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Özenç Güngör,1 Samanta Saha,1 Andrius Tamosiunas,1 Quinn Taylor,1 and Valeri Vardanyan9

(COMPACT Collaboration)
1CERCA/ISO, Department of Physics, Case Western Reserve University,

10900 Euclid Avenue, Cleveland, OH 44106, USA
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Microwave background anomalies motivate further searches for cosmic topology. For manifolds
other than the simple 3-torus, existing searches allow the shortest distance around the Universe to be
much less than the distance to the horizon. Yet, to explain anomalies, the shortest distance through
us is likely to just exceed the horizon size. While galaxy and 21cm surveys are potentially more
powerful, a more thorough microwave background search is merited as previous ones considered only
a subset of topologies and of their parameter spaces. Current limits on topology are much weaker
than generally understood.

Introduction.— Standard cosmology combines general
relativity and quantum mechanics to produce a simple
model accounting for the distribution of matter over the
history and volume of the observable Universe. The av-
erage spatial curvature of this model is constrained by
observations to be flat, or very nearly so [1]. However,
general relativity concerns only the local geometry of the
spacetime manifold, not its topology. Quantum processes
in the very early Universe may induce “non-trivial” (mul-
tiply connected) topology of spacetime [2, 3] that remains
present today on very large physical scales, even when
inflation occurs [4]. Indeed, the temperature variations
in the cosmic microwave background (CMB) suggest the
presence of statistically anisotropic correlations, much
as would result from non-trivial topology. These include
the anomalous statistical properties of the low-multipole
(low-`) harmonic coefficients [5–8], the lack of large-scale
correlations [8–16], and the asymmetry of power on the
sky [8, 15–33]. If topology is the explanation for CMB
anomalies, there is detectable topological information
in the CMB. While unambiguous indicators of topology
have yet to be detected, we present evidence that prior
searches for topology [5, 34–43] have far from exhausted
the potentially significant possibilities. Much more can
be done to discover, or constrain, the topology of space

and investigate its potential effects.

If the Universe is a manifold with non-trivial spatial
topology, then through any spatial point there are closed
spacelike curves that are not continuously deformable to
a point. An observer will perceive each object as having
multiple copies, with relative locations determined by the
details of the topology. This can be interpreted as space
having finite extent in one, two, or three dimensions. The
parameter space for such universes is much larger than
what has been systematically tested. Even limited to
spatially flat manifolds (i.e., curvature parameter ΩK =
0), there are 17 inequivalent topologies (in addition to the
trivial case), each of which has multiple real parameters.
Most attention so far has been confined to just one of these,
the simple 3-torus (though see for example [44]), and even
then has focused on a rectangular-prism fundamental
domain, though a parallelepiped is permitted.

The observed CMB fluctuations encode information
about topology, even when the topology scale exceeds
the diameter of the visible Universe. CMB observations
probe the last scattering surface (LSS) of cosmological
photons, at a comoving distance of nearly the Hubble
length H−10 (where H0 is the present value of the Hubble
expansion rate). Non-trivial topology, by breaking sta-
tistical isotropy, induces anisotropic correlations in the
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CMB temperature and polarization fluctuations. When
the scale of the topology is small compared to the LSS di-
ameter, pairs of circles with matched temperature (and po-
larization) become visible in different parts of the sky [34].
These have not been observed [5, 35–43], but correlations
can persist even when the scale of the topology is large
enough to preclude matched circles [45, 46].

In this Letter, we demonstrate that (1) cosmic topol-
ogy remains eminently detectable despite past negative
searches of Refs. [5, 34–43]; (2) previous analyses have
not considered a large number of topological degrees of
freedom, even for spatially flat manifolds; (3) constraints
due to the non-observation of matched circle pairs are
less restrictive than widely believed [47]; (4) anisotropic
correlations induced by topology can be detectable in
the CMB even in the absence of matched circle pairs
[46]; and (5) though significantly larger manifolds may be
detectable in future observations of large-scale structure
[48], if topology is the explanation for CMB anomalies the
topology scale cannot greatly exceed the LSS diameter.

