USEFUL FORMULAE IN DIFFERENTIAL GEOMETRY

Differential forms:

1
o= Hammupdx’“ A=A datr; a € NP,

alp=(—)VIpAq ae N, e
Exterior derivative, d:

1
do = = Oy ...pup] dz’ Ndz" A -+ A datr.
p!

d maps p-forms to (p + 1)-forms:

d: AP — APFL d? = 0.

Defining the components of da, (da)y,..u,. 1, BY
da = (p T 1)' (da)ﬂln-ﬂerl dxtL A - - A datrrt
we have
(da)m,..upﬂ = (p + 1)a[u1 aﬂ2---ﬂp+1]’
where .
Ty o) = (Tm_,_uq + even perms — odd perms).
q'

Leibnitz rule:
dlaApB)=danp+(—)Pands, ae N, penl

/ dw:/ w,
M oM

where M is an n-manifold and w € AP L.

Stokes’ Theorem:

Epsilon tensors and densities:

6/11...un = (+]-7 _]-7 0)

if p11.. .y is an (even, odd, no) permutation of a lexical ordering of indices (1..

(10)

.n). It is

a tensor density of weight +1. We may also define the quantity ¢#1""#» with components

given numerically by

ghin = (1) ey

1



where ¢ is the number of timelike coordinates. NOTE: This is the only quantity where we
do not raise and lower indices using the metric tensor. ¢#t-#7 is a tensor density of weight
—1. We define epsilon tensors:

1
elll---lln = 1/ |g| 6#1---Hn7 6#1-..Hn — 6#1...Hn’ (11)

VIl

where g = det(g,,) is the determinant of the metric tensor g,,. Note that the tensor e#t-#»
is obtained from €, ,, by raising the indices using inverse metrics. (Note that in some
conventions, the upstairs epsilon is taken to be always positive for a lexical ordering of
indices, so that the lexically-ordered downstairs epsilon will be negative in a spacetime with
an odd number of timelike coordinates. This seems to be illogical, since for antisymmetric
tensors (differential forms), indices are naturally downstairs. Also, as we will see below,
positivity for the lexically-ordered downstairs epsilon is needed in order to have the Hodge
dual of unity be the positive volume element.)

Epsilon-tensor identities:

€ = (=1) b G (12a)

From this, contractions fo indices lead to the special cases

6/141-~-;Uf7“/1/r+1-~-;Ufn€u1m'uryr+1myn — (_1)t r!(n - 7”)! 6/11;111;[; : (12())
where again ¢ denotes the number of timelike coordinates. The multi-index delta-functions
have unit strength, and are defined by

vi-vp o v
s = 0l o (13)
(Note that only one set of square brackets is actually needed here; but with our “unit-
strength” normalisation convention (7), the second antisymmetrisation is harmless.) It is
worth pointing out that a common occurrence of the multi-ndex delta-function is in an
expression like By, Ay, ..., 5;{.'.'.';’;, where A,,...,,, is totally antisymmetric in its (p—1) indices.
It is easy to see that this can be written out as the p terms

Vi 1
By, Avyooyy S0 = 5(3,“ Apyin * B Ay + By Apseeppiiin 4 By Aoy )
if p is odd. If instead p is even, the signs alternate and

1
14 1%
By, Avyooyy S0 = 5(3,“ Ay =By Ao + By Ay =+ — By Am...up_l) .

Hodge * operator:

1
k(dxtt A - Ndatr) = I €y P AT N Ndp R (14)

(n—p
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The Hodge x, or dual, is thus a map from p-forms to (n — p)-forms:
* NP — AP, (15)
Note in particular that taking p = 0 in (14) gives

1
x] =€ = Hemmundx”l A= ANdztm = 1/|g| del A -+ A dz™. (16)

This is the general-coordinate-invariant volume element \/|g|d"z of Riemannian geometry.
It should be emphasised that conversely, we have

daft A dah? A - Adatn = (—1)F efbzbin gty — (1)t ehbzbin gl dy

This extra (—1)¢ factor is tiresome, but unavoidable if we want our definitions to be such
that %1 is always the positive volume element.

From these definitions it follows that

*a/\ﬁ:;m-me, (17)
where « and 3 are p-forms and
o B] = oy, B (18)
Applying * twice, we get
kW = (—)p("_p)+tw, w € AP, (19)

In even dimensions, n = 2m, m-forms can be eigenstates of %, and hence can be self-dual
or anti-self-dual, in cases where *x = +1. From (19), we see that this occurs when m is even
if t is even, and when m is odd if ¢ is odd. In particular, we can have self-duality and anti-self-
duality in n = 4k Euclidean-signature dimensions, and in n = 4k + 2 Lorentzian-signature
dimensions.

Adjoint operator, §:
First define the inner product

@)= [ rans== [ Ja-ple=(5.0) (20)
M b Jm
where o and ( are p-forms. Then 9§, the adjoint of the exterior derivative d, is defined by
(o, df) = (da, ), (21)
where « is an arbitrary p-form and 3 is an arbitrary (p — 1)-form. Hence
da = (=) xdxa, a € AP (22)
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(We assume that the boundary term arising from the integration by parts gives zero, either
because M has no boundary, or because appropriate fall-off conditions are imposed on the
fields.)

§ is a map from p-forms to (p — 1)-forms:
5: AN APTL O s2=0. (23)
Note that in Euclidean signature spaces,  on p-forms is given by

oo = xdx*q if at least one of n and p even, (24)
dor = —*dx*a, if n and p both odd.
The signs are reversed in Lorentzian spacetimes.

In terms of components, the above definitions imply that for all spacetime signatures,

we have
1

(p—1)!

ooy = — (Vy Oz”m.,.upfl) dz" A -+ N dxtet, (25)

where

VI/ a’/ﬂln-#pfl = %a’/ (\/galful...,upfl) (26)

is the covariant divergence of . Defining the components of da, (6a)u1_,_up_1, by

1
da = -1 (60) g .ppp_y At A oo A dtP=t, (27)
we have
(5a)u1---up—1 = _vl/aym---up—r (28)
Hodge-de Rham operator:
A=ds+dd=(d+6)% (29)
A maps p-forms to p-forms:
JANE AP — AP (30)

On 0-, 1-, and 2-forms, we have
0-forms: Ap = =V, V7o,
1-forms: Aw, = —VAV’\wu + R, wy, (31)
2-forms: Awpy = —V,\V)‘wu,, — 2Ry puow?’ 4+ R, woy — Ry Wop,
where R0 is the Riemann tensor and
Ry = R p (32)
is the Ricci tensor.

Hodge’s theorem:
We can uniquely decompose an arbitrary p form w as

w=da+ 8+ wH, (33)

where o € AP~ 8 € AP and wy is harmonic, Awg = 0.
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