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1. Introduction

Recently, much attention has been paid on modified gravities,
and specifically on their possible role in the accelerated expansion
of the universe, a fact widely accepted by a major part of the sci-
entific community, and strongly supported by the observations. In
this sense, the so-called f (R) gravity is the easiest and most popu-
lar classical extension of General Relativity (GR) because of its sim-
plicity and absence of ghosts (for a recent review on f (R) gravity,
see Ref. [1]). In addition, the reconstruction of f (R) theories that
are capable of reproducing the dark energy epoch, and even the
inflationary phase, is generally straightforward in comparison with
other modifications of gravity (see Refs. [2–4]). f (R) gravity is able
of reproducing �CDM epoch (see Ref. [3]), or mimicking a cosmo-
logical constant at the current era, and even unifying the entire
cosmological history [4]. Moreover, some f (R) gravities, so-called
viable models, can pass the local gravitational tests and reproduce
a realistic cosmological evolution (see Ref. [5]). As well viable f (R)

gravity may pass the matter instability [6], a large perturbation
that may occur in the study of celestial body solution. Neverthe-
less, viable f (R) models are known to reproduce a kind of future
singularity (see Ref. [7]), a problem that can be circumvented in
the scalar–tensor representation of f (R) gravity, [8]. Other modi-
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fied gravities (like Gauss–Bonnet ones) which are also capable of
reproducing the dark energy epoch have been also studied [9].

However, much less attention has been paid to more complex
theories, specially to those theories that contain a non-standard
coupling of curvature with energy–momentum tensor. Recently,
class of modified gravity theories in which the gravitational action
contains a general function f (R, T ), where R and T denote the
curvature and the trace of the energy–momentum tensor respec-
tively, has been proposed (see Ref. [10]). Cosmological evolution
of such theories has been studied, including the reconstruction of
cosmological solutions and the presence of future singularities (see
Ref. [11]). Nevertheless, such strong coupling of the curvature and
the trace T implies the violation of the usual continuity equation,
an issue that can be solved by an appropriate function f (R, T ),
as shown for the first time in Ref. [12]. Nonetheless, this function
gives rise to an evolution of cosmological perturbation for the sub-
Hubble modes which deviates significantly from the standard GR
results, eventually leading to singularities of matter perturbations
(see Ref. [12]) and to the appearance of an extra force in geodesic
equation if conservation law is violated.

In the present work, an extension of f (R, T ) gravity is pro-
posed. The action described by a generic function f (R, T , Rμν T μν)

is considered, where R is the scalar curvature, T is the trace of
the energy–momentum tensor, and Rμν is the Ricci tensor. Then,
the general FRLW field equations are derived in the presence of
Rμν T μν coupling terms. Several cosmological solutions are stud-
ied, where it is found that generally the matter sector does not
behave as in GR, since the divergence of the field equations does
not lead to the usual continuity equation. Nevertheless, this issue
can be solved by assuming a particular f (R, T , Rμν T μν), where
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due to the extra degree of freedom, the usual cosmological evolu-
tion for a perfect fluid can be imposed. In addition, a pure de Sitter
solution is discussed, which can be realized even in the presence
of a non-constant fluid. The occurrence of �CDM universe is also
analyzed: the corresponding gravitational action f (R, T , Rμν T μν)

is reconstructed, where GR with a cosmological constant is just
a particular solution. Finally, the matter instability, a perturbation
that may be induced in the interior of celestial body solution, is
discussed for such class of models.

Note that physical motivation for the theory under consid-
eration comes from covariant Hořava-like gravity with dynami-
cal breaking of Lorentz invariance. Actually, such power-counting
renormalizable covariant gravity [14] represents simplest, power-
law version of f (R, T , Rμν T μν) theory. One can expect that such
theories may provide deeper connection between modified gravity
and Hořava–Lifshitz theory.