Cosmic topology.— Cosmic topology refers to the
properties of spatial sections of the 3 + 1-dimensional
manifold describing the Universe on the largest scales. We
assume the geometry of a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric, with the usual cases of negative
(hyperbolic), zero (flat or Euclidean), and positive (spher-
ical) spatial curvature. Topologies of these geometries
have been widely explored mathematically. There are
eighteen Euclidean topologies, with up to six real param-
eters each, and a countable infinity of both spherical and
hyperbolic topologies, with just the curvature scale as a
parameter of each [49]. Manifolds of the three curvatures
do not transform smoothly into one another: a Euclidean
topology is fundamentally different from an allowed topol-
ogy for a curved manifold, even if the curvature is nearly
zero. We concentrate on the flat case in this Letter, as it
suffices to make the general case for a renewed search for
topology.

All possible Euclidean topologies can be generated start-
ing from 1-2 rectangular or hexagonal prisms [35, 50, 51].
In the simplest case, the 3-torus E1, opposite faces of
a right rectangular prism are identified, giving a finite
volume and simple periodic boundary conditions. One
can skew the prism to start instead with a parallelepiped—
opposite faces are now parallelograms, and the transla-
tions carrying a face to its mate are not all normal to
the face. We call E1 built from a parallelepiped “tilted.”
Alternately, before identification, one can rotate a rhom-
bic face by π (giving the E2 space), a square face by π/2
(E3), a hexagonal face by 2π/3 (E4) or π/3 (E5). These
rotations followed by translations are called “corkscrew”
motions, which also names the axis of rotation. In some
cases one flips opposite faces instead of rotating them,
generating various versions of the Klein bottle space (E7–
E10). One can also take one or two dimensions of a start-

ing rectangular prism to have infinite length, so space is
periodic in only one or two dimensions; in these cases one
can still rotate or flip the remaining faces. These cases are
E11–E17. The final possibilities are the Hantzsche-Wendt
space (E6), which starts from two adjacent rectangu-
lar prisms and matches faces between them (see, e.g.,
Ref. [44]), and the trivial topology E18, also called the
covering space—the 3-manifold of a given geometry in
which any closed loop can be deformed to a point.

These choices determine various characteristics of the
cosmic 3-manifold; it may be: orientable or non-orientable
(roughly, whether or not a closed path around the space
preserves or interchanges left and right handedness); fi-
nite in zero, one, two, or three dimensions; statistically
homogeneous (all observers see the same pattern of their
own images around them) or inhomogeneous [52].

This classification was first applied to cosmological
manifolds in Ref. [53], but the discussion was limited to
a subset of the parameters describing some topologies:
the angular degrees of freedom (e.g., the ability to skew a
right rectangular prism into a parallelepiped) have largely
been ignored, as have the consequences of the lack of
statistical homogeneity, while the parameterizations of
possible translations between fundamental domains have
been incomplete. The complete sets of parameters will
be addressed in detail in Ref. [46].

One can fully describe the topology by determining the
images (periodic repetitions) of a coordinate triad based at
any point. These images need not (and in general will not)
form a simple periodic lattice. We can equivalently think
of topology as related to tilings of the full covering space
of the associated geometry. The individual tiles are called
the fundamental domain. Despite the name, although the
volume of the fundamental domain is uniquely determined,
its shape is not—different domains can tile the covering
space yet embody precisely the same set of isometries and
different choices may seem natural to different observers.

For many purposes, the most useful information about
a specific topology is the eigenmodes of the Laplacian
operator subject to the boundary conditions imposed by
the topology—the analogues of Fourier modes on the
Euclidean covering space. This is already clear in the case
of a rectangular prism E1. In this rectangular box with
periodic boundary conditions, the modes are exactly the
Fourier modes restricted to a countable set of wavevectors,
as opposed to the continuum of allowed modes on the
covering space. In other compact Euclidean topologies,
the finite volume of the fundamental domain still restricts
the Laplacian to a countable set of eigenmodes, with each
being a linear combination of finitely many Fourier modes
of different equal-magnitude wavevectors. In the non-
compact topologies E11–E17 the continuum is modified
but not fully discretized. These changes to the eigenmodes
modify the statistical properties of the matter fields, and
are thereby potentially detectable in the CMB.

