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Abstract.
We discuss a possibility that the entire universe on its most fundamental level is a

neural network. We identify two different types of dynamical degrees of freedom: “trainable”
variables (e.g. bias vector or weight matrix) and “hidden” variables (e.g. state vector of
neurons). We first consider stochastic evolution of the trainable variables to argue that
near equilibrium their dynamics is well approximated by Madelung equations (with free
energy representing the phase) and further away from the equilibrium by Hamilton-Jacobi
equations (with free energy representing the Hamilton’s principal function). This shows that
the trainable variables can indeed exhibit classical and quantum behaviors with the state
vector of neurons representing the hidden variables. We then study stochastic evolution of
the hidden variables by considering D non-interacting subsystems with average state vectors,
x̄1, ..., x̄D and an overall average state vector x̄0. In the limit when the weight matrix is
a permutation matrix, the dynamics of x̄µ can be described in terms of relativistic strings
in an emergent D + 1 dimensional Minkowski space-time. If the subsystems are minimally
interacting, with interactions described by a metric tensor, then the emergent space-time
becomes curved. We argue that the entropy production in such a system is a local function
of the metric tensor which should be determined by the symmetries of the Onsager tensor.
It turns out that a very simple and highly symmetric Onsager tensor leads to the entropy
production described by the Einstein-Hilbert term. This shows that the learning dynamics
of a neural network can indeed exhibit approximate behaviors described by both quantum
mechanics and general relativity. We also discuss a possibility that the two descriptions are
holographic duals of each other.
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1 Introduction

Quantum mechanics is a remarkably successful paradigm for modeling physical phenomena
on a wide range of scales ranging from 10−19 meters (i.e. high-energy experiments) to 10+26

meters (i.e. cosmological observations.) The paradigm is so successful that it is widely
believed that on the most fundamental level the entire universe is governed by the rules of
quantum mechanics and even gravity should somehow emerge from it. This is known as the
problem of quantum gravity that so far has not been solved, but some progress had been
made in context of AdS/CFT [1–3], loop quantum gravity [4–6] and emergent gravity [7–9].
Although extremely important, the problem of quantum gravity is not the only problem with
quantum mechanics. The quantum framework also starts to fall apart with introduction of
observers. Everything seems to work very well when observers are kept outside of a quantum
system, but it is far less clear how to describe macroscopic observers in a quantum system
such as the universe itself. The realization of the problem triggered an ongoing debate on the
interpretations of quantum mechanics, which remains unsettled to this day. On one side of
the debate, there are proponents of the many-worlds interpretation claiming that everything
in the universe (including observers) must be governed by the Schrödinger equation [10],
but then it is not clear how classical probabilities would emerge. One the other side of the
debate, there are proponents of the hidden variables theories [11], but there it is also unclear
what is the role of the complex wave-function in a purely statistical system. It is important
to emphasize that a working definition of observers is necessary not only for settling some
philosophical debates, but for understanding the results of real physical experiments and
cosmological observations. In particular, a self-consistent and paradoxes-free definition of
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observers would allow us to understand the significance of Bell’s inequalities [12] and to
make probabilistic prediction in cosmology [13]. To resolve the apparent inconsistency (or
incompleteness) in our description of the physical world, we shall entertain an idea of having
a more fundamental theory than quantum mechanics. A working hypothesis is that on the
most fundamental level the dynamics of the entire universe is described by a microscopic
neural network which undergoes learning evolution. If correct, then not only macroscopic
observers but, more importantly, quantum mechanics and general relativity should correctly
describe the dynamics of the microscopic neural network in the appropriate limits.1

In this paper we shall first demonstrate that near equilibrium the learning evolution of a
neural network can indeed be modeled (or approximated) with the Madelung equations (see
Sec. 5), where the phase of the complex wave-function has a precise physical interpretation as
the free energy of a statistical ensemble of hidden variables. The hidden variables describe the
state of the individual neurons whose statistical ensemble is given by a partition function and
the corresponding free energy. This free energy is a function of the trainable variables (such
as bias vector and weight matrix) whose stochastic and learning dynamics we shall study
(see Sec. 4). Note that while the stochastic dynamics generically leads to the production
of entropy (i.e. second law of thermodynamics) the learning dynamics generically leads to
the destruction of entropy (i.e. second law of learning). As a result in the equilibrium the
time-averaged entropy of the system remains constant and the corresponding dynamics can
be modeled using quantum mechanics. It is important to note that the entropy (and entropy
production) that we discuss here is the entropy of either hidden or trainable variables which
need not vanish even for pure states. Of course, one can also discuss mixed states and then
the corresponding von Neumann entropy gives an additional contribution to the total entropy.

The situation changes dramatically, whenever some of the degrees of freedom are not
thermalized. While it should in principle be possible to model the thermalized degrees of
freedom using quantum theory, the non-thermalized degrees of freedom are not likely to
follow exactly the rules of quantum mechanics. We shall discuss two non-equilibrium limits:
one which can nevertheless be described using classical physics (e.g. Hamiltonian mechanics)
and the other one which can be described using gravitational physics (e.g general relativity).
The classical limit is relevant when the non-equilibrium evolution of the trainable variables is
dominated by the entropy destruction due to learning, but the stochastic entropy production
is negligible. The dynamics of such a system is well approximated by the Hamilton-Jacobi
equations with free energy playing the role of the Hamilton’s principal function (see Sec.
6). The gravitational limit is relevant when even the hidden variables (i.e. state vectors of
neurons) have not yet thermalized and the stochastic entropy production governs the non-
equilibrium evolution of the system (see Sec. 9). In the long run all of the degrees of freedom
must thermalize and then quantum mechanics should provide a correct description of the
learning system.

It is well known that during learning the neural network is attracted towards a network
with a low complexity, a phenomenon also known as dimensional reduction or what we call
the second law of learning [16]. An example of a low complexity neural network is the
one described by a permutation weight matrix or when the neural network is made out of
one-dimensional chains of neurons.2 If the set of state vectors can also be divided into non-
interacting subsets (or subsystems) with average state vectors, x̄1, ..., x̄D and an overall

1The idea of using neural networks to describe gravity was recently explored in Ref. [14] in context of
quantum neural networks, in Ref. [15] in context of AdS/CFT and in Ref. [16] in context of emergent gravity.

2A similar phenomenon was recently observed in context of the information graph flow [35].
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average state vector x̄0, then the dynamics of x̄µ can be described with relativistic strings in
an emergent D + 1 dimensional space-time (see Sec. 8). In general, the subsystems would
interact and then the emergent space-time would be described by a gravitational theory
such as general relativity (see Sec. 9). Note that, in either case, the main challenge is
to figure out exactly which degrees of freedom have already thermalized (and thus can be
modeled with quantum mechanics) and which degrees of freedom are still in the process of
thermalization and should be modeled with other methods such as Hamiltonian mechanics
or general relativity. In addition, we shall discuss yet another method which is motivated
by the holographic principle and is particularly useful when the bulk neurons are still in the
process of equilibration, but the boundary neurons have already thermalized (see Sec. 10).