2. f (R, T , Rμν T μν) gravity

Let us start from the general action for f (R, T , Rμν T μν) gravity,

S = 1

2κ2

∫
d4x

√−g f
(

R, T , Rμν T μν
) +

∫
d4x

√−g Lm

= SG + Sm. (1)

Here, κ2 is gravitational coupling constant, R is the Ricci scalar
and T represents the trace of the energy–momentum tensor, T =
T μ
μ , while Lm is the matter Lagrangian. As usually the energy–

momentum tensor is defined as

T μν = 2√−g

δSm

δgμν
. (2)

Then, by assuming a matter action that only depends on the metric
but does not on its first derivatives, the energy–momentum tensor
yields

T μν = gμνLm + 2
δLm

δgμν
. (3)

Hence, field equations are obtained by varying the action (1) with
respect to the metric gμν ,

δS = 1

2κ2

∫
d4x

[
δ(

√−g ) f
(

R, T , Rμν T μν
)

+ √−g
(

f RδR + f T δT + f P δRμν T μν
)]

+
∫

d4x δ(
√−gLm). (4)

Here P = Rμν T μν has been defined for convenience and in or-
der to simplify the expressions that are coming below, whereas
the subscript means variation with respect to P , R and T . Those
terms corresponding to the variations of the metric determinant,
the Ricci scalar and the trace of the energy–momentum tensor
have been already found in the literature (see Ref. [10])

δ
√−g = −1

2

√−g gμνδgμν, (5)

f RδR + f T δT

= [
Rμν f R + (gμν� − ∇μ∇ν) f R + (Tμν + Θμν) f T

]
δgμν, (6)

where the second term in the rhs of (6) has been integrated by
parts, whereas the tensor Θμν is defined as

Θμν = gαβ δTαβ

δgμν
= gμνLm − 2Tμν − 2gαβ δ2Lm

δgμνδgαβ
. (7)

The terms corresponding to the variation of Rμν T μν yield
f P δ
(

Rμν T μν
) = f P

(
δRμν T μν + RμνδT μν

)
. (8)

Since the variation of the Ricci tensor is given by

δRμν = ∇σ δΓ σ
μν − ∇νδΓ σ

μσ , (9)

where

δΓ σ
μν = 1

2
gσλ(δgμλ;ν + δgνλ;μ − δgμν;λ). (10)

The variation of the first term in (8) with respect to the metric
yields

f P T μνδRμν =
[

1

2

(� f P Tμν + gμν∇α∇β f P T αβ
)

− ∇α∇ν f P T α
μ

]
δgμν, (11)

whereas the variation over the second term in (8) is given by

f P RμνδT μν = f P

[
−GμνLm − 1

2
RTμν + 2Rα

μTαν

− 2Rαβ δ2Lm

δgμνδgαβ

]
δgμν. (12)

Note that for a regular f (R, T , Rμν T μν) function, in the absence of
any kind of matter, the f (R) gravity equations are recovered. The
corresponding properties and solutions well studied in the litera-
ture on f (R) gravity are also satisfied by f (R, T , Rμν T μν) theories
in classical vacuum (for a recent review on f (R) theories, see [1]).
Moreover, here we are interesting to study the behavior of this
kind of theories for flat FLRW metrics, which are expressed in co-
moving coordinates by the line element

ds2 = −dt2 + a(t)2(dr2 + r2 dθ2 + r2 sin2 θ dϕ2), (13)

where a(t) is the scale factor. Then, the main issue arises on
the content of the universe through the energy–momentum ten-
sor, and consequently on the matter Lagrangian Lm through the
terms Rμν T μν and T = T μ

μ . Since the flat FLRW cosmology (13) is
assumed, the content of the universe (pressureless matter, radia-
tion, . . .) can be well described by a perfect fluid, whose energy–
momentum tensor can be defined in several ways, but which is
assumed here to have the form

Tμν = pgμν + (ρ + p)uμuν . (14)

