zμ
j = fμ

jk(z
ν
k ), rather than being

C∞. Thus the zμ
j are functions of zν

k , but not of z̄ν
k . Since Cn can be thought of as IR2n, it

follows that every complex n-manifold is also a real (2n)-manifold.6

Not every real (2n)-manifold is a complex n-manifold, however. A simple non-trivial

example that is a complex manifold is the 2-sphere. Imagine sandwiching a 2-sphere between
6Do not confuse the use of Cr to mean an r-times differentiable function with Cn to mean complex

n-dimensional space! Amost all the time, we mean the complex n space when the symbol Cn appears. It

shopuld be clear from the context, and so there should be no confusion.
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two infinite parallel plates T1 and T2, which are tangent to the sphere at the south and the

north poles S and N respectively. We may parameterise a point P on the sphere in terms

of the (x, y) coordinates in the planes T1 or T2 of the points obtained by passing a straight

line from N through P to T1, or S through P to T2, respectively. Call these coordinates

(x1, y1) and (x2, y2) respectively. Obviously, for a generic point P on the sphere, there are

corresponding well-defined points (x1, y1) and (x2, y2) in the planes T1 and T2, and there

is a one-to-one map between the two descriptions. This will break down only if P = N or

P = S, since then (x1, y1) or (x2, y2) respectively will go to infinity. For generic points P ,

simple geometry shows that the relation between the coordinates in the two charts is

x1 =
x2

x2
2 + y2

2

, y1 = − y2

x2
2 + y2

2

. (8.1)

Clearly these functions are C∞ for generic points where the two charts overlap, i.e. provided

the north and south poles are excluded. To see that the 2-sphere is a complex manifold, we

now introduce the complex coordinate z1 = x1 +i y1 on T1, and likewise z2 = x2 +i y2 on T2.

It is easy to see that the real C∞ transition functions defined by (8.1) can be re-expressed

in terms of z as

z1 =
1
z2

. (8.2)

This is holomorphic, or complex analytic, in the overlap region (i.e. for z2 �= 0, ∞), thus

demonstrating that S2 is a complex manifold.

8.2 Almost Complex Structures and Complex Structures

Suppose that M is a complex n-manifold, with coordinates zμ in some neighbourhood U .

We define the 2-index mixed tensor J , by

J = i dzμ ⊗ ∂

∂zμ
− i dzμ̄ ⊗ ∂

∂zμ̄
, (8.3)

where we use the notation zμ̄ to stand for z̄μ. In terms of components, we see that

Jμ
ν = i δμ

ν , Jμ̄
ν̄ = −i δμ̄

ν̄ , Jμ̄
ν = 0 , Jμ

ν̄ = 0 . (8.4)

J is called an Almost Complex Structure.

Note that J as defined is indeed a tensor, since it is independent of the choice of complex

coordinates. The crucial point here is that we allow only holomorphic coordinate transfor-

mations, and so the first and the second terms in (8.3) are separately unchanged under such

transformations. Thus if zμ = zμ(wν), then

dzμ ⊗ ∂

∂zμ
=

∂zμ

∂wν

∂wρ

∂zμ
dwν ⊗ ∂

∂wρ
= dwμ ⊗ ∂

∂wμ
, (8.5)

126



with an analogous result for the complex conjugate. It is also evident that J is itself a real

tensor.

As we remarked previously, we may think of the complex n-manifold as being also a

real (2n)-manifold. Suppose that in the local neighbourhood U we have real coordinates xi,

with 1 ≤ i ≤ 2n. It can also be useful to think of the real coordinates as occurring in pairs,

so that zμ = xμ + i yμ, for 1 ≤ μ ≤ n. We then see that the definition (8.3) for J becomes

J = dxμ ⊗ ∂

∂yμ
− dyμ ⊗ ∂

∂xμ
. (8.6)

We may therefore represent the tensor J as a real (2n) × (2n) matrix in n × n blocks as

J =

(
0n 1ln

−1ln 0n

)
, (8.7)

where On denotes the zero n×n matrix, and 1ln dentotes the unit n×n matrix. Evidently,

therefore, the tensor J squares to minus 1:

Ji
j Jj

k = −δi
k . (8.8)

It is a theorem that every complex manifold admits a globally defined almost complex

structure. The emphasis here is on the fact that it is globally defined, since obviously any

real (2n)-manifold, since it looks locally like IR2n, must look locally like Cn. The converse,

however, is not true: not every manifold that admits an almost complex structure is a

complex manifold. Rather, such a manifold is, by definition an Almost Complex Manifold.

In the special case where an almost complex manifold is actually a complex manifold, the

almost complex structure is called a complex structure. To see why it is the case that not

every almost complex manifold is a complex manifold, we need to delve a little deeper into

the properties of the almost complex structure tensor.

From Ji
j, in a complex manifold we can define projection operators Pi

j and Qi
j :

Pi
j = 1

2(δi
j − iJi

j) , Qi
j = 1

2(δi
j + iJi

j) , (8.9)

which clearly satisfy the relations

P 2 = P , Q2 = Q , P Q = QP = 0 , P + Q = 1l , (8.10)

in the obvious matrix notation. These operators project into the holomorphic and anti-

holomorphic components of tensors. Thus, for example,

Vi dxi = (Pi
j + Qi

j)Vj dxi = Vμ dzμ + Vμ̄ dzμ̄ , (8.11)
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where

Pi
j Vj dxi = Vμ dzμ , Qi

j Vj dxi = Vμ̄ dzμ̄ . (8.12)

These 1-forms are called (1, 0)-forms and (0, 1)-forms respectively. Generally, it is clear that

the existence of an almost complex structure allows the refinement of the notion of n-forms,

into subsets of (p, q)-forms, where p + q = n.