The paper is organized as follows. In Sec. 2 we review the theory of neural networks and
in Sec. 3 we discuss a thermodynamic approach to learning. In Sec. 4 we derive the action
which governs dynamics of the trainable variables by applying the principle of stationary
entropy production. The action is used to study the dynamics near equilibrium in Secs. 5
(which corresponds to quantum limit) and further away from equilibrium in Sec. 6 (which
corresponds to classical limit). In Sec. 7 we study a non-equilibrium dynamics of the hidden
variables and in Sec. 8 we argue that in certain limits the dynamics can be described in
terms of relativistic strings in the emergent space-time. In Sec. 9 we apply the principle
of stationary entropy production to derive the action which describes equilibration of the
emergent space-time (which corresponds to gravitational limit) and in Sec. 10 we discuss
when the gravitational theory can have a holographic dual description as a quantum theory.
In Sec. 11 we summarize and discuss the main results of the paper.

2 Neural networks

We start with a brief review of the theory of neural networks by following the construction
that was introduced in Ref. [16]. The neural network shall be defined as a neural septuple
(x, P̂in, P̂out, ŵ,b, f,H), where x ∈ RN , is the state vector of neurons, P̂in and P̂out are
the projection operators to subspaces spanned by respectively, Nin, input and, Nout, output
neurons, ŵ ∈ RN×N , is a weight matrix, b ∈ RN is a bias vector, f : R→ R is an activation
function and H : RN × RN × RN×N → R is a loss function. This definition is somewhat
different from the one usually used in the literature on machine learning, but we found that
it is a lot more useful for analyzing physical theories in context of a microscopic neural
network that we are interested in here. We shall not distinguish between different layers
and so all N neurons are connected into a single neural network with connections described
by a single N × N weight matrix, ŵ. The matrix can be viewed as an adjacency matrix of
a weighted directed graph with neurons representing the nodes and elements of the weight
matrix representing directed edges. However, we will distinguish between two different types
of neurons: the boundary neurons, N∂ = Nin + Nout, and the bulk neurons, N/∂ = N −N∂ .

Similarly, the boundary and the bulk projection operators are defined respectively as P̂∂ =
P̂in + P̂out and P̂/∂ = Î − P̂∂ .

The state vector of neurons, x ∈ RN , or just state vector, evolves in discrete time-steps
according to equation

x(t+ 1) = f (ŵx(t) + b) (2.1)
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which can also be written in terms of components3

xi(t+ 1) = f (wijxj(t) + bi) . (2.2)

A crucial simplification of the dynamical system (2.1) was to assume that the activation
map f : RN → RN acts separately on each component (2.2) with some activation function
f(x). Logistic function f(x) = (1 + exp(x))−1 and rectified linear unit f(x) = max(0, x) are
some important examples of the activation function, but we shall use the hyperbolic tangent
f(x) = tanh(x) which is also widely used in machine learning. The main reason is that the
hyperbolic tangent is a smooth odd function with a finite support which greatly simplifies
analytical calculations that we shall carry out in the paper.

The main problem in machine learning, or the main learning objective, is to find a
bias vector, b, and a weight matrix, ŵ, which minimize some suitably defined loss function
H(x,b, ŵ). In what follows we shall consider two loss functions: the “bulk” loss and the
“boundary” loss. The bulk loss function is defined as a local sum over all neurons

H(x,b, ŵ) =
1

2
(x− f (ŵx + b))T (x− f (ŵx + b)) + V (x)

=
1

2
(xi − f (wijxj + bi)) (xi − f (wikxk + bi)) +

∑
i

V (xi). (2.3)

The first term represents the sum over squares of local errors or, equivalently, differences
between the state of a neuron before, xi, and after, f (wijxj + bi), a single execution of the
activation map. The second term represents a local objective such as a binary classification
of the signal xi. For example, if V (xi) = −m

2 x
2
i , then the values of xi closer to lower- and

upper-bounds are rewarded and values in-between are penalized. Although the bulk loss is
much easer to analyze analytically, in practice it is often more useful to define the boundary
loss function by summing over only boundary neurons,

H∂(x,b, ŵ) = H(P̂∂x, P̂∂b, P̂
T
∂ ŵP̂∂). (2.4)

In fact the boundary loss is usually used in supervised learning, but, as was argued in [16],
the bulk loss is more suitable for unsupervised learning tasks.

Instead of following the dynamics of the individual states, which might be challenging,
one can use the principle of maximum entropy [17, 18] to derive a canonical ensemble of
states [16]. The corresponding canonical partition function is

Z(β,b, ŵ) =

∫
dNx e−βH(x,b,ŵ) (2.5)

and the free energy is

F (β,b, ŵ) = − 1

β
logZ(β,b, ŵ). (2.6)

At a constant “temperature”, T = β−1 = const, the ensemble can evolve with time either
due to internal (or what we shall call hidden) dynamics of the state vector, x(t), or due to the
external (or what we shall call training) dynamics of the bias vector, b(t), and weight matrix,

3Summations over repeated indices are implied everywhere in the paper unless stated otherwise. For

example, wijxj =
∑

j wijxj ,
∂2F
∂q2

k
=
∑

k
∂2F
∂q2

k
and

(
∂F
∂qk

)2
=
∑

k

(
∂F
∂qk

)2
.
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ŵ(t). The partition function for the bulk loss function (2.3) with a mass-term potential,
V (xi) = −m

2 x
2
i , and a hyperbolic tangent activation function, f(x) = tanh(x), was calculated

in [16] using Gaussian approximation. The result is

Z(β,b, ŵ) ≈ (2π)N/2 det
(
Î(1− βm) + βĜ

)−1/2
(2.7)

where

Ĝ ≡
(
Î − f̂ ′ŵ

)T (
Î − f̂ ′ŵ

)
(2.8)

and f̂ ′ is a diagonal matrix of first derivatives of the activation function,

f ′ii ≡
(
df(yi)

dyi

)
yi=wij〈xj〉+bi

. (2.9)

3 Thermodynamics of learning

Given the partition function, the average loss can be calculated by a simple differentiation,

U(β,b, ŵ) = 〈H (x,b, ŵ)〉 = − ∂

∂β
log(Z(β,b, ŵ)) =

∂

∂β
(βF (β,b, ŵ)) . (3.1)