Here ρ and p are the energy and pressure densities respectively,
and uμ is the four-velocity of the fluid, which satisfies uμuμ = −1,
and is given by uμ = (1 0 0 0) in comoving coordinates. The defi-
nition of the matter Lagrangian for a perfect fluid is not unique,
following the definition suggested in Ref. [10], and in order to
be consistent with the variation of the energy–momentum tensor
(14) with respect to the metric, Lm = p is assumed, and conse-
quently the second variation of the matter Lagrangian in (7) and
(12) becomes null. However, note that other choices of the matter
Lagrangian would give rise to the same results. Hence, the tensor
Θμν , defined in (7), yields

Θμν = −2Tμν + pgμν, (15)

whereas the tensor Ξμν defined in (12) can be expressed as

Ξμν = −Gμν p − 1

2
RTμν + 2Rα

(μTν)α. (16)

Hence, the complete set of the field equations is given by
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Rμν f R − 1

2
gμν f + (gμν� − ∇μ∇ν) f R + (Tμν + Θμν) f T

+ 1

2

(�Tμν f P + gμν∇α∇β T αβ f P
)

− ∇α∇(μT α
ν) f P + Ξμν f P = κ2Tμν, (17)

where recall that P = Rμν T μν . Then, for a particular equation of
state (EoS) p = wρ , the corresponding FLRW equations can be ob-
tained, and its cosmology studied. Nevertheless, note that the usual
continuity equation is not satisfied in general, since the divergence
of Eq. (17) is not null. In the case of f (R, T ) gravity, a particu-
lar form of the action that recovers the continuity equation was
found in Ref. [12]. Nevertheless, in the case of f (R, T , Rμν T μν)

gravity, where terms proportional to Rμν T μν appear in the action,
an explicit form of the gravitational Lagrangian that satisfies the
continuity equation cannot be obtained in general, since the equa-
tion involves very complex expressions that does not allow to get
an explicit form of the action f (R, T , Rμν T μν), as pointed out in
Ref. [13]. In addition, note that the presence of different species
in the matter Lagrangian may lead to different constraints in the
action, for instance the electromagnetic field, where T = 0. Nev-
ertheless, by exploring some particular cosmological solutions, the
dynamics of the matter sector may lead to similar behaviors as in
GR.

3. Cosmological solutions

In this section, some particular cosmological solutions are stud-
ied, and the corresponding action is reconstructed. A pressureless
fluid, where wm = 0, is assumed along the section. From one side
such choice simplifies the calculations, and from the other side, a
pressureless fluid represents a suitable description of the baryonic
and cold dark matter content of the universe, whereas the dark
energy sector is comprised by the modifications of GR. Then, the
energy–momentum tensor reads T μ

ν = Diag(−ρ,0,0,0), whereas
the trace T and the scalar P give rise to

T = T μ
μ = −ρ,

P = Rμν T μν = R00T 00 = −3ρ
(

H2 + Ḣ
)
. (18)

3.1. Model f (R, Rμν T μν) = αR + f (Rμν T μν)

Let us start by considering the action f (R, Rμν T μν) = αR +
f (Rμν T μν), where the dependence on the trace T is omitted. By
assuming the flat FLRW metric (13), the FLRW equations are

3αH2 + 1

2

[
f − 3H∂t(ρ f P ) − 3

(
3H2 − Ḣ

)
ρ f P

] − κ2ρ = 0,

−α
(
3H2 + 2Ḣ

) − 1

2

[
f − ∂tt(ρ f P ) − 4H∂t(ρ f P )

− (
3H2 + Ḣ

)
ρ f P

] = 0. (19)

At this point, a particular cosmological solution, described by a
given Hubble parameter H(t) can be considered. The correspond-
ing action f (Rμν T μν) could be reconstructed. In addition, one can
note that the usual continuity equation is not longer valid. Hence,
the time dependence of the energy density ρ(t) has to be also ob-
tained from the above Eqs. (19), which implies more complicated
treatment for reconstructing the gravitational theory than within
the framework of f (R) gravity.