The question now is the following. What further conditions are necessary in order for

an almost complex structure J to be a complex structure? In other words, what are the

conditions for the almost complex manifold, with almost complex structure J , to be a

complex manifold?

First of all, note that we can still define the projection operators Pi
j and Qi

j as in

(8.9) whenever we have an almost complex structure, although we should not yet think of

them as projections into holomorphic and anti-holomorphic subspaces of forms. To have a

complex manifold, we must be able to introduce complex coordinates zμ. Thus, consider a

neighbourhood U in the almost complex manifold M , with real coordinates xi. We wish to

see if we can find complex coordinates zμ(xi). Thus we can write

dzμ =
∂zμ

∂xi
dxi , (8.13)

which can be expressed, by inserting δi
j = Pi

j + Qi
j , as

dzμ = ∂jz
μ Pi

j dxi + ∂jz
μ Qi

j dxi . (8.14)

Now, we saw previously that the two terms on the right-hand side are respectively (1, 0)

and (0, 1) forms, while the left-hand side is manifestly what we should call a (1, 0) form if

the complex coordinates do indeed exist. Consequently, is must be that

∂jz
μ Qi

j = 0 . (8.15)

This can be viewed as a system of differential equations for the complex coordinates zμ.

If the equations are satisfied, then we can act with Qk
� ∂� to get

∂�∂jz
μ Qi

j Qk
� + ∂jz

μ ∂�Qi
j Qk

� = 0 . (8.16)

Taking the projection of this equation that is skew-symmetric in i and k, we therefore obtain

the integrability condition

∂jz
μ ∂�Q[i

j Qk]
� = 0 . (8.17)

We can now insert Pm
j +Qm

j = δm
j , and make use of (8.15), to re-express the integrability

condition as

∂jz
μ Pm

j ∂�Q[i
m Qk]

� = 0 . (8.18)
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In order for the derivatives ∂zμ/∂xj , which must already satisfy (8.15), not to be overcon-

strained, it must be that

Pm
j ∂�Q[i

m Qk]
� = 0 . (8.19)

By taking the real and imaginary parts of this equation, one can easily show that each is

equivalent to the statement that the following real tensor must vanish:

Nij
k ≡ ∂[jJi]

k − J[i
� Jj]

m ∂mJ�
k . (8.20)

This is known as the Nijenhuis tensor. (Note that it is indeed a tensor, even though it is

defined using partial derivatives. This can be verified by direct calculation of its behaviour

under general coordinate transformations. Alternatively, one can consider the manifestly

tensorial object defined by replacing the partial derivatives by covariant derivatives, and

then verify that all the connection terms cancel out by virtue of the antisymmetrisations.)

To summarise, then, we have seen that the vanishing of the Nijenhuis tensor is an inte-

grability condition for the existence of a complex coordinate system in an almost complex

manifold. As usual, establishing a completely watertight “if and only if” theorem is some-

thing best left to the hard-core mathemeticians. The bottom line, in any case, is that an

almost complex manifold can be shown to be a complex manifold if and only if the Nijenhuis

tensor vanishes.

Also, for future reference, let us establish some further notation and terminology for

differential forms on almost complex and complex manifolds. We have seen that the tensors

Pi
j and Qi

j project 1-forms into two subspaces, which we are denoting by (1, 0) and (0, 1)

forms. More generally, given any n form ω , we can make projections into (n+1) subspaces,

of (p, q)-forms where p + q = n, as follows:

ω
(p,q)
i1···ipj1···jq

= Pi1
k1 · · ·Pip

kp Qj1
�1 · · ·Qjq

�q ωk1···kp�1···�q . (8.21)

It is evident from the properties of P and Q as projection operators that the sum over these

various (p, q)-forms gives back the original n-form:

ω =
∑

p+q=n

ω(p,q) . (8.22)

Now consider the action of the exterior derivative d. It is easy to see from the definitions

that if we apply d to a (p, q)-form in an almost complex manifold, we will obtain a (p+q+1)-

form that is expressible in general as the sum of four distinct terms, namely

dω(p,q) = (dω)(p,q+1) + (dω)(p+1,q) + (dω)(p+2,q−1) + (dω)(p−1,q+2) . (8.23)
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If J is in fact a complex structure, then the last two terms in this decomposition are absent.

To see how this works, consider, for simplicity, a (1, 0) form A, which we may construct

from a generic 1-form ω by defining A = Pi
j ωj dxi. We now calculate dA, and then insert

1 = P + Q judicously in all necessary places so as to project out the various structures:

dA = (∂kPi
j ωj + Pi

j ∂kωj)dxk ∧ dxi

= (∂�Pm
j ωj Pk

� Pi
m + ∂�Pm

j ωj Pk
� Qi

m + ∂�Pm
j ωj Qk

� Pi
m + ∂�Pm

j ωj Qk
� Qi

m

+Pi
j Pk

� ∂�ωj + Pi
j Qk

� ∂�ωj)dxk ∧ dxi . (8.24)

It is manifest that these six terms are of types (2, 0), (1, 1), (1, 1), (0, 2), (2, 0) and (1, 1)

respectively. If the almost complex structure is in fact a complex structure, we expect that

dA should have only (2, 0) and (1, 1) components, and so it would then have to be that the

(0, 2) component were zero. This would imply that we need

∂�Pm
j Q[k

� Qi]
m = 0 . (8.25)

Now, since the projection operators satisfy Pm
j Qi

m = 0, it follows that ∂�Pm
j Qi

m +

Pm
j ∂�Qi

m = 0, and using this, we see that (8.25) reduces to (8.19). Thus we see that

indeed the exterior derivative of a (1, 0)-form gives only a (2, 0) and a (1, 1) form, but no

(0, 2) form, provided that the Nijenhuis tensor vanishes, implying that the almost complex

structure is a complex structure.