If the neural network was trained for a long time, then the weight matrix and the bias
vector are in a state which minimizes (at least locally) the average loss function and then its
variations with respect to ŵ and b must vanish,

∂U(β,b, ŵ)

∂wij
=

∂2

∂wij∂β
(βF (β,b, ŵ)) = 0

∂U(β,b, ŵ)

∂bi
=

∂2

∂bi∂β
(βF (β,b, ŵ)) = 0. (3.2)

We shall call this state, the state of the learning equilibrium. An important property of the
equilibrium, which follows from (3.2), is that the total free energy must decompose into a
sum of two terms

F (β,b, ŵ) = A(β)− 1

β
C(b, ŵ). (3.3)

Likewise, the total entropy must also decompose into a sum of two terms,

Sx(β,b, ŵ) = β2 ∂

∂β
F (β,b, ŵ) = β2 ∂

∂β

(
A(β)− 1

β
C(b, ŵ)

)
= S0(β) + C(b, ŵ) (3.4)

where the first term is the familiar thermodynamic entropy

S0(β) = β2∂A(β)

∂β
= β(U(β)−A(β)). (3.5)

and the second term, C(b, ŵ), is related to the complexity of the neural network (see Ref.
[16]).

As the learning progresses, the average loss, U(β), decreases, the temperature parame-
ter, β−1, decreases and, thus, one might expect that the thermodynamic entropy, S0, should
also decrease. However, it is not the thermodynamic entropy, S0, but the total entropy, Sx,
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(whose exponent describes accessible volume of the configuration space for x) should decrease
with learning. We call it the second law of learning:

Second Law of Learning: the total entropy of a learning system can never increase during
learning and is constant in a learning equilibrium,

d

dt
Sx ≤ 0. (3.6)

In the long run the system is expected to approach an equilibrium state with the smallest
possible total entropy, Sx, which corresponds to the lowest possible sum of the thermodynamic
entropy, S0(β), and of the complexity function C(b, ŵ).

For a system transitioning between equilibrium states at constant temperature, T =
1/β, variations of the free energy must vanish, dF = 0, and then equation (3.3) takes the
from of the first law,

dA− TdC = dU − TdSx = dU − TdS0 − TdC = 0, (3.7)

or what we call the first law of learning:

First Law of Learning: the increment in the loss function is proportional to the incre-
ment in the thermodynamic entropy plus the increment in the complexity

dU = TdSx = TdS0 + TdC. (3.8)

4 Entropic mechanics

So far the neural networks were analyzed by considering statistical ensembles of the state
vectors, x, but the bias vector, b, and weight matrix, ŵ, were treated deterministically. The
next step is to promote b and ŵ to stochastic variables in order to study their near-equilibrium
dynamics. In the next section we will show that the training dynamics of b and ŵ can be
approximated by Madelung equations with x playing the role of the hidden variables. For this
reason, we shall refer to the bias vectors and weight matrices as “trainable” variables and to
the state vectors as “hidden” variables. This does not mean that the trainable variables are
the quantized versions of the corresponding classical variables, but only that their stochastic
evolution near equilibrium can often be described by quantum mechanics.

Consider a family of trainable variables, b(q) and ŵ(q), parametrized by dynamical
parameters qk’s where k ∈ (1, ...,K). Typically the number of parameters K is much smaller
than N + N2 (i.e. the number of parameters required to describe a generic vector b and a
generic matrix ŵ) and the art of designing a neural architecture is to come up with functions
b(q) and ŵ(q) which are most efficient in finding solutions. To make the statement more
quantitative, consider an ensemble of neural networks described by a probability distribution
p(t,q) which evolves with time according to a Fokker-Planck equation

∂p

∂t
=

∂

∂qk

(
D
∂p

∂qk
− dqk

dt
p

)
. (4.1)

If we assume that the learning evolution (or the drift) is in the direction of the gradient of
the free energy,

dqk
dt

= γ
∂F

∂qk
(4.2)
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then
∂p

∂t
=

∂

∂qk

(
D
∂p

∂qk
− γ ∂F

∂qk
p

)
. (4.3)

This may be a good guess on short-time scales when the free energy does not change much,
but in general both p(t,q) and F (t,q) can depend on time explicitly and implicitly though
variable q. To describe such dynamics we shall employ the principle of stationary entropy
production (see Ref. [31]):

Principle of Stationary Entropy Production: The path taken by a system is the one
for which the entropy production is stationary.

The principle can be thought of as a generalization of both, the maximum entropy prin-
ciple [17, 18] and the minimum entropy production principle [19, 20] which is often used in
non-equilibrium thermodynamics. In context of neural networks it is beneficial to have large
entropy as it implies a higher rate with which new solutions can be discovered. Then the
optimal neural architecture should be the one for which the entropy destruction is minimized
or, equivalently, the entropy production is maximized. This justifies the use of the principe
in context of the optimal learning systems [16].

The Shannon entropy of the distribution p(t,q) (not to confuse with Sx(β,q)) is given
by

Sq(t) = −
∫
dKq p(t,q) log (p(t,q)) . (4.4)

and using (4.3) the entropy production is given by

dSq
dt

= −
∫
dKq p

∂ log(p)

∂t
−
∫
dKq log(p)

∂p

∂t

= − d

dt

∫
dKq p−

∫
dKq log(p)

∂p

∂t

= −
∫
dKq log(p)

∂

∂qk

(
D
∂p

∂qk
− γ ∂F

∂qk
p

)
which can be simplified (after integrating by parts and ignoring the boundary terms, i.e. by
assuming periodic or vanishing boundary conditions),

dSq
dt

=

∫
dKq

∂p

∂qk

(
D

p

∂p

∂qk
− γ ∂F

∂qk

)
=

∫
dKq

√
p

(
−4D

∂2

∂q2
k

+ γ
∂2

∂q2
k

F

)
√
p. (4.5)

This quantity is a functional of both p(t,q) and F (t,q) and, thus, in addition to modeling
the dynamics of the probability distribution we must also model the dynamics of the free
energy.