First of all, let us consider cosmological solutions of the type,

a(t) = a0tm → H = m
, (20)
t

that shall be refereed to as power-law behavior. Within GR, this
type of solutions accomplishes the scale factor evolution for per-
fect fluids with a constant EoS, such as dust (m = 2/3) or radiation
(m = 1/2) dominated universe. Then, since the FLRW equations
(19) shall be composed by powers of the time variable, a natural
consideration would be to assume ρ(t) and f (P (t)) to be powers
of the cosmic time as well,

ρ(t) = ρ0tσ ,

f = β Pn = β
(

Rμν T μν
)n = β

[−3ρ0m(m − 1)
]n

tn(σ−2). (21)

Then, the FLRW equations (19) yield

3α
m2

t2
− κ2ρ0tσ

+ β
[n2(σ − 2) + 3n(m + 1) + m − 1][−3m(m − 1)ρ0]n

2(m − 1)

× tn(σ−2)

= 0,

6α(m − 1)(3m − 2)m2

6(m − 1)mt2
+ β

[
3(m − 1)m + n(2 + m)(1 + 3m)

+ n2(σ − 2)(4m − 3) + n3(σ − 2)2]/6(m − 1)m

× [−3ρ0m(m − 1)
]n

tn(σ−2) = 0. (22)

In general, the matter density does not satisfy the continuity equa-
tion, but according to (20) and (21), if σ = −3m the usual evolu-
tion for a pressureless fluid is recovered. Let us consider several
cases depending on the choice of the coupling constants.

• In the most general case, where all the coupling constants are
non-zero, the only possible solution of the equations yields

σ = −2, n = 1/2. (23)

Whereas, {α,β} are expressed in terms of m,

α = 9m − 7

6m(3m2 − 3m + 1)
κ2ρ0,

β = 2(3m − 2)(m − 1)

(3m2 − 3m + 1)
√−3m(m − 1)

κ2√ρ0. (24)

In order to ensure a real and physical gravitational action,
m < 1 according to the expression of β in (24), which al-
lows the radiation or matter dominated evolution of GR-type,
but forbids any accelerating solution (m > 1). Moreover, for
m = 2/3, the usual continuity equation is recovered, which
leads to a dust matter-like dominated evolution. Hence, the
above gravitational theory is capable of reproducing the mat-
ter dominated epoch with the presence of the extra terms in
the action.

• By considering α = 0, the gravitational action turns out to be
f = β Pn = β(Rμν T μν)n , and from (22),

n = σ

σ − 2
. (25)

Then, Eqs. (22) give rise to a system of two transcendental
equations that can be solved numerically, with three variables
{m, σ ,β} that lead to an infinite number of solutions. By set-
ting σ = −3m in order to satisfy the continuity equation, the
number of variables is reduced and the system can be solved
numerically.
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• Finally, by assuming that the coupling among the gravitational
and matter sectors is described solely through Rμν T μν , ba-
sically by setting κ2 = 0, the exponent of the action (21) is
constrained to

n = − 2

σ − 2
. (26)

Then, as above, Eqs. (22) become a system of algebraic equa-
tions for the constants {m, σ } in terms of {α,β}, which de-
scribes a set of infinite solutions, but confirms the suitability
of the action with f (P ) = Pn = (Rμν T μν)n for reproducing
power-law expansion. As above the number of variables of the
equations can be reduced by imposing σ = −3m.

Nevertheless, the reconstruction of the exact expression for the
gravitational action is not possible in general, and numerical cal-
culations are required, as shown below. In addition, note that the
evolution of the energy density behaves differently to the one
given in GR. This may not be important for the illustration of the
reconstruction procedure, as for instance, the solutions considered
above, but it may seriously affect the observational constraints
when a realistic evolution is studied. In this sense, the FLRW equa-
tions (19) are two differential equations for the functions ρ(z) and
f (Rμν T μν) = f (z), expressed in terms of the redshift. They do
not ensure that the solution for the energy density behaves in the
proper way as observations suggest, namely ρm ∝ (1 + z)3 for dust
matter, apart from the trivial solution f (Rμν T μν) = −2Λ that re-
covers GR with a cosmological constant, and the usual continuity
equation is satisfied again. Hence, more general actions should be
considered in order to provide a realistic evolution.

