
Methods of Theoretical Physics 614

ABSTRACT

Second part of the Fall 2009 course 614, on Mathematical Methods in Theoretical

Physics. This partial set of notes begins with complex analysis.
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1 Functions of a Complex Variable

1.1 Complex Numbers, Quaternions and Octonions

The extension from the real number system to complex numbers is an important one both

within mathematics itself, and also in physics. The most obvious area of physics where

they are indispensable is quantum mechanics, where the wave function is an intrinsically

complex object. In mathematics their use is very widespread. One very important point is

that by generalising from the real to the complex numbers, it becomes possible to treat the

solution of polynomial equations in a uniform manner, since now not only equations like

x2 − 1 = 0 but also x2 + 1 = 0 can be solved.

The complex numbers can be defined in terms of ordered pairs of real numbers. Thus

we may define the complex number z to be the ordered pair z = (x, y), where x and y are

real. Of course this doesn’t tell us much until we give some rules for how these quantities

behave. If z = (x, y), and z′ = (x′, y′) are two complex numbers, and a is any real number,

then the rules can be stated as

z + z′ = (x + x′, y + y′) , (1.1)

a z = (ax, a y) , (1.2)

z z′ = (xx′ − y y′, x y′ + x′ y) . (1.3)

We also define the complex conjugate of z = (x, y), denoted by z̄, as

z̄ = (x,−y) . (1.4)

Note that a complex number of the form z = (x, 0) is therefore real, according to the rule

(1.4) for complex conjugation; z̄ = z. We can write such a real number in the time-honoured

way, simply as x. Thus we may define

(x, 0) = x . (1.5)

The modulus of z, denoted by |z|, is defined as the positive square root of |z|2 ≡ z̄ z,

which, from (1.3), (1.4) and (1.5), is given by

|z|2 = z̄ z = (x2 + y2, 0) = x2 + y2 , (1.6)

It is manifest that |z| ≥ 0, with |z| = 0 if and only if z = 0.

It is now straightforward to verify that the following fundamental laws of algebra are

satisfied:
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1. Commutative and Associative Laws of Addition:

z1 + z2 = z2 + z1 ,

z1 + (z2 + z3) = (z1 + z2) + z3 = z1 + z2 + z3 , (1.7)

2. Commutative and Associative Laws of Multiplication:

z1 z2 = z2 z1 ,

z1 (z2 z3) = (z1 z2) z3 = z1 z2 z3 , (1.8)

3. Distributive Law:

(z1 + z2) z3 = z1 z3 + z2 z3 . (1.9)

We can also define the operation of division. If z1 z2 = z3, then we see from the previous

rules that, multiplying by z̄1, we have

z̄1 (z1 z2) = (z̄1 z1) z2 = |z1|2 z2 = z̄1 z3 , (1.10)

and so, provided that |z1| 6= 0, we can write the quotient

z2 =
z3 z̄1

|z1|2
=

z3

z1
. (1.11)

(The expression z3 z̄1/|z1|2 here defines what we mean by z3/z1.) The fact that we can

solve z1 z2 = z3 for z2 when z1 is non-zero, effectively by dividing out by z1, is a slightly

non-trivial property of the complex numbers, which we needed to check before we could

assume it to be true. The analogous feature for real numbers is, of course, totally familiar,

and we use it every day without a moment’s thought. This property of the real number

system and the complex number system is described by the statement that the real numbers

and the complex numbers both form Division Algebras.

We can, of course, recognise that from the previous rules that the square of the complex

number (0, 1) is (−1, 0), which from (1.5) is simply −1. Thus we can view (0, 1) as being

the square root of −1:

(0, 1) = i =
√
−1 . (1.12)

As can be seen from (1.4), it has the following property under complex conjugation:

(0, 1) = (0,−1) = −(0, 1) . (1.13)

In other words, i = −i.
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Note that in our description of the complex numbers as ordered pairs of real numbers,

this is the first time that the symbol i, meaning the square root of minus 1, has appeared.

We can, of course, re-express everything we did so far in the more familiar notation, in

which we write the complex number z = (x, y) as

z = x + i y . (1.14)

The symbol i is called the imaginary unit.

One might be wondering at this stage what all the fuss is about; we appear to be making

rather a meal out of saying some things that are pretty obvious. Well, one reason for this is

that one can also go on to consider more general types of “number fields,” in which some of

the previous properties cease to hold. It then becomes very important to formalise things

properly, so that there is a clear set of statements of what is true and what is not. Below,

we will give a more extended discussion of more general fields of numbers, but it is useful

first to give a summary. A reader who is not interested in this digression into more abstruse

number systems can skip the detailed discussion, and pass on directly to section 1.1.2.

The property of being a division algebra, i.e. that the equation AB = C can be solved for

B, whenever A is non-zero, is a very important one, and it is a property one does not lightly

give up. Thus the dumber systems of principal interest are those that are division algebras.

There are two such number systems in addition to the real and the complex numbers, namely

the quaternions and the octonions. The defining properties of these number systems can be

stated very easily, in an iterative fashion in which the one builds up from reals to complex

numbers to quaternions to octonions. Just as a complex number can be defined as an

ordered pair of real numbers, we can define a quaternion as an ordered pair of complex

numbers, and an octonion as an ordered pair of quaternions. Thus we may universally

write

A = (a, b) , (1.15)

where if a and b are real, then A is complex; if a and b are complex, then A is a quaternion;

and if a andf b are quaternions, then A is an octonion. We need to specify two rules,

namely the rule for multiplication, and the rule for conjugation. These rules can be stated

completely generally, applying to all four of the division algebras: If A = (a, b) and B =

(c, d), then

AB = (a c − d̄ b, d a + b c̄) , (1.16)

Ā = (ā,−b) . (1.17)
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We also have the rules for multiplication by a real number λ, and for addition:

λA = (λa, λ b) , A + B = (a + c, b + d) . (1.18)

The rules (1.16) and (1.17), together with (1.18), are all that one needs in order to

define the four divsion algebras. Note that they reduce to the rules (1.3) and (1.4), together

with (1.1) and (1.2), in the case of the complex number system, for which a, b, c and d are

just real numbers. Note in particular that in this case, the conjugations (the bars) on the

quantities appearing on the right-hand sides of (1.16) and (1.17) serve no purpose, since a,

b, c and d are real. But they do no harm, either, and the nice thing is that (1.16) and (1.17)

are completely universal rules, applying to all the division algebras.

It is straightforward to check from (1.16) that the multiplication of quaternions is non-

commutative; i.e. in general

AB 6= BA . (1.19)

This happens because of the conjugations on the right-hand side of (1.16). It can also be

checked that the multiplication rule for quaternions is still associative:

A(BC) = (AB)C . (1.20)

Note, however, that one cannot just assume this; rather, one applies the multiplication rule

(1.16) and checks it. A further property of the quaternions, again derivable from the rules

given above, is that the conjugation of the product AB gives

AB = B̄Ā . (1.21)

Notice that all the features of the quaternions, including the non-commutativity of

multiplication, and the conjugation property (1.21), are familiar from the way in which

matrices work (with conjugation now understood to be Hermitean conjugation). In fact, as

we shall discuss in section 1.1.1 below, one can represent quaternions by 2 × 2 matrices.

If we now go to octonions, then it is straightforward to check from the universal rules

given above in (1.16) and (1.17), together with (1.1) and (1.2), that not only is their

multiplication non-commutative, but it is also non-associative; i.e. in general

A(BC) 6= (AB)C (1.22)

This non-associativity is a direct consequence of the non-commutativity of the multiplication

rule for the quaternions that now appear on the right-hand side of (1.16) and (1.17). Notice

that the order in which the symbols appear in the expressions on the right-hand side of (1.16)
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is absolutely crucial now. Of course it did not matter when we were defining quaternions,

because the multiplication rule for the complex numbers is commutative. But it does matter

now when we multiply octonions, because the constituent quaternions do not multiply

commutatively.

Notice that from the universal rules given above we can also derive that the conjugation

of a product of two octonions satisfies the same property (1.21) that we saw above for the

quaternions. However, it should be emphasised that unlike the quaternions, which can be

represented by 2 × 2 matrices, the octonions can not be represented by matrices. To see

this, we need look no further than the multiplicative non-associativity displayed in equation

(1.22): Matrix multiplication is associative, and therefore octonions cannot be represented

by matrices.

The crucial feature that all four of these number systems have is that they are Division

Algebras. First, notice that in all cases we have

|A|2 ≡ AĀ = ĀA = (aā + bb̄, 0) , (1.23)

Furthermore, these quantity is real, and so we can just write it as

AĀ = ĀA = aā + bb̄ . (1.24)

We have the property that |A|2 ≥ 0, with equality if and only if A = 0. At the risk of

sounding like the proverbial broken gramaphone record (for those old enough to remember

what they are), we can emphasise again here that all the statements being made here can

be verified directly using just (1.16) and (1.17), together with (1.1) and (1.2).

For the quaternions, it is then obvious that they form a division algebra; we just multiply

AB = C on the left by Ā, and use

Ā(AB) = (ĀA)B = |A|2 B = ĀC , (1.25)

and hence, dividing out by the non-zero real number |A|2, we get

B =
ĀC

|A|2 . (1.26)

For the octonions, we can actually perform the identical calculation, but in order to do

this we must first check a slightly non-obvious fact. We noted that in general, octonionic

multiplication is non-associative. Looking at (1.25) we see that we assumed that Ā(AB) =

(ĀA)B. This is no problem for quaternions, since their multiplication rule is associative,

but it looks dangerous for octonions. However, one can check (from, as always, (1.16) and
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(1.17)), that in the special case of multiplying the three octonions ĀAB (in other words,

the special case when two of the adjacent octonions are conjugates of each other), the

multiplication is associative, and so the steps in (1.25) are still valid. This then proves that

the octonions do indeed form a division algebra.

It is worth noting, however, that we only just “got away with it” for the octonions. If

we try going to the next natural generalisation of the octonions, which we might call the

“hexadecions,” defined as ordered pairs of octonions obeying the rules (1.16) and (1.17),

then we find that our luck has run out; we do not get a division algebra.

1.1.1 Further details on quaternions and octonions

As we have already emphasised, the rules described above specify the four division algebras

(i.e. reals, complex, quaternions and octonions) completely, and one does not need any other

knowledge or definitions in order to manipulate them. However, it is sometimes useful to

have other ways to think about them, analogous to the way in which we introduce the

symbol i, as the square root of minus 1, for the complex numbers.

We give some more details about these other ways of thinking of quaternions and octo-

nions in this section. Some of the discussion is a little repetitive, since it is drawn from an

earlier version of these lecture notes. This entire section can be ignored, if desired.

The “next” extension beyond the complex numbers is, as has been said above, to the

quaternions. Another way of thinking about them is to say that one now has three inde-

pendent imaginary units, usually denoted by i, j and k, subject to the rules

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j . (1.27)

A quaternion q is then a quantity of the form

q = q0 + q1 i + q2 j + q3 k , (1.28)

where q0, q1, q2 and q3 are all real numbers. There is again an operation of complex

conjugation, q̄, in which the signs of all three of i, j and k are reversed

q̄ = q0 − q1 i − q2 j − q3 k , (1.29)

The modulus |q| of a quaternion q is a real number, defined to be the positive square root

of

|q|2 ≡ q̄ q = q q̄ = q2
0 + q2

1 + q2
2 + q2

3 . (1.30)

Clearly |q| ≥ 0, with equality if and only if q = 0.
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Which of the previously-stated properties of complex numbers still hold for the quater-

nions? It is not so obvious, until one goes through and checks. It is perfectly easy to do this,

of course; the point is, though, that it does now need a bit of careful checking, and the value

of setting up a formalised structure that defines the rules becomes apparent. The answer

is that for the quaternions, one has now lost multiplicative commutativity, so q q′ 6= q′ q in

general. A consequence of this is that there is no longer a unique definition of the quotient

of quaternions. However, a very important point is that we do keep the following property.

If q and q′ are two quaternions, then we have

|q q′| = |q| |q′| , (1.31)

as one can easily verify from the previous definitions.

Let us note that for the quaternions, if we introduce the notation γa for a = 1, 2, 3 by

γ1 = i , γ2 = j , γ3 = k , (1.32)

then the algebra of the quaternions, given in (1.27), can be written as

γa γb = −δab + ǫabc γc , (1.33)

where ǫabc is the totally antisymmetric tensor with

ǫ123 = ǫ231 = ǫ312 = 1 , ǫ132 = ǫ321 = ǫ213 = −1 . (1.34)

Note that the Einstein summation convention for the repeated c index is understood, so

(1.33) really means

γa γb = −δab +
3∑

c=1

ǫabc γc . (1.35)

In fact, one can recognise this as the multiplication algebra of −
√
−1 times the Pauli

matrices σa of quantum mechanics, γa = −
√
−1σa, which can be represented as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −

√
−1

√
−1 0

)
, σ3 =

(
1 0

0 −1

)
. (1.36)

(We use the rather clumsy notation
√
−1 here to distinguish this “ordinary” square root of

minus one from the i quaternion.) In this representation, the quaternion defined in (1.28)

is therefore written as

q =

(
q0 −

√
−1 q3 −

√
−1 q1 − q2

−
√
−1 q1 + q2 q0 +

√
−1 q3

)
. (1.37)
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Since the quaternions are now represented by matrices, it is immediately clear that we shall

have associativity, A(BC) = (AB)C, but not commutativity, under multiplication.

As a final remark about the quaternions, note that we can equally well view them as we

did previously, as an ordered pair of complex numbers. Thus we may define

q = (a, b) = a + b j = a0 + a1 i + b0 j + b1 k , (1.38)

where a = a0 + a1 i, b = b0 + b1 i. Here, we assign to i and j the multiplication rules given

in (1.27), and k is, by definition, nothing but i j. Quaternionic conjugation is given by

q̄ = (ā,−b). The multiplication rule for the quaternions q = (a, b) and q′ = (c, d) can then

easily be seen to be

q q′ = (a c − b d̄, a d + b c̄) . (1.39)

To see this, we just expand out (a + b j)(c + d j):

(a + b j)(c + d j) = a c + b j d j + a d j + b j c

= a c + b d̄ j2 + a d j + b c̄ j

= (a c − b d̄) + (a d + b c̄) j

= (a c − b d̄, a d + b c̄) . (1.40)

Note that the complex conjugations in this expression arise from taking the quaternion j

through the quaternion i, which generates a minus sign, thus

j c = j (c0 + c1 i) = c0 j + c1 j i

= c0 j − c1 i j = (c0 − c1 i) j = c̄ j . (1.41)

Notice that the way quaternions are defined here as ordered pairs of complex numbers

is closely analogous to the definition of the complex numbers themselves as ordered pairs of

real numbers. The multiplication rule (1.39) is also very like the multiplication rule in the

last line in (1.2) for the complex numbers. Indeed, the only real difference is that for the

quaternions, the notion of complex conjugation of the constituent complex numbers arises.

It is because of this that commutativity of the quaternions is lost.

The next stage after the quaternions is the octonions, where one has 7 independent

imaginary units. The rules for how these combine is quite intricate, leading to the rather

splendidly-named Zorn Product between two octonions. It turns out that for the octonions,

not only does one not have multiplicative commutativity, but multiplicative associativity is

also lost, meaning that A (B C) 6= (AB)C in general.
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For the octonions, let us denote the 7 imaginary units by γa, where now 1 ≤ a ≤ 7.

Their multiplication rule is reminiscent of (1.33), but instead is

γa γb = −δab + cabc γc , (1.42)

where cabc are a set of totally-antisymmetric constant coefficients, and the Einstein sum-

mation convention is in operation, meaning that the index c in the last term is understood

to be summed over the range 1 to 7. Note that the total antisymmetry of cabc means that

the interchange of any pair of indices causes a sign change; for example, cabc = −cbac. A

convenient choice for the cabc, which are known as the structure constants of the octonion

algebra, is

c147 = c257 = c367 = c156 = c264 = c345 = −1 , c123 = +1 . (1.43)

Here, it is to be understood that all components related to these by the antisymmetry of

cabc will take the values implied by the antisymmetry, while all other components not yet

specified are zero. For example, we have c174 = +1, c321 = −1, c137 = 0.

We may think of an octonion w as an object built from 8 real numbers w0 and wa, with

w = w0 + wa γa . (1.44)

There is a notion of an octonionic conjugate, where the signs of the 7 imaginary units are

reversed:

w̄ = w0 − wa γa , (1.45)

and there is a modulus |w|, which is a real number defined by

|w|2 ≡ w̄ w = w2
0 +

7∑

a=1

w2
a . (1.46)

Note that |w| ≥ 0, and |w| vanishes if and only if w = 0.

One can verify from (1.43) that

cabc cade = δbd δce − δbe δcd − cbcde , (1.47)

where an absolutely crucial point is that cbcde is also totally antisymmetric. In fact,

cbcde = 1
6ǫbcdefgh cfgh , (1.48)

where ǫbcdefgh is the totally-antisymmetric tensor of 7 dimensions, with ǫ1234567 = +1.

It is straightforward to see that the octonions are non-associative. For example, from

the rules given above we can see that

γ3 (γ1 γ7) = γ3 c174 γ4 = γ3 γ4 = c345 γ5 = −γ5 , (1.49)
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whilst

(γ3 γ1) γ7 = c312 γ2 γ7 = γ2 γ7 = c275 γ5 = +γ5 . (1.50)

So what does survive? An important thing that is still true for the octonions is that any

two of them, say w and w′, will satisfy

|w w′| = |w| |w′| . (1.51)

Most importantly, all of the real, complex, quaternionic and octonionic algebras are

division algebras. This means that the concept of division makes sense, which is perhaps

quite surprising in the case of the octonions. Suppose that A, B and C are any three

numbers in any one of these four number systems. First note that we have

Ā (AB) = (ĀA)B . (1.52)

This is obvious from the associativity for the real, complex or quaternionic algebras. It is

not obvious for the octonions, since they are not associative (i.e. A (B C) 6= (AB)C), but

a straightforward calculation using the previously-given properties shows that it is true for

the special case Ā (AB) = (Ā A)B. Thus we can consider the following manipulation. If

AB = C, then we will have

Ā (AB) = |A|2 B = ĀC . (1.53)

Hence we have

B =
ĀC

|A|2 , (1.54)

where we are allowed to divide by the real number |A|2, provided that it doesn’t vanish.

Thus as long as A 6= 0, we can give meaning to the division of C by A. This shows that all

four of the number systems are division algebras.

Finally, note that again we can define the octonions as an ordered pair of the previous

objects, i.e. quaternions, in this chain of real, complex, quaternionic and octonionic division

algebras. Thus we define the octonion w = (a, b) = a+ b γ7, where a = a0 +a1 i+a2 j+a3 k

and b = b0 + b1 i + b2 j + b3 k are quaternions, and i = γ1, j = γ2 and k = γ3. The conjugate

of w is given by w̄ = (ā,−b). It is straightforward to show, from the previously-given

multiplication rules for the imaginary octonions, that the rule for multiplying octonions

w = (a, b) and w′ = (c, d) is

w w′ = (a c − d̄ b, d a + b c̄) . (1.55)

This is very analogous to the previous multiplication rule (1.39) that we found for the

quaternions. Note, however, that the issue of ordering of the constituent quaternions in
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these octonionic products is now important, and indeed a careful calculation from the

multiplication rules shows that the ordering must be as in (1.55). In fact (1.55) is rather

general, and encompasses all three of the multiplication rules that we have met. As a rule

for the quaternions, the ordering of the complex-number constituents in (1.55) would be

unimportant, and as a rule for the complex numbers, not only the ordering but also the

complex conjugation of the real-number constituents would be unimportant.

1.1.2 The Complex Plane

After discussing the generalities of division algebras, let us return now to the complex

numbers, which is the subject we wish to develop further here. Since a complex number

z is an ordered pair of real numbers, z = (x, y), it is natural to represent it as a point in

the two-dimensional plane, whose Cartesian axes are simply x and y. This is known as the

Complex Plane, or sometimes the Argand Diagram. Of course it is also often convenient to

employ polar coordinates r and θ in the plane, related to the Cartesian coordinates by

x = r cos θ , y = r sin θ . (1.56)

Since we can also write z = x + i y, we therefore have

z = r (cos θ + i sin θ) . (1.57)

Note that |z|2 = r2 (cos2 θ + sin2 θ) = r2.