The total rate of change of the free energy is given by

d

dt
F (t,q) =

∂F (t,q)

∂t
+
dqk
dt

∂F (t,q)

∂qk
=
∂F (t,q)

∂t
+ γ

(
∂F (t,q)

∂qk

)2

(4.6)

where the first term represents the change of the free energy due to dynamics of hidden
variables, x, and the second term represents the change in the free energy due to dynamics
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of trainable variables, b and ŵ. In what follows, it will be convenient to denote the time-
averaged rate of change of free energy as〈

d

dt
F (t,q)

〉
t

≡ −V (q). (4.7)

Then, according to the principle of stationary entropy production, the dynamics of p(t,q)
and F (t,q) must be such that the entropy production is extremized subject to a constraint

∂F

∂t
+ γ

(
∂F

∂qk

)2

+ V = 0. (4.8)

The optimization problem can be solved by defining the following “action”,

Sq[p, F ] =

∫ T

0
dt
dSq
dt

+ µ

∫ T

0
dtdKq p

(
∂F

∂t
+ γ

(
∂F

∂qk

)2

+ V

)
, (4.9)

where µ is a Lagrange multiplier, and then the “equations of motion” are obtained by setting
variations of the action to zero,

δSq
δp

=
δSq
δF

= 0. (4.10)

5 Quantum mechanics

In the previous section we developed a stochastic description of the trainable variables q
which describe the weight matrix ŵ(q) and the bias vector b(q). We argued that on short
time-scales the dynamics of the probability distribution p(t,q) and of the free energy F (t,q)
is given by equations (4.3) and (4.6), but on longer time-scales an approximate dynamics
can be obtained using the principle of stationary entropy production. The corresponding
“action” is given by (4.9) which can be rewritten using (4.5),

Sq[p, F ] =

∫ T

0
dt dKq

√
p

(
−4D

∂2

∂q2
k

+ γ
∂2

∂q2
k

F + µ
∂F

∂t
+ µγ

(
∂F

∂qk

)2

+ µV

)
√
p. (5.1)

The five terms on the right hand side represent:
(1) −4D ∂2

∂q2k
, entropy production due to stochastic dynamics of qk’s,

(2) γ ∂
2F
∂q2k

, entropy production due to learning dynamics of qk’s,

(3) µ∂F∂t , free energy production due to dynamics of xi’s

(4) µγ
(
∂F
∂qk

)2
, free energy production due to learning dynamics of qk’s,

(5) µV , the (negative of) total time-averaged free energy production.
Note that the entropy production due to stochastic dynamics is usually positive (due to the
second law of thermodynamics), but the entropy production due to learning dynamics is
usually negative (due to the second law of learning). While the learning entropy production
is expected to dominate the dynamics far away from an equilibrium, the stochastic entropy
production is expected to give the main contribution near equilibrium.
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From (5.1) the equations of motion (4.10) are obtained by setting variations to zero,

δSq[p, F ]

δF
= γ

∂2

∂q2
k

p− µ ∂
∂t
p− 2µγ

∂

∂qk

(
∂F

∂qk
p

)
= 0 (5.2)

δSq[p, F ]

δp
= −4D

√
p

∂2√p
∂q2

k

+ γ
∂2F

∂q2
k

+ µ
∂F

∂t
+ µγ

(
∂F

∂qk

)2

+ µV = 0. (5.3)

It is convenient to define a velocity vector

uk ≡ 2γ
∂

∂qk
F. (5.4)

and then (5.2) can be expressed as a Fokker-Planck equation

∂

∂t
p = − ∂

∂qk
(ukp) +

γ

µ

∂2

∂q2
k

p (5.5)

and (5.3) as a Naiver-Stokes equation (after differentiating with respect to ∂
∂qj

)

∂

∂t
uj + uk

∂

∂qk
uj +

γ

µ

∂2

∂q2
k

uj = −2γ
∂

∂qj

(
V − 4D

µ
√
p

∂2√p
∂q2

k

)
. (5.6)

Several comments are in order. First of all, the Fokker-Planck equation (5.5) differs from
the “stochastic” Fokker-Planck equation (4.3). This is a consequence of our assumption that
(4.3) is only valid on very short time scales, while, according to the principle of stationary
entropy production, equations (5.5) and (5.6) must be valid on much longer time-scales.
Secondly, if µ > 0 then the kinetic viscosity in the Naiver-Stokes equation (5.6), − γ

µ , is
negative which is a consequence of the second law of learning. And finally, if we neglect
the entropy production due to learning (i.e. γ ∂

2F
∂q2k

in (5.1)), then the resulting equations of

motion would be the same as (5.5) and (5.6), but with terms in boxes set to zero. These are
the well known Madelung equations which are equivalent to the Schrödinger equation

− i

√
4D

γ

∂

∂t
Ψ =

(
4D

∂2

∂q2
k

− V
)

Ψ (5.7)

for the wave-function defined as

Ψ ≡ √p exp

(
i

√
γ

4D
F

)
. (5.8)

Moreover, in this limit the action (5.1) takes the form of the Schrödinger action

Sq[Ψ] =

∫ T

0
dt

∫
dKq Ψ∗

(
−4D

∂2

∂q2
k

+ V − i

√
4D

γ

∂

∂t

)
Ψ. (5.9)

Therefore, we conclude that near equilibrium, i.e. when the first term in (5.1) is much larger
than the second term, our system can be modeled by quantum mechanics.
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6 Hamiltonian mechanics

The next step is to consider a non-equilibrium dynamics of the trainable variables which is
relevant when the second term in (5.1) is much larger than the first term. This corresponds to
a limit when the entropy destruction is dominated by the learning dynamics and the stochastic
entropy production is negligible. The corresponding Fokker-Planck equation remains the
same as before (5.5), but the Naiver-Stokes equation (5.6) is greatly simplified

∂

∂t
uj + uk

∂

∂qk
uj +

γ

µ

∂2

∂q2
k

uj = −2γ
∂

∂qj
V. (6.1)

In this limit the dynamics of the free energy F does not depend on the probability distribution
p and thus equation (6.1) decouples from (5.5) and can be solved separately. In terms of the
free energy the equation of motion (5.3) is

− ∂F

∂t
= V + γ

(
∂F

∂qk

)2

+
γ

µ

∂2F

∂q2
k

(6.2)

which can be though of as a Hamilton-Jacobi equation for the Hamilton’s principle function
F and a Hamiltonian function

H

(
qk,

∂F

∂qk
,
∂2F

∂q2
k

)
= V + γ

(
∂F

∂qk

)2

+
γ

µ

∂2F

∂q2
k

. (6.3)

Note, however, that in classical mechanics the Hamiltonian function depends only on qk’s
and ∂F

∂qk
’s, but in our case it also depends on one more variable

∑
k
∂2F
∂q2k

.