3.2. Model f (R, T , Rμν T μν) = R + f (Rμν T μν) + g(T )

By assuming an action described by f (R, T , Rμν T μν) = R +
f (Rμν T μν) + g(T ), the FLRW equations are slightly modified in
comparison with the above case,

3H2 + 1

2

[
f + g − 3H∂t(ρ f P ) − 3

(
3H2 − Ḣ

)
ρ f P

]
− ρ

(
κ2 − gT

) = 0,

−3H2 − 2Ḣ − 1

2

[
f + g − ∂tt(ρ f P ) − 4H∂t(ρ f P )

− (
3H2 + Ḣ

)
ρ f P

] = 0. (27)

Within this section, the above equations are expressed in terms of
the redshift 1 + z = 1

a(t) , where d
dt = −(1 + z)H d

dz , whereas P =
P (z) and T = T (z). In addition, a new variable is defined χ(z) =
ρ f P which simplifies Eqs. (27) by extending the system to a set of
three differential equations

3H2 + 1

2

{
f (z) + g(z) − 3

[
3H2 + (1 + z)H H ′]χ(z)

+ 3H2(1 + z)χ ′(z)
} −

(
κ2 + g′(z)

ρ ′(z)

)
ρ(z) = 0,

−3H2 + (1 + z)H H ′

− 1

2

{
f (z) + g(z) − [

3H2 − (1 + z)H H ′]χ(z)

+ [
3(1 + z)H2 − (1 + z)2 H H ′]χ ′(z) + (1 + z)2χ ′′(z)

} = 0,

χ(z) − ρ(z) f ′(z)

P ′(z)
= 0. (28)

Hence, the system is composed by three equations with four
unknown functions { f (z), g(z),χ(z),ρ(z)}. In comparison with the
above section, the presence of an additional function g(T ) intro-
duces a new degree of freedom that allows to impose the usual
evolution of the energy density

ρ = ρ0a−3(1+wm) = ρ0(1 + z)3(1+wm). (29)

Recall that the reconstruction procedure is restricted to pressure-
less fluids in this section, so (29) reduces to ρ ∝ (1 + z)3 when
dust matter wm = 0 is assumed. Hence, the system of equations
(28) is completely solved by the set of functions { f (z), g(z),χ(z)}.
In addition, note that Eqs. (28) can be reduced to a single fourth
order equation in f (z) by replacing the second and third equations
into the first one, whereas by assuming (29), the expressions (18)
yield

T = T μ
μ = −3H2

0

κ2
Ω0

m(1 + z)3,

P = Rμν T μν = R00T 00

= −3
3H2

0

κ2
Ω0

m(1 + z)3(H2 − (1 + z)H H ′), (30)

where Ω0
m = ρ0

3
κ2 H2

0
, and the subscript 0 refers to the value at

z = z0. Moreover, in order to keep the correct units in the action,
the functions f (P ) and g(T ) can be defined more conveniently as

f (P ) = H2
0 F

(
P

P0

)
, g(T ) = H2

0 G

(
T

T0

)
, (31)

where

P0 = −9H4
0Ω0

m

κ2
, T0 = −3H2

0

κ2
Ω0

m. (32)

As an illustrative examples, let us consider de Sitter (dS) solutions

H(z) = H0. (33)

The system of equations (28) can be easily reduced to a single
equation in terms of F (z) that yields

2(1 + z)3 F (4)(z) + (1 + z)2 F (3)(z) − 10(1 + z)F ′′(z)

+ 36F ′(z) − 162Ωm(1 + z)2 = 0, (34)

which is straightforward to solve. The solution is obtained in terms
of the redshift,

F (z) = C1(1 + z)α + (1 + z)β
{

C2 cos
[
ω ln(1 + z)

]
+ C3 sin

[
ω ln(1 + z)