Recalling that the power-series expansions of the exponential function, the cosine and

the sine functions are given by

ex =
∑

n≥0

xn

n!
, cos x =

∑

p≥0

(−1)p x2p

(2p)!
, sin x =

∑

p≥0

(−1)p x2p+1

(2p + 1)!
, (1.58)

we can see that in particular, in the power series expansion of ei θ the real terms (even powers

of θ assemble into the power series for cos θ, whilst the imaginary terms (odd powers of θ)

assemble into the series for sin θ. In other words

ei θ = cos θ + i sin θ . (1.59)

Turning this around, which can be achieved by adding or subtracting the comlex conjugate,

we find

cos θ = 1
2 (ei θ + e−i θ) , sin θ = 1

2i(e
i θ − e−i θ) . (1.60)

Combining (1.57) and (1.59), we therefore have

z = r ei θ . (1.61)
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Note that we can also write this as z = |z| ei θ. The angle θ is known as the phase, or the

argument, of the complex number z. When complex numbers are multiplied together, the

phases are additive, and so if z1 = |z1| ei θ1 and z2 = |z2| ei θ2 , then

z1 z2 = |z1| |z2| ei (θ1+θ2) . (1.62)

We may note that the following inequality holds:

|z1 + z2| ≤ |z1| + |z2| . (1.63)

This can be seen by calculating the square:

|z1 + z2|2 = (z̄1 + z̄2)(z1 + z2) = |z1|2 + |z2|2 + z̄1 z2 + z̄2 z1 ,

= |z1|2 + |z2|2 + 2|z1 |z2| cos(θ1 − θ2) , (1.64)

≤ |z1|2 + |z2|2 + 2|z1 |z2| = (|z1| + |z2|)2 ,

where we write z1 = |z1| eiθ1 and z2 = |z2| eiθ2 . (The inequality follows from the fact that

cos θ ≤ 1.) By induction, the inequality (1.63) extends to any finite number of terms:

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn| . (1.65)

1.2 Analytic or Holomorphic Functions

Having introduced the notion of complex numbers, we can now consider situations where

we have a complex function depending on a complex argument. The most general kind of

possibility would be to consider a complex function f = u+i v, where u and v are themselves

real functions of the complex variable z = x + i y;

f(z) = u(x, y) + i v(x, y) . (1.66)

As it stands, this notion of a function of a complex variable is too broad, and con-

sequently of limited value. If functions are to be at all interesting, we must be able to

differentiate them. Suppose the function f(z) is defined in some region, or domain, D in

the complex plane (the two-dimensional plane with Cartesian axes x and y). We would

naturally define the derivative of f at a point z0 in D as the limit of

f(z) − f(z0)

z − z0
=

δf

δz
(1.67)

as z approaches z0. The key point here, though, is that in order to be able to say “the

limit,” we must insist that the answer is independent of how we let z approach the point

13



z0. The complex plane, being 2-dimensional, allows z to approach z0 on any of an infinity

of different trajectories. We would like the answer to be unique.

A classic example of a function of z whose derivative is not unique is f(z) = |z|2 = z̄ z.

Thus from (1.67) we would attempt to calculate the limit

|z|2 − |z0|2
z − z0

=
z z̄ − z0 z̄0

z − z0
= z̄ + z0

z̄ − z̄0

z − z0
(1.68)

as z approaches z0. Now, if we write z − z0 = |z − z0| ei θ, we see that this becomes

z̄ + z0 e−2i θ = z̄ + z0 (cos 2θ − i sin 2θ) , (1.69)

which shows that, except at z0 = 0, the answer depends on the angle θ at which z approaches

z0 in the complex plane. One say that the function |z|2 is not differentiable except at z = 0.

The interesting functions f(z) to consider are those which are differentiable in some

domain D in the complex plane. Placing the additional requirement that f(z) be single

valued in the domain, we have the definition of an analytic function, sometimes known as a

holomorphic function. Thus:

A function f(z) is analytic or holomorphic in a domain D in the complex plane if it is

single-valued and differentiable everywhere in D.

Let us look at the conditions under which a function is analytic in D. It is easy to derive

necessary conditions. Suppose first we take the limit in (1.67) in which z + δz approaches

z along the direction of the real axis (the x axis), so that δz = δx;

δf

δz
=

δu + i δv

δx + i δy
=

ux δx + i vx δx

δx
= ux + i vx . (1.70)

(Clearly for this to be well-defined the partial derivatives ux ≡ ∂u/∂x and vx ≡ ∂v/∂x must

exist.)

Now suppose instead we approach along the imaginary axis, δz = i δy so that now

δf

δz
=

δu + i δv

δx + i δy
=

uy δy + i vy δy

i δy
= −iuy + vy . (1.71)

(This time, we require that the partial derivatives uy and vy exist.) If this is to agree with

the previous result from approaching along x, we must have ux + i vx = vy − iuy, which,

equating real and imaginary parts, gives

ux = vy , uy = −vx . (1.72)

These conditions are known as the Cauchy-Riemann equations. It is easy to show that we

would derive the same conditions if we allowed δz to lie along any ray that approaches z at

any angle.
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The Cauchy-Riemann equations by themselves are necessary but not sufficient for the

analyticity of the function f . The full statement is the following:

A continuous single-valued function f(z) is analytic or holomorphic in a domain D if the

four derivatives ux, uy, vx and vy exist, are continuous and satisfy the Cauchy-Riemann

equations.1

There is a nice alternative way to view the Cauchy-Riemann equations. Since z = x+i y,

and hence z̄ = x − i y, we may solve to express x and y in terms of z and z̄:

x = 1
2(z + z̄) , y = − i

2 (z − z̄) . (1.73)

Formally, we can think of z and z̄ as being independent variables. Then, using the chain

rule, we shall have

∂z ≡ ∂

∂z
=

∂x

∂z

∂

∂x
+

∂y

∂z

∂

∂y
= 1

2∂x − i
2 ∂y ,

∂z̄ ≡ ∂

∂z̄
=

∂x

∂z̄

∂

∂x
+

∂y

∂z̄

∂

∂y
= 1

2∂x + i
2 ∂y , (1.74)

where ∂x ≡ ∂/∂x and ∂y ≡ ∂/∂y. (Note that ∂z means a partial derivative holding z̄ fixed,

etc.) So if we have a complex function f = u + i v, then ∂z̄f is given by

∂z̄f = 1
2ux + i

2 uy + i
2vx − 1

2 vy , (1.75)

which vanishes by the Cauchy-Riemann equations (1.72).2 So the Cauchy-Riemann equa-

tions are equivalent to the statement that the function f(z) depends on z but not on z̄. We

now see instantly why the function f = |z|2 = z̄ z was not in general analytic, although it

was at the origin, z = 0.

We have seen that the real and imaginary parts u and v of an analytic function satisfy the

Cauchy-Riemann equations (1.72). From these, it follows that uxx = vyx = vxy = −uyy, and

similarly for v. In other words, u and v each satisfy Laplace’s equation in two dimensions:

∇2u = 0 , ∇2v = 0 , where ∇2 ≡ ∂2

∂x2
+

∂2

∂y2
. (1.76)

1A function f(z) is continuous at z0 if, for any given ǫ > 0 (however small), we can find a number δ such

that |f(z) − f(z0)| < ǫ for all points z in D satisfying |z − z0| < δ.
2One might feel uneasy with treating z and z̄ as independent variables, since one is actually the complex

conjugate of the other. The proper way to show that it is a valid procedure is temporarily to introduce a

genuinely independent complex variable z̃, and to write functions as depending on z and z̃, rather than z

and z̄. After performing the differentiations in this enlarged complex 2-plane, one then sets z̃ = z̄, which

amounts to taking the standard “section” that defines the complex plane. It then becomes apparent that

one can equally well just treat z and z̄ as independent, and cut out the intermediate step of enlarging the

dimension of the complex space.

15



This is a very useful property, since it provides us with ways of solving Laplace’s equation

in two dimensions. It has applications in 2-dimensional electrostatics and gravity, and in

hydrodynamics.

Another very important consequence is that we can use the properties (1.76) in reverse,

in the following sense. We have shown that if u is the real part of an analytic function,

then it satisfies ∇2u = 0. In fact the implication goes in the other direction too; if u(x, y)

satisfies the Laplace equation uxx + uyy = 0 then it follows that it can be taken to be the

real part of some analytic function. We can say that uxx + uyy = 0 is the integrability

condition for the pair of equations ux = vy, uy = −vx to admit a solution for v(x, y).

To solve for v(x, y), one differentates u(x, y) with respect to x or y, and integrates with

respect to y or x respectively, to construct the function v(x, y) using (1.72):

v(x, y) =

∫ y

y0

∂u(x, y′)

∂x
dy′ + α(x) ,

v(x, y) = −
∫ x

x0

∂u(x′, y)

∂y
dx′ + β(y) . (1.77)

The first integral, which comes from integrating ux = vy, leaves an arbitrary function

of x unresolved, while the second, coming from integrating uy = −vx, leaves an arbitrary

function of y unresolved. Consistency between the two resolves everything, up to an additive

constant in v(x, y). This constant never can be determined purely from the given data, since

clearly if f(z) is analytic then so is f(z)+ i γ, where γ is a real constant. But the real parts

of f(z) and f(z) + i γ are identical, and so clearly we cannot deduce the value of γ, merely

from the given u(x, y). Note that we do need both equations in (1.77), in order to determine

v(x, y) up to the additive constant γ. Of course the freedom to pick different constant lower

limits of integration y0 and x0 in (1.77) just amounts to changing the arbitrary functions

α(x) and β(y), so we can choose y0 and x0 in any way we wish.

Let us check this with an example. Suppose we are given u(x, y) = ex cos y, and asked

to find v(x, y). A quick check shows that uxx + uyy = 0, so we will not be wasting our time

by searching for v(x, y). We have

ux = vy = ex cos y , uy = −vx = −ex sin y , (1.78)

and so integrating as in (1.77) we get

v(x, y) = ex sin y + α(x) , v(x, y) = ex sin y + β(y) . (1.79)

Sure enough, the two expressions are compatible, and we see that α(x) = β(y). By the

standard argument that is the same as one uses in the separation of variables, it must be
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that α(x) = β(y) = γ, where γ is a (real) constant. Thus we have found that v(x, y) =

ex sin y + γ, and so

f(z) = u + i v = ex (cos x + i sin y) + i γ = ex ei y + i γ = ex+i y + i γ

= ez + i γ . (1.80)

Note that another consequence of the Cauchy-Riemann equations (1.72) is that

ux vx + uy vy = 0 , (1.81)

or, in other words,

~∇u · ~∇v = 0 , (1.82)

where

~∇ ≡ (
∂

∂x
,

∂

∂y
) (1.83)

is the 2-dimensional gradient operator. Equation (1.82) says that families of curves in the

(x, y) plane corresponding to u = constant and v = constant intersect at right-angles at

all points of intersection. This is because ~∇u is perpendicular to the lines of constant u,

while ~∇v is perpendicular to the lines of constant v. Since we are in two dimensions here, it

follows that if the perpendicular to line u = constant is perpendicular to the perpendicular

to the line v = constant, then the lines u = constant must be perpendicular to the lines

v = constant wherever they intersect.

1.2.1 Power Series

A very important concept in complex variable theory is the idea of a power series, and its

radius of convergence. We could consider the infinite series
∑∞

n=0 an (z − z0)
n, but since a

simple shift of the origin in the complex plane allows us to take z0 = 0, we may as well

make life a little bit simpler by assuming this has been done. Thus, let us consider

f(z) =
∞∑

n=0

an zn , (1.84)

where the an are constant coefficients, which may in general be complex.

A useful criterion for convergence of a series is the Cauchy test. This states that if the

terms bn in an infinite sum
∑

n bn are all non-negative, then
∑

n bn converges or diverges

according to whether the limit of

(bn)
1
n (1.85)

is less than or greater than 1, as n tends to infinity.
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We can apply this to determine the conditions under which the series (1.84) is absolutely

convergent. Taking the modulus of (1.84), and using the inequality (1.65), we shall have

|f(z)| =
∣∣∣

∞∑

n=0

an zn
∣∣∣ ≤

∞∑

n=0

|an zn| . (1.86)

Thus we consider the series
∞∑

n=0

|an| |z|n , (1.87)

which is clearly a sum of non-negative terms. If this converges, then |f(z)| is finite, and so

the series (1.84) is clearly convergent. If

|an|
1
n −→ 1/R (1.88)

as n −→ ∞, then it is evident that the power series (1.84) is absolutely convergent if |z| < R,

and divergent if |z| > R. (As always, the borderline case |z| = R is trickier, and depends

on finer details of the coefficients an.) The quantity R is called the radius of convergence

of the series. The circle of radius R (centred on the expansion point z = 0 in our case) is

called the circle of convergence. The series (1.84) is absolutely convergent for any z that

lies within the circle of convergence.

We can now establish the following theorem, which is of great importance.

If f(z) is defined by the power series (1.84), then f(z) is an analytic function at every

point within the circle of convergence.

This is all about establishing that the power series defining f(z) is differentiable within

the circle of convergence. Thus we define

φ(z) =
∞∑

n=1

n an zn−1 , (1.89)

without yet prejudging that φ(z) is the derivative of f(z). Suppose the series (1.84) has

radius of convergence R. It follows that for any ρ such that 0 < ρ < R, |an ρn| must be

bounded, since we know that even the entire infinite sum is bounded. We may say, then,

that |an ρn| < K for any n, where K is some positive number. Then, defining r = |z|, and

η = |h|, it follows that if r < ρ and r + η < ρ, we have

f(z + h) − f(z)

h
− φ(z) =

∞∑

n=0

an

((z + h)n − zn

h
− n zn−1

)
. (1.90)

Now expand (z + h)n using the binomial theorem, i.e.

(z + h)n = zn + n zn−1 h +
1

2!
n(n − 1) zn−2 h2 + · · · + n z hn−1 + hn . (1.91)

18



Using the inequality (1.65), we have
∣∣∣
(z + h)n − zn

h
− n zn−1

∣∣∣ =
∣∣∣ 1
2! n(n − 1) zn−2 h + 1

3! n(n − 1)(n − 2) zn−3 h2 + · · · + hn−1
∣∣∣ ,

≤ 1
2! n(n − 1) rn−2 η + 1

3! n(n − 1)(n − 2) rn−3 η2 + · · · + ηn−1 ,

=
(r + η)n − rn

η
− n rn−1 . (1.92)

Hence
∞∑

n=0

|an|
∣∣∣
(z + h)n − zn

h
− n zn−1

∣∣∣ ≤ K
∞∑

n=0

1

ρn

[(r + η)n − rn

η
− n rn−1

]
,

= K
[1
η

( ρ

ρ − r − η
− ρ

ρ − r

)
− ρ

(ρ − r)2

]
,

=
K ρη

(ρ − r − η)(ρ − r)2
. (1.93)

(The summations involved in getting to the second line are simply geometric series, and

can be seen from
1

1 − x
=
∑

n≥0

xn , (1.94)

and the series obtained by differentiating this with respect to x.) Clearly the last line in

(1.93) tends to zero as η goes to zero. This proves that φ(z) given in (1.89) is indeed the

derivative of f(z). Thus f(z), defined by the power series (1.84), is differentiable within its

circle of convergence. Since it is also manifestly single-valued, this means that it is analytic

with the circle of convergence.

It is also clear that the derivative f ′(z), given, as we now know, by (1.89), is has the

same radius of convergence as the original series for f(z). This is because the limit of

|n an|1/n as n tends to infinity is clearly the same as the limit of |an|1/n. The process of

differentiation can therefore be continued to higher and higher derivatives. In other words,

a power series can be differentiated term by term as many times as we wish, at any point

within its circle of convergence.

1.3 Contour Integration

1.3.1 Cauchy’s Theorem

A very important result in the theory of complex functions is Cauchy’s Theorem, which

states:

• If a function f(z) is analytic, and it is continuous within and on a smooth closed

contour C, then ∮

C
f(z) dz = 0 . (1.95)
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The symbol
∮

denotes that the integration is taken around a closed contour; sometimes,

when there is no ambiguity, we shall omit the subscript C that labels this contour.

To see what (1.95) means, consider first the following. Since f(z) = u(x, y) + i v(x, y),

and z = x + i y, we may write (1.95) as

∮

C
f(z) dz =

∮

C
(u dx − v dy) + i

∮

C
(v dx + u dy) , (1.96)

where we have separated the original integral into its real and imaginary parts. Written in

this way, each of the contour integrals can be seen to be nothing but a closed line integral of

the kind familiar, for example, in electromagnetism. The only difference here is that we are

in two dimensions rather than three. However, we still have the concept Stokes’ Theorem,

known as Green’s Theorem in two dimensions, which asserts that

∮

C

~E · d~ℓ =

∫

S

~∇× ~E · d~S , (1.97)

where C is a closed curve bounding a domain S, and ~E is any vector field defined in S

and on C, with well-defined derivatives in S. In two dimensions, the curl operator ~∇× just

means

~∇× ~E =
∂Ey

∂x
− ∂Ex

∂y
. (1.98)

(It is effectively just the z component of the three-dimensional curl.) ~E · d~ℓ means Ex dx +

Ey dy, and the area element d~S will just be dx dy.

Applying Green’s theorem to the integrals in (1.96), we therefore obtain

∮

C
f(z) dz = −

∫

S

(∂v

∂x
+

∂u

∂y

)
dx dy + i

∫

S

(∂u

∂x
− ∂v

∂y

)
dx dy . (1.99)

But the integrands here are precisely the quantities that vanish by virtue of the Cauchy-

Riemann equations (1.72), and thus we see that
∮

f(z) dz = 0, verifying Cauchy’s theorem.

An alternative proof of Cauchy’s theorem can be given as follows. Define first the slightly

more general integral

F (λ) ≡ λ

∮
f(λz) dz ; 0 ≤ λ ≤ 1 , (1.100)

where λ is a constant parameter that can be freely chosen in the interval 0 ≤ λ ≤ 1.

Cauchy’s theorem is therefore the statement that F (1) = 0. To show this, first differentiate

F (λ) with respect to λ:

F ′(λ) =

∮
f(λz) dz + λ

∮
z f ′(λz) dz . (1.101)
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(The prime symbol ′ always means the derivative of a function with respect to its argument.)

Now integrate the second term by parts, giving

F ′(λ) =

∮
f(λz) dz + λ

(
[λ−1 z f(λz)] − λ−1

∮
f(λz) dz

)

= [z f(λz)] , (1.102)

where the square brackets indicate that we take the difference between the values of the

enclosed quantity at the beginning and end of the integration range. But since we are

integrating around a closed curve, and since z f(λz) is a single-valued function, this must

vanish. Thus we have established that F ′(λ) = 0, implying that F (λ) = constant. We can

determine this constant by considering any value of λ we wish. Taking λ = 0, it is clear

from (1.100) that F (0) = 0, whence F (1) = 0, proving Cauchy’s theorem.

Why did we appear not to need the Cauchy-Riemann equations (1.72) in this proof?

The answer, of course, is that effectively we did, since we assumed that we could sensibly

talk about the derivative of f , called f ′. As we saw when we discussed the Cauchy-Riemann

equations, they are the consequence of requiring that f ′(z) have a well-defined meaning.

Cauchy’s theorem has very important implications in the theory of integration of com-

plex functions. One of these is that if f(z) is an analytic function in some domain D, then

if we integrate f(z) from points z1 to z2 within D the answer
∫ z2

z1

f(z) dz (1.103)

is independent of the path of integration within D. This follows immediately by noting that

if we consider two integration paths P1 and P2 then the total path consisting of integration

from z1 to z2 along P1, and then back to z1 in the negative direction along P2 constitutes

a closed curve C = P1 − P2 within D. Thus Cauchy’s theorem tells us that

0 =

∮

C
f(z) dz =

∫

P1

f(z) dz −
∫

P2

f(z) dz . (1.104)

Another related implication from Cauchy’s theorem is that it is possible to define an

indefinite integral of f(z), by

g(z) =

∫ z

z0

f(z′) dz′ , (1.105)

where the contour of integration can be taken to be any path within the domain of analyt-

icity. Notice that the integrated function, g(z), has the same domain of analyticity as the

integrand f(z). To show this, we just have to show that the derivative of g(z) is unique.

This (almost self-evident) property can be made evident by considering

g(z) − g(ζ)

z − ζ
− f(ζ) , (1.106)
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and noting that

g(z) − g(ζ) =

∫ z

z0

f(z′)dz′ −
∫ ζ

z0

f(z′)dz′ =

∫ z

ζ
f(z′)dz′ ,

f(ζ) =
f(ζ)

z − ζ
(z − ζ) =

f(ζ)

z − ζ

∫ z

ζ
dz′ =

1

z − ζ

∫ z

ζ
f(ζ)dz′ , (1.107)

which means that
g(z) − g(ζ)

z − ζ
− f(ζ) =

∫ z
ζ [f(z′) − f(ζ)] dz′

z − ζ
. (1.108)

Since f(z) is continuous and single-valued, it follows that |f(z′) − f(ζ)| will tend to zero

at least as fast as |z − ζ| for any point z′ on a direct path joining ζ to z, as z approaches

ζ. Together with the fact that the integration range itself is tending to zero in this limit,

proportional to |z− ζ|, it is evident that the right-hand side in (1.108) will tend to zero as ζ

approaches ζ (since the single power of (z− ζ) in the denominator is outweighed by at least

two powers in the numerator), implying therefore that g′(z) exists and is equal to f(z).