From equations (4.2) and (5.4) we get

dqj
dt

= γ
∂F

∂qj
=

1

2
uj (6.4)

and then (6.2) can be rewritten as

dF

dt
=
∂F

∂t
+
dqk
dt

∂F

∂qk
= −γ

µ

∂2

∂q2
k

F − V. (6.5)

In the limit when the entropy production (due to both learning and stochastic dynamics)

is negligible, i.e.
∣∣∣ γµ ∂2

∂q2k
F
∣∣∣ � |V |, equations (6.4) and (6.5) can be used to obtain classical

equations of motion
d2qj
dt2

= −γ ∂V
∂qj

. (6.6)

In the opposite limit, |V | �
∣∣∣ γµ ∂2

∂q2k
F
∣∣∣, the equation for free energy (6.5) takes the following

form
∂F

∂t
= −γ

(
∂F

∂qk

)2

− γ

µ

∂2

∂q2
k

F. (6.7)

which has a simple time-independent (i.e. ∂F
∂t = 0) solution given by,

F = C0 +
1

µ

∑
k

log(Ck + µqk) (6.8)
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where C0 and Ck’s are arbitrary coefficients. Note that ∂F
∂t = 0 corresponds to a limit when

the change in the free energy production due to dynamics of xi’s is negligible or in other
words when the training dataset is not dynamical (as is often the case in machine learning).

The solution (6.8) has an exact form of the free energy for a canonical ensemble (2.7),

F =
1

2β
log det((1− βm) + βĜ)− N

2β
log(2π) =

1

2β

∑
i

log ((1− βm) + βλi)−
N

2β
log(2π),

(6.9)
with µ = 2β and the dynamical variables qi set to the eigenvalues λi of the operator Ĝ. In
this limit the average loss is

U =
∂(βF )

∂β
=

1

2

∑
i

λi
1 + βλi

= λi
∂F

∂λi
, (6.10)

where for simplicity we have set the mass parameter to zero, m = 0. This equation can be
thought of as a viral theorem for our learning system where ∂F

∂λi
is the “force” acting on a

“particle” at position λi. More generally, the eigenvalues λi’s could be arbitrary functions of
qi’s and time t and then

γ

µ

∑
k

∂2F

∂q2
k

=
γ

µ

∑
i,j,k

∂2F

∂λi∂λj

∂λi
∂qk

∂λj
∂qk

= −γβ
2µ

∑
i,k

((1− βm) + βλi)
−2

(
∂λi
∂qk

)2

= −2γβ

µ

∑
i,k

(
∂F

∂λi

∂λi
∂qk

)2

= −2γβ

µ

∑
i,j,k

∂F

∂λi

(
∂λi
∂qk

δij
∂λj
∂qk

)
∂F

∂λj

= −2γβ

µ

∑
i,j,k,m,n

∂F

∂qm

(
∂qm
∂λi

∂λi
∂qk

δij
∂λj
∂qk

∂qn
∂λj

)
∂F

∂qn

= −2γβ

µ

∑
i,k,m,n

∂F

∂qm

(
∂qm
∂λi

(
∂λi
∂qk

)2 ∂qn
∂λi

)
∂F

∂qn
(6.11)

where we assumed that ∂λi
∂qj

is invertible. This implies that for the canonical free energy

(6.9) the Hamiltonian function (6.3) can be written in terms of only first derivatives of the
Hamilton’s principle function F ,

H

(
qk,

∂F

∂qk

)
= V + γ

∂F

∂qm

(
δmn −

2β

µ

(
∂qm
∂λi

(
∂λi
∂qk

)2 ∂qn
∂λi

))
∂F

∂qn
, (6.12)

and, thus, the system is Hamiltonian although the kinetic term may not be canonical.

7 Hidden variables

We have seen that neural networks can exhibit both quantum (Sec. 5) and classical (Sec. 6)
behaviors if the dynamics of the trainable variables q (or equivalently of the bias vector b
and weight matrix ŵ) is followed explicitly, but the dynamics of the hidden variables (or the
state vectors x) was expressed only implicitly through ∂F

∂t . For this reason it was convenient
to think of the state vectors x as hidden random variables whose individual dynamics was
shadowed by our statistical description. In this section we shall be interested instead in
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a non-equilibrium dynamics of the hidden variables which is relevant, for example, on the
time-scales that are much smaller than thermalization time.

Recall that the state of the individual neurons evolves according to (2.1) which can be
approximated to the leading order as

x̄
(0)
i (t+ 1) ≈

(
f̂ ′0ŵ

)
ij
x̄

(0)
j (t) (7.1)

where f̂ ′0 = f̂ ′ is the matrix of first derivative of the activation function (2.9). More generally,
we can consider D non-interacting subsystems of states vectors (e.g. D separate sets of
training data) denoted by x(d) where d = 1, ..., D. Then the overall distribution of the state
vectors is in general multimodal with D local maxima, x̄(d), and each of these maxima evolves
according to

x̄
(d)
i (t+ 1) ≈

(
f̂ ′dŵ

)
ij
x̄

(d)
j (t) (7.2)

where
x̄(0) =

∑
d

x̄(d). (7.3)

and (
f̂ ′d

)
ii
≡
(
df(yi)

dyi

)
yi=wij x̄

(d)
j +bi

. (7.4)

It is convenient to define a continuous time coordinate τ such that

∂

∂τ
x̄

(µ)
i (τ) = α(x̄

(µ)
i (t+ 1)− x̄(µ)

i (t)) (7.5)

where µ = 0, 1...D and α is an auxiliary parameter. Although the different subsystems are
represented by different hidden variables x(d)’s, they are all processed by the very same neural
network described by the same trainable variable b and ŵ. With this respect the hidden
variables are not interacting directly with each other, but they are interacting (minimally)
through the trainable variables, b and ŵ. If such (minimal) interactions are negligible, then
∂x̄

(c)
i
∂τ

∂x̄
(d)
i
∂τ ∝ δcd with no summations over index i. Then

∂x̄
(0)
i

∂τ

∂x̄
(0)
i

∂τ
=
∑
d

∂x̄
(d)
i

∂τ

∂x̄
(d)
i

∂τ
for all i (7.6)

or

ηµν
∂x̄

(µ)
i

∂τ

∂x̄
(ν)
i

∂τ
= 0 for all i (7.7)

where η = diag(−1, 1, ..., 1). However, in general the minimal interactions cannot be ignored
and then

giµν
∂x̄

(µ)
i

∂τ

∂x̄
(ν)
i

∂τ
= 0 for all i (7.8)

where the metric tensor giµν describes the strength of the interactions. Of course, such a
description is only valid if the minimal interactions are weak which is the assumption we are
going to make.
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To estimate the dynamics of hidden variables x̄µ we assume that the activation function
is linear f̂ ′d = Î (with the slope set to one without loss of generality) and then from (7.1) and
(7.2) we have

x̄(µ)(t+ 1) ≈ wij x̄(µ)
j (7.9)

and (7.5) becomes

∂x̄
(µ)
i

∂τ
≈ α (wij − δij) x̄(µ)

j . (7.10)

According to the second law of learning it is expected that the neural network must have
evolved to a network with a very low complexity such as a network whose weight matrix is
a permutation matrix

ŵ = π̂. (7.11)