]} + C4 + 3Ω0
m(1 + z)3, (35)

where

α = −1.327, β = 3.414, ω = 1.38, (36)

whereas Ci are integration constants. Moreover, for the dS solution
(33) and the energy density (29), the terms P/P0 = T /T0 = (1 +
z)3, and the function F (Rμν T μν) yields

F (P ) = C1

(
P

P0

)α

+
(

P

P0

)β/3{
C2 cos

(
ω

3
ln

P

P0

)

+ C3 sin

(
ω

3
ln

P

P0

)}
+ C4 + 3Ω0

m
P

P0
. (37)

Whereas G(T ) acquires a similar form

G(T ) = C̃1

(
T

T0

)α/3

+
(

T

T0

)β/3{
C̃2 cos

(
ω

3
ln

T

T0

)

+ C̃3 sin

(
ω

ln
T

)}
+ C̃4 − 3Ω0

m
T

, (38)

3 T0 T0
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Fig. 1. The right panel corresponds to the function F (P/P0), whereas the left panel shows G(T /T0), both for the �CDM model. Each curve represents a set of initial
conditions of the differential equations (28), which have been set up at z = 0, assuming values less than the unity for the derivatives {F (i)(z), G(i)(z)} in order to be as close
as possible to GR.
where C̃i are constants that depend on the integration constants
Ci and the parameters (36). Then, the complete action can be re-
constructed for this illustrative case, where the evolution of the
energy density (29) has been imposed in order to satisfy the usual
continuity equation. An interesting remark comes from the fact
that in the usual approach to modified gravity, as for instance
f (R) gravity, pure dS solution (33) does not admit the presence
of a non-constant fluid, since the lhs of the field equations is con-
stant, so the energy–matter sector cannot depend on time. Nev-
ertheless, f (R, T , P ) gravity allows dS solutions in the presence
of non-constant fluids due to the term P = Rμν T μν of the ac-
tion.

Let us now consider the reconstruction of a theory capable of
reproducing the Hubble parameter described by the �CDM model,
but in the absence of a cosmological constant, a possibility already
explored in f (R) gravity (see [3]). The following Hubble parameter
is considered,

H2 = κ2

3
ρ0a−3 + Λ

3
. (39)

Here, ρ0 is the energy density at the current time (with a0 = 1),
and Λ is a constant. By expressing (39) in terms of the redshift 1+
z = 1

a , and the cosmological parameters Ω0
m = ρ0

3H2
0/κ2 and Ω0

Λ =
Λ

3H2
0

, the Hubble parameter (39) is rewritten as

H2 = H2
0Ω0

m(1 + z)3 + H2
0Ω0

Λ. (40)

Note that the model considered previously, f (R, P ) = R + f (P )

would give rise to a completely different behavior of the energy
density in comparison with (29), except for the trivial solution
f (P ) = −2Λ, where GR is recovered. Nevertheless, by assuming
the model f (R, T , P ) = R + f (P ) + g(T ), the evolution of the en-
ergy density (29) can be imposed and the system results in a linear
system of differential equations over f and g , as was pointed
above. However, note that the system (28) cannot be solved ex-
actly in this case (and in general), but numerical calculations are
required. By considering the energy-density evolution (29) and
the Hubble parameter (40), the functions P (z) and T (z) take the
form

P (z) = Rμν T μν(z) = 9H4
0Ω0

m

2κ2

(
Ω0

m(1 + z) − 2ΩΛ

)
,

T (z) = −3H2
0

κ2
Ω0

m(1 + z)3. (41)

Then, the system of equations (28) can be solved numerically for
the Hubble parameter (40), which leads to a set of functions for
F and G , defined in (31). For an illustrative propose, some of the
solutions are shown in Fig. 1, which illustrates the kind of grav-
itational action compatible with the �CDM evolution (40). As a
particular case, by setting all the derivatives of F and G to zero at
z = 0, but where F (z = 0) = G(z = 0) = 1, the solution of Eqs. (28)
yields

f
(

R, T , Rμν T μν
) = R + f

(
Rμν T μν

) + g(T )

= R − 6H0ΩΛH2
0 = R − 2Λ, (42)

where we have used Ω0
Λ = Λ

3H2
0

. This is the trivial case that reduces

the gravitational action to GR with a cosmological constant. How-
ever, there is an infinite number of solutions of Eqs. (28) which
keep the dependence both on P as T .