If we do have a complex structure, so that dω(p,q) = (dω)(p+1,q) + (dω)(p,q+1), we may

then define holomorphic and antiholomorphic exterior derivative operators ∂ and ∂̄, where

d = ∂ + ∂̄ ,

∂ω(p,q) = (dω)(p+1,q) , ∂̄ω(p,q) = (dω)(p,q+1) . (8.26)

Thus ∂f(z, z̄) = ∂f/∂zμ dzμ, and ∂̄f(z, z̄) = ∂f/∂zμ̄ dzμ̄, etc. Note that we have d2 =

(∂ + ∂̄)2 = ∂2 + ∂̄2 + ∂∂̄ + ∂̄∂, and hence in a complex manifold we have

∂2 = 0 , ∂̄2 = 0 , ∂∂̄ + ∂̄∂ = 0 , (8.27)

since these three parts of d2 have different holomorphic degrees.

A further consequence of the vanishing of the Nijenuis tensor is that there exists a

holomorphic atlas with respect to which the components of the complex structure are given

by

Jμ
ν = i δμ

ν , Jμ̄
ν̄ = −i δμ̄

ν̄ , Jμ̄
ν = 0 , Jμ

ν̄ = 0 . (8.28)
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To see this, note that we can write (8.15) as

∂j zμ + iJj
k∂kz

μ = 0 . (8.29)

In fact this is precisely the n-dimensional generalisation of the Cauchy-Riemann equations.

Contracting with the basis dxj ⊗ ∂/∂zμ, we have

Jj
k dxj ∂kz

μ ⊗ ∂

∂zμ
= i dzμ ⊗ ∂

∂zμ
. (8.30)

If we add the complex conjugate to this equation, we get

Jj
k
(
dxj ∂kz

μ ⊗ ∂

∂zμ
+ dxj ∂kz

μ̄ ⊗ ∂

∂zμ̄

)
= i dzμ ⊗ ∂

∂zμ
− i dzμ̄ ⊗ ∂

∂zμ̄
, (8.31)

which, by the chain rule, is nothing but

Jj
k dxj ⊗ ∂k = i dzμ ⊗ ∂

∂zμ
− i dzμ̄ ⊗ ∂

∂zμ̄
. (8.32)

Thus the complex structure tensor J ≡ Jj
k dxj ⊗ ∂k does indeed have components, with

respect to the complex coordinate basis, given by (8.28).

8.3 Metrics on Almost Complex and Complex Manifolds

So far in the discussion, our considerations have been entirely independent of any metric

on the manifold. Suppose that an almost complex manifold M has a metric hij , i.e. a real,

symmetric 2-index tensor with positive-definite eigenvalues. We can always construct from

this a so-called almost Hermitean metric gij , defined as

gij = 1
2 (hij + Ji

k Jj
� hk�) , (8.33)

which is also real, symmetric and positive-definite. It clearly satisfies the almost-hermiticity

condition

gij = Ji
k Jj

� gk� . (8.34)

Another way of expressing this, by multiplying by Jm
i, and defining Jm

i gij = Jmj , is

Jmj = −Jjm . (8.35)

Thus with respect to an almost Hermitean metric, the almost complex structure defines a

natural 2-form.

If M is actually a complex manifold, then it is evident that an Hermitean metric has

the property that

ds2 = 2 gμν̄ dzμ dzν̄ . (8.36)
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This should be contrasted with a generic real symmetric metric, for which we would have

ds2 = 2 gμν̄dzμ dzν̄ + gμν dzμ dzν + gμ̄ν̄ dzμ̄ dzν̄ . (8.37)

A consequence of the structure (8.36) of the Hermitean metric is that when complex indices

are raised or lowered, barred become unbarred, and vice versa.

Suppose now that M is an Hermitean manifold, meaning that it is a complex mani-

fold endowed with an Hermitean metric. We can now introduce the notion of a covariant

derivative. Normally, in real geometry, we define the unique Christofel connection Γi
jk by

two conditions, namely that the covariant derivative (defined using Γi
jk) of the metric be

zero, and that Γi
jk be symmetric in its two lower indices. More generally, we could con-

sider a connection for which the metric is still covariantly constant, but where there is an

antisymmetric part Γi
[jk] also. This extra term is known as a torsion tensor.

For the Hermitean manifold M , we may define a unique connection as follows. We

require that the covariant derivative both of the metric, and of the complex structure

tensor, vanish. In addition, we require that the torsion Γi
[jk] be pure in its lower indices. In

other words, if we use complex coordinates, we require that Γi
[μν̄] be zero, where i represents

either ρ or ρ̄, while no requirement is placed on Γi
[μν] or Γi

[μ̄ν̄]. To see what this leads to,

we may consider taking the covariant derivative of Pi
j, which, by our requirements for the

connection, must vanish.