We concentrate below on E1, E2 and E3 because they
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FIG. 1. Left: Portions of rescaled CMB temperature correlation matrices for a half-turn space (E2) with LB/Lcircle = {0.9, 1.1} and an
off-axis observer at x0 = (0.35, 0, 0)LLSS. LB is the length along the corkscrew axis and Lcircle is the length scale below which matched
circles would be detected. Here LA = 1.4LLSS is the other topological length scale. Upper right: The Kullback-Leibler (KL) divergence
as a function of LB/Lcircle for E2 and a simple untilted 3-torus (E1). Lower right: The KL divergence as a function of `max for E2.

suffice to demonstrate our broader points. Each is char-
acterized by two to six parameters describing the shapes
of the faces, and the translations and rotations that carry
them between one another. Another three to six parame-
ters may be needed to characterize an observer’s position
and orientation in the space (see Ref. [46] for more details
about these and other Euclidean spaces).

Correlations induced by topology.— For Gaussian
fluctuations, two-point covariance matrices contain all the
information available to determine the observational reper-
cussions of the topology. The mode structure induced
by topology breaks the isotropy of modes in the covering
space: a continuous set of Fourier modes with uniform
density becomes a grid in wavevector, inducing correla-
tions between amplitudes of spherical harmonics. Even
for the simple torus, skewing the fundamental domain to
a parallelepiped skews the grid of allowed wavevectors. In
cases with reflections and rotations, further correlations
are induced between Fourier modes, and thus between
spherical harmonic modes, enhancing the prospects for
observational signatures in the CMB and in large-scale
structure.

For the CMB in particular, the topological mode struc-
ture changes the distribution of spherical harmonic compo-
nents from the diagonal 〈a`ma`′m′〉 = C`δ``′δmm′ to a full

covariance matrix C`m`′m′ with off-diagonal terms. Ob-
servations indicate that, even if modified by topology, ini-
tial perturbation amplitudes on scales small compared to
H−10 today are well described by a Gaussian distribution
following a slightly tilted Harrison-Zel’dovich spectrum
depending only on the amplitude of the wavevector, e.g.,
as predicted by inflation [54]. Under linear evolution the
CMB, as well as the cosmic large-scale structure, would
then be described by an anisotropic Gaussian distribution.

In Fig. 1, we show (left) the rescaled correlation
matrices of CMB temperature fluctuations, Ξ`m`′m′ ≡
C`m`′m′/

√
C`C`′ , induced by (unskewed) E2 topology.

(C` are elements of the diagonal covariance matrix for the
Euclidean covering space computed with the same val-
ues of standard cosmological parameters.) We consider a
right rectangular prism fundamental domain with length
LA = 1.4LLSS in the two pure translation directions (x̂,ŷ),
and LB = {0.9, 1.1}Lcircle in the corkscrew direction (ẑ),
where Lcircle = 0.714LLSS is the minimum value of LB

for that manifold for which ≥ 95% of observers would
detect a matched circle pair. LLSS is the diameter of the
last-scattering surface of CMB photons. The observer is
placed at 0.35LLSSx̂ from the corkscrew axis, and does
(not) see circles in the top (bottom) panel. There are
significant correlations between disparate `. We discuss
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the right panels of Fig. 1 below.

Little work has been done on CMB polarization and
topology, but Refs. [55, 56] suggest it provides an addi-
tional avenue for exploring topology, and may even have
enhanced correlations compared to temperature because
polarization originates more predominantly from the LSS.

Constraining the topology.— How can we search for
the anisotropic correlations induced by topology? For
sufficiently small topology scales, we would see clones of
individual objects, such as galaxies or quasars; these have
not been seen [57–64]. Similarly, in CMB temperature
fluctuations, matching pairs of circles on the sky would
be signatures of the self-intersection of the LSS. The
size of such circles, the locations of their centers, and the
phase of their matching along the circles depend on the
details of the topology, but the existence of circles depends
only on isotropic geometry and a small-enough topology
scale [34]. The non-observation of such matched patterns
limits the shortest closed paths across our fundamental
domain, which could in turn be interpreted as a limit
on the parameters of any given topology. This search is
computationally challenging because of the large number
of candidate circle centers, radii, and relative phases,
but has been completed on both Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck data [5, 35–43].