For example, consider a permutation matrix with only a single cycle which (up to permuta-
tions of elements) is given by

πij =

{
1 if i− 1 = j (mod N)

0 otherwise.
(7.12)

Then equation (7.10) can be rewritten as

∂x̄
(µ)
i

∂τ
= αx̄

(µ)
i−1(mod N)(t)− αx̄

(µ)
i (t). (7.13)

If we take a continuous limit by defining x̄(µ)(τ, σ) such that

∂

∂σ
x̄(µ)(τ, σ) = α(x̄

(µ)
i (t)− x̄(µ)

i−1(mod N)(t)) (7.14)

then (7.13) becomes

∂x̄(µ)

∂τ
= −∂x̄

(µ)

∂σ
. (7.15)

This equation has a simple solution of a periodic “right-moving” wave. In the light-cone
coordinates ξ± ≡ τ ± σ, the equation of motion (7.15) is

∂x̄(µ)

∂ξ+
= 0 (7.16)

and the constraint equation (7.7) is

ηµν
∂x̄(µ)

∂ξ−
∂x̄(ν)

∂ξ−
= 0. (7.17)

8 Relativistic strings

In the last section we have shown that an equation for a “right-moving” wave (7.16) can
emerge in a statistical description of D minimally-interacting subsystems of state vectors.
A natural question arises if a “left-moving” wave can also emerge in some limit and if so
can the dynamics be described in terms of relativistic strings in an emergent space-time?
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To answer this question we first note that the permutation weight matrix (7.11) (with an
arbitrary number of cycles) is such that,

π̂T π̂ = π̂π̂T = Î (8.1)

and thus

Ĝ (π̂) =
(
π̂ − Î

)T (
π̂ − Î

)
= Î − π̂ − π̂T + π̂T π̂ = Ĝ

(
π̂T
)
. (8.2)

Since the free energy (6.9) depends on π̂ only through Ĝ the very same ensemble of the state
vectors can equally likely evolve either towards π̂ or towards π̂T . However, if the exact state
of the microscopic weight matrix is unknown, then one must consider an ensemble which
contains both options and then the average state vector is given by

x̄
(µ)
i =

1

2

∫
dNx(µ)p(x(µ), π̂) x

(µ)
i +

1

2

∫
dNx(µ)p(x(µ), π̂T ) x

(µ)
i =

1

2
x̄

(µ−)
i +

1

2
x̄

(µ+)
i (8.3)

where the two terms represent statistical averages with respect to the two distributions.

Following the analysis of the previous section the dynamics of x̄
(µ−)
i and x̄

(µ+)
i can be

obtained from (7.10) for the respective weight matrices,

∂x̄
(µ−)
i

∂τ
≈ α (πij − δij) x̄(µ−)

j (8.4)

∂x̄
(µ+)
i

∂τ
≈ α

(
πTij − δij

)
x̄

(µ+)
j . (8.5)

In a continuum limit the equations are given by

∂x̄(µ−)

∂τ
= −∂x̄

(µ−)

∂σ
(8.6)

∂x̄(µ+)

∂τ
= +

∂x̄(µ+)

∂σ
(8.7)

whose solutions represent respectively the right- and left-moving waves. Then the dynamics
of the hidden variables (8.3) is indeed given by a 1 + 1 dimensional wave equation

∂2

∂τ2
x̄(µ)(τ, σ) =

∂2

∂σ2
x̄(µ)(τ, σ). (8.8)

In the light-cone coordinates the wave equation is

∂

∂ξ−
∂

∂ξ+
x̄(µ)(τ, σ) = 0 (8.9)

and the constraints

ηµν
∂x̄(µ)

∂ξ−
∂x̄(ν)

∂ξ−
= ηµν

∂x̄(µ)

∂ξ+

∂x̄(ν)

∂ξ+
= 0. (8.10)

The action which gives rise to the wave equations (8.9) and constraints (8.10) is the Polyakov
action which can be written in a covariant form as

A =

∫
dσdτ

√
−hhabηµν

∂x̄(µ)

∂ξa
∂x̄(µ)

∂ξb
(8.11)
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where hab is the world-sheet metric and h is its determinant.
In summary, we showed that D non-interacting subsystems of the state vectors x(d) can

be described with D + 1 scalar fields in 1 + 1 dimensions. Alternatively one can view the
configuration space of the scalar fields as an emergent space-time and then our system can
be described with a motion of relativistic strings in D + 1 dimensions (8.11). This is very
similar to what is usually done in string theory, with one major difference. Our strings arise
from the dynamics of the average state vectors x̄(µ) and not from the dynamics of the bias
vector b and weight matrix ŵ which undergo learning. Recall that the trainable variables
b and ŵ (or equivalently q) near equilibrium can be modeled by quantum mechanics (Sec.
5) and further away from the equilibrium by classical mechanics (Sec. 6). In contrast, the
state vectors x̄(µ) represent hidden variables of the quantum theory, but their dynamics (in
certain limits) is conveniently described by relativistic strings.

9 Emergent gravity

Consider a discrete action for the hidden variables (or state vectors),

A = giµν

(
α2
〈
x

(µ)
i Gijx

(ν)
j

〉
x
−
dx̄

(µ)
i

dτ

dx̄
(ν)
i

dτ

)
. (9.1)

where giµν describes interactions between the subsystems (7.8). This action is a lot more
general than (8.11), but it can be approximated by the string action for a flat target space,
giµν = ηµν , for a permutation weight matrix, ŵ = π̂, and for a linear activation function

f̂ ′d = Î. To study the dynamics in the emergent space-time it is convenient to rewrite (9.1)
as

A =

∫
dDX

√
−ggµνTµν (9.2)

where g is the determinant of gµν and

√
−gTµν ≡

(
α2
〈
x

(µ)
i Gijx

(ν)
j

〉
x
−
dx̄

(µ)
i

dτ

dx̄
(ν)
i

dτ

)∏
α

δ (Xα − x̄αi ) (9.3)

is the energy-momentum tensor density.
The equilibrium dynamics of neural networks was first modeled using the principle

of maximum entropy with a constraint imposed on the loss function [16], but to study a
non-equilibrium dynamics of the trainable variables the principle of the stationary entropy
production had to be used with a constraint was imposed on the dynamics of free energy
(4.8). In this section we study a non-equilibrium dynamics of the hidden variables, and so
the constraint should be imposed on the action which describes the dynamics of the state
vectors (9.2). Then, according to the principle of stationary entropy production, the quantity
which must be extremized is

Sx[g] =

∫
dD+1X

√
−gR(g) + κ

(
A−

∫
dD+1X

√
−ggµνTµν

)
(9.4)

where
√
−gR(g) is the local entropy production density, κ is a Lagrange multiplier and A is

a constant which represents average A. Note that the energy momentum tensor density (9.3)
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does not depend on the metric and so varying the corresponding term in (9.4) with respect
to the metric produces the desired result