A third very important implication from Cauchy’s theorem is that if a function f(z)

that does contain some sort of singularities within a closed curve C is integrated around C,

then the result will be unchanged if the contour is deformed in any way, provided that it

does not cross any singularity of f(z) during the deformation. This property will prove to

be invaluable later, when we want to perform explicit evaluations of contour integrals. We

prove it by deforming the closed contour C into the new closed contour C̃, and then joining

the two by a narrow “causeway” of infinitesimally-separated parallel paths. This creates a

total contour which, by construction, contains no singularities at all. The integrals in and

out along the causeway cancel each other in the limit when the separation of the two paths

becomes zero, and hence, taking into account the orientations of the two contributions C

and C̃ in the total closed path, we find from Cauchy’s theorem that

∮

C
f(z)dz =

∮

C̃
f(z)dz . (1.109)

Finally, on the subject of Cauchy’s theorem, let us note that we can turn it around,

and effectively use it as a definition of an analytic function. This is the content of Morera’s

Theorem, which states:

• If f(z) is continuous and single-valued within a closed contour C, and if
∮

f(z) dz = 0

for any closed contour within C, then f(z) is analytic within C.

This can provide a useful way of testing whether a function is analytic in some domain.
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1.3.2 Cauchy’s Integral Formula

Suppose that the function f(z) is analytic in a domain D. Consider the integral

G(a) =

∮

C

f(z)

z − a
dz , (1.110)

where the contour C is any closed curve within D. There are three cases to consider,

depending on whether the point a lies inside, on, or outside the contour of integration C.

Consider first the case when a lies within C. By an observation in the previous section,

we know that the value of the integral (1.110) will not alter if we deform the contour in

any way provided that the deformation does not cross over the point z = a. We can exploit

this in order to make life simple, by deforming the contour into a small circle C ′, of radius

ǫ, centred on the point a. Thus we may write

z − a = ǫ eiθ , (1.111)

with the deformed contour C ′ being parameterised by taking θ from 0 to 2π.3

Thus we have dz = i ǫ eiθ dθ, and so

G(a) = i

∫ 2π

0
f(a + ǫ eiθ) dθ = i f(a)

∫ 2π

0
dθ + i

∫ 2π

0
[f(a + ǫ eiθ) − f(a)] dθ . (1.112)

In the limit as ǫ tends to zero, the continuity of the function f(z) implies that the last

integral will vanish, since f(a + ǫ ei θ) = f(a) + f ′(a) ǫ ei θ + · · ·, and so we have that if f(z)

is analytic within and on any closed contour C then

∮

C

f(z)

z − a
dz = 2π i f(a) , (1.113)

provided that C contains the point z = a. This is Cauchy’s integral formula.

Obviously if the point z = a were to lie outside the contour C, then we would, by

Cauchy’s theorem, have ∮

C

f(z)

z − a
dz = 0 , (1.114)

since then the integrand would be a function that was analytic within C.

The third case to consider is when the point a lies exactly on the path of the contour

C. It is somewhat a matter of definition, as to how we should handle this case. The most

reasonable thing is to decide, like in the Judgement of Solomon, that the point is to be

3Note that this means that we define a positively-oriented contour to be one whose path runs anti-

clockwise, in the direction of increasing θ. Expressed in a coordinate-invariant way, a positively-oriented

closed contour is one for which the interior lies to the left as you walk along the path.
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viewed as being split into two, with half of it lying inside the contour, and half outside.

Thus if a lies on C we shall have

∮

C

f(z)

z − a
dz = π i f(a) . (1.115)

We can view the Cauchy integral formula as a way of evaluating an analytic function at

a point z in terms of a contour integral around any closed curve C that contains z:

f(z) =
1

2π i

∮

C

f(ζ) dζ

ζ − z
. (1.116)

A very useful consequence from this is that we can use it also to express the derivatives of

f(z) in terms of contour integrals. Essentially, one just differentiates (1.116) with respect to

z, meaning that on the right-hand side it is only the function (ζ−z)−1 that is differentiated.

We ought to be a little careful just once to verify that this “differentiation under the integral”

is justified, so that having established the validity, we can be cavalier about it in the future.

The demonstration is in any case pretty simple. We have

f(z + h) − f(z)

h
=

1

2π i

∮
f(ζ)

h

( 1

ζ − z − h
− 1

ζ − z

)
dζ ,

=
1

2π i

∮
f(ζ) dζ

(ζ − z)(ζ − z − h)
. (1.117)

Now in the limit when h −→ 0 the left-hand side becomes f ′(z), and thus we get

f ′(z) =
1

2π i

∮
f(ζ) dζ

(ζ − z)2
. (1.118)

The question of the validity of this process, in which we have taken the limit h −→ 0 under

the integration, comes down to whether it was valid to assume that

T ≡ −
∮

f(ζ)
( 1

(ζ − z)2
− 1

(ζ − z − h)(ζ − z)

)
dζ

= h

∮
f(ζ) dζ

(ζ − z)2 (ζ − z − h)
(1.119)

vanishes as h tends to zero.

To show this, let us consider the more general question of obtaining an upper bound on

the modulus of a contour integral. Consider the integral

G ≡
∮

C
g(z) dz , (1.120)

for some function g(z) integrated around the closed curve C. Using the inequality (1.65),

generalised to a sum over an infinity of infinitesimal complex numbers, we have

|G| =
∣∣∣
∮

C
g(z) dz

∣∣∣ ≤
∮

C
|g(z)| |dz| . (1.121)
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Now, clearly this last integral, which sums up quantities that are all positive or zero, must

itself be less than or equal to the integral

∮

C
|g|max |dz| , (1.122)

where we define |g|max to be the largest value that |g(z)| attains anywhere on the contour

C. Since this maximum value is of course just a constant, we have that

|G| ≤ |g|max

∮

C
|dz| . (1.123)

Finally, we note that ∮

C
|dz| =

∮

C

√
dx2 + dy2 = L , (1.124)

where L is the total length of the contour C. Thus we conclude that

∣∣∣
∮

C
g(z) dz

∣∣∣ ≤ |g|max L . (1.125)

One further useful inequality may be written down in the case that g(z) is itself the ratio

of complex functions: g(z) = A(z)/B(z). Obviously, we can now say that the maximum

value of |g(z)| anywhere on the contour is bounded by

|g|max ≤ |A|max

|B|min
, (1.126)

where |A|max is the maximum value of |A(z)| anywhere on the contour C, and |B|min is the

minimum value of |B((z)| anywhere on the contour C. (In general, these two extrema will

occur at different points on the contour.) Thus we may say that

∣∣∣
∮

A(z)

B(z)
dz
∣∣∣ ≤ |A|max

|B|min
L , (1.127)

where again L is the total length of the contour.4

Returning now to our discussion above, it is evident using (1.127) that

|T | ≤ |h|M L

b2 (b − |h|) , (1.128)

where M is the maximum value of |f(ζ)| on the contour, L is the length of the contour,

and b is the minimum value of of |ζ − z| on the contour. These are all fixed numbers,

independent of h, and so we see that indeed T must vanish as h is taken to zero.

4Note, by the way, that although we presented the argument above for the case of a closed contour, the

bounds (1.125) and (1.127) apply equally well to the case of an open contour that does not close on itself.

Of course, they will only be useful bounds if the length L is finite.
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More generally, by continuing the above procedure, we can show that the n’th derivative

of f(z) is given by

f (n)(z) =
1

2π i

∮
f(ζ)

dn

dzn

( 1

ζ − z

)
dζ , (1.129)

or, in other words,

f (n)(z) =
n!

2π i

∮

C

f(ζ) dζ

(ζ − z)n+1
. (1.130)

Note that since all the derivatives of f(z) exist, for all point C within the contour C, it

follows that f (n)(z) is analytic within C for any n.

1.3.3 The Taylor Series

We can use Cauchy’s integral formula to derive Taylor’s theorem for the expansion of a

function f(z) around a point z = a at which f(z) is analytic. An important outcome from

this will be that we shall see that the radius of convergence of the Taylor series extends up

to the singularity of f(z) that is nearest to z = a.

From Cauchy’s integral formula we have that if f(z) is analytic inside and on a contour

C, and if z = a + h lies inside C, then

f(a + h) =
1

2π i

∮
f(ζ) dζ

ζ − a − h
. (1.131)

Now, bearing in mind that the geometric series
∑N

n=0 xn sums to give (1−xN+1) (1−x)−1,

we have that
N∑

n=0

hn

(ζ − a)n+1
=

1

ζ − a − h
− hN+1

(ζ − a − h) (ζ − a)N+1
. (1.132)

We can use this identity as an expression for (ζ − a − h)−1 in (1.131), implying that

f(a + h) =
N∑

n=0

hn

2π i

∮
f(ζ) dζ

(ζ − a)n+1
+

hN+1

2π i

∮
f(ζ) dζ

(ζ − a − h) (ζ − a)N+1
. (1.133)

In other words, in view of our previous result (1.130), we have

f(a + h) =
N∑

n=0

hn

n!
f (n)(a) + RN , (1.134)

where the “remainder” term RN is given by

RN =
hN+1

2π i

∮

C

f(ζ) dζ

(ζ − a − h) (ζ − a)N+1
. (1.135)

Now, if M denotes the maximum value of |f(ζ)| on the contour C, then by taking C to

be a circle of radius r centred on ζ = a, we shall have

|RN | ≤ |h|N+1 M r

(r − |h|) rN+1
=

M r

r − |h|
( |h|

r

)N+1
. (1.136)
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Thus if we choose h such that |h| < r, it follows that as N is sent to infinity, RN will go to

zero. This means that the Taylor series

f(a + h) =
∞∑

n=0

hn

n!
f (n)(a) , (1.137)

or in other words,

f(z) =
∞∑

n=0

(z − a)n

n!
f (n)(a) , (1.138)

will be convergent for any z lying within the circle of radius r centred on z = a. But we can

choose this circle to be as large as we like, provided that it does not enclose any singularity

of f(z). Therefore, it follows that the radius of convergence of the Taylor series (1.137) is

precisely equal to the distance between z = a and the nearest singularity of f(z).

1.3.4 The Laurent Series

Suppose now that we want to expand f(z) around a point z = a where f(z) has a singularity.

Clearly the previous Taylor expansion will no longer work. However, depending upon the

nature of the singularity at z = a, we may be able to construct a more general kind of series

expansion, known as a Laurent series. To do this, consider two concentric circles C1 and

C2, centred on the point z = a, where C1 has a larger radius that can be taken out as far

as possible before hitting the next singularity of f(z), while C2 is an arbitrarily small circle

enclosing a. Take the path C1 to be anticlockwise, while the path C2 is clockwise. We can

make C1 and C2 into a single closed contour C, by joining them along a narrow “causeway,”

as shown in Figure 1.

The idea is that we will take a limit where the width of the “causeway” joining the inner

and outer circles shrinks to zero. In the region of the complex plane under discussion, the

function f(z) has, by assumption, only an isolated singularity at z = a.

Now consider Cauchy’s integral formula for this contour, which will give

f(a + h) =
1

2π i

∮

C

f(ζ) dζ

ζ − a − h
. (1.139)

The reason for this is that the closed contour C encloses no singularities except for the pole

at ζ = a + h. In particular, it avoids the singularity of f(z) at z = a. Since the integrand

is non-singular in the neighbourhood of the “causeway,” we see that when the width of the

causeway is taken to zero, we shall find that the integration along the lower “road” heading

in from C1 to C2 will be exactly cancelled by the integration in the opposite direction along

the upper “road” heading out from C2 to C1. Furthermore, in the limit when the width
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Figure 1: The contour C = C1 + C2 for Cauchy’s integral

of the causeway goes to zero, the gaps in the contours C1 and C2 shrink to zero, and they

can be replaced by closed circular contours. In this sense, therefore, we can disregard the

contribution of the causeway, and just make the replacement that

∮

C
−→

∮

C1

+

∮

C2

. (1.140)

We can therefore write (1.139) as

f(a + h) =
1

2π i

∮

C1

f(ζ) dζ

ζ − a − h
+

1

2π i

∮

C2

f(ζ) dζ

ζ − a − h
. (1.141)

For the first integral, around the large circle C1, we can use the same expansion for (ζ −a−
h)−1 as we used in the Taylor series previously, obtained by setting N = ∞ in (1.132), and

using the fact that the second term on the right-hand side then vanishes, since hN+1/|ζ −
a|N+1 goes to zero on C1 when N goes to infinity, as a result of the radius of C1 being larger

than |h|. In other words, we expand (ζ − a − h)−1 as

1

ζ − a − h
=

1

(ζ − a)(1 − h (ζ − a)−1)
,

=
1

ζ − a

(
1 +

h

ζ − a
+

h2

(ζ − a)2
+ · · ·

)
, (1.142)

=
∞∑

n=0

hn

(ζ − a)n+1
.
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On the other hand, in the second integral in (1.141) we can expand (ζ − a − h)−1 in a

series valid for |ζ − a| << |h|, namely

1

ζ − a − h
= − 1

h(1 − (ζ − a)h−1)
,

= −1

h

(
1 +

ζ − a

h
+

(ζ − a)2

h2
+ · · ·

)
, (1.143)

= −
∞∑

m=1

(ζ − a)m−1

hm
.

Thus we find

f(a + h) =
1

2π i

∞∑

n=0

hn
∮

C1

f(ζ) dζ

(ζ − a)n+1
+

1

2π i

∞∑

m=1

1

hm

∮

C+
2

f(ζ) (ζ − a)m−1 dζ , (1.144)

where we define C+
2 to mean the contour C2 but with the direction of the integration path

reversed, i.e. C+
2 runs anti-clockwise around the point ζ = a, which means it is now the

standard positive direction for a contour. Thus we have

f(a + h) =
∞∑

n=−∞

an hn , (1.145)

where the coefficients an are given by

an =
1

2π i

∮
f(ζ) dζ

(ζ − a)n+1
. (1.146)

Here, the integration contour is C1 when evaluating an for n ≥ 0, and C+
2 when evaluating

an for n < 0. Notice that we can in fact just as well choose to use the contour C1 for the

n < 0 integrals too, since the deformation of the contour C+
2 into C1 does not cross any

singularities of the integrand when n < 0.

Note that using the original variable z = a + h, (1.145) is written as

f(z) =
∞∑

n=−∞

an (z − a)n . (1.147)

The expansion in (1.147) is known as the Laurent Series. By similar arguments to those

we used for the Taylor series, one can see that the series converges in an annulus whose

larger radius is defined by the contour C1. This contour could be chosen to be the largest

possible circle centred on the singularity of f(z) at z = a that does not enclose any other

singularity of f(z).

In the Laurent series, the function f(z) has been split as the sum of two parts:

f(z) = f+(z) + f−(z) , (1.148)

f+(z) ≡
∑

n≥0

an (z − a)n , f−(z) ≡
∑

m≥1

a−m

(z − a)m
. (1.149)
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The part f+(z) (the terms with n ≥ 0 in (1.147)) is analytic everywhere inside the larger

circle C1. The part f−(z) (the terms with n ≤ −1 in (1.147)) is analytic everywhere outside

the small circle C2 enclosing the singularity as z = a.

In practice, one commonly wants to work out just the first few terms in the Laurent

expansion of a function around a singular point. For example, it is often of interest to know

the singular terms, corresponding to the inverse powers of (z−a) in (1.147). If the function

in question has a pole of degree N at the expansion point, then there will just be N singular

terms, corresponding to the powers (z − a)−N down to (z − a)−1. For reasons that we shall

see later, the coefficient of (z − a)−1 is often of particular interest.

Determining the first few terms in the expansion of a function with a pole at z = a is

usually pretty simple, and can just be done by elementary methods. Suppose, for example,

we have the function

f(z) =
g(z)

zN
, (1.150)

where g(z) is analytic, and that we want to find the Laurent expansion around the point

z = 0. Since g(z) is analytic, it has a Taylor expansion, which we can write as

g(z) =
∑

m≥0

bm zm . (1.151)

The Laurent expansion for f(z) is therefore

f(z) =
1

zN

∑

m≥0

bm zm

=
∑

m≥0

bm zm−N

=
∑

n≥−N

bn+N zn . (1.152)

For example, the Laurent expansion of f(z) = z−2 ez is given by

f(z) =
1

z2

(
1 + z + 1

2z2 + 1
6z3 + · · ·

)

=
1

z2
+

1

z
+ 1

2 + 1
6z + · · · . (1.153)

In more complicated examples, there might be an analytic function that goes to zero

in the denominator of the function f(z). We can still work out the first few terms in the

Laurent expansion by elementary methods, by writing out the Taylor expansion of the

function in the denominator. Consider, for example, the function f(z) = 1/ sin z, to be

expanding in a Laurent series around z = 0. We just write out the first few terms in the
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Taylor series for sin z,

sin z = z − 1
6z3 + 1

120z5 + · · ·

= z
(
1 − 1

6z2 + 1
120z4 + · · ·

)
. (1.154)

Notice that on the second line, we have pulled out the overall factor of z, so that what

remains inside the parentheses is an analytic function that does not go to zero at z = 0.

Now, we write

f(z) =
1

sin z
=

1

z

(
1 − 1

6z2 + 1
120z4 + · · ·

)−1
, (1.155)

and the problem has reduced to the kind we discussed previously. Making the expansion of

the term in parentheses using (1 + x)−1 = 1 − x + x2 − x3 + · · ·, we get

f(z) =
1

z

(
1 + 1

6z2 + 7
360z4 + · · ·

)
, (1.156)

and hence the Laurent expansion is

1

sin z
=

1

z
+ 1

6z + 7
360z3 + · · · . (1.157)

Note that if we had only wanted to know the pole term, we would not have needed to push

the series expansion as far as we just did. So as a practical tip, time can be saved by working

just to the order needed, and no more, when performing the expansion. (One must take

care, though, to be sure to take the expansion far enough.)

1.4 Classification of Singularities

We are now in a position to classify the types of singularity that a function of a complex

variable may possess.

Suppose that f(z) has a singularity at z = a, and that its Laurent expansion for f(a+h),

given in general in (1.145), actually terminates at some specific negative value of n, say

n = −N . Thus we have

f(a + h) =
∞∑

n=−N

an hn . (1.158)

We then say that f(z) has a pole of order N at z = a. In other words, as z approaches a

the function f(z) has the behaviour

f(z) =
a−N

(z − a)N
+ less singular terms . (1.159)

If, on the other hand, the sum over negative values of n in (1.145) does not terminate,

but goes on to n = −∞, then the function f(z) has an essential singularity at z = a. A
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classic example is the function

f(z) = e
1
z . (1.160)

This has the Laurent expansion

f(z) =
∞∑

n=0

1

n! zn
(1.161)

around z = 0, which is obtained simply by taking the usual Taylor expansion of

ew =
∑

n≥0

wn

n!
(1.162)

and setting w = 1/z. The Laurent series (1.161) has terms in arbitrarily negative powers

of z, and so z = 0 is an essential singularity.

Functions have quite a complicated behaviour near an essential singularity. For example,

if z approaches zero along the positive real axis, e1/z tends to infinity. On the other hand, if

the approach to zero is along the negative real axis, e1/z instead tends to zero. An approach

to z = 0 along the imaginary axis causes e1/z to have unit modulus, but with an ever-

increasing phase rotation. In fact a function f(z) with an essential singularity can take on

any value, for z near to the singular point.

Note that the Laurent expansion (1.145) that we have been discussing here is applicable

only if the singularity of f(z) is an isolated one.5 There can also exist singularities of a

different kind, which are neither poles nor essential singularities. Consider, for example,

the functions f(z) =
√

z, or f(z) = log z. Neither of these can be expanded in a Laurent

series around z = 0. They are both discontinuous along an entire semi-infinite line starting

from the point z = 0. Thus the singularity at z = 0 is not an isolated one; it is called a

branch point. We shall discuss these in more detail later.

For now, just take note of the fact that a singularity in a function does not necessarily

mean that the function is infinite there. By definition, a function f(z) is singular at z = a

if it is not analytic at z = a. Thus, for example, f(z) = z1/2 is singular at z = 0, even

though f(0) = 0. This can be seen from the fact that we cannot expand z1/2 as a power

series around z = 0, and therefore z1/2 cannot be analytic there. It is also the case that

although f(0) is finite, the derivatives of f(z) are infinite at z = 0.

For now, let us look in a bit more detail at functions with isolated singularities.