Using same technique one can reconstruct other types of evo-
lution in the theory under discussion.

4. Matter instability of celestial body solutions

This section is devoted to study of so-called matter instability
due to the modifications of the gravitational action. In the pres-
ence of gravitational objects, as the Sun or the Earth, tiny modi-
fications of GR may make the system to become unstable in the
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interior solution, a phenomena called the matter instability (see
Ref. [6]). This problem has been already analyzed in f (R) grav-
ity, where it has been that matter instability can be avoided by
an appropriate choice of the function that depends on the Ricci
scalar (see Ref. [4]). Furthermore, it has been demonstrated that in
viable f (R) gravities such instability does not occur as well (for
review, see [1]). Nevertheless, the problem becomes much more
complicated in the case of f (R, T , Rμν T μν) gravity, since the field
equations are very difficult to solve, even in the linear approxima-
tion, as shown below.

Let us consider for simplicity f (R, T , Rμν T μν) = f1(R) +
f2(T ) + f3(Rμν T μν). For a spherical body solution, the field equa-
tions have to be solved both in the exterior as well in the interior
of the body. In the exterior, where T = 0, the field equations
(17) reduce to the f (R) gravity ones. The curvature R0 becomes
constant and is given by the solution of an algebraic equation,
being R0 = 0 in GR and in some f (R) gravities. Nevertheless,
the interior solution may differ substantially from GR, introduc-
ing corrections in the curvature that may lead to large instabili-
ties.

For this analysis, the trace equation is considered, which can
be easily obtained by multiplying the field equations (17) by the
metric gμν

R f1R − 2 f + 3� f1R + (T + Θ) f2T + 1

2
�T f3T

+ ∇α∇β T αβ f3P + Ξ f3P = κ2T , (43)

where P = Rμν T μν as defined previously. Then, let us assume that
T = T0 describes correctly the interior of the celestial body, and
according to GR the interior curvature gives

R0 = −κ2T0, (44)

which is basically the trace equation of GR. In f (R) gravity, the
issue arises because the extra terms in the action may induce a
perturbation on the curvature δR that could grow very fast, giving
rise to unstable spherical bodies. However, for some specific f (R)

functions, most of them called viable f (R) gravities, the problem
can be circumvented, [5]. In f (R, T , Rμν T μν) gravity, the problem
becomes even worse, since the strong coupling among the cur-
vature and the energy–momentum tensor may prevent T0 being
even a solution of the background equation. Nevertheless, by an
appropriate f2(T ) function, the energy–momentum tensor is able
to behave as in GR, similarly as shown in the previous section in
the cosmological context, although the possible presence of a large
perturbation δR , and additionally δP , or equivalently T0δRμν , may
appear. Let us assume that T = T0 = − R0

κ2 is a solution of the back-
ground equation (43), and a small perturbation in the curvature is
considered

R = R0 + δR, P = P0 + δP . (45)

Then, Eq. (43) at first linear order yields

3 f (2)
1 �δR − 6κ2 f (3)

1 gαβ∇αT0∇βδR

+ κ2
[
−T0 f (2)

1 − f (1)
1

κ2
− 3 f (3)

1 �T0

+ 3κ2 f (4)
1 ∇αT0∇αT0 + P0 f (1)

3

(
Lm − 1

2
T0

)]
δR

+ 1

2
T0 f (2)

3 �δP + [
f (2)
3

(
gαβ∇αT0 + 2∇αT αβ

0 + T αβ

0 ∇α

)

+ (
T0 gαβ + 2T αβ)

f (3)∇α P0
]∇βδP
0 3
+
[
Ξ0 f (2)