First, let us write down the general expression for the covariant derivative:

∇i Pj
k ≡ ∂i Pj

k + Γk
i� Pj

� − Γ�
ij P�

k . (8.38)

Now, noting that we may choose complex coordinates such that the complex structure has

components given by (8.28), it follows, from (8.9), that the only non-vanishing components

of Pi
j are given by

Pμ
ν = δμ

ν . (8.39)

Thus if we consider the covariant-constancy condition ∇i Pj
k = 0, then the content of this

equation is encompassed by taking (j, k) to be either (μ, ν), or else (μ, ν̄). From (8.38), the

first case tells us nothing, since we get

0 = ∇i Pμ
ν = Γν

iρ δμ
ρ − Γρ

iμ δρ
ν . (8.40)

On the other hand, we do learn something from taking (i, j) = (μ, ν̄), since then we get

0 = ∇i Pμ
ν̄ = Γν̄

kρ δμ
ρ , (8.41)
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and hence Γν̄
kμ = 0. Thus we have

Γν̄
ρμ = 0 , Γν̄

ρ̄μ = 0 ,

Γν
ρ̄μ̄ = 0 , Γν

ρμ̄ = 0 , (8.42)

where the second line follows by complex conjugation of the first. Now, we also have the

condition that the mixed components Γi
[ρμ̄] of the torsion vanish. Together with what we

already have, this therefore implies that all mixed components of Γi
jk vanish. In other

words, the only non-vanishing components of the Hermitean connection are the pure ones,

Γμ
νρ and Γμ̄

ν̄ρ̄ . (8.43)

Since the claim is that the Hermitean connection just defined is unique, we expect to

be able to solve for it in terms of the Hermitean metric. This is indeed possible. Since the

metric is covariantly constant, we have

∇i gjk ≡ ∂i gjk − Γ�
ij g�k − Γ�

ik gj� = 0 . (8.44)

If we take (i, j, k) = (μ, ν, ρ̄), we get, in view of the previous results for the purity of the

connection,

∂μ gνρ̄ − Γλ
μν gλρ̄ = 0 , (8.45)

which can therefore be immediately solved to give

Γλ
μν = gλρ̄ ∂μ gνρ̄ . (8.46)

As a consequence of the purity of the Hermitean connection, it follows that the Riemann

tensor has a simple structure also. To see this, let us first write down the general expression

for the Riemann tensor, namely

Ri
jk� = ∂k Γi

�j − ∂� Γi
kj + Γi

km Γm
�j − Γi

�m Γm
kj . (8.47)

Taking first (i, j) = (μ̄, ν), we see that

Rμ̄
νk� = ∂k Γμ̄

�ν − ∂� Γμ̄
kν + Γμ̄

km Γm
�ν − Γμ̄

�m Γm
kν , (8.48)

and that all the terms here vanish by virtue of the purity of the connection coefficients.

Thus lowering the μ̄ index, and recalling that the only non-vanishing metric components

are of the form gμν̄ , we see that

Rμνk� = 0 . (8.49)
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Similarly, one can see that the purity of Γ implies that the components Rμν̄ρσ must vanish.

The components Rμ̄νρσ vanish for a different reason, namely because of the expression

(8.46) for the connection coefficients in terms of the metric. The upshot is that the only

non-vanishing components of the Riemann tensor are those given by

Rμ
νρ̄σ = −Rμ

νσρ̄ = ∂ρ̄ Γμ
σν , (8.50)

together with those following by complex conjugation. In other words, the only non-

vanishing components are those which, if we lower the upper index, are mixed on both

their first and second index pairs:

Rμν̄ρσ̄ , Rν̄μρσ̄ , Rμν̄σ̄ρ , Rν̄μσ̄ρ . (8.51)

Owing to the existence of the complex structure tensor J , it is possible to define from

the Riemann tensor a 2-form R, known as the Ricci form, as follows:

R = 1
4Ri

jk� Ji
j dxk ∧ dx� . (8.52)

In terms of complex coordinates, it follows from (8.28), and the structure that we have

learnt for the Riemann tensor, that we have

R = iRμ
μρσ̄ dzρ ∧ dzσ̄ . (8.53)

From (8.46) and (8.50), it now follows that we can express the Ricci form as

R = i ∂∂̄ log
√

g , (8.54)

where g is the determinant of the metric. From the properties of ∂ and ∂̄ given in (8.27),

it follows that ∂∂̄ = −1
2d(∂ − ∂̄), and hence we have that

dR = 0 . (8.55)

Note, however, although the Ricci form is closed, it is not, in general, exact, since

the determinant of the metric is not a coordinate scalar. In fact, the Ricci form defines

a cohomology class, namely the first Chern class, of the complex manifold. This is a

topological class, which is invariant under smooth deformations of the complex structure

J , and the metric. In other words, under any such deformation, the Ricci form changes by

an exact form, and thus its integral over any closed 2-cycle is unchanged. The first Chern

class c1 is defined as the equivalence class of all 2-forms related to a certain multiple of the

Ricci-form by the addition of an exact form, and is written as

c1 =
[ 1
2π

R
]

. (8.56)
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It is easy to see that R changes by an exact form under infinitesimal deformations of the

metric, since under gij −→ gij + δgij we have δ
√

g = 1
2gij δgij

√
g, and hence

δR = i ∂∂̄(gμν̄ δgμν̄) = − i
2

d
(
(∂ − ∂̄)gμν̄ δgμν̄

)
. (8.57)

Since gμν̄ δgμν̄ is a genuine general-coordinate scalar, even though det(gμν̄) is not, it follows

that R changes by an exact form, and thus c1 is unaltered.

8.4 Kähler Manifolds

An Hermitean manifold M has, as we have seen, a natural 2-form J = 1
2Jij dxi ∧ dxj that

is obtained by lowering the upper index on the complex structure tensor Ji
j . We can now

impose one further level of structure on the Hermitean manifold, by requiring that the

2-form be closed,

dJ = 0 . (8.58)

An Hermitean manifold that satisfies this condition is called a Kähler manifold.7 The 2-

form J is then called the Kähler form. Note that all manifolds of complex dimension 1 are

necessarily Kähler, since the exterior derivative of the 2-form J is a 3-form, which exceeds

the real dimension of the manifold.