5By definition, if a function f(z) has a singularity at z = a, then it is an isolated singularity if f(z) can

be expanded in a Laurent series around z = a.
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1.4.1 Entire Functions

A very important, and initially perhaps rather surprising, result is the following, known as

Liouville’s Theorem:

A function f(z) that is analytic for all finite values of z and is bounded everywhere is

a constant.

Note that when we say f(z) is bounded everywhere (at finite z), we mean that there

exists some positive number S, which is independent of z, such that

|f(z)| ≤ S (1.163)

for all finite z.

We can prove Liouville’s theorem using the result obtained earlier from Cauchy’s integral

formula, for f ′(a):

f ′(a) =
1

2π i

∮
f(z) dz

(z − a)2
. (1.164)

Take the contour of integration to be a circle of radius R centred on z = a, which means

that the points z on the contour are defined by |z − a| = R. Since we are assuming that

f(z) is bounded, we may take |f(z)| ≤ M for all points z on the contour, where M is some

finite positive number. Then, using (1.164), we must have

|f ′(a)| ≤
( M

2π R2

)
(2π R) =

M

R
. (1.165)

Thus by taking R to infinity, and recalling our assumption that f(z) remains bounded for

all finite z (meaning that M is finite, in fact M ≤ S, no matter how large R is), we see that

f ′(a) must be zero. Thus f(a) is a constant, independent of a. Thus Liouville’s theorem is

established.

An illustration of Liouville’s theorem can be given with the following example. Suppose

we try to construct an analytic function that is well-behaved, and bounded, everywhere.

If we were considering real functions as opposed to complex analytic functions, we might

consider a function such as

f(x) =
1

1 + x2
, (1.166)

which rather boringly falls off to zero as x tends to +∞ or −∞, having attained the exciting

peak of f = 1 at the origin. Thus as a real function of x, we have |f(x)| ≤ 1 everywhere.

However, viewed as a function of the variable z in the complex plane, it is unbounded:

f(z) =
1

1 + z2
=

1

(z − i)(z + i)
=

i

2(z + i)
− i

2(z − i)
, . (1.167)

33



Thus the function f(z) actually has poles at z = ±i, away from the z axis. Of course we

could consider instead the function

g(z) =
1

1 + |z|2 , (1.168)

which certainly satisfies |g(z)| ≤ 1 everywhere. But g(z) is not analytic (since it depends

on z̄ as well as z.)

Liouville’s theorem tells us that any bounded analytic function we try to construct is

inevitably going to have singularities somewhere, unless we are content with the humble

constant function.

A similar argument to the above allows us to extend Liouville’s theorem to the following:

If f(z) is analytic for all finite z, and if |f(z)| is bounded by S |z|k for some integer k

and some constant S, i.e. |f(z)/zk| ≤ S for all finite z, then f(z) is a polynomial of

degree ≤ k.

To show this, we follow the same strategy as before, by using the higher-derivative

consequences of Cauchy’s integral:

f (n)(a) =
n!

2π i

∮
f(z) dz

(z − a)n+1
. (1.169)

Assume that |f(z)| ≤ M |z|k on the contour at radius R centred on z = a. Then we have

|f (n)(a)| ≤
(n!M Rk

2π Rn+1

)
(2π R) = n!M Rk−n . (1.170)

Thus we see that as R tends to infinity, all the terms with k < n will vanish (since we shall

always have M ≤ S, where S is some fixed number), and so

f (n)(a) = 0 , for n > k . (1.171)

But this is just telling us that f(z) is a polynomial in z with zk as its highest power, which

proves the theorem. Liouville’s theorem itself is just the special case k = 0.

A function f(z) that is a polynomial in z of degree k,

f(z) =
k∑

n=0

an zn , (1.172)

is clearly analytic for all finite values of z. However, if k > 0 it will inevitably have a pole

at infinity. To see this, we use the usual trick of making the coordinate transformation

ζ =
1

z
, (1.173)
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and then looking at the behaviour of the function f(1/ζ) at ζ = 0. Clearly, for a polynomial

of degree k of the form (1.172), we shall get

f(1/ζ) =
k∑

n=0

an ζ−n , (1.174)

implying that there are poles of orders up to and including k at z = ∞.

Complex functions that are analytic in every finite region in the complex plane are called

entire functions. All polynomials, as we have seen, are therefore entire functions. Another

example is the exponential function ez, defined by the power-series expansion

ez =
∞∑

n=0

zn

n!
. (1.175)

By the Cauchy test for the convergence of series, we see that (|z|n/n!)1/n = |z| (n!)−1/n

tends to zero as n tends to infinity,6 for any finite |z|, and so the exponential is analytic for

all finite z. Of course the situation at infinity is another story; here, one has to look at e1/ζ

as ζ tends to zero, and as we saw previously this has an essential singularity, which is more

divergent than any finite-order pole. Other examples of entire functions are cos z, and the

Bessel function of integer order, Jn(z). The Bessel function has the power-series expansion

Jn(z) =
∞∑

ℓ=0

(−1)ℓ

ℓ! (n + ℓ)!

(z

2

)n+2ℓ
. (1.176)

Of course we know from Liouville’s theorem that any interesting entire function (i.e.

anything except the purely constant function) must have some sort of singularity at infinity.

1.4.2 Meromorphic Functions

Entire functions are analytic everywhere except at infinity. Next on the list are meromorphic

functions:

A Meromorphic Function f(z) is analytic everywhere in the complex plane (including

infinity), except for isolated poles.

6To see this, we may, for convenience, take n to be even, in which case we may write

n! = [1 · n][2 · (n − 1)][3 · (n − 2)] · · · [ 1
2
n · ( 1

2
n + 1)] .

Each of the 1

2
n square brackets is ≥ n, and so we have n! ≥ nn/2. It follows that (n!)1/n ≥ n1/2, and hence

(n!)−1/n ≤ n−1/2, which tends to zero as n tends to infinity.
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We insist, in the definition of a meromorphic function, that the only singularities that

are allowed are poles, and not, for example, essential singularities. Note that we also insist,

in this definition of a strictly meromorphic function, that it either be analytic also at infinity,

or at worst, have a pole at infinity.

The number of poles in a meromorphic function must be finite. This follows from the

fact that if there were an infinite number then there would exist some singular point, either

at finite z or at z = ∞, which would not be isolated, thus contradicting the definition of

an everywhere-meromorphic function. For example; suppose we had a function with poles

at all the integers along the real axis. These would appear to be isolated, since each one is

unit distance from the next. However, these poles actually have an accumulation point at

infinity, as can be seen by writing z = 1/ζ and looking near ζ = 0. Thus a function of this

type will actually have a bad singularity at infinity, We shall in fact be studying such an

example later.

Any meromorphic function f(z) can be written as a ratio of two polynomials. Such a

ratio is known as a rational function. To see why we can always write f(z) in this way, we

have only to make use of the observation above that the number of poles must be finite. Let

the number of poles at finite z be N . Thus at a set of N points zn in the complex plane,

the function f(z) has poles of orders dn. It follows that the function

g(z) ≡ f(z)
N∏

n=1

(z − zn)dn (1.177)

must be analytic everywhere (except possibly at infinity), since we have cleverly arranged

to cancel out every pole at finite z. Even if f(z) does have a pole at infinity, it follows

from (1.177) that g(z) will diverge no faster than |z|k for some finite integer k. But we

saw earlier, in the generalisation of Liouville’s theorem, that any such function must be a

polynomial of degree ≤ k. Thus we conclude that f(z) is a ratio of polynomials:

f(z) =
g(z)

∏N
n=1(z − zn)dn

. (1.178)

The fact that a meromorphic function can be expressed as a ratio of polynomials can be

extremely useful.

A ratio of two polynomials can be expanded out as a sum of partial fractions. For

example
1 + z2

1 − z2
=

1

z + 1
− 1

z − 1
− 1 . (1.179)

Therefore it follows that a function f(z) that is meromorphic can be expanded out as a sum

of partial fractions in that region. For a strictly meromorphic function, this sum will be a
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finite one (since there are only finitely many poles, each of finite order).

Having introduced the notion of a strictly meromorphic function, it is also useful to

introduce a slightly less strict notion of meromorphicity. Thus, we can define the notion

of a function that is meromorphic within a restricted region. Thus a function is said to be

meromorphic in a domain D in the complex plane if it is analytic except for pole singularities

in the domain D. The previous definition of a meromorphic function thus corresponds to the

case where D is the entire complex plane, including infinity. A very common situation for a

more restricted meromorphic function is when we consider functions that are meromorphic

in the finite complex plane. Such functions are analytic except for isolated pole singularities

everywhere in the finite complex plane, but they are allowed to have “worse” singularities

(such as essential singularities) at infinity. Notice in particular that such a function is now

allowed to have an infinite number of isolated poles in the finite complex plane (since we

are now allowing there to be an accumulation point at infinity).

Let us consider an example of a function f(z) that is meromorphic in some region, and

furthermore where every pole is of order 1. This is in fact a very common circumstance.

As a piece of terminology, a pole of order 1 is also known as a simple pole. Let us assume

that the poles are located at the points zn, numbered in increasing order of distance from

the origin. Thus near z = zn, we shall have

f(z) ∼ bn

z − zn
, (1.180)

where the constant bn characterises the “strength” of the pole. In fact bn is known as the

residue at the pole z = zn.

Consider a circle Cp centred on z = 0 and with radius Rp chosen so that it encloses p

of the poles. To avoid problems, we choose Rp so that it does not pass through any pole.

Then the function

Gp(z) ≡ f(z) −
p∑

n=1

bn

z − zn
(1.181)

will be analytic within the circle, since we have explicitly arranged to subtract out all

the poles (which we are assuming all to be of order 1). Using Cauchy’s integral, we shall

therefore have

Gp(z) =
1

2π i

∮

Cp

Gp(ζ) dζ

ζ − z
=

1

2π i

∮

Cp

f(ζ) dζ

ζ − z
− 1

2π i

p∑

n=1

bn

∮

Cp

dζ

(ζ − z)(ζ − zn)
. (1.182)

Now, each term in the sum here integrates to zero. This is because the integrand is

1

(ζ − z)(ζ − zn)
=

1

z − zn

[ 1

ζ − z
− 1

ζ − zn

]
(1.183)
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The integral (over ζ) is taken around a contour that encloses both the simple pole at ζ = z

and the simple pole at ζ = zn. We saw earlier, in the proof of Cauchy’s integral formula, that

a contour integral running anti-clockwise around a simple pole c/(ζ − ζ0) gives the answer

2π c i, and so the result of integrating (1.183) around our contour is (2π i−2π i)/(z−zn) = 0.

Thus we conclude that

Gp(z) =
1

2π i

∮

Cp

f(ζ) dζ

ζ − z
. (1.184)

Now, consider a sequence of ever-larger circles Cp, enclosing larger and larger numbers of

poles. This defines a sequence of functions Gp(z) for increasing p, each of which is analytic

within Rp. We want to show that Gp(z) is bounded as p tends to infinity, which will allow us

to invoke Liouville’s theorem and deduce that G∞(z) = constant. By a now-familiar method

of argument, we suppose that Mp is the maximum value that |f(ζ)| attains anywhere on

the circular contour of radius Rp. Then from (1.184), and using (1.125), we shall have

|Gp(z)| ≤ Mp Rp

Rp − |z| . (1.185)

Consider first the case of a function f for which Mp is bounded in value as Rp goes

to infinity. Then, we see from (1.185) that |Gp(z)| is bounded as p goes to infinity. By

Liouville’s theorem, it follows that G∞(z) must just be a constant, c. Thus in this case we

have

f(z) = c +
∞∑

n=1

bn

z − zn
. (1.186)

We are left with one undetermined constant, c. This can be fixed by looking at one special

value of z, and then equating the two sides in (1.186). Suppose, for example, that f(z) is

analytic at z = 0. We can then determine c by setting z = 0:

f(0) = c −
∞∑

n=1

bn

zn
, (1.187)

and then plugging the solution for c back into (1.186), giving

f(z) = f(0) +
∞∑

n=1

[ bn

z − zn
+

bn

zn

]
. (1.188)

(If f(z) happens to have a pole at z = 0, then we just choose some other special value of z

instead, when solving for c.)

We obtained this result by assuming that f(z) was bounded on the circle of radius Rp,

as Rp was sent to infinity. Even if this is not the case, one can often construct a related

function, for example f(z)/zk for some suitable integer k, which is bounded on the circle.

With appropriate minor modifications, a formula like (1.188) can then be obtained.
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An example is long overdue. Consider the function f(z) = tan z. which is, of course

(sin z)/ cos z. Now we have

sin z = sin(x + i y) = sin x cosh y + i cos x sinh y ,

cos z = cos(x + i y) = cos x cosh y − i sin x sinh y , (1.189)

where we have used the standard results that cos(i y) = cosh y and sin(i y) = i sinh y. Thus

we have

| sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y = sin2 x + sinh2 y ,

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y = cos2 x + sinh2 y . (1.190)

It is evident that | sin z| is finite for all finite z, and that therefore tan z can have poles only

when cos z vanishes. From the second expression for | cos z|2 in (1.190), we see that this can

happen only if y = 0 and cos x = 0, i.e. at

z = (n + 1
2)π , (1.191)

where n is an integer.

Near z = (n + 1
2)π, say z = ζ + (n + 1

2 )π, where |ζ| is small, we shall have

sin z −→ sin(n + 1
2 )π = (−1)n ,

cos z −→ − sin(n + 1
2)π sin ζ −→ −(−1)n ζ , (1.192)

and so the pole at z = zn = (n + 1
2)π has residue bn = −1.

We also need to examine the boundedness of f(z) = tan z on the circles Rp. These

circles are most conveniently taken to go precisely half way between the poles, so we should

take Rp = p π. Now from (1.190) we have

| tan z|2 =
sin2 x cosh2 y + cos2 x sinh2 y

cos2 x cosh2 y + sin2 x sinh2 y
=

sin2 x + sinh2 y

cos2 x + sinh2 y
. (1.193)

Bearing in mind that sinx and cos x are bounded by 1, that cos pπ = (−1)p 6= 0, and that

sinh2 y and cosh2 y both diverge like 1
4e2|y| as |y| tends to infinity, we see that | tan z| is

indeed bounded on the circles Rp of radius p π, as p tends to infinity. Thus we can now

invoke our result (1.188), to deduce that

tan z = −
∞∑

n=−∞

[ 1

z − (n + 1
2)π

+
1

(n + 1
2)π)

]
. (1.194)
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We can split the summation range into the poles at positive and at negative values of x, by

using
∞∑

n=−∞

un =
∞∑

n=0

un +
∞∑

n=0

u−n−1 . , (1.195)

Thus (1.194) gives

tan z = −
∞∑

n=0

[ 1

z − (n + 1
2)π

+
1

(n + 1
2)π)

]
−

∞∑

n=0

[ 1

z + (n + 1
2)π

− 1

(n + 1
2 )π)

]
(1.196)

which, grouping the summands together, becomes

tan z =
∞∑

n=0

2z

(n + 1
2 )2 π2 − z2

. (1.197)

This gives our series for the function f(z) = tan z. Note that it displays the expected poles

at all the places where the cos z denominator vanishes, namely at z = (m + 1
2)π, where m

is any integer.

Another application of the result (1.188) is to obtain an expansion of an entire function

as an infinite product. Suppose f(z) is entire, meaning that it is analytic everywhere except

at infinity. It follows that f ′(z) is an analytic function too, and so the function

g(z) ≡ f ′(z)

f(z)
=

d

dz
log f(z) (1.198)

is meromorphic for all finite z. (Its only singularities are poles at the places where f(z)

vanishes, i.e. at the zeros of f(z).)

Let us suppose that f(z) has only simple zeros, i.e. it vanishes like cn (z − zn) near the

zero at z = zn, and furthermore, suppose that f(0) 6= 0. Thus we can apply the formula

(1.188) to g(z), implying that

d

dz
log f(z) =

f ′(0)

f(0)
+

∞∑

n=1

[ 1

z − zn
+

1

zn

]
. (1.199)

This can be integrated to give

log f(z) = log f(0) +
f ′(0)

f(0
z +

∞∑

n=1

[
log

(
1 − z

zn

)
+

z

zn

]
. (1.200)

Finally, exponentiating this, we get

f(z) = f(0) e[f ′(0)/f(0)] z
∞∏

n=1

(
1 − z

zn

)
ez/zn . (1.201)

This infinite-product expansion is valid for any entire function f(z) with simple zeros at

z = zn, none of which is located at z = 0, whose logarithmic derivative f ′/f is bounded on
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a set of circles Rp. Obviously, without too much trouble, generalisations can be obtained

where some of these restrictions are removed.

Let us apply this result in an example. Consider the function sin z. From (1.190) we

see that it has zeros only at y = 0, x = n π. The zero at z = 0 is unfortunate, since in the

derivation of (1.201) we required our entire function f(z) to be non-zero at z = 0. But this

is easily handled, by taking our entire function to be f(z) = (sin z)/z, which tends to 1 at

z = 0. We now have a function that satisfies all the requirements, and so from (1.201) we

shall have
sin z

z
=

∞∏

n=−∞

(
1 − z

n π

)
ez/(n π) , (1.202)

where the term n = 0 in the product is to be omitted. Combining the positive-n and

negative-n terms pairwise, we therefore find that

sin z = z
∞∏

n=1

[
1 −

( z

n π

)2 ]
. (1.203)

It is manifest that this has zeros in all the right places.

1.4.3 Branch Points, and Many-valued Functions

All the functions we have considered so far have been single-valued ones; given a point z,

the function f(z) has a unique value. Many functions do not enjoy this property. A classic

example is the function f(z) = z1/2. This can take two possible values for each non-zero

point z, for the usual reason that there is an ambiguity of sign in taking the square root.

This can be made more precise here, by considering the representation of the point z as

z = r eiθ. Thus we shall have

f(z) = (r eiθ)
1
2 = r

1
2 e

i
2

θ . (1.204)

But we can also write z = r ei(θ+2π), since θ is periodic, with period 2π, on the complex

plane. Now we obtain

f(z) = (r ei (θ+2π))
1
2 = r

1
2 e

i
2

θ+i π = −r
1
2 e

i
2

θ . (1.205)

In fact, if we look at the value of f(z) = z1/2 on the circle z = r ei θ, taking θ from θ = 0

to θ0 = 2π − ǫ, where ǫ is a small positive constant, we see that

f(r ei θ) −→ −f(r) , (1.206)

as θ approaches θ0. But since we are back essentially to where we started in the complex

plane, it follows that f(z) must be discontinuous; it undergoes a jump in its value, on

completing a circuit around the origin.
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Of course although in this description we seemed to attach a particular significance to

the positive real axis there is not really anything especially distinguished about this line.

We could just as well have re-oriented our discussion, and concluded that the jump in the

value of f(z) = z1/2 occurred on some other axis emanating from the origin. The important

invariant statement is that if you trace around any closed path that encircles the origin, the

value of z1/2 will have changed, by an overall factor of (−1), on returning to the starting

point. The function f(z) = z1/2 is double-valued on the complex plane.

If we continue on and take a second trip around the closed path, we will return again

with a factor of (−1) relative to the previous visitation of the starting point. So after two

rotations, we are back where we started and the function f(z) = z1/2 is back to its original

value too. This is expressed mathematically by the fact that

f(r ei (θ+4π)) = r
1
2 e

i
2

θ e2π i = r
1
2 e

i
2

θ = f(r ei θ) . (1.207)

An elegant way to deal with a multi-valued function such as f(z) = z1/2 is to consider

an enlarged two-dimensional surface on which the function is defined. In the case of the

double-valued function f(z) = z1/2, we can do it as follows. Imagine taking the complex

plane, and making a semi-infinite cut along the real axis, from x = 0 to x = +∞. Now,

stack a second copy of the complex plane above this one, again with a cut from x = 0 to

x = +∞. Now, identify (i.e. glue) the lower edge of the cut of the underneath complex

plane with the upper edge of the cut of the complex plane that sits on top. Finally (a little

trickier to imagine!), identify the lower cut edge of the complex plane on top with the upper

cut edge of the complex plane that sits underneath. We have created something a bit like

a multi-story car-park (with two levels, in this case). As you drive anti-clockwise around

the origin, starting on the lower floor, you find, after one circuit, that you have driven up

onto the upper floor. Carrying on for one more circuit, you are back on the lower floor

again.7 What has been achieved is the creation of a two-sheeted surface, called a Riemann

Surface, on which one has to take z around the origin through a total phase of 4π before

before it returns to its starting point. The function f(z) = z1/2 is therefore single-valued

on this two-sheeted surface. “Ordinary” functions, i.e. ones that were single-valued on the

original complex plane, simply have the property of taking the same value on each of the

two sheets, at z = r ei θ and z = r ei (θ+2π).