3 + 1

2
�(

f (2)
3 T0

) + ∇α∇β

(
f (2)
3 T αβ

0

) + 2 f (1)
3 P0

]
δP

= −3�̃ f (1)
1 − 1

2

[�̃(
T0 f (1)

3

) + 2∇̃α∇̃β

(
T αβ f (1)

3

)]
. (46)

Here recall that f1 = f1(R) and f3 = f3(P ), and the super-indexes
denote derivatives with respect to R and P , such as f (i)

1 = di f1/dRi

and f (i)
3 = di f3/dP i , whereas the tildes refer to covariant deriva-

tives evaluated in the perturbed metric. Note that by setting
f3 = 0, the equation of the stability for f (R) gravity is recovered
Ref. [4]. If the Hilbert–Einstein action is assumed, f1 = R , the solu-
tion of Eq. (46) gives δR = 0, where no instabilities are produced,
as expected in GR. Nevertheless, Eq. (46) is very complicated to be
solved, even to get some qualitative information, since it involves
not just perturbations of the Ricci scalar δR but also of the Ricci
tensor δRμν through δP . Since both the Ricci tensor and the Ricci
scalar contain second derivatives of the metric, Eq. (46) should be
rewritten in terms of the perturbed metric δgμν , which gives rise
to a more complicated equation.

Nevertheless, for an illustrative purpose, let us consider the
model of the previous section, where f1 = R , and Eq. (46) yields

1

2
T0 f (2)

3 �δP + [
f (2)
3 gαβ∇αT0 + (

T0 gαβ + 2T αβ

0

)
f (3)
3 ∇α P0

+ 2 f (2)
3 ∇αT αβ

0 + f (2)
3 T αβ

0 ∇α

]∇βδP

+
[
Ξ0 f (2)

3 + 1

2
�(

f (2)
3 T0

) + ∇α∇β

(
f (2)
3 T αβ

0

) + 2 f (1)
3 P0

]
δP

= −1

2

[�̃(
T0 f (1)

3

) + 2∇̃α∇̃β

(
T αβ f (1)

3

)]

+
[

f (1)
1 − P0 f (1)

3

(
Lm − 1

2
T0

)]
δR. (47)

In addition, by considering a constant interior solution T0 =con-
stant, and consequently P0 = constant, Eq. (47) is simplified,

�δP + 2
T αβ

0

T0
∇α∇βδP + 2

Ξ0 f (2)
3 + 2 f (1)

3 P0

T0 f (2)
3

δP

= 2

T0 f (2)
3

[
f (1)
1 − P0 f (1)

3

(
Lm − 1

2
T0

)]
δR. (48)

A particular solution of (48) is given by δR = δP = 0, where no
instability appears. Nevertheless, in general the behavior of the
perturbation depends mainly on the term in front of δP in (48),

where by imposing positivity on such term,
Ξ0 f (2)

3 +2 f (1)
3 P0

T0 f (2)
3

� 0, the

general solution of Eq. (48) would approximately give rise to a
damped oscillator, avoiding the appearance of a large instability
in the interior of an spherical body. This example gives rise to a
very restricted case, but provides a qualitative description on the
reconstruction of viable f (R, T , Rμν T μν) gravities.

In addition, note that if δP = T0δRμν is negligible in com-
parison with the first order term of the Ricci scalar δR , the dy-
namics of the perturbations would be ruled by the coefficient
of the first term in (46), so that if 3 f (2)

1 � 0, the DK instabil-
ity may be avoided. Consequently, for the most general action
f (R, T , Rμν T μν), the DK instability may be avoided if 3 f R R −
(T 00 − 1

2 T ) f P R � 0, as pointed out in Ref. [13], provided that
δP = T0δRμν does not contribute significantly to the dynamics of
the perturbations, a very strong approximation that is not satisfied
in general.

Hence, a full analysis of the matter instability will probably
reveal that a large instability is also common in this class of
theories, which impose strong restrictions on the viability of the
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theory, but allows to reconstruct realistic f (R, T , Rμν T μν) gravi-
ties.

5. Conclusions

In the