Note that from the pattern of the non-vanishing components of Ji
j given in (8.28), it

follows that the Kähler form can be written as

J = i gμν̄ dzμ ∧ dzν̄ . (8.59)

It is therefore a (1, 1)-form.

Writing dJ as ∂J + ∂̄J = 0, we may note that these two pieces must vanish separately,

since they are forms of different types, namely (2, 1) and (1, 2). Thus we have

dJ = i ∂ρ gμν̄ dzρ ∧ dzμ ∧ dzν̄ + i ∂ρ̄ gμν̄ dzρ̄ ∧ dzμ ∧ dzν̄ = 0 , (8.60)

and hence

∂ρ gμν̄ − ∂μ gρν̄ = 0 , ∂ρ̄ gμν̄ − ∂ν̄ gμρ̄ = 0 . (8.61)

These equations imply that locally we must be able to express the Kähler metric in the

form

gμν̄ = ∂μ ∂ν̄ K , (8.62)
7By now, one might almost suspect that there would exist also the notion of an “almost Kähler manifold,”

for which the 2-form J in an almost Hermitean manifold would be closed. In fact, it can be shown that an

almost Kähler manifold is actually Kähler. It was some while before this was appreciated, and so in some

older literature one can find a distinction between the two concepts.
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where K = K(z, z̄) is a real function of the complex coordinates and their complex conju-

gates. This implies that we have

J = i ∂ ∂̄ K . (8.63)

The function K is called the Kähler function. However, it should be emphasised that

it is not, in general, a general-coordinate scalar. To see this, consider the n-fold wedge

product Jn = J ∧ J ∧ · · · ∧ J on the complex n-manifold. From (8.59), it is evident that

Jn = in gμ1ν̄1 · · · gμn ν̄n dzμ1 dzν̄1 · · · dzμn dzz̄n ,

= in εμ1···μn εν̄1···ν̄n gμ1 ν̄1 · · · gμnν̄n dz1 dz1̄ · · · dzn dzn̄ ,

= in n! det(gμν̄) dz1 dz1̄ · · · dzn dzn̄ . (8.64)

Now clearly det(gμν̄) =
√

det(gij), in view of the off-diagonal Hermitean structure of gij ,

and so we have Jn = c ∗1, for some specific n-dependent constant c, where ∗1 is the volume

(2n)-form on the manifold M . Thus on a compact manifold it must be that
∫
M Jn is a

non-vanishing constant. But (8.63) can be rewritten as

J = −1
2d(∂ − ∂̄)K . (8.65)

Thus if K were a coordinate scalar then it would follow that J = dA for some globally-

defined 1-form A. However, we would then be able to write
∫
M Jn as

∫
M d(AJn−1) =∫

∂M AJn−1, and so if M had no boundary, we would have
∫
M Jn = 0, in contradiction to

the previous result. Therefore A is not globally defined, and so K is not a general-coordinate

scalar.

In fact, if we consider Kähler functions K1 and K2 defined in open neighbourhoods U1

and U2 in M , with a non-trivial intersection, then they are related by

K1 = K2 + f(z) + f(z) , (8.66)

where f(z) is an arbitrary holomorphic function of the coordinates. Clearly, these functions

are by the ∂ ∂̄ derivatives that act on K, and so the Kähler form itself is well defined and

transforms properly across the open neighbourhoods.

A couple of examples will be instructive at this point. First, let us consider the natural

flat metric on Cn, namely ds2 = dzμ dzν̄ δμν̄ = |dz1|2 + |dz2|2 + · · · + |dzn|2. It is easy to

see that if we define the Kähler function

K = zμ zν̄ δμν̄ , (8.67)
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then substituting into (8.62) we indeed find the desired metric

gμν̄ = ∂μ ∂ν̄ (zρ zσ̄ δρσ̄) = δμν̄ . (8.68)

Similarly, the Kähler form, given by (8.63), is

J = i ∂ ∂̄ (zμ zν̄ δμν̄) = i dzμ ∧ dzν̄ δμν̄ , (8.69)

as expected. There is no issue of looking at overlaps between coordinate patches in this case,

since this is the one example where a single coordinate patch covers the entire manifold.

For a less trivial example, consider the complex projective spaces CPn. These are

defined as follows. Begin by taking the flat metric on the complex manifold Cn+1, with

coordinates ZM for 1 ≤ M ≤ n + 1:

ds2
n+1 =

n+1∑
M=1

|dZM |2 . (8.70)

Now impose the quadratic condition

n+1∑
M=1

|ZM |2 = 1 . (8.71)

It is evident that both (8.70) and (8.71) are invariant under SU(n + 1) transformations,

acting by matrix multiplication on ZM viewed as a column vector. Imposing the constraint

(8.71) clearly places the ZM coordinates on the surface of a unit-radius sphere S2n+1.

Now introduce the so-called inhomogeneous coordinates ζi, defined by

ζi = Zi/Zn+1 , 1 ≤ i ≤ n . (8.72)

Actually, this is just one choice for the definition, where Zn+1 among the original homoge-

neous coordinates ZM is singled out for special treatment. We could, and indeed later will,

consider a different choice where one of the other ZM is singled out as the special one.