We already noted that the choice of where to run the cut was arbitrary. The important

thing is that for the function f(z) = z1/2, it must run from z = 0 out to z = ∞, along any

7Of course multi-story car-parks don’t work quite like that in real life, owing to the need to be able to

embed them in three dimensions!
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arbitrarily specifiable path. It is often convenient to take this to be the cut along the real

positive axis, but any other choice will do.

The reason why the origin is so important here is that it is at z = 0 that the actual

branch point of the function f(z) = z1/2 lies. It is easy to see this, by following the value

of f(z) = z1/2 as z is taken around various closed paths (it is simplest to choose circles) in

the complex plane. One easily sees that the f(z) −→ −f(z) discontinuity is encountered

for any path that encloses the origin, but no discontinuity arises for any closed path that

does not enclose the origin.

If one encircles the origin, one also encircles the point at infinity, so f(z) = z1/2 also has

a branch point at infinity. (Clearly f(1/ζ) = ζ−1/2 is also double valued on going around

ζ = 0.) So in fact, the branch cut that we must introduce is running from one branch point

to the other. This is a general feature of multi-valued functions. In more complicated cases,

this can mean that there are various possible choices for how to select the branch cuts. In

the present case, choosing the branch cut along any arbitrary path from z = 0 to z = ∞
will do. Then, as one follows around a closed path, there is a discontinuity in f(z) each time

the branch cut is crossed. If a closed path crosses it twice (in opposite directions), then the

two cancel out, and the function returns to its original value without any discontinuity.8

Consider another example, namely the function

f(z) = (z2 − 1)
1
2 = (z − 1)

1
2 (z + 1)

1
2 . (1.208)

It is easy to see that since z1/2 has a branch point at z = 0, here we shall have branch

points at z = 1 and z = −1. Any closed path encircling either z = −1 or z = +1 (but not

both) will reveal a discontinuity associated with the two-valuedness of (z + 1)
1
2 or (z − 1)

1
2

respectively. On the other hand, a circuit that encloses both of the points z = 1 and z = −1

will not encounter any discontinuity. The minus sign coming from encircling one branch

point is cancelled by that coming from encircling the other. The upshot is that we can

choose our branch cuts in either of two superficially-different ways. One of the choices is

to run the branch cut from z = −1 to z = +1. Another quite different-looking choice is to

8In the special case of z1/2, for which the function is exactly two-valued, then crossing over the cut twice

even both in the same direction will cause a cancellation of the discontinuity. But more generally, a double

crossing of the branch will cause the discontinuities to cancel only if the crossings are in opposite directions.

Of course multiple crossings of the cut in the same direction might lead to a cancellation, if the function is

only finitely-many valued. For example, f(z) = z1/n is n-valued, so winding n times around in the same

direction gets back to the original value, if n is an integer. On the other hand f(z) = z1/π will never return

to its original value, no matter how many complete circuits of the origin are made.
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run a branch cut from z = 1 to z = +∞ along the real positive axis, and another cut from

z = −1 to z = −∞ along the real negative axis.

For either of these choices, one gets the right conclusion. Namely, as one follows along

any path, there is a discontinuity whenever a branch cut is crossed. Crossing twice in a

given path will cause the two discontinuities to cancel out. so even if we consider the second

choice of branch cuts, with two cuts running out to infinity from the points z = −1 and

z = +1, we get the correct conclusion that a closed path that encircles both z = −1 and

z = +1 will reveal no discontinuity after returning to its starting point.

Actually the two apparently-different choices for the branch cuts are not so very different,

topologically-speaking. Really, z = ∞ is like a single point, and one effectively should view

the complex plane as the surface of a sphere, with everywhere out at infinity corresponding

to the same point on the sphere. Think of making a stereographic projection from the north

pole of the sphere onto the infinite plane tangent to the south pole. We think of this plane

as the complex plane. A straight line joining the north pole to a given point in the complex

plane therefore passes through a single point on the sphere. This gives a mapping from each

point in the complex plane into a point on the sphere. Clearly, things get a bit degenerate

as we go further and further out in the complex plane. Eventually, we find that all points

at |z| = ∞, regardless of their direction out from the origin, map onto a single point on

the sphere, namely the north pole. This sphere, known as the Riemann Sphere, is really

what the complex plane is like. Of course as we have seen, a lot of otherwise well-behaved

functions tend to have more severe singularities at z = ∞, but that doesn’t detract from

the usefulness of the picture. Figure 2 below show the mapping of a point Q in the complex

plane into a corresponding point P on the Riemann sphere.

As it happens, our function f(z) = (z2 − 1)1/2 is rather moderately behaved at z = ∞;

it has a Laurent expansion with just a simple pole:

f(1/ζ) = (ζ−2 − 1)
1
2 = ζ−1 (1 − ζ2)

1
2 ,

=
1

ζ
− 1

2ζ − 1
8ζ3 − 1

16 ζ5 + · · · . (1.209)

Since it has no branch point there, we can actually take the second choice of branch cuts,

where the two cuts ran from z = −1 and z = +1 to infinity (in other words a single line

from z = −1 to the north pole and back to z = +1), and deform it continuously into the

first choice, where the branch cut simply runs from z = −1 to z = +1. If you think of the

branch cut as an elastic band joining z = −1 to z = +1 via the north pole, it only takes
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Figure 2: The point Q in the complex plane projects onto P on the Riemann sphere.

someone like Superman wandering around at the north pole to give it a little tweak, and it

can contract smoothly and continuously from the second choice of branch cut to the first.

1.5 The Oppenheim Formula

Before proceeding with the mainstream of the development, let us pause for an interlude

on a rather elegant and curious topic. It is a rather little-known method for solving the

following problem. Suppose we are given the real part u(x, y) of an analytic function

f(z) = u(x, y) + i v(x, y). It is a classic exercise, to work out the imaginary part v(x, y),

and hence to learn what the full analytic function f(z) is, by making use of the Cauchy-

Riemann equations. We discussed this problem a while back, showing how one solves for v

by integrating the Cauchy-Riemann equations.

What is not so well known is that one can do the job of finding v(x, y) from u(x, y)

without ever needing to differentiate or integrate at all. This makes a nice party trick,

if you go to the right (or maybe wrong!) sort of parties. The way it works is absurdly

simple, and so, in the best traditions of a conjuring trick, here first is the “show.” Unlike

the conjuror’s trick, however, we shall see afterwards how the rabbit was slipped into the

hat. I have not been able to find very full references to it; the earliest I came across is to a
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certain Prof. A. Oppenheim, so I shall refer to it as the “Oppenheim Method.”

The way to derive the analytic function f(z), given its real part u(x, y), is the following:

f(z) = 2u(
z

2
,

z

2 i
) + c , (1.210)

where c is a constant. The real part of c can be fixed by using the known given expression

for the real part of f(z). The imaginary part of c is not determinable. Of course this is

always the case; f(z) and f(z) + i γ, where γ is a real constant, have the same real parts

and the same analyticity properties, so no method could tell us what γ is, in the absence of

further specification. (In the usual Cauchy-Riemann derivation of v(x, y), this arbitrariness

arose as a constant of integration.)

Just to show that it really does work, consider the same example that we treated above

using the traditional method. Suppose we are given that u(x, y) = ex cos y is the real part

of an analytic function f(z). What is f(z)? According to (1.210), the answer is

f(z) = 2e
1
2
z cos(− i

2
z) + c = 2e

1
2
z cosh(

1

2
z) + c ,

= ez + 1 + c . (1.211)

Now, we fix c by noting, for example, that from the original u(x, y) we have u(0, 0) = 1,

and so we should choose c so that f(z) has real part 1 at z = 0. Thus we have c = −1, and

hence f(z) = ez. (There is no need to be tedious about always adding i γ, since this trivial

point about the arbitrariness over the imaginary constant is now well understood.) Finally,

we can easily verify that indeed f(z) = ez is the answer we were looking for, since

ez = ex+i y = ex (cos y + i sin y) , (1.212)

and so sure enough, this analytic function has real part ex cos y.

How did it work? Like all the best conjuring tricks, the explanation is ludicrously simple.

Since f(z) is analytic, we can expand it as a power series, f(z) =
∑

n≥0 an zn. Note that

we are assuming here that it is in particular analytic at z = 0; we shall show later how to

remove this assumption. If we write the expansion coefficients an as an = αn + iβn, where

αn and βn are real, then from the series expansion we shall have

2u(x, y) = f(z) + f(z) =
∑

n≥0

[
(αn + iβn) (x + i y)n + (αn − iβn) (x − i y)n

]
. (1.213)

Now plug in the values x = z/2, y = z/(2i), as required in the Oppenheim formula:

2u(
z

2
,

z

2i
) =

∑

n≥0

[
(αn + iβn)

(z

2
+

z

2

)n
+ (αn − iβn)

(z

2
− z

2

)n]
,
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=
∑

n≥0

(αn + iβn) zn + α0 − iβ0 , (1.214)

= f(z) + α0 − iβ0 .

That’s all there is to it! The result is proven. Omne ignotum pro magnifico.

We assumed in the proof that f(z) was analytic at z = 0. If it’s not, then in its

present form the procedure can sometimes break down. For example, suppose we consider

the function u(x, y) = 1
2 log(x2 + y2). (Secretly, we know that this is the real part of the

function f(z) = log z, which of course is analytic for all finite z except for the branch point

at z = 0.) Trying the Oppenheim formula (1.210), we get

f(z) = log(
1

4
z2 − 1

4
z2) + c = log 0 + c . (1.215)

Oooppps!! Not to worry, we know why it has failed. We need to find a generalisation of the

Oppenheim formula, to allow for such cases where the function we are looking for happens

to be non-analytic at z = 0. The answer is the following:

f(z) = 2u(
z + a

2
,
z − a

2i
) + c , (1.216)

where a is an arbitrary constant, to be chosen to avoid any unpleasantness. Let’s try this

in our function u(x, y) = 1
2 log(x2 + y2):

f(z) = log
[(z + a

2

)2
−
(z − a

2

)2]
+ c ,

= log(a z) + c = log z + log a + c . (1.217)

So for any value of a other than a = 0, everything is fine. As usual, an elementary exami-

nation of a special case fixes the real part of the constant c, to give c = − log a.

It is easy to see why the generalisation (1.216) works. We just repeat the derivation

in (1.214), but now consider an expansion of the function f(z) around z = a rather than

z = 0; f(z) =
∑

n≥0 an (z−a)n. Provided we don’t choose a so that we are trying to expand

around a singular point of f(z), all must then be well:

2u(
z + a

2
,
z − a

2i
) =

∑

n≥0

[
(αn + iβn)

(z + a

2
+

z − a

2
− a

)n
+ (αn − iβn)

(z + a

2
− z − a

2
− a

)n]
,

=
∑

n≥0

(αn + iβn) (z − a)n + α0 − iβ0 , (1.218)

= f(z) + α0 − iβ0 .

Just to show off the method in one further example, suppose we are given

u(x, y) = e
x

x2+y2 cos
y

x2 + y2
. (1.219)
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Obviously we shall have to use (1.216) with a 6= 0 here. Thus we get

f(z) = 2e
z+a
2a z cos

z − a

2i a z
+ c = 2e

z+a
2a z cosh

z − a

2a z
,

= e
z+a
2a z

(
e

z−a
2a z + e

a−z
2a z

)
+ c , (1.220)

= e
1
a + e

1
z + c .

Fixing the constant c from a special case, we get

f(z) = e
1
z . (1.221)

The method has even worked for a function with an essential singularity, provided that we

take care not to try using a = 0. (Try doing the calculation by the traditional procedure

using (1.77) to see how much simpler it is to use the generalised Oppenheim formula.)

Having shown how effective the Oppenheim method is, it is perhaps now time to admit

to why in some sense a little bit of a cheat is being played here. This is not to say that

anything was incorrect; all the formulae derived are perfectly valid. It is a slightly unusual

kind of trick that has been played, in fact.

Normally, when a conjuror performs a trick, it is he who “slips the rabbit into the

hat,” and then pulls it out at the appropriate moment to astound his audience. Ironically

enough, in the case of the Oppenheim formula it is the audience itself that unwittingly slips

the rabbit into the hat, and yet nevertheless it is duly amazed when the rabbit reappears.

The key point is that if one were actually working with a realistic problem, in which

only the real part of an analytic function were known, one would typically be restricted

to knowing it only as an “experimental result” from a set of observations. Indeed, in a

common circumstance such information about the real part of an analytic function might

arise precisely from an experimental observation of, for example, the refractive index of a

medium as a function of frequency. The imaginary part, on the other hand, is related to the

decay of the wave as it moves through the medium. There are quite profound Dispersion

Relations that can be derived that relate the imaginary part to the real part. They are

derived precisely by making use of the Cauchy-Riemann relations, to derive v(x, y) from

u(x, y) by taking the appropriate derivatives and integrals of u(x, y), as in (1.77).

So why was the Oppenheim formula a cheat? The answer is that it assumes that one

knows what happens if one inserts complex values like x = (z + a)/2 and y = (z − a)/(2i)

into the “slots” of u(x, y) that are designed to take the real numbers x and y. In a real-life

experiment one cannot do this; one cannot set the frequency of a laser to a complex value!

So the knowledge about the function u(x, y) that the Oppenheim formula requires one to
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have is knowledge that is not available in practical situations. In those real-life cases, one

would instead have to use (1.77) to calculate v(x, y). And the process of integration is

“non-local,” in the sense that the value for the integral depends upon the values that the

integrand takes in an entire region in the (x, y) plane. This is why dispersion relations

actually contain quite subtle information.

The ironic thing is that although the Opennheim formula is therefore in some sense a

“cheat,” it nevertheless works, and works correctly, in any example that one is likely to

check it with. The point is that when we want to test a formula like that, we tend not to go

out and start measuring refractive indices; rather, we reach into our memories and drag out

some familiar function whose properties have already been established. So it is a formula

that is “almost never” usable, and yet it works “almost always” when it is tested with toy

examples. It is a bit like asking someone to pick a random number. Amongst the set of all

numbers, the chance that an arbitrarily chosen number will be rational is zero, and yet the

chance that the person’s chosen number will be rational is pretty close to unity.

1.6 Calculus of Residues

After some rather lengthy preliminaries, we have now established the groundwork for the

further development of the subject of complex integration. First, we shall derive a general

result about the integration of functions with poles.

If f(z) has an isolated pole of order n at z = a, then by definition, it can be expressed

as

f(z) =
a−n

(z − a)n
+

a−n+1

(z − a)n−1
+ · · · + a−1

z − a
+ φ(z) , (1.222)

where φ(z) is analytic at and near z = a. The coefficient of a−1 in this expansion is called

the residue of f(z) at the pole at z = a.

Let us consider the integral of f(z) around a closed contour C which encloses the pole

at z = a, but within which φ(z) is analytic. (So C encloses no other singularities of f(z)

except the pole at z = a.) We have

∮

C
f(z) dz =

n∑

k=1

a−k

∮

C

dz

(z − a)k
+

∮
φ(z) dz . (1.223)

By Cauchy’s theorem we know that the last integral vanishes, since φ(z) is analytic within

C. To evaluate the integrals under the summation, we may deform the contour C to a circle

of radius ρ centred on z = a, respecting the previous condition that no other singularities

of f(z) shall be encompassed.

49



Letting z − a = ρ eiθ, the deformed contour C is then parameterised by allowing θ to

range from 0 to 2π, while holding ρ fixed. Thus we shall have dz = i ρ ei θ dθ on the contour,

and so

∮

C

dz

(z − a)k
=

∫ 2π

0

i ρ eiθ dθ

ρkei k θ
= i ρ1−k

∫ 2π

0
e(1−k) i θ dθ = ρ1−k

[e(1−k) i θ

1 − k

]2π

0
. (1.224)

When the integer k takes any value other than k = 1, this clearly gives zero. On the other

hand, when k = 1 we have ∮

C

dz

z − a
= i

∫ 2π

0
dθ = 2π i (1.225)

as we saw when deriving Cauchy’s integral formula. Thus we arrive at the conclusion that

∮

C
f(z) dz = 2π i a−1 . (1.226)

The result (1.226) gives the value of the integral when the contour C encloses only the

pole in f(z) located at z = a. Clearly, if the contour were to enclose several poles, at

locations z = a, z = b, z = c, etc., we could smoothly deform C so that it described circles

around each of the poles, joined by narrow “causeways” of the kind that we encountered

previously, which would contribute nothing to the total integral.

Thus we arrive at the Theorem of Residues, which asserts that if f(z) be analytic

everywhere within a contour C, except at a number of isolated poles inside the contour,

then ∮

C
F (z) dz = 2π i

∑

s

Rs , (1.227)

where Rs denotes the residue at pole number s.

It is useful to note that if f(z) has a simple pole at z = a, then the residue at z = a is

given by taking the limit of (z − a) f(z) as z tends to a.

1.7 Evaluation of real integrals

The theorem of residues can be used in order to evaluate many kinds of integrals. Since this

is an important application, we shall look at a number of examples. First, a list of three

main types of real integral that we shall be able to evaluate:

(1) Integrals of the form ∫ 2π

0
R(cos θ, sin θ) dθ , (1.228)

where R is a rational function of cos θ and sin θ. (Recall that if f(z) is a rational

function, it means that it is the ratio of two polynomials.)
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(2) Integrals of the form ∫ ∞

−∞
f(x) dx , (1.229)

where f(z) is analytic in the upper half plane (y > 0) except for poles that do not lie

on the real axis. The function f(z) is also required to have the property that z f(z)

should tend to zero as |z| tends to infinity whenever 0 ≤ arg(z) ≤ π. (arg(z) is the

phase of z. This condition means that z f(z) must go to zero for all points z that go

to infinity in the upper half plane.)

(3) Integrals of the form ∫ ∞

0
xα−1 f(x) dx , (1.230)

where f(z) is a rational function, analytic at z = 0, with no poles on the positive real

axis. Furthermore, zα f(z) should tend to zero as z approaches 0 or infinity.

First, consider the type (1) integrals. We introduce z as the complex variable z = ei θ.

Thus we have

cos θ = 1
2(z + z−1) , sin θ = 1

2i(z − z−1) . (1.231)

Recalling that R is a rational function of cos θ and sin θ, it follows that the integral (1.228)

will become a contour integral of some rational function of z, integrated around a unit circle

centred on the origin. It is a straightforward procedure to evaluate the residues of the poles

in the rational function, and so, by using the theorem of residues, the result follows.

Let us consider an example. Suppose we wish to evaluate

I(p) ≡
∫ 2π

0

dθ

1 − 2p cos θ + p2
, (1.232)

where 0 < p < 1. Writing z = ei θ, we shall have dθ = −i z−1 dz, and hence

I(p) =

∮

C

dz

i (1 − p z)(z − p)
. (1.233)

This has simple poles, at z = p and z = 1/p. Since we are assuming that 0 < p < 1, it

follows from the fact that C is the unit circle that the pole at z = 1/p lies outside C, and

so the only pole enclosed is the simple pole at z = p. Thus the residue of the integrand at

z = p is given by taking the limit of

(z − p)
[ 1

i (1 − p z)(z − p)

]
(1.234)
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as z tends to p, i.e. −i/(1 − p2). Thus from the theorem of residues (1.227), we get

∫ 2π

0

dθ

1 − 2p cos θ + p2
=

2π

1 − p2
, 0 < p < 1 . (1.235)

Note that if we consider the same integral (1.232), but now take the constant p to be

greater than 1, the contour C (the unit circle) now encloses only the simple pole at z = 1/p.

Multiplying the integrand by (z − 1/p), and taking the limit where z tends to 1/p, we now

find that the residue is +i/(1 − p2), whence

∫ 2π

0

dθ

1 − 2p cos θ + p2
=

2π

p2 − 1
, p > 1 . (1.236)

In fact the results for all real p can be combined into the single formula

∫ 2π

0

dθ

1 − 2p cos θ + p2
=

2π

|p2 − 1| . (1.237)

For a more complicated example, consider

I(p) ≡
∫ 2π

0

cos2 3θ dθ

1 − 2p cos 2θ + p2
, (1.238)

with 0 < p < 1. Now, we have

I(p) =

∮

C

(
1
2z3 + 1

2z−3
)2

dz

i z (1 − p z2)(1 − p z−2)
=

∮

C

(z6 + 1)2 dz

4i z5 (1 − p z2)(z2 − p)
. (1.239)

The integrand has poles at z = 0, z = ±p
1
2 and z = ±p−

1
2 . Since we are assuming 0 < p < 1,

it follows that only the poles at z = 0 and z = ±p
1
2 lie within the unit circle corresponding

to the contour C. The poles at z = ±p
1
2 are simple poles, and the only slight complication

in this example is that the pole at z = 0 is of order 5, so we have to work a little harder

to extract the residue there. Shortly, we shall derive a general formula that can sometimes

be useful in such circumstances. An alternative approach, often in practise preferrable

when one is working out the algebra by hand (as opposed to using an algebraic computing

program), is simply to factor out the singular behaviour and then make a Taylor expansion

of the remaining regular function, as we described earlier. In this case, it is quite simple.