Once the length of such a returning path exceeds the
diameter of the LSS, there are no longer matching cir-
cles, and we must search for excess anisotropic correla-
tion. This can be done by directly evaluating the likeli-
hood as a function of the parameters of the topologies
[42, 43, 65, 66]. However, this is computationally chal-
lenging because we cannot take advantage of the usual
simplification of isotropy: the signal covariance matrix
is diagonal in harmonic space or, equivalently, it is only
a function of the angular distance between pixels. Even
calculating and storing the O(`4max) entries of the full
C`m`′m′ matrix is infeasible at high `max.

Current constraints.— To date, none of the tests out-
lined above have detected evidence of non-trivial topology.

The matched-circles search has the advantage of being
generic: for a sufficiently small fundamental domain, every
non-trivial topology of an FLRW cosmology predicts a
pattern of repeated circles. However, translating the
non-detection of matched circles into limits on topology
depends on the details of each individual topology. In
particular, for topologies in which any of the faces of
the fundamental domain is rotated, the induced pattern
of circles depends on the location of the observer with
respect to the corkscrew axis—as the observer moves away
from the axis, limits on the size of the domain weaken.
In Fig. 2, we display illustrative limits on the parameter
space of E1–E5 [47]: for the excluded parameter values,
observers at ≥ 95% of locations in the manifold would
detect at least one matched circle pair of any size. These
curves are indicative of the limits that can be derived

FIG. 2. Regions of topology parameter space where observers
would or would not see matched circle pairs. In the shaded
region for a topology (and topologies above it on the legend) ≥
95% of observers have a clone closer than LLSS. In the exterior
(white) region, no topology will produce matched circles. For
the E2 manifold we choose the right rectangular prism. E2-E5

are arranged in increasing order of their associated rotation.
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FIG. 3. For E3 manifold with LA = 2LLSS, locations
(x/LLSS, y/LLSS) of observers in planes of constant z (the
corkscrew axis) in which matched circle pairs would be de-
tected, as a function of LB. Even for LB = 0.4LLSS 20% of
observers would still not see matched circles (white regions).

from a detailed analysis of matched circles in the CMB
temperature from WMAP and Planck [5, 34–43, 67]. For
the simple right-angled E1 this straightforwardly limits
the length of the shortest side to the diameter of the LSS
sphere, but the rotations in E2 through E5 weaken the
limits on the length LB along the corkscrew axis—as the
size of the square or hexagonal face perpendicular to that
rotation, LA, increases, observers in more and more of
the manifold would not observe matched circles.

In Fig. 3 we display the square cross-section through
the E3 manifold with dimensions LA = 2LLSS along both
axes, in a plane perpendicular to the axis of rotation at
(x, y) = (LLSS, LLSS), where x, y are coordinates in this
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plane. We shade the regions in which an observer would
detect one or more matched circle pairs as a function
of LB, the length of the translation associated with the
π/2 rotation. In regions of a given color observers would
see matched circle pairs for all values of LB less than or
equal to the value listed on the legend. As LB is reduced,
more and more observers see matched circles, but even
for LB = 0.4LLSS a substantial fraction of the volume is
“circle-free,” and hence allowed by current observations.

Conversely, the likelihood search is not generic—the
covariance matrix must be calculated anew for each topol-
ogy and each set of topological parameters. Hence, only
a very small fraction of testable parameter values [68] of
a subset of Euclidean manifolds have been tested [69].

Future constraints.— We have already seen in the left
panel of Fig. 1 that anisotropic correlations persist even
when the size of the fundamental domain is larger than the
diameter of the LSS and there are no matched circles. Can
we detect this richer correlation structure? The presence
of matched circles is a geometric effect, independent of
the statistical properties of the fluctuations themselves.
Once the scale of the topology is outside of the LSS, we
depend on details of statistical properties to detect the
induced correlations. We expect this to be more tied to
the cosmological parameters than circles. In the following
we specialize to models in which the fluctuations are
described by the Planck 2018 cosmology [1].