δ

δgαβ

(∫
dD+1X

√
−ggµνTµν

)
=
√
−gTαβ. (9.5)

However, if we are not following the microscopic dynamics of all of the elements of the bias
vector and weight matrix, then it is more useful to define

LM (g,Q) ≡ −gµν 〈Tµν〉q (9.6)

where Q represents the trainable variables in q (or equivalently in b and ŵ) which were not
averaged over. Then the action (9.4) can be written as

Sx[g,Q] =

∫
dD+1X

√
−g (R(g) + κLM (g,Q)) + κA (9.7)

where LM (g,Q) plays the role of the “matter” Lagrangian and then the energy momentum
tensor should be defined as

√
−gT αβ ≡ − δ

δgαβ

(∫
dD+1X

√
−gLM (g,Q)

)
. (9.8)

The parameter κ is a Lagrange multiplier which imposes a “global” constraint

δSx[g]

δκ
= A+

∫
dD+1X

√
−gLM (g,Q) = 0 (9.9)

but one can also impose the constraint “locally” by demanding that

A =
2

κ

∫
dD+1X

√
−gΛ (9.10)

and then the total action becomes

Sx[g,Q] =

∫
dD+1X

√
−g (R(g)− 2Λ + κLM (g,Q)) (9.11)

where Λ is the “cosmological constant”.
Recall that the deviations of the metric gµν(X) (or giµν) from the flat metric ηµν repre-

sent local interactions between subsystems (7.8). Therefore, if our system is in the process
of equilibration, then the entropy production should be a local function of the metric ten-
sor. Using a phenomenological approach due to Onsager [21] we can expand the entropy
production around equilibrium [41],

√
−gR =

√
−gLµν αβ γδgαβ,µgγδ,ν . (9.12)

where

gαβ,µ ≡
∂gαβ
∂Xµ

(9.13)

and
√
−gLµν αβ γδ is the Onsager tensor density. The overall space of such tensors is pretty

large, but it turns out that a very simple and highly symmetric choice leads to general
relativity:

√
−gLµν αβ γδ =

1

4

√
−g
(

2gαγgβνgµδ − gαγgβδgµν − gαβgγδgµν
)
. (9.14)
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After integrating by parts, neglecting boundary terms and collecting all other terms we get∫
dD+1X

√
−g R =

∫
dD+1X

√
−ggµν 2

(
Γαν[µ,α] + Γβν[µΓαα]β

)
= (9.15)

=

∫
dD+1X

√
−g 1

4

(
2gαγgβνgµδ − gαγgβδgµν − gαβgγδgµν

)
gαβ,µgγδ,ν

where

Γµγδ ≡
1

2
gµν (gνγ,δ + gνδ,γ − gγδ,ν) (9.16)

and

Γαµν,β ≡
∂

∂Xβ
Γαµν . (9.17)

Thus, upon varying (9.4) with respect to the metric we get the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = κTµν (9.18)

where the Ricci tensor is defined as ussual

Rµν ≡ 2
(

Γαν[µ,α] + Γβν[µΓαα]β

)
. (9.19)

Note that according to definition (9.14) the Onsager tensor need not be positive definite
which would be inconsistent with the second law of thermodynamics, but is permitted by
the second law of learning.

10 Holography

In the preceding sections we applied the principle of the stationary entropy production to
study the dynamics of the neural networks in two different limits. In the first limit the train-
able variables q were treated stochastically, but their dynamics was constrained by the hidden
variables x through the free energy, F . The resulting dynamics of the system was shown to
exhibit quantum and classical behaviors described by the functional Sq[p, F ] (see (5.1)). In
the second limit the hidden variables x were treated stochastically, but their dynamics was
constrained by the trainable variables q through the action, A. The resulting dynamics of
the system was shown to exhibit a behavior described by the action of a gravitational metric
theory, such as general relativity, Sx[g,Q] (see (9.11)). The two limits are certainly very dif-
ferent: the “gravitational” theory describes very sparse and deep neural networks and in the
“quantum” theory the network can be very dense and shallow. However, one might wonder
if it may possible to map the sparse and deep neural network to the dense and shallow neural
network without losing the ability of the neural network to learn. If the answer is affirmative,
then this would imply that the two descriptions - quantum and gravitational (or dense and
sparse, or shallow and deep) - are dual and either one can be used to describe the learning
dynamics.

In this section we shall explore an idea that the duality not only exists, but is also
holographic in a sense that the degrees of freedom of the gravitational theory, i.e. x, b and
ŵ, can be mapped to only boundary degrees of freedom of the quantum theory, i.e. x∂ ,
b∂ and ŵ∂ . The non-equilibrium dynamics of both systems is governed by the principle
of stationary entropy production and to justify such a mapping the entropy production of
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the gravitational system ∆Sx should correspond to the entropy production of the quantum
system ∆S∂q . Roughly speaking, this means that the uncertainty in the position of neurons
in the bulk, x, should correspond to the uncertainty in the values of quantum variables on
the boundary, i.e. b∂ and ŵ∂ . For example, consider a mapping defined by

x∂ = P̂∂x (10.1)

b∂ = P̂∂b (10.2)

ŵ∂(ε) = P̂∂
εŵ

Î − εŵ
P̂ T∂ (10.3)

In a microscopic picture the gravitational system consists of long chains of neurons (see Sec.
7) connecting different pairs of the boundary neurons, i and j, but the length of these chains
is encoded in the elements of the boundary weight matrix,

d(i, j) = logε

(
w∂ij(ε)

)
− 1. (10.4)

The smaller the element w∂ij , the larger the number of intermediate bulk neurons connecting
i to j. Whenever any two chains of neurons i-j and k-l have a chance of intersecting and
forming two other chains of neurons i-l and k-j, the entropy of the bulk theory changes. On
the other side of the duality, the same event can lead to the corresponding elements w∂ij , w

∂
kl,

w∂kj and w∂il to change or, in other words, to the entropy production in the boundary theory.
Thus, it is not too unreasonable to expect that the entropy production in both system are
related.