Proceeding with the choice (8.72) for now, we may now express the Zi in terms of ζi

and Zn+1 using (8.72), and express |Zn+1|2 in terms of |ζi|2 using (8.71). Substituting into

the metric (8.70), we therefore find

ds2 = F−1 dζ i dζ̄i +
|dZn+1|2
|Zn+1|2 + (ζ̄i dζ i Zn+1 dZ̄n+1 + ζi dζ̄i Z̄n+1 dZn+1) , (8.73)

where

F ≡ 1 +
∑

i

|ζi|2 = |Zn+1|−2 . (8.74)
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The metric can be re-expressed in the following form, by completing the square in the terms

involving dZn+1 and dZ̄n+1:

ds2 =
∣∣∣dZn+1

Zn+1
+ F−1 ζi dζ̄i

∣∣∣2 + F−1 dζ i dζ̄i − F−2 ζ̄i ζj dζ i dζ̄j . (8.75)

If we now parameterise the coordinate Zn+1 as Zn+1 = ei ψ F−1/2, we see that the metric

becomes

ds2 = (dψ + A)2 + F−1 dζ i dζ̄i − F−2 ζ̄i ζj dζ i dζ̄j , (8.76)

where

A = i
2 F−1 (ζ̄i dζ i − ζi dζ̄i) . (8.77)

It will be recalled that (8.76) is still a metric on the unit sphere S2n+1, since we have

really done nothing more than reparameterise the metric we had at the beginning of the

construction. Now, let us project the metric orthogonally to the orbits of the Killing vector

∂/∂ψ. This is achieved by simply dropping the first term in (8.76), leading to the (2n)-

dimensional metric

ds2 = F−1 dζ i dζ̄i − F−2 ζ̄i ζj dζ i dζ̄j . (8.78)

It will be recognised that what we are doing here is really a Kaluza-Klein dimensional

reduction from D = 2n + 1 to D = 2n, with ψ being the coordinate on the internal circle,

and A the Kaluza-Klein vector. The metric that we have thus obtained in (8.78) is a metric

on CPn, or complex projective n-space. It is know as the Fubini-Study8 metric on CPn.

The CPn manifold is a complex n-manifold. This can be seen from the fact that the

complex coordinates ζi, defined in (8.72), are valid in the open neighbourhood where Zn+1 �=
0. A different open neighbourhood can be covered by sigling out a different one of the (n+1)

homogeneous coordinates ZM , say ZA, for some specific value of A chosen from the range

1 ≤ A ≤ n + 1. Then we can define inhomogeneous coordinates ζi
A, valid in the open

neighbourhood UA defined by ZA �= 0, by

ζi
A = Zi/ZA , i �= A . (8.79)

The construction of CPn proceeds analogously in the neighbourhood UA. To see that

CPn is a complex manifold we just have to look at the transition functions relating the

coordinates ζi
A in region UA to the coordinates ζi

B in region UB , in their intersection, which

8Following in the tradition of mathematicians with misleading names, we may now add Study to the list

that includes also Killing and Lie.
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comprises all points for which ZA �= 0 and ZB �= 0. Then we have:

ζi
A = Zi/ZA = (Zi/ZB)(ZB/ZA) ,

= ζi
B/ζA

B . (8.80)

This shows that the complex coordinates of different open neighbourhoods are related holo-

morphically in their overlap regions, thus establishing that CPn is a complex manifold.

Having seen that CPn is a complex manifold, let us now show that it is a Kähler

manifold. To do this, let us go back to the specific choice of the open neighbourhood Un+1,

for which the inhomogeneous coordinates are given by (8.72). Let K be the function

K = log F . (8.81)

To adjust our notation to fit better with the previous general discussion of Kähler manfolds,

let us change the labelling for the homogeneous coordinates ζi to zμ, so that F = 1 +

zμ zν̄ δμν̄ . If we take K as the Kähler function, then from (8.62) we will have that

gμν̄ = ∂μ ∂ν̄ K = F−1 δμν̄ − F−2 zμ̄ zν , (8.82)

which is easily seen to be equivalent to the Fubini-Study metric (8.78) on CPn that we

derived previously. The Kähler form J = i ∂ ∂̄ K is likewise easily calculated, and comes

out to be

J = iF−1 dzμ ∧ dzμ̄ − iF−2 zμ̄ zν dzμ ∧ dzν̄ . (8.83)

Now we are in a position to check how the Kähler form transforms under the change

between coordinate systems in overlapping patches. Using (8.80), we see that the Kähler

function KA in region UA is related in the overlap to the Kähler function KB in region UB

by

KA = log
(
1 +

∑
i	=A

|ζi
A|2
)

= log
(
1 + |ζA

B |−2
∑
i	=A

|ζi
B|2
)

= − log |ζA
B |2 + log

(
1 +

∑
i	=B

|ζi
B |2
)

= KB − log ζA
B − log ζ̄A

B . (8.84)

Thus, as we saw in general in (8.66), the Kähler function transforms by the addition of

purely holomorphic and anti-holomorphic functions under a change of coordinates.

Let us now return to a general Kähler manifold. Recall that we found in the previous

subsection that on any Hermitean manifold the uniquely-defined Hermitean connection is
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given by (8.46) together with its complex conjugate. Thus the Hermitean connection is

always pure in its indices. However, in general it has torsion, reflected in the fact that Γμ
νρ

can have a part that is antisymmetric in ν and ρ. However, in a Kähler manifold we saw

that the Kähler metric can be written in terms of the Kähler function K, as given in (8.62).

It is therefore immediately evident, on account of the commutativity of partial derivatives,

that the Hermitean connection Γμ
νρ for a Kähler metric is in fact symmetric in ν and ρ.