We can use the Kullback-Leibler (KL) divergence to
compare the probability distribution functions for the
{a`m} in the trivial topology, p({a`m}), and in a non-
trivial topology, q({a`m}),

DKL(p||q) =

∫
d{a`m} p({a`m}) ln

[
p({a`m})
q({a`m})

]
. (1)

With p and q isotropic and anisotropic Gaussian distribu-
tions, DKL = 1

2

∑
i

(
ln |λi|+ λ−1i − 1

)
[45], where λi are

the eigenvalues of Ξ`m`′m′ , for `, `′ ≥ 2. Given data a`m
from an experiment, DKL favors non-trivial topology if
DKL > 1. Hence DKL = 1 serves as a threshold for the de-
tectability of non-trivial topology in a perfect experiment
with no noise, foreground emission, and mask.

The right panels of Fig. 1 show the KL divergence as a
function of L/Lcircle and `max. They convey a somewhat
more optimistic message than Ref. [45] which considered
a simple cubic torus E1. We see here (top right) that
E2 domains larger than E1 domains have detectable KL
divergence. However, we also see that, in E2, once an
observer is unable to detect matched circle pairs (LB >
Lcircle) only ` . 30 add significantly to the KL divergence.
Though DKL is challenging to calculate for large `, a
signal-to-noise calculation of off-diagonal correlations as
signal and statistically isotropic Gaussian random fields
as noise gives a similar level of potential detectability [46].

The dependance of DKL on `max and on topology pa-
rameters depends on the specific manifold, and on the

observer location within that manifold. This is a matter
for ongoing investigation, as is the maximum size of each
manifold that can be observationally identified. However,
it is important to realize that if topology is the physical
cause of CMB large-angle anomalies then ipso facto the
CMB must contain detectable topological information.
Thus the KL divergence would inform us what values
of various topological parameters we need to explore for
each manifold, avoiding those values for which there is
no topological information. A topological explanation for
any observed CMB anomaly that exhibits parity-violating
∆`-odd correlations would only arise from a manifold
that encodes parity violation, precluding E1, E11, E16,
and, of course, E18. The behaviour of DKL with `max

implies that correlations between different a`m induced
by topology with LB > Lcircle are limited to low `, a
potential explanation for large-scale CMB anomalies, and
holds out the promise for testable predictions with future
observations.

Preliminary calculations with two-dimensional tori sug-
gest that information from the interior of the last scat-
tering surface can significantly increase DKL, including
for LB > Lcircle, in particular by making available the
information from shorter wavelength modes. This is pre-
sumably because the projection from the full 3-space to
the 2-dimensional surface of the LSS mixes many uncor-
related Fourier modes, especially at higher wavenumber.
Future galaxy and 21cm surveys thus hold the promise
of increasing the range of the topology parameter space
that can be explored observationally.

Expanding the reach of past topology searches will
be discussed in upcoming work. We anticipate that the
dimensionality of the parameter space, the size of the
covariance matrix, and its lack of sparsity will make an
exhaustive likelihood calculation untenable, even for just
Euclidean manifolds. Instead we anticipate developing
machine learning techniques to accelerate the likelihood
calculation and to be used in the framework of likelihood-
free inference [70] to more generally address the challenge
of mining CMB data for evidence of non-trivial topology.

Conclusions.— We have shown that current observa-
tions of the CMB have not been comprehensively trans-
lated to limits on the allowed large-scale topology of the
Universe. We report that for generic Euclidean manifolds,
whose isometry groups include rotations or reflections,
the lower limit on the topology scale is smaller than the
diameter of the LSS by factors of 2− 6, and potentially
much more. All of the Euclidean manifolds, other than
the covering space, violate statistical isotropy; most of
them also violate statistical homogeneity. The ability to
detect topology even in the absence of explicit matched
circles depends on the induced statistical anisotropy. The
KL divergence suggests that there is information in CMB
temperature correlations even when an observer does not
see circles, although the topology scale cannot be much
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larger than LLSS if topology is to explain CMB anoma-
lies. How much this depends on the manifold, its size and
other parameters, and the observer’s position, is unknown.
Large-scale structure information from future surveys will
provide still more information which appears likely to
offer a qualitative improvement on CMB temperature cor-
relations. These possibilities will be explored in a series
of forthcoming papers.
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