The holographic duality can be formulated more precisely by considering the action func-
tionals which determine the dynamics in both theories. In the boundary theory the action
Sq
[
p(q∂), F (q∂)

]
is given by equation (5.1) and in the bulk theory the action Sx[g(X), Q(X)]

is given by equation (9.11). For the two systems to be dual the two actions must be propor-
tional

Sx[g(X), Q(X)] ∼ Sq
[
p(q∂), F (q∂)

]
, (10.5)

or, using (5.1) and (9.11),∫
dD+1X

√
−g (R(g)− 2Λ + κLM (g,Q)) (10.6)

∼
∫
dt dK

∂
q∂
√
p

−4D
∂2

∂q2
k

+ γ

(
∂

∂q∂k

)2

F + µ
∂F

∂t
+ µγ

(
∂

∂q∂k

)2

F + µV

√p.
The left hand side describes the bulk gravitational theory, the right hand side describes the
boundary theory and the duality transformation is nothing but changes of variables between
(g,Q) and (p, F ). Note, however, that the boundary theory can be approximated by quantum
mechanics only in the limit when the entropy production due to learning (i.e. the quantity
in the box in (10.6)) is subdominant. Therefore the holography described by (10.5) should
be considered as more general than the holography discussed, for example, in context of the
AdS/CFT correspondence where the CFT side is quantum and the AdS side is gravitational.

11 Discussion

In this paper we discussed a possibility that the entire universe on its most fundamental level
is a neural network. This is a very bold claim. We are not just saying that the artificial neural
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networks can be useful for analyzing physical systems [22] or for discovering physical laws
[23], we are saying that this is how the world around us actually works. With this respect
it could be considered as a proposal for the theory of everything, and as such it should be
easy to prove it wrong. All that is needed is to find a physical phenomenon which cannot be
described by neural networks. Unfortunately (or fortunately) it is easer said than done. It
turns out that the dynamics of neural networks is so complex that one can only understand
it in very specific limits. The main objective of this paper was to describe the behavior
of the neural networks in the limits when the relevant degrees of freedom (such as bias
vector, weight matrix, state vector of neurons) can be modeled as stochastic variables which
undergo a learning evolution. In this section we shall briefly discuss the main results and
implications of the results for a possible emergence of quantum mechanics, general relativity
and macroscopic observers from a microscopic neural network.

Emergent quantum mechanics is a relatively new [24, 25], but rapidly evolving field
[26–31] which is based on a set of very old ideas, dating back to the works of de Brogie and
Bohm. The de Broglie-Bohm theory (also known as pilot wave theory or Bohmian mechanics)
was originally formulated in terms of non-local hidden variables [12] which makes it an easy
target. The main new insight is that quantum mechanics may not be a fundamental theory,
but only a mathematical tool which allows us to carry out statistical calculations in certain
dynamical systems. If correct, then one should be able to derive all of the essential ingredients
(complex wave-function, Schrödinger equation, etc.) from first principle. In this paper we
did exactly that for a dynamical system of a neural network which contains two different
types of degrees of freedom: trainable (e.g. bias vector and weight matrix) and hidden (e.g.
state vector of neurons). What we showed is that the dynamics of the trainable variables
near equilibrium is described by Madelung (or equivalently Schrödinger) equations with free
energy (for a canonical ensemble of hidden variables) representing the quantum phase (see
Sec. 5), and further away from the equilibrium their dynamics is described by Hamilton-
Jacobi equations with free energy representing the Hamilton’s principal function (see Sec. 6).
This demonstrates that the neural networks can indeed exhibit emergent quantum and also
classical behaviors. It is important to emphasize that the learning dynamics was essential
and the stochastic dynamics alone would not have produced the desired result.

Emergent (or entropic) gravity is also a relatively new field [7–9], but it is far less
clear if or when progress is being made. The main problem is that emergent gravity is not
just about gravity, but is also about emergent space [32–35], emergent Lorentz invariance
[36–38], emergent general relativity [39–41] etc. Quite remarkably, neural networks open up
a new avenue to address all these problems in context of the learning dynamics. It turns
out that a dynamical space-time can indeed emerge from a non-equilibrium evolution of the
hidden variables (i.e. state vector of neurons) in a manner very similar to string theory. In
particular, if one considers D minimally-interacting (trough bias vector and weight matrix)
subsystems with average state vectors, x̄1, ..., x̄D (and the total average state vector x̄0)
then the dynamics of x̄µ can be modeled with relativistic strings in an emergent D + 1
dimensional space-time (see Secs. 7 and 8) and if the interactions are described by a metric
tensor, then the dynamics can be modeled with Einstein equations (see Sec. 9). Once again,
not only stochastic, but also learning dynamics was essential for the equilibration of the
emergent space-time to exhibit behavior of a gravitational theory such as general relativity.
This demonstrates that the dynamics of a neural network in the appropriate limits can be
approximated by both emergent quantum mechanics and emergent general relativity, but the
two limits are very different. The gravitational theory describes very sparse and deep neural
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networks and in the quantum theory the neural network can be very dense and shallow.
However, it is possible that there exists a holographic duality map between the bulk neurons
of the deep and sparse network to the boundary neurons of the shallow and dense network
(see Sec. 10).

We now come to one of the most controversial questions: how can macroscopic observes
emerge in a physical system? The question is extremely important not only for settling some
philosophical debates, but for understanding the results of real physical experiments [12]
and cosmological observations [13]. As was already mentioned, our current understanding
of fundamental physics does not allow us to formulate a self-consistent and paradoxes-free
definition of observers and a possibility that observers is an emergent phenomenon is cer-
tainly worth considering. Indeed, if both quantum mechanics and general relativity are not
fundamental, but emergent phenomena, then why cannot macroscopic observers also emerge
in some way from a microscopic neural network. Of course this is a lot more difficult task
and we are not going to resolve it completely, but we shall mention an old idea that might be
relevant here. It is the principle of natural selection. We are not talking about cosmological
natural selection [42], but about the good old biological natural selection [43], although the
two might actually be related. Indeed, if the entire universe is a neural network, then some-
thing like natural selection might be happening on all scales from cosmological (> 10+15 m)
and biological (10+2 − 10−6 m) all the way to subatomic (< 10−15 m) scales. The main idea
is that some local structures (or architectures) of neural networks are more stable against
external perturbations (i.e. interactions with the rest of the network) than other local struc-
tures. As a result the more stable structures are more likely to survive and the less stable
structures are more likely to be exterminated. There is no reason to expect that this process
might stop at a fixed time or might be confined to a fixed scale and so the evolution must
continue indefinitely and on all scales. We have already seen that on the smallest scales the
learning evolution is likely to produce structures of a very low complexity (i.e. second law of
learning) such as one dimensional chains of neurons, but this might just be the beginning.
As the learning progresses these chains can chop off loops, form junctions and according to
natural selection the more stable structures would survive. If correct, then what we now call
atoms and particles might actually be the outcomes of a long evolution starting from some
very low complexity structures and what we now call macroscopic observers and biological
cells might be the outcome of an even longer evolution. Of course, at present the claim that
natural selection may be relevant on all scales is very speculative, but it seems that neural
networks do offer an interesting new perspective on the problem of observers.
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