Thus the torsion vanishes, and so in fact the Hermitean connection for the Kähler metric

coincides with the usual Christoffel connection. In particular, this means that all the usual

additional symmetries of the Riemann tensor for a torsion-free connection hold, namely

Rijk� = Rk�ij , Ri[jk�] = 0 . (8.85)

In terms of holomorphic and anti-holomorphic indices, this means that the Riemann tensor

has the symmetries

Rμν̄ρσ̄ = Rρν̄μσ̄ = Rμσ̄ρν̄ . (8.86)

In other words, it is symmetric in its holomorphic indices, and asymmetric in its anti-

holomorphic indices.

It then follows that the Ricci tensor is symmetric, and has only mixed components:

Rμν̄ = gρσ̄ Rσ̄μρν̄ = −gρσ̄ Rμν̄ρσ̄ . (8.87)

Comparing with the expression (8.53) for the Ricci form of an Hermitean manifold, we see

that for a Kähler metric, the components Rμν̄ of the Ricci form are precisely given by the

components −Rμν̄ of the Ricci tensor. Of course since the former is antisymmetric, while

the latter is symmetric, we have also that Rν̄μ = Rν̄μ.

8.5 The Monge-Ampère Equation

As we saw in (8.53), the Ricci form can be expressed very simply in terms of holomorphic

and antiholomorphic derivatives of the metric. Furthermore, in a Kähler manifold we have

the metric written very simply in terms of holomorphic and antiholomorphic derivatives of

the Kähler function. Suppose now that we wish to find a Kähler solution of the vacuum

Einstein equations (in Euclidean signature), i.e. we wish to find a Ricci-flat Kähler metric.

Since in a Kähler manifold the Ricci form really is just the Ricci tensor, in that Rμν̄ = −Rμν̄ ,

it follows from (8.53) that Ricci-flatness means that locally we have

log g = f(z) + f(z) , (8.88)
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where g is the determinant of the metric, and f is an arbitrary holomorphic function.

Equivalently, we may say that g = |h(z)|2, where h(z) is an arbitrary holomorphic function.

Now, under a holomorphic general coordinate transformation, the determinant g will change

by a multiplicative Jacobian factor, which itself is the modulus-squared of the holomorphic

Jacobian. Thus we may use this coordinate transformation freedom to choose a coordinate

frame where we simply have g = 1. Now, from (8.62) we therefore find that the condition

of Ricci-flatness on a Kähler manifold can be expressed simply as

det
(
∂μ ∂ν̄ K

)
= 1 , (8.89)

where the determinant is taken over the μ and ν̄ indices. This very simple re-expression of

the vacuum Einstein equations is a special case of the Monge-Ampère equation.

More generally, we can look for Kähler metrics that are not Ricci flat, but whose Ricci

tensor is proprtional to the metric; this condition on a metric defines what is known as an

Einstein metric:

Rij = Λ gij . (8.90)

The factor Λ is necessarily constant, as can be seen from the Bianchi identity for the

curvature. In physical terms, when the metric signature is Lorentzian, these are solutions

of the vacuum Einstein equations with a cosmological constant Λ. For this more general

case, the condition Rμν̄ = Λ gμν̄ for an Einstein-Kähler metric can be expressed as

∂μ ∂ν̄ log g1/2 = −Λ ∂μ ∂ν̄ K , (8.91)

and, exploiting the various reparameterisation freedoms as before, we can without loss of

generality reduce this to the condition

det
(
∂μ ∂ν̄ K

)
= e−Λ K . (8.92)

This is the general case of the Monge-Ampère equation. It can provide a useful way of

solving for Einstein-Kähler metrics.

For example, suppose we make the ansatz that the Kähler function K on a complex

n-manifold will depend on the complex coordinates zμ only through the isotropic quantity

x ≡ ∑
μ |zμ|2. This is, of course, a great specialisation, but it does allow one to obtain a

rather simple result. Since ∂μ x = zμ̄ and ∂μ̄ x = zμ, we see that

∂μ ∂ν̄ K(x) = K ′ δμν + K ′′ zμ̄ zν , (8.93)
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where K ′ = ∂ K/∂x, etc. After a little matrix algebra, it is easy to see that this implies

that

det
(
∂μ ∂ν̄ K

)
= K ′n−1 (K ′ + xK ′′) , (8.94)

and consequently the Monge-Ampère equation becomes

(K ′)n−1 (K ′ + xK ′′) = eΛ K . (8.95)

Thus for this particular isotropic ansatz, the Einstein equation is reduced to an ordinary

differential equation for K.

A particular solution to (8.95) can be obtained by taking K = log(1 + x). Substituting

into (8.95), we see that it is satisfied if Λ = n + 1. Comparing with (8.74) and (8.81), we

see that the solution K = log(1 + x) is nothing but the Kähler function for CPn. Our

calculation has therefore shown that the Fubini-Study metric on CPn is an Einstein-Kähler

metric. An equivalent way to express this is that the Ricci-form is proportional to the

Kähler form; in fact, in this CPn case we have

R = −(n + 1)J . (8.96)

Recall from previously that we saw that the equivalence class (8.56) of all 2-forms related

to R/(2π) by the additional of an arbitrary exact 2-form defines the topological class c1

known as the first Chern class. We have also seen that in a compact manifold M the Kähler

form J is topologically non-trivial, since Jn integrates over M to give a non-zero constant.