We have

(z6 + 1)2

z5 (1 − p z2)(z2 − p)
= − 1

p z5
(1 + z6)2 (1 − p z2)−1 (1 − z2 p−1)−1

= − 1

p z5
(1 + p z2 + p2 z4 + · · ·)(1 + z2 p−1 + z4 p−2 + · · ·)

= − 1

p z5
(1 + p z2 + p2 z4 + z2 p−1 + z4 + z4 p−2 + · · ·)

= − 1

p z5
− (p2 + 1)

p2 z3
− (p4 + p2 + 1)

p3 z
+ · · · , (1.240)
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from which we read off the residue of this function at z = 0 as the coefficient of 1/z. Notice

that to make these expansions we just used (1 − x)−1 = 1 + x + x2 + · · ·, and that we only

needed to push these expansions far enough to collect the terms at order z4 that are then

multiplied by 1/z5.

After a little further algebra for the two simple poles, we find that the residues of the

integrand in (1.239) at z = 0, z = p
1
2 and z = −p

1
2 are given by

i (1 + p2 + p4)

4p3
, − i (1 + p3)2

8p3 (1 − p2)
, − i (1 + p3)2

8p3 (1 − p2)
, (1.241)

respectively. Plugging into the theorem of residues (1.227), we therefore obtain the result

∫ 2π

0

cos2 3θ dθ

1 − 2p cos 2θ + p2
=

π (1 − p + p2)

(1 − p)
, (1.242)

when 0 < p < 1.

It is sometimes useful to have a general result for the evaluation of the residue at an

n’th-order pole. It really just amounts to formalising the procedure we used above, of

extracting the singular behaviour and then Taylor expanding the remaining analytic factor:

If f(z) has a pole of order n at z = a, it follows that it will have the form

f(z) =
g(z)

(z − a)n
, (1.243)

where g(z) is analytic in the neighbourhood of z = a. Thus we may expand g(z) in a Taylor

series around z = a, giving

f(z) =
1

(z − a)n

(
g(a) + (z − a) g′(a) + · · · + 1

(n − 1)!
(z − a)n−1 g(n−1)(a) + · · ·

)
,

=
g(a)

(z − a)n
+

g′(a)

(z − a)n−1
+ · · · + g(n−1)(a)

(n − 1)! (z − a)
+ · · · . (1.244)

We then read off the residue, namely the coefficient of the first-order pole term 1/(z − a),

finding g(n−1)(a)/(n − 1)!. Re-expressing this in terms of the original function f(z), using

(1.243), we arrive at the general result that

If f(z) has a pole of order n at z = a, then the residue R is given by

R =
1

(n − 1)!

[ dn−1

dzn−1
((z − a)n f(z))

]

z=a
. (1.245)

It is straightforward to check that when applied to our example in (1.239), the formula

(1.245) reproduces our previous result for the residue at the 5’th-order pole at z = 0. In
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practise, though, it is usually more convenient in a hand calculation to use the method

described previously, rather than slogging out the derivatives needed for (1.245).

As a final example of the type (1) class of integrals, consider

I(a, b) ≡
∫ 2π

0

dθ

(a + b cos θ)2
=

∮

C

4z dz

i (b + 2a z + b z2)2
, (1.246)

where a > b > 0. The integrand has (double) poles at

z =
−a±

√
a2 − b2

b
, (1.247)

and so just the pole at z = (−a +
√

a2 − b2)/b lies inside the unit circle. After a little

calculation, one finds the residue there, and hence, from (1.227), we get

∫ 2π

0

dθ

(a + b cos θ)2
=

2π a

(a2 − b2)
3
2

. (1.248)

Turning now to integrals of type 2 (1.229), the approach here is to consider a contour

integral of the form

I ≡
∮

C
f(z) dz , (1.249)

where the contour C is taken to consist of the line from x = −R to x = +R along the x

axis, and then a semicircle of radius R in the upper half plane, thus altogether forming a

closed path.

The condition that z f(z) should go to zero as |z| goes to infinity with 0 ≤ arg(z) ≤ π

ensures that the contribution from integrating along the semicircular arc will vanish when

we send R to infinity. (On the arc we have dz = iR ei θ dθ, and so we would like R f(Rei θ)

to tend to zero as R tends to infinity, for all θ in the range 0 ≤ θ ≤ π, whence the condition

that we placed on f(z).) Thus we shall have that

∫ ∞

−∞
f(x) dx = 2π i

∑

s

Rs , (1.250)

where the sum is taken over the residues Rs at all the poles of f(z) in the upper half plane.

The contour is depicted in Figure 3 below.

Consider, as a simple example, ∫ ∞

−∞

dx

1 + x2
. (1.251)

Clearly, the function f(z) = (1 + z2)−1 fulfils all the requirements for this type of integral.

Since f(z) = (z + i)−1 (z − i)−1, we see that there is just a single pole in the upper half
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R-R

Figure 3: The contour encloses poles of f(z) in the upper half plane

plane, at z = i. It is a simple pole, and so the residue of f(z) there is 1/(2i). Consequently,

from (1.250) we derive ∫ ∞

−∞

dx

1 + x2
= π . (1.252)

Of course in this simple example we could perfectly well have evaluated the integral

instead by more “elementary” means. A substitution x = tan θ would convert (1.251) into

∫ 1
2
π

− 1
2
π

dθ = π . (1.253)

However, in more complicated examples the contour integral approach is often much easier

to use. Consider, for instance, the integral

∫ ∞

−∞

x4 dx

(a + b x2)4
, (1.254)

where a > 0 and b > 0. The function f(z) = z4 (a + b z2)−4 has poles of order 4 at

z = ±i(a/b)
1
2 , and so there is just one pole in the upper half plane. Using either the formula

(1.245), or the direct approach of extracting the singular factor and Taylor-expanding “by

hand” to calculate the residue, and multiplying by 2π i, we get

∫ ∞

−∞

x4 dx

(a + b x2)4
= 1

16 π a−
3
2 b−

5
2 . (1.255)

Just to illustrate the point, we may note that we could in principle have worked out

(1.254) by “elementary means,” but the procedure would be quite unpleasant to implement.

By means of an appropriate trigonometric substitution, one eventually concludes that the
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integral (1.254) gives

∫ ∞

−∞

x4 dx

(a + b x2)4
=
[3b2 x5 − 8a b x3 − 3a2 x

48a b2 (a + b x2)3
+

1

16a3/2 b5/2
arctan

(√b x√
a

)]∞
−∞

, (1.256)

from which the result (1.256) follows. If you try it, you will find that the labour involved is

much more than in the contour integral method.

One reason for the great saving of labour when using the contour integral method is that

when using the old-fashioned approach of first evaluating the indefinite integral, and then

substituting the limits of integration, one is actually working out much more than is ever

needed. It is intrinsically a more complicated exercise to find the function whose derivative

is f(x) than it is to find the result of integrating f(x) over a fixed interval such as −∞ to

∞. If we look at the first term in (1.255) (the rational function of x), we see that they

disappear altogether when one sets x to its limiting values of −∞ and +∞. And yet by the

old-fashioned method it is necessary first to thrash out the entire integral, including these

terms, since we don’t know in advance how to recognise that some of the terms in the final

result will end up getting thrown away when the limits are substituted. In our example

above, the indefinite integral is still doable, albeit with a struggle. In more complicated

examples there may be no closed-form expression for the indefinite integral, and yet the

definite integral may have a simple form, easily found by contour-integral methods.

Finally, consider integrals of type 3 (1.230). In general, α is assumed to be a real

number, but not an integer. We consider the function (−z)α−1 f(z), which therefore has a

branch-point singularity at z = 0. We shall choose to run the branch cut along the positive

real z-axis, and consider a contour C of exactly the form given in Figure 1, with a = 0.

Note that the branch cut therefore does not lie within the total closed contour. Eventually,

we allow the radius of the larger circle C1 to become infinite, while the radius of the smaller

circle C2 will go to zero. In view of the assumption that zα f(z) goes to zero as z goes to

0 or infinity, it follows that the contributions from integrating around these two circles will

each give zero.

Unlike the situation when we used the contour of Figure 1 for deriving the Laurent series,

we are now faced with a function (−z)α−1 f(z) with a branch point at z = 0, and we have

chosen to run the branch cut between the two paths forming the causeway. Consequently,

there is a discontinuity as one traces the value of (−z)α−1 f(z) around a closed path that

encircles the origin. This means that the results of integrating along the two sides of the

“causeway” connecting the circles C1 and C2 will not cancel.
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We shall define (−z)α−1 to be real and positive when z lies on the negative real axis, such

as at the point where the small circle C2 intersects the negative real axis.9 Consequently,

on the lower part of the causeway (below the positive real axis), the phase will be eiπ (α−1).

On the other hand, on the upper part of the causeway (above the positive real axis), the

phase will be e−iπ (α−1). Thus we find that

∮

C
(−z)α−1 f(z) dz = −eiπ (α−1)

∫ ∞

0
xα−1 f(x) dx + e−iπ (α−1)

∫ ∞

0
xα−1 f(x) dx ,

= 2i sin(π α)

∫ ∞

0
xα−1 f(x) dx , (1.257)

where the minus sign on the first term on the right in the top line comes from the fact

that the integral from x = 0 to x = ∞ is running in the direction opposite to the indicated

direction of the contour in Figure 1. The contour integral on the left-hand side picks up all

the contributions from the poles of f(z). Thus we have the result that

∫ ∞

0
xα−1 f(x) dx =

π

sin πα

∑

s

Rs , (1.258)

where Rs is the residue of (−z)α−1 f(z) at pole number s of the function f(z).

As an example, consider the integral

∫ ∞

0

xα−1 dx

1 + x
. (1.259)

Here, we therefore have f(z) = 1/(z + 1), which just has a simple pole, at z = −1. The

residue of (−z)α−1 f(z) is therefore just 1, and so from (1.258) we obtain that when 0 <

α < 1, ∫ ∞

0

xα−1 dx

1 + x
=

π

sin πα
. (1.260)

(The restriction 0 < α < 1 is to ensure that the fall-off conditions for type 3 integrands at

z = 0 and z = ∞ are satisfied.)

A common circumstance is when there is in fact a pole in the integrand that lies exactly

on the path where we wish to run the contour. An example would be an integral of the type

9Note that this is a definition – it is not automatically true. To see this, observe that we can write

1 = e2π in, where n is any integer. If we were dealing with a single-value function g(z), then g(1) = g(e2π i n)

for any n and there is no ambiguity. But if we raise 1 to the fractional power b, then we would have all

the possible choices e2π i n b for what we mean by 1b. If b is rational, i.e. b = p/q for integers p and q, then

there will be a finite number of different “b’th roots of 1,” while if b is irrational, such as b =
√

2 or b = π,

then there will be infinitely many different b’th roots of 1. They are in general complex numbers of unit

magnitude. Our specific choice we are making here, which must be stated, and not merely left to chance, is

to say that we shall define (−z)b to be real and positive, when z lies on the negative real axis.
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(2) discussed above, but where the integrand now has poles on the real axis. If these are

simple poles, then the following method can be used. Consider a situation where we wish

to evaluate
∫∞
−∞ f(x) dx, and f(z) has a single simple pole on the real axis, at z = a. What

we do is to make a little detour in the contour, to skirt around the pole, so the contour C in

Figure 3 now aquires a little semicircular “bypass” γ, of radius ρ, taking it into the upper

half plane around the point z = a. This is shown in Figure 4 below. Thus before we take

the limit where R −→ ∞, we shall have

∫ a−ρ

−R
f(x) dx +

∫

γ
f(z) dz +

∫ R

a+ρ
f(x) dx = 2π i

∑

j

Rj , (1.261)

where as usual Rj is the residue of f(z) at its j’th pole in the upper half plane.

�
�
�
�

R-R

Figure 4: The contour bypasses a pole at the origin

To evaluate the contribution on the semicircular contour γ, we let z−a = ρ ei θ, implying

that the contour is parameterised (in the direction of the arrow) by taking θ to run from π

to 0. Thus near z = a we shall have f(z) ∼ R̃/(z − a), where R̃ is the residue of the simple

pole at z = a, and dz = i ρ ei θ dθ, whence

∫

γ
f(z) dz = i R̃

∫ 0

π
dθ = −iπR . (1.262)

Sending R to infinity, and ρ to zero, the remaining two terms on the left-hand side of (1.261)

define what is called the Cauchy Principal Value Integral, denoted by P
∫
,

P

∫ ∞

−∞
f(x) dx ≡

∫ a−ǫ

−∞
f(x) dx +

∫ ∞

a+ǫ
f(x) dx , (1.263)
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where one takes the limit where the small positive quantity ǫ goes to zero. Such a definition

is necessary in order to give meaning to what would otherwise be an ill-defined integral.

In general, we therefore arrive at the result that if f(z) has several simple poles on the

real axis, with residues R̃k, as well as poles in the upper half plane with residues Rj, then

P

∫ ∞

−∞
f(x) dx = 2π i

∑

j

Rj + iπ
∑

k

R̃k . (1.264)

Here, the principal-value prescription is used to give meaning to the integral, analogously

to (1.263), at each of the simple poles on the real axis.

Consider, as an example,
∫∞
−∞(sin x)/x dx. Actually, of course, this integrand has no

pole on the real axis, since the pole in 1/x is cancelled by the zero of sin x. But one way to

do the calculation is to say that we shall calculate the imaginary part of

∫ ∞

−∞

eix

x
dx =

∫ ∞

−∞

cos x

x
dx + i

∫ ∞

−∞

sin x

x
dx . (1.265)

We must now use the principal-value prescription to give meaning to this integral, since

the real part of the integrand in (1.265), namely (cos x)/x, does have a pole at x = 0. But

since we are after the imaginary part, the fact that we have “regulated” the real part of the

integral will not upset what we want. Thus from (1.264) we find that

P

∫ ∞

−∞

ei x

x
dx = iπ , (1.266)

and so from the imaginary part (which is all there is; the principal-value integral has

regulated the ill-defined real part to be zero) we get

∫ ∞

−∞

sin x

x
dx = π . (1.267)

Notice that there is another way that we could have handled a pole on the real axis.

We could have bypassed aound it the other way, by taking a semicircular contour γ̃ that

went into the lower half complex plane instead. Now, the integration (1.262) would be

replaced by one where θ ran from θ = π to θ = 2π as one follows in the direction of the

arrow, giving, eventually, a contribution −iπ R̃ rather than +iπ R̃ in (1.264). But all is

actually well, because if we make a detour of this kind we should actually now also include

the contribution of this pole as an honest pole enclosed by the full contour C, so it will also

give a contribution 2π i R̃ in the first summation on the right-hand side of (1.264). So at

the end of the day, we end up with the same conclusion no matter which way we detour

around the pole.
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Another common kind of real integral that can be evaluated using the calculus of residues

involves the log function. Consider, for example, the following:

I ≡
∫ ∞

0

log x dx

(1 + x2)2
. (1.268)

One way to evaluate this is by taking the usual large semicircular contour in the upper half

plane, with a little semicircular detour γ (in the upper half plane) bypassing the branch

point at z = 0, as in Figure 4. We think of running the branch cut of log z from z = 0 to

z = ∞, just fractionally below the positive real axis. Thus for z on the positive real axis,

we shall have simply log z = log x. If we look just below the branch cut, i.e. for z = x − i ǫ,

where ǫ is a very small positive constant, we shall have log z = log x+2iπ in the limit when

ǫ goes to zero, since we have effectively swung once around the origin, sending z −→ z e2i π,

to get there.

Then we shall have
∫ −ρ

−∞

log x dx

(1 + x2)2
+

∫

γ

log z dz

(1 + z2)2
+

∫ ∞

ρ

log x dx

(1 + x2)2
= 2π iR , (1.269)

where R is the residue of (log z)/(1+z2)2 at the double pole at z = i in the upper half plane.

(As usual, we must check that the integrand indeed has the appropriate fall-off property

so that the contribution from the large semicircular arc goes to zero; it does.) There are a

couple of new features that this example illustrates.

First, consider the integral around the little semicircle γ. Letting z = ρ ei θ there we

shall have ∫

γ

log z dz

(1 + z2)2
= −i ρ

∫ π

0

log(ρ ei θ) ei θ dθ

(1 + ρ2 e2i θ)2
. (1.270)

This looks alarming at first, but closer inspection reveals that it will give zero, once we take

the limit ρ −→ 0. The point is that after writing log(ρ ei θ) = log ρ + i θ, we see that the θ

integrations will not introduce any divergences, and so the overall factors of ρ or ρ log ρ in

the two parts of the answer will both nicely kill off the contributions, as ρ −→ 0.

Next, consider the first integral on the left-hand side of (1.269). For this, we can change

variable from x, which takes negative values, to t, say, which is positive. But we need to

take care, because of the multi-valuedness of the log function. So we should define

x = eiπ t . (1.271)

In all places except the log, we can simply interpret this as x = −t, but in the log we shall

have log z = log(eiπ t) = log t + iπ. Thus the first integral in (1.269) gives
∫ 0

−∞

log x dx

(1 + x2)2
=

∫ ∞

0

log t dt

(1 + t2)2
+ iπ

∫ ∞

0

dt

(1 + t2)2
. (1.272)
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(Now that we know that there is no contribution from the little semicircle γ, we can just

take ρ = 0 and forget about it.) The first term on the right-hand side here is of exactly the

same form as our original integral I defined in (1.268). The second term on the right is a

simple integral. It itself can be done by contour integral methods, as we have seen. Since

there is no new subtlety involved in evaluating it, let’s just quote the answer, namely

∫ ∞

0

dt

(1 + t2)2
= 1

4π . (1.273)

Taking stock, we have now arrived at the result that

2I + 1
4 iπ2 = 2π iR . (1.274)

It remains only to evaluate the residue of (log z)/(1 + z2)2 at the double pole at z = i in

the upper half plane. We do this with the standard formula (1.245). Thus we have

R =
d

dz

[ log z

(z + i)2

]
, (1.275)

to be evaluated at z = i = ei π/2. (Note that we should write it explicitly as ei π/2 in order

to know exactly what to do with the log z term.) Thus we get

R = i
4 + 1

8π . (1.276)

Plugging into (1.274), we see that the imaginary term on the left-hand side is cancelled by

the imaginary term in (1.276), leaving just 2I = −π/2. Thus, eventually, we arrive at the

result that ∫ ∞

0

log x dx

(1 + x2)2
= −1

4π . (1.277)

Aside from the specifics of this example, there are two main general lessons to be learned

from it. The first is that if an integrand has just a logarithmic divergence at some point

z = a, then the contour integral around a little semicircle or circle centred on z = a will give

zero in the limit when its radius ρ goes to zero. This is because the logarithmic divergence

of log ρ is outweighed by the linear factor of ρ coming from writing dz = i ρ ei θ dθ.

The second general lesson from this example is that one should pay careful attention to

how the a coordinate redefinition is performed, for example when re-expressing an integral

along the negative real axis as an integral over a positive variable (like t in our example).

In particular, one has to handle the redefinition with appropriate care in the multi-valued

log function.
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1.8 Summation of Series

Another application of the calculus of residues is for evaluating certain types of infinite

series. The idea is the following. We have seen that the functions cosec πz and cot πz have

the property of having simple poles at all the integers, whilst otherwise being analytic in

the whole finite complex plane. In fact, they are bounded everywhere as one takes |z| to

infinity, except along the real axis where the poles lie. Using these functions, we can write

down contour integrals that are related to infinite sums.

First, let us note that the residues of the two trigonometric functions are as follows:

• π cot πz has residue 1 at z = n

• π cosec πz has residue (−1)n at z = n

Consider the following integral:

Ip ≡
∮

Cp

f(z)π cot πz , (1.278)

where Cp is a closed contour that encloses the poles of cot πz at z = 0,±1,±2, . . . ,±p, but

does not enclose any that lie at any larger value of |z|. A typical choice for the contour Cp

is a square, centred on the origin, with side 2p + 1, or else a circle, again passing through

the points ±(p + 1
2). (See Figure 5 below.) Then by the theorem of residues we shall have

Ip = 2π i
p∑

n=−p

f(n) + 2π i
∑

a

Ra , (1.279)

where Ra denotes the residue of f(z)π cot πz at pole number a of the function f(z), and

the summation is over all such poles that lie within the contour Cp. In other words, we have

simply split the total sum over residues into the first term, which sums over the residues at

the known simple poles of cot πz, and the second term, which sums over the poles associated

with the function f(z) itself. Of course, in the first summation, the residue of f(z)π cot πz

at z = n is simply f(n), since the pole in π cot πz is simple, and itself has residue 1. (We

are assuming here that f(z) doesn’t itself have poles at the integers.)

Now, it is clear that if we send p to infinity, so that the corresponding contour Cp grows

to infinite size and encompasses the whole complex plane, we shall have

∮

C∞

f(z)π cot πz = 2π i
∞∑

n=−∞

f(n) + 2π i
∑

a

Ra , (1.280)
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C
C

C0
1

2

Figure 5: The square contours enclose the poles of f(z) (square dots) and the poles of cot πz

or cosec πz (round dots)

where the second sum now ranges over the residues Ra of f(z)π cot πz at all the poles of

f(z). Furthermore, let us suppose that the function f(z) is such that

|z f(z)| −→ 0 as |z| −→ ∞ . (1.281)

It follows that the integral around the contour C∞ out at infinity will be zero. Consequently,

we obtain the result that
∞∑

n=−∞

f(n) = −
∑

a

Ra , (1.282)

where the right-hand sum is over the residues Ra of f(z)π cot πz at all the poles of f(z).

In a similar fashion, using cosec πz in place of cot πz, we have that

∞∑

n=−∞

(−1)n f(n) = −
∑

a

R̃a , (1.283)

where the right-hand sum is over the residues of f(z)π cosec πz at all the poles of f(z).
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Consider an example. Suppose we take

f(z) =
1

(z + a)2
. (1.284)

This has a double pole at z = −a. Using (1.245), we therefore find that the residue of

f(z)π cot πz at z = −a is

R = −π2 cosec 2(πa) , (1.285)

and hence from (1.282) we conclude that

∞∑

n=−∞

1

(n + a)2
=

π2

sin2 πa
. (1.286)

We can also evaluate the analgous sum with alternating signs, by using (1.283) instead.

Now, we caluate the residue of (z + a)−2 π cosec πz at the double pole at z = −a, and

conclude that
∞∑

n=−∞

(−1)n

(n + a)2
=

π2 cos πa

sin2 πa
. (1.287)

Clearly there are large classes of infinite series that can be summed using these tech-

niques. We shall encounter another example later, in a discussion of the Riemann zeta

function.

1.9 Analytic Continuation

Analyticity of a function of a complex variable is a very restrictive condition, and conse-

quently it has many powerful implications. One of these is the concept of analytic contin-

uation. Let us begin with an example.

Consider the function g(z), which is defined by the power series

g(z) ≡
∑

n≥0

zn . (1.288)

It is easily seen, by applying the Cauchy test for convergence, that this series is absolutely

convergent for |z| < 1. It follows, therefore, that the function g(z) defined by (1.288) is

analytic inside the unit circle |z| < 1. It is also true, of course, that g(z) is singular outside

the unit circle; the power series diverges.

Of couse (1.288) is a very simple geometric series, and we can see by inspection that it

can be summed, when |z| < 1, to give

f(z) =
1

1 − z
. (1.289)
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This is analytic everywhere except for a pole at z = 1. So we have two functions, g(z) and

f(z), which are both analytic inside the unit circle, and indeed they are identical inside

the unit circle. However, whereas the function g(z) is singular outside the unit circle, the

function f(z) is well-defined and analytic in the entire complex plane, with the exception

of the point z = 1 where it has a simple pole.

It is evident, therefore, that we can view f(z) = 1/(1 − z) as an extrapolation, or

continuation, of the function g(z) = 1 + z + z2 + · · · outside its circle of convergence. As

we shall prove below, there is an enormously powerful statement that can be made; the

function 1/(1− z) is the unique analyic continuation of the original function g(z) defined in

the unit circle by (1.288). This uniqueness is absolutely crucial, since it means that one can

sensibly talk about the analytic continuation of a function that is initially defined in some

restricted region of the complex plane. A priori, one might have imagined that there could

be any number of ways of defining functions that coincided with g(z) inside the unit circle,

but that extrapolated in all sorts of different ways as one went outside the unit circle. And

indeed, if we don’t place the extra, and very powerful, restriction of analyticity, then that

would be exactly the case. We could indeed dream up all sorts of non-analytic functions

that agreed with g(z) inside the unit circle, and that extrapolated in arbitrary ways outside

the unit circle.10 The amazing thing is that if we insist that the extrapolating function be

analytic, then there is precisely one, and only one, analytic continuation.

In the present example, we have the luxury of knowing that the function g(z), defined by

the series expansion (1.288), actually sums to give 1/(1−z) for any z within the unit circle.

This immediately allows us to deduce, in this example, that the analytic continuation of

g(z) is precisely given by

g(z) =
1

1 − z
, (1.290)

which is defined everywhere in the complex plane except at z = 1. So in this toy example,

we know what the function “really is.”

Suppose, for a moment, that we didn’t know that the series (1.288) could be summed

to give (1.290). We could, however, discover that g(z) defined by (1.288) gave perfectly

sensible results for any z within the unit circle. (For example, by applying the Cauchy test

for absolute convergence of the series.) Suppose that we use these results to evaluate f(z)

in the neighbourhood of the point z = −1
2 . This allows us, by using Taylor’s theorem, to

10We could, for example, simply define a function F (z) such that F (z) ≡ g(z) for |z| < 1, and F (z) ≡ h(z)

for |z| ≥ 1, where h(z) is any function we wish. But the function will in general be horribly non-analytic on

the unit circle |z| = 1 where the changeover occurs.

65



construct a series expansion for g(z) around the point z = −1
2 :

g(z) =
∑

n≥0

g(n)(−1
2)

n!
(z + 1

2)n . (1.291)

Where does this converge? We know from the earlier general discussion that it will converge

within a circle of radius R centred on z = −1
2 , where R is the distance from z = −1

2 to the

nearest singularity. We know that actually, this singularity is at z = 1. Therefore our new

Taylor expansion (1.291) is convergent in a circle of radius 3
2 , centered on z = −1

2 . This

circle of convergence, and the original one, are depicted in Figure 6 below. We see that

this process has taken us outside the original unit circle; we are now able to evaluate “the

function g(z)” in a region outside the unit circle, where its original power-series expansion

(1.288) does not converge.11

Figure 6: The circles of convergence for the two series

11Secretly, we know that the power series we will just have obtained is nothing but the standard Taylor

expansion of 1/(1 − z) around the point z = − 1

2
:

1

1 − z
= 2

3
+ 4

9
(z + 1

2
) + 8

27
(z + 1

2
)2 + 16

81
(z + 1

2
)3 + · · · , (1.292)

which indeed converges in a circle of radius 3
2
.

66



It should be clear that be repeated use of this technique, we can eventually cover the

entire complex plane, and hence construct the analytic continuation of g(z) from its original

definition (1.288) to a function defined everywhere except at z = 1.

The crucial point here is that the process of analytic continuation is a unique one. To

show this, we can establish the following theorem:

Let f(z) and g(z) be two functions that are analytic in a region D, and suppose

that they are equal on an infinite set of points having a limit point z0 in D. Then

f(z) ≡ g(z) for all points z in D.

In other words, if we know that the two analytic functions f(z) and g(z) agree on an

arc of points ending at point12 z0 in D, then they must agree everywhere in D. (Note that

we do not even need to know that they agree on a smooth arc; it is sufficient even to know

that they agree on a discrete set of points that get denser and denser until the end of the

arc at z = z0 is reached.)

To prove this theorem, we first define h(z) = f(z) − g(z). Thus we know that h(z)

is analytic in D, and it vanishes on an infinite set of points with limit point z0. We are

required to prove that h(z) must be zero everywhere in D. We do this by expanding h(z)

in a Taylor series around z = z0:

h(z) =
∞∑

k=0

ak (z − z0)
k = a0 + a1 (z − z0) + · · · , (1.293)

which converges in some neighbourhood of z0 since h(z) is analytic in the neighbourhood

of z = z0. Since we want to prove that h(z) = 0, this means that we want to show that all

the coefficients ak are zero.

Of course since h(z0) = 0 we know at least that a0 = 0. We shall prove that all the

ak are zero by the time-honoured procedure of supposing that this is not true, and then

arriving at a contradiction. Let us suppose that am, for some m, is the first non-zero ak

coefficient. This means that if we define

p(z) ≡ (z − z0)
−m h(z) = (z − z0)

−m
∞∑

k=m

ak (z − z0)
k ,

= am + am+1 (z − z0) + · · · , (1.294)

then p(z) is an analytic function, and its Taylor series is therefore also convergent, in the

neighbourhood of z = z0. Now comes the punch-line. We know that h(z) is zero for all

12An example of such a set of points would be zn = z0 + 1/n, with n = 1, 2, 3 . . ..
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the points z = zn in that infinite set that has z0 as a limit point. Thus in particular there

are points zn with n very large that are arbitrarily close to z = z0, and at which h(z)

vanishes. It follows from its definition that p(z) must also vanish at these points. But since

the Taylor series for p(z) is convergent for points z near to z = z0, it follows that for p(zn)

to vanish when n is very large we must have am = 0, since all the higher terms in the

Taylor series would be negligible. But this contradicts our assumption that am was the first

non-vanishing coefficient in (1.293). Thus the premise that there exists a first non-vanishing

coefficient was false, and so it must be that all the coefficients ak vanish. This proves that

h(z) = 0, which is what we wanted to show.

The above proof shows that h(z) must vanish within the circle of convergence, centered

on z = z0, of the Taylor series (1.293). By repeating the discussion as necessary, we can

extend this region gradually until the whole of the domain D has been covered. Thus we

have established that f(z) = g(z) everywhere in D, if they agree on an infinite set of points

with limit point z0.

By this means, we may eventually seek to analytically extend the function to the whole

complex plane. There may well be singularities at certain places, but provided we don’t

run into a solid “wall” of singularities, we can get around them and extend the definition

of the function as far as we wish. Of course if the function has branch points, then we will

encounter all the usual multi-valuedness issues as we seek to extend the function.

Let us go back for a moment to our example with the function g(z) that was originally

defined by the power series (1.288). We can now immediately invoke this theorem. It is

easily established that the series (1.288) sums to give 1/(1− z) within the unit circle. Thus

we have two analytic functions, namely g(z) defined by (1.288) and f(z) defined by (1.289)

that agree in the entire unit circle. (Much more than just an arc with a limit point, in

fact!) Therefore, it follows that there is a unique way to extend analytically outside the

unit circle. Since f(z) = 1/(1 − z) is certainly analytic outside the unit circle, it follows

that the function 1/(1 − z) is the unique analytic extension of g(z) defined by the power

series (1.288).

Let us now consider a less trivial example, to show the power of analytic continuation.

1.10 The Gamma Function

The Gamma function Γ(z) can be represented by the integral

Γ(z) =

∫ ∞

0
e−t tz−1 dt , (1.295)
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which converges if Re(z) > 0. It is easy to see that if Re(z) > 1 then we can perform an

integration by parts to obtain

Γ(z) = (z − 1)

∫ ∞

0
e−t tz−2 dt −

[
e−t tz−1

]∞
0

= (z − 1) Γ(z − 1) , (1.296)

since the boundary term then gives no contribution. Shifting by 1 for convenience, we have

Γ(z + 1) = z Γ(z) . (1.297)

One easily sees that if z is a positive integer k, the solution to this recursion relation is

Γ(k) = (k − 1)!, since it is easily established by elementary integration that Γ(1) = 1. The

responsibility for the rather tiresome shift by 1 in the relation Γ(k) = (k − 1)! lies with

Leonhard Euler.

Of course the definition (1.295) is valid only when the integral converges. It’s clear that

the e−t factor ensures that there is no trouble from the upper limit of integration, but from

t = 0 there will be a divergence unless Re(z) > 0. Furthermore, for Re(z) > 0 it is clear that

we can differentiate (1.295) with respect to z as many times as we wish, and the integrals

will still converge.13 Thus Γ(z) defined by (1.295) is finite and analytic for all points with

Re(z) > 0.

We can now use (1.297) in order to give an analytic contiuation of Γ(z) into the region

where Re(z) ≤ 0. Specifically, if we write (1.297) as

Γ(z) =
Γ(z + 1)

z
, (1.299)

then this gives a way of evaluating Γ(z) for points in the strip −1 + ǫ < Re(z) < ǫ (ǫ a

small positive quantity) in terms of Γ(z + 1) at points with Re(z + 1) > 0, where Γ(z + 1)

is known to be analytic. The function so defined, and the original Gamma function, have

an overlapping region of convergence, and so we can make an analytic continuation into the

strip −1 + ǫ < Re(z) < ǫ. The process can then be applied iteratively, to cover more and

more strips over to the left-hand side of the complex plane, until the whole plane has been

covered by the analytic extension. Thus by sending z → z + 1 in (1.299) we may write

Γ(z + 1) =
Γ(z + 2)

z + 1
, (1.300)

13Write tz = ez log t, and so, for example,

Γ′(z) =

∫
∞

0

dt tz−1 log t e−t . (1.298)

Now matter how many powers of log t are brought down by repeated differentiation, the factor of tz−1 will

ensure convergence at t = 0.

69



and plugging this into (1.299) itself we get

Γ(z) =
Γ(z + 2)

(z + 1) z
. (1.301)

The right-hand side is analytic for Re(z) > −2, save for the two manifest poles at z = 0 and

z = −1, and so this has provided us with an analytic continuation of Γ(z) into the region

Re(z) > −2. In the next iteration we use (1.299) with z → z + 2 to express Γ(z + 2) as

Γ(z + 3)/(z + 2), hence giving

Γ(z) =
Γ(z + 3)

(z + 2)(z + 1) z
, (1.302)

valid for Re(z) > −3, and so on.

Of course the analytically continued function Γ(z) is not necessarily analytic at every

point in the complex plane, and indeed, we are already seeing, it has isolated poles. To

explore the behaviour of Γ(z) in the region of some point z with Re(z) ≤ 0, we first iterate

(1.297) just as many times n as are necessary in order to express Γ(z) in terms of Γ(z+n+1):

Γ(z) =
Γ(z + n + 1)

(z + n)(z + n − 1)(z + n − 2) · · · z , (1.303)

where we choose n so that Re(z + n + 1) > 0 but Re(z + n) < 0. Since we have already

established that Γ(z + n + 1) will therefore be finite, it follows that the only singularities of

Γ(z) can come from places where the denominator in (1.303) vanishes. This will therefore

happen when z = 0 or z is a negative integer.

To study the precise behaviour near the point z = −n, we may set z = −n + ǫ, where

|ǫ| << 1, and use (1.303) to give

Γ(−n + ǫ) =
(−1)n Γ(1 + ǫ)

(n − ǫ)(n − ǫ − 1) · · · (1 − ǫ) ǫ
=

(−1)n

n (n − 1) · · · 2 · 1 ǫ
+ · · · , (1.304)

where the terms represented by · · · are analytic in ǫ. Thus there is a simple pole at ǫ = 0.

Its residue is calulated by multiplying (1.304) by ǫ and taking the limit ǫ −→ 0. Thus we

conclude that Γ(z) is meromorphic in the whole finite complex plane, with simple poles

at the points z = 0, −1, −2, −3, . . ., with the residue at z = −n being (−1)n/n!. (Since

Γ(1) = 1.)

The regular spacing of the poles of Γ(z) is reminiscent of the poles of the functions

cosec πz or cot πz. Of course in these cases, they have simple poles at all the integers; zero

negative and positive. We can in fact make a function with precisely this property out of

Γ(z), by writing the product

Γ(z) Γ(1 − z) . (1.305)
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From what we saw above, it is clear that this function will have simple poles at precisely

all the integers. Might it be that this function is related to cosec πz or cot πz?

To answer this, consider again the original integral representation (1.295) for Γ(z), and

now make the change of variables t −→ t2. This implies dt/t −→ 2dt/t, and so we shall

have

Γ(z) = 2

∫ ∞

0
e−t2 t2z−1 dt . (1.306)

Thus we may write

Γ(a) Γ(1 − a) = 4

∫ ∞

0
dx

∫ ∞

0
dy e−(x2+y2) x2a−1 y−2a+1 . (1.307)

Introducing polar coordinates via x = r cos θ, y = r sin θ, we therefore get

Γ(a) Γ(1 − a) = 4

∫ 1
2
π

0
(cot θ)2a−1 dθ

∫ ∞

0
r e−r2

dr . (1.308)

The r integration is trivially performed, giving a factor of 1
2 , and so we have

Γ(a) Γ(1 − a) = 2

∫ 1
2
π

0
(cot θ)2a−1 dθ . (1.309)

Now, we let s = cot θ. This gives

Γ(a) Γ(1 − a) = 2

∫ ∞

0

s2a−1 ds

1 + s2
. (1.310)

If we restrict a such that 0 < Re(a) < 1, this integral falls into the category of type 3 that

we discussed a couple of sections ago. Thus we have

Γ(a) Γ(1 − a) =
2π

sin(2π a)

∑

c

Rc , (1.311)

where Rc are the residues at the poles of (−z)2a−1/(1 + z2). These poles lie at z = ±i, and

the residues are easily seen to be 1
2e±i π a. Thus we get

Γ(a) Γ(1 − a) =
2π

sin(2π a)
cos(π a) =

2π cos(π a)

2 sin(π a) cos(π a)
,

=
π

sin π a
. (1.312)

Although we derived this by restricting a such that 0 < Re(a) < 1 in order to ensure con-

vergence in the integration, we can use the now-familiar technique of analytic continuation

and conclude that

Γ(z) Γ(1 − z) =
π

sin π z
, (1.313)

in the whole complex plane. This result, known as the reflection formula, is one that will

be useful in the next section, when we shall discuss the Riemann Zeta function.
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Before moving on to the Riemann Zeta function, let us first use (1.313) to uncover a

couple more properties of the Gamma function. The first of these is a simple fact, namely

that

Γ(1
2) =

√
π . (1.314)

We see this by setting z = 1
2 in (1.313).

The second, more significant, property of Γ(z) that we can deduce from (1.313) is that

Γ(z)−1 an entire function. That is to say, Γ(z)−1 is analytic everywhere in the finite complex

plane. Since we have already seen that the only singularities of Γ(z) are poles, this means

that we need only show that Γ(z) has no zeros in the finite complex plane. Looking at

(1.313) we see that if it were to be the case that Γ(z) = 0 for some value of z, then it would

have to be that Γ(1 − z) were infinite there.14 But we know precisely where Γ(1 − z) is

infinite, namely the poles at z = 1, 2, 3 . . ., and Γ(z) is certainly not zero there.15 Therefore

Γ(z) is everywhere non-zero in the finite complex plane. Consequently, Γ(z)−1 is analytic

everywhere in the finite complex plane, thus proving the contention that Γ(z)−1 is an entire

function.

Before closing this section, we may observe that we can also give a contour integral

representation for the Gamma function. This will have the nice feature that it will provide

us directly with an expression for Γ(z) that is valid in the whole complex plane. Consider

first the Hankel integral

Γ(z) = − 1

2 i sin πz

∫

C
e−t (−t)z−1 dt , (1.315)

where we integrate in the complex t-plane around the so-called Hankel Contour depicted in

Figure 7 below. This starts at +∞ just above the real axis, swings around the origin, and

goes out to +∞ again just below the real axis. As usual, we shall run the branch cut for

the multi-valued function (−t)z−1 along the positive real axis in the complex t plane, and

(−t)z−1 will be taken to be real and positive when t lies on the negative real axis.

We see can deform the contour in Figure 7 into the contour depicted in Figure 8, since

no singularities are crossed in the process. If Re(z) > 0, there will be no contribution from

integrating around the small circle surrounding the origin, in the limit where its radius

is sent to zero. Hence the contour integral is re-expressible simply in terms of the two

semi-infinite line integrals just above and below the real axis.

14Recall that sin πz is an entire function, and it therefore has no singularity in the finite complex plane.

Consequently, 1/(sin πz) must be non-vanishing for all finite z.

15Instead, the poles of Γ(1 − z) at z = 1, 2, 3 . . . are balanced in (1.313) by the poles in 1/ sin(π z).
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Figure 7: The Hankel contour

The integrals along the lower and upper causeways in Figure 8, we follow the same

procedure that we have used before. We define the phase of (−t)z to be zero when t lies

on the negative real t axis, and run the branch cut along the positive real t axis. For the

integral below the real axis, we therefore have (−t) = eπ i x, with x running from 0 to +∞.

For the integral above the real axis, we have (−t) = e−i π x, with x running from +∞ to 0.