Thus J is closed, but not exact; it is harmonic. The expression (8.96) therefore shows that

the first Chern class of CPn is non-trivial. A consequence of this is that it is not possible

to find a Ricci-flat metric on CPn. Of course we have already seen that the Fubini-Study

metric is not Ricci flat, but this, in itself, would not rule out the logical possibility that one

might find a different metric that was Ricci flat. But since we know that c1 is non-trivial,

that means that we are guaranteed that no metric deformation could take us to a new

metric for which the Ricci form vanished, since if it could, this would mean that c1 would

then be zero, contradicting the fact that it is a topological invariant.

Thus we have the result that a necessary condition for having a Ricci-flat Kähler metric

is that the first Chern class c1 must vanish. In the 1950’s it was conjectured by Calabi

that this is the only obstruction to the existence of a Ricci-flat Kähler metric on a Kähler

manifold. It took until the 1970’s before the Calabi conjecture was proved by Yau. The

precise statement of Yau’s result is the following:
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Given a complex manifold M with c1 = 0, and any Kähler metric gij on M with Kähler

form J , then there exists a unique Ricci-flat metric g′ij whose Kähler form J ′ is in the same

cohomology class as J .

Put more plainly, the claim is that one can find a Ricci-flat Kähler metric on any

Kähler manifold with vanishing first Chern class. The metric is known as a Calabi-Yau

metric. The proof is highly intricate and involved, and essentially consists of an “epsilon

and delta” analysis of the Monge-Ampère equation.

8.6 Holonomy and Calabi-Yau Manifolds

An important concept in any manifold with curvature is the notion of holonomy. This is

the characterisation of the way in which a vector is rotated after being parallely transported

around a closed curve, and it is a way in which inhabitants of a curved world can “detect”

the curvature. A classic example is the explorer on the earth who, like superman, starts at

the north pole and then walks south. At the equator he turns through 90 degrees, walks

along it for a while, and then turns a further 90 degrees and returns to the north pole. All

the while, he carefully follows the rules of parallel transport for his vector that he carries

with him. He finds that it is pointing in a different direction from that of the original

vector before he started the trip. In fact, it is rotated through an angle φ, where φ is the

azimuthal angle that he has traversed while marching along the line of latitude. This SO(2)

rotation is an element of the holonomy group of the manifold S2. Any rotation angle φ can

be achieved, by walking the appropriate distance along the equator. Since the manifold in

this example is two-dimensional, this in fact means that the most general possible rotation

of a vector can be achieved by parallel transport around an appropriate closed curve. More

generally, an explorer on an m-sphere would find that he could achieve any desired SO(m)

rotation of a vector, by parallely transporting it appropriately. Again, this would be the

most general possible rotation that a vector in m dimensions could undergo.

It is not necessary to take such long walks in order to see the holonomy of the manifold.

Parallel transprt around a small closed path will also reveal the presence of curvature,

although now the rotation will correspondingly be only a small one. But still, on a sphere,

for example, one would be able to achieve any desired small rotation, by choosing the path

appropriately. An infinitesimal closed path can be characterised by an infinitesimal 2-form

dΣij , which defines the 2-surface spanning the closed curve. It is a straightforward result

from differential geometry that a vector V i parallely-propagated around this curve will
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suffer a rotation

δV i = V j Ri
jk� dΣk� . (8.97)

The fact that it is a pure rotation, with no change in length, is assured by the fact

that the Riemann tensor is antisymmetric in its first two indices; δ(V i Vi) = 2Vi δV i =

2Vi V j Ri
jk� dΣk� = 0. In fact, we can think of the infinitesimal rotation as being

δV i = Λi
j V j , (8.98)

where Λij = −Λji is an infinitesimal generaor of the holonomy group, given by Λij =

Rijk� dΣk�.

In a generic manifold, and for these purposes the n-sphere is an example of such, the

generators Λi
j fill out the entire set of SO(m) Lie algebra generators, in m dimensions. In

fact, for the sphere with its standard unit-radius metric we have

Rijk� = gik gj� − gi� gjk , (8.99)

and so we have Λij = 2dΣij . Thus we indeed see that we can achieve any desired infinitesimal

Λij , by choosing our closed curve appropriately.

A Kähler manifold, however, is not a generic manifold. It has, as we have seen, a very

special kind of curvature where, in terms of complex components, only the mixed-index

components Rμν̄ρσ̄, and those related by the usual Riemann-tensor symmetries, are non-

zero. If we raise the first index, we have that Rμ
νρσ̄ = −Rμ

νσ̄ρ and Rμ̄
ν̄ρσ̄ = −Rμ̄

ν̄σ̄ρ can

be non-zero, while the components with mixed indices on the first pair must vanish. From

the general expression (8.97) for infinitesimal parallel transport, we see that a holomorphic

vector V μ can suffer only holomorphic rotations, while an antiholomorphic vector V μ̄ can

suffer only antiholomorphic ones. In other words, instead of being infinitesimal rotations of

the generic SO(2n) holonomy group that one would expect in a generic real (2n)-manifold,

the rotations here are elements of U(n). Thus the holonomy group of a Kähler metric on a

complex n-manifold is U(n). This is, of course, a subgroup of SO(2n).

There is a slight further specialisation of the holonomy group that occurs if the Kähler

metric is Ricci flat. It is clear from the form of the rotation of a holomorphic vector,

δV μ = V ν Rμ
νk� dΣk� ≡ Λμ

ν V ν , (8.100)

that the U(n) rotation-group element will have unit determinant if the generator Λμ
ν is

traceless. But from (8.87), and the symmetries of the Riemann tensor, this is exactly what

happens if the Kähler metric is Ricci-flat. Thus we arrive at the conclusion that a Ricci-flat

Kähler metric on a complex n-manifold has SU(n) holonomy.
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