Consequently, we get

∫

C
e−t (−t)z−1 dt = (ei π (z−1) − e−i π (z−1))

∫ ∞

0
e−t tz−1 dt ,

= −2 i sin(πz)

∫ ∞

0
e−t tz−1 dt , (1.316)

and hence we see that (1.315) has reduced to the original real integral expression (1.295)

when Re(z) > 0. However, the integral in the expression (1.315) has a much wider appli-

cability; it is actually single-valued and analytic for all z. (Recall that we are integrating

around the Hankel contour, which does not pass through the point t = 0, and so there is no

reason for any singularity to arise, for any value of z.) The poles in Γ(z) (which we know

from our earlier discussion to occur at z = 0,−1,−2, . . .) must therefore be due entirely

to the 1/ sin(πz) prefactor in (1.316. Indeed, as we saw a while ago, 1/ sin(πz) has simple
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Figure 8: The deformation of the Hankel contour

poles when z is an integer.16

Combining (1.315) with (1.313), we can give another contour integral expression for

Γ(z), namely
1

Γ(z)
= − 1

2π i

∫

C
e−t (−t)−z dt , (1.317)

where we again integrate around the Hankel contour of Figure 7, in the complex t plane.

Again, this integral is valid for all z. Indeed with this expression we see again the result

that we previously deduced from (1.313), that Γ(z)−1 is an entire function, having no

singularities anywhere in the finite complex plane.

A pause for reflection is appropriate here. What we have shown is that Γ(z) defined by

(1.315) or (1.317) gives the analytic continuation of our original Gamma function (1.295) to

16The reason why (1.316) doesn’t also imply that Γ(z) has simple poles when z is a positive integer is that

the integral itself vanishes when z is a positive integer, and this cancels out the pole from 1/ sin(πz). This

vanishing can be seen from the fact that when z is a positive integer, the integrand is analytic (there is no

longer a branch cut), the contour can be closed off at infinity to make a closed contour encircling the origin,

and hence Cauchy’s theorem implies the integral vanishes.
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the entire complex plane, where it is analytic except for simple poles at z = 0,−1,−2, . . ..

How is it that these contour integrals do better than the previous real integral (1.295),

which only converged when Re(z) > 0? The crucial point is that in our derivation, when

we related the real integral in (1.295) to the contour integral (1.315), we noted that the

contribution from the little circle as the contour swung around the origin would go to zero

provided that the real part of z was greater than 0.

So what has happened is that we have re-expressed the real integral in (1.295) in terms

of a contour integral of the form (1.315), which gives the same answer when the real part

of z is greater than 0, but it disagrees when the real part of z is ≤ 0. In fact it disagrees

by the having the rather nice feature of being convergent and analytic when Re(z) ≤ 0,

unlike the real integral that diverges. So as we wander off westwards in the complex z plane

we wave a fond farewell to the real integral, with its divergent result, and adopt instead

the result from the contour integral, which happily provides us with analytic answers even

when Re(z) ≤ 0. We should not be worried by the fact that the integrals are disagreeing

there; quite the contrary, in fact. The whole point of the exercise was to find a better way

of representing the function, to cover a wider region in the complex plane. If we had merely

reproduced the bad behaviour of the original integral in (1.295), we would have achieved

nothing by introducing the contour integrals (1.315) and (1.317).

Now we turn to the Riemman Zeta function, as a slightly more intricate example of the

analytic continuation of a function of a complex variable.

1.11 The Riemann Zeta Function

Consider the Riemman Zeta Function, ζ(s). This is originally defined by

ζ(s) ≡
∞∑

n=1

1

ns
. (1.318)

This sum converges whenever the real part of s is greater than 1. (For example, ζ(2) =
∑

n≥1 n−2 can be shown to equal π2/6, whereas ζ(1) =
∑

n≥1 n−1 is logarithmically diver-

gent. The sum is more and more divergent as Re(s) becomes less than 1.)

Since the series (1.318) defining ζ(s) is convergent everywhere to the right of the line

Re(s) = 1 in the complex plane, it follows that ζ(s) is analytic in that region. It is reasonable

to ask what is its analytic continuation over to the left of Re(s) = 1. As we have already

seen from the simple example of f(z) = 1/(1 − z), the mere fact that our original power

series diverges in the region with Re(s) ≤ 0 does not in any way imply that the “actual”

function ζ(s) will behave badly there. It is just our power series that is inadequate.
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How do we do better? To begin, recall that we define the Gamma function Γ(s) by

Γ(s) =

∫ ∞

0
e−u us−1 du (1.319)

We saw in the previous section that if s = k, where k is an integer, then Γ(k) is nothing

but the factorial function (k − 1)!. If we now let u = n t, then we see that

Γ(s) = ns
∫ ∞

0
e−n t ts−1 dt . (1.320)

We can turn this around, to get an expression for n−s.

Plugging into the definition (1.318) of the zeta function, we therefore have

ζ(s) =
1

Γ(s)

∞∑

n=1

∫ ∞

0
e−n t ts−1 dt . (1.321)

Taking the summation through the integral, we see that we have a simple geometric series,

which can be summed explicitly:

∞∑

n=1

e−n t =
1

1 − e−t
− 1 =

1

et − 1
, (1.322)

and hence we arrive at the following integral representation for the zeta function:

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1 dt

et − 1
. (1.323)

So far so good, but actually we haven’t yet managed to cross the barrier of the Re(s) = 1

line in the complex plane. The denominator in the integrand goes to zero like t as t tends

to zero, so to avoid a divergence from the integration at the lower limit t = 0, we must

insist that the real part of s should be greater than 1. This is the same restriction that

we encountered for the original power series (1.318). What we do now is to turn our real

integral (1.323) into a complex contour integral, using the same sort of ideas that we used

in the previous section.

To do this, consider the integral

∫

C

(−z)s−1 dz

ez − 1
, (1.324)

where C is the same Hankel contour, depicted in Figure 7, that we used in the discussion of

the Gamma function in the previous section. Since the integrand we are considering here

clearly has poles at z = 2π in for all the integers n, we must make sure that as it circles

round the origin, the Hankel contour keeps close enough to the origin (with passing through

it) so that it does not encompass any of the poles at z = ±2π i,±4π i, . . ..
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By methods analogous to those we used previously, we see that we can again deform

this into the contour depicted in Figure 8, where the small circle around the origin will be

sent to zero radius. It is clear that there is no contribution from the little circle, provided

that the real part of s is greater than 1. Hence the contour integral is re-expressible simply

in terms of the two semi-infinite line integrals just above and below the real axis.

As usual, we choose to run the branch cut of the function (−z)s−1 along the positive

real axis, and take (−z)s−1 to be real and positive when z lies on the negative real axis.

For the integral below the real axis, we shall then have (−z) = eπ i t, with t running from

0 to +∞. For the integral above the real axis, we shall have (−z) = e−i π t, with t running

from +∞ to 0. Consequently, we get
∫

C

(−z)s−1 dz

ez − 1
=
(
eiπ (s−1) − e−iπ (s−1)

) ∫ ∞

0

ts−1 dt

et − 1
= −2i sinπs

∫ ∞

0

ts−1 dt

et − 1
, (1.325)

From (1.323), this means that we have a new expression for the zeta function, as

ζ(s) = − 1

2i Γ(s) sin πs

∫

C

(−z)s−1 dz

ez − 1
. (1.326)

We can neaten this result up a bit more, if we make use of the reflection formula (1.313)

satisfied by the Gamma function, which we proved in the previous section:

Γ(s) Γ(1 − s) =
π

sin πs
. (1.327)

Using this in (1.326), we arrive at the final result

ζ(s) = −Γ(1 − s)

2π i

∫

C

(−z)s−1 dz

ez − 1
. (1.328)

Now comes the punch-line. The integral in (1.328) is a single-valued and analytic func-

tion of s for all values of s. (Recall that it is evaluated using the Hankel contour in Figure

7, which does not pass through z = 0. And far out at the right-hand side of the Hankel

contour, the ez factor in the denominator will ensure rapid convergence. Thus there is no

reason for any singular behaviour.) Consequently, the only possible non-analyticity of the

zeta function can come from the Γ(1 − s) prefactor. Now, we studied the singularities of

the Gamma function in the previous section. The answer is that Γ(1 − s) has simple poles

at s = 1, 2, 3, . . ., and no other singularities. So these are the only possible points in the

finite complex plane where ζ(s) might have poles. But we already know that ζ(s) is analytic

whenever the real part of s is greater than 1. So it must in fact be the case that the poles

of Γ(1−s) at s = 2, 3, . . . are exactly cancelled by zeros coming from the integral in (1.328).

Only the pole at s = 1 might survive, since we have no independent argument that tells us

that ζ(s) is analytic there. And in fact there is a pole in ζ(s) there.
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To see this, we need only to evaluate the integral in (1.328) at s = 1. This is an easy

task. It is given by
1

2π i

∫

C

dz

ez − 1
. (1.329)

Now, since we no longer have a multi-valued function in the integrand we don’t have to worry

about a branch cut along the positive real axis. The integrand has become infinitesimally

small out at the right-hand ends of the Hankel contour, and so we can simply join the two

ends together without affecting the value of the integral. We now have a closed contour

encircling the origin, and so we can evaluate it using the residue theorem; we just need to

know the residue of the integrand at z = 0. Doing the series expansion, one finds

1

ez − 1
=

1

z
− 1

2 + 1
12z − 1

720 z3 + · · · (1.330)

so the residue is 1. From (1.328), this means that near to s = 1 we shall have

ζ(s) ∼ −Γ(1 − s) . (1.331)

In fact Γ(1− s) has a simple pole of residue −1 at s = 1, as we saw in the previous section,

and so the upshot is that ζ(s) has a simple pole of residue +1 at s = 1, but it is otherwise

analytic everywhere.

It is interesting to try working out ζ(s) for some values of s that were inaccessible in

the original series definition (1.318). For example, let us consider ζ(0). From (1.328) we

therefore have

ζ(0) =
1

2π i

∫

C

dz

z (ez − 1)
, (1.332)

where we have used that Γ(1) = 1. Again, we can close off the Hankel contour of Figure 7

out near +∞, since there is no branch cut, and the ez in the denominator means that the

integrand is vanishly small there. We therefore just need to use the calculus of residues to

evaluate (1.332), for a closed contour encircling the second-order pole at z = 0. For this,

we have
1

z (ez − 1)
=

1

z2
− 1

2z
+

1

12
+ · · · , (1.333)

showing that the residue is −1
2 . Thus we obtain the result

ζ(0) = −1
2 . (1.334)

One can view this result rather whimsically as a “regularisation” of the divergent ex-

pression that one would obtain from the original series definition of ζ(s) in (1.318):

ζ(0) =
∑

n≥1

n0 =
∑

n≥1

1 = 1 + 1 + 1 + 1 + · · · = −1
2 . (1.335)
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Actually, this strange-looking formula is not entirely whimsical. It is precisely the sort

of divergent sum that arises in a typical Feynman diagram loop calculation in quantum

field theory (corresponding, for example, to summing the zero-point energies of an infinite

number of harmonic oscillators). The whole subtlety of handling the infinities in quantum

field theory is concerned with how to recognise and subtract out unphysical divergences

associated, for example, with the infinite zero-point energy of the vacuum. This process

of renormalisation and regularisation can actually, remarkably, be made respectable, and

in particular, it can be shown that the final results are independent of the regularisation

scheme that one uses. One scheme that has been developed is known as “Zeta Function

Regularisation,” and it consists precisely of introducing regularisation parameters that cause

a divergent sum such as (1.335) to be replaced by
∑

n≥1 n−s. The regularisation scheme

(whose rigour can be proved up to the “industry standards” of the subject) then consists of

replacing the infinite result for
∑

n≥1 1 by the expression ζ(0), where ζ(s) is the analytically-

continued function defined in (1.328).

The Riemann zeta function is very important also in number theory. This goes beyond

the scope of this course, but a couple of remarks on the subject may be of interest. First,

we may make the following manipulation, valid for Re(s) > 1:

ζ(s) =
∑

n≥1

n−s = 1−s + 2−s + 3−s + 4−s + 5−s + 6−s + 7−s + · · ·

= 1−s + 3−s + 5−s + · · · + 2−s (1−s + 2−s + 3−s + · · ·)

= 1−s + 3−s + 5−s + · · · + 2−s ζ(s) , (1.336)

whence

(1 − 2−s) ζ(s) = 1−s + 3−s + 5−s + · · · . (1.337)

So all the terms where n is a multiple of 2 are now omitted in the sum. Now, repeat this

excercise but pulling out a factor of 3−s:

(1 − 2−s) ζ(s) = 1−s + 5−s + 7−s + 11−s + · · · + 3−s (1−s + 3−s + 5−s + 7−s + · · ·) ,

= 1−s + 5−s + 7−s + 11−s + · · · + 3−s (1 − 2−s) ζ(s) , (1.338)

whence

(1 − 2−s) (1 − 3−s) ζ(s) = 1−s + 5−s + 7−s + 11−s + · · · . (1.339)

We have now have a sum where all the terms where n is a multiple of 2 or 3 are omitted.

Next, we do the same for factors of 5, then 7, then 11, and so on. If 2, 3, 5, 7, . . . , p denote
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all the prime numbers up to p, we shall have

(1 − 2−s) (1 − 3−s) · · · (1 − p−s) ζ(s) = 1 +
∑′

n−s , (1.340)

where
∑′ indicates that only those values of n that are prime to 2, 3, 5, 7, . . . , p occur in the

summation. It is now straightforward to show that if we send p to infinity, this summation

goes to zero, since the “first” term in the sum is the lowest integer that is prime to all the

primes, i.e. n = ∞. Since Re(s) > 1, the “sum” is therefore zero. Hence we arrive at the

result, known as Euler’s product for the zeta function:

1

ζ(s)
=
∏

p

(
1 − 1

ps

)
, Re(s) > 1 , (1.341)

where the product is over all the prime numbers. This indicates that the Riemann zeta

function can play an important rôle in the study of prime numbers.

We conclude this section with an application of the technique we discussed in section

1.8, for summing infinite series by contour integral methods. It is relevant to the discussion

of the zeros of the Riemann zeta function. Recall that we showed previously that the zeta

function could be represented by the integral (1.328), which we repeat here:

ζ(s) = −Γ(1 − s)

2π i

∫

C

(−z)s−1 dz

ez − 1
, (1.342)

where C is the Hankel contour. Now, imagine making a closed contour C ′, consisting of

a large outer circle, centred on the origin, and with radius (2N + 1)π, which joins onto

the Hankel contour way out to the east in the complex plane. See Figure 9 below. As we

observed previously, the integrand in (1.342) has poles at z = 2π in for all the integers

n. In fact, of course, it is very similar to the cosec and cot functions that we have been

considering in our discussion in this section, since

1

ez − 1
=

e−
1
2
z

e
1
2
z − e−

1
2
z

= 1
2e−

1
2
z cosech (1

2z) . (1.343)

The only difference is that because we now have the hyperbolic function cosech rather than

the trigonometric function cosec , the poles lie along the imaginary axis rather than the real

axis.

In fact it is easy to find the nature of the poles at z = 2π in, by just writing z = 2π in+w.

Noting that

ez = e2π in+w = e2π i n ew = ew , (1.344)
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we see that

1

ez − 1
=

1

ew − 1
=

1

(1 + w + 1
2w2 + · · ·) − 1

=
1

w(1 + 1
2w + · · ·)

=
1

w
+ 1

2 + · · · =
1

z − 2π in
+ 1

2 + · · · . (1.345)

Thus the pole at z = 2π in is a simple pole, with residue 1.

Figure 9: The contour C ′ composed of the Hankel contour plus a large circle

Since the Hankel contour itself was arranged so as to sneak around the origin without

encompassing the poles at z = ±2π i,±4π i, . . ., it follows that the closed contour C ′ will

precisely enclose the poles at z = 2π in, for all non-vanishing positive and negative integers

n. For some given positive integer m, consider the pole at

z = 2π im = 2π e
1
2
π i m . (1.346)

When we evaluate the residue Rm here, we therefore have

Rm = (2π e−
1
2
π i m)s−1 , (1.347)

since (ez − 1)−1 itself clearly has a simple pole with residue 1 there. (We have used the

fact that (1.346) implies −z = 2π m e−
1
2
π i, since we have to be careful when dealing with
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the multiply-valued function (−z)s−1.) There is also a pole at z = −2π e
1
2
π i m, which by

similar reasoning will have the residue R−m given by

R−m = (2π e
1
2
π i m)s−1 , (1.348)

Putting the two together, we therefore get

Rm + R−m = 2 (2π m)s−1 sin(1
2π s) . (1.349)

By the theorem of residues, it follows that if we evaluate
∫

C′

(−z)s−1 dz

ez − 1
, (1.350)

where C ′ is the closed contour defined above, and then we send the radius (2N +1)π of the

outer circle to infinity, we shall get
∫

C′

(−z)s−1 dz

ez − 1
= −2π i

∑

m≥1

(Rm + R−m) ,

= −4π i
∑

m≥1

(2π m)s−1 sin(1
2π s)

= −2 (2π)s i sin(1
2π s)

∑

m≥1

ms−1 ,

= −2 (2π)s i sin(1
2π s) ζ(1 − s) . (1.351)

It is clear from the final step that we should require Re(s) < 0 here. (Note that the direction

of the integration around large circle is clockwise, which is the direction of decreasing phase,

so we pick up the extra −1 factor when using the theorem of residues.)

Now, if we consider the closed contour C ′ in detail, we find the following. It is comprised

of the sum of the Hankel contour, plus the circle at large radius R = (2N + 1)π, with N

sent to infinity. On the large circle we shall have

|(−z)s−1| = Rs−1 , (1.352)

which falls off faster than 1/R since we are requiring Re(s) < 0. This is enough to outweigh

the factor of R that comes from writing z = R ei θ on the large circle. Since the (ez − 1)−1

factor cannot introduce any divergence (the radii R = (2N + 1)π are cleverly designed

to avoid passing through the poles of (ez − 1)−1), it follows that the contribution from

integrating around the large circle goes to zero as N is sent to infinity. Therefore when

evaluating the contour integral on the left-hand side of (1.351), we are left only with the

contribution from the Hankel contour C. But from (1.342), this means that we have

∫

C′

(−z)s−1 dz

ez − 1
=

∫

C

(−z)s−1 dz

ez − 1
= − 2π i

Γ(1 − s)
ζ(s) . (1.353)

82



Comparing with (1.351), we therefore conclude that if Re(s) < 0,

ζ(s) = 2 (2π)s−1 Γ(1 − s) sin(1
2πs) ζ(1 − s) . (1.354)

This can be neatened up using the reflection formula (1.313) to write Γ(1 − s) =

π/(Γ(s) sin(πs)), and then using the fact that sin(πs) = 2 sin(1
2πs) cos(1

2πs). This gives us

the final result

2s−1 Γ(s) ζ(s) cos(1
2πs) = πs ζ(1 − s) , (1.355)

Both sides are analytic functions, except at isolated poles, and so even though we derived the

result under the restriction Re(s) < 0, it immediately follows by analytic continuation that

it is valid in the whole complex plane. This beautiful formula was discovered by Riemann.

There is a very important, and still unproven conjecture, known as Riemann’s Hypoth-

esis. This concerns the location of the zeros of the zeta function. One can easily see from

Euler’s product (1.341), or from the original series definition (1.318), that ζ(s) has no zeros

for Re(s) > 1. One can also rather easily show, using Riemann’s formula that we derived

above, that when Re(s) < 0 the only zeros lie at the negative even integers, s = −2,−4, . . ..

This leaves the strip 0 ≤ Re(s) ≤ 1 unaccounted for. Riemann’s Hypothesis, whose proof

would have far-reaching consequences in number theory, is that in this strip, all the zeros

of ζ(s) lie on the line Re(s) = 1
2 .

Let us use Riemann’s formula to prove the result stated above, namely that for Re(s) < 0

the only zeros of ζ(s) lie at the negative even integers, s = −2,−4 . . .. To do this, we need

only observe that taking Re(s) > 1 in (1.355), the functions making up the left-hand side are

non-singular. Furthermore, in this region the left-hand side is non-zero except at the zeros

of cos(1
2π s). (Since Γ(s) and ζ(s) are both, from their definitions, clearly non-vanishing in

this region.) In this region, the zeros of cos(1
2π s) occur at s = 2n+1, where n is an integer

with n ≥ 1. They are simple zeros. Thus in this region the right-hand side of (1.355) has

simple zeros at s = 2n + 1. In other words, ζ(s) has simple zeros at s = −2,−4,−6, . . .,

and no other zeros when Re(s) < 0.

Combined with the observation that the original series definition (1.318) makes clear that

ζ(s) cannot vanish for Re(s) > 1, we arrive at the conclusion that any possible additional

zeros of ζ(s) must lie in the strip with 0 ≤ Re(s) ≤ 1. Riemann’s formula does not help

us in this strip, since it reflects it back onto itself. It is known that there are infinitely

many zeros along the line Re(s) = 1
2 . As we mentioned before, the still-unproven Riemann

Hypothesis asserts that there are no zeros in this strip except along Re(s) = 1
2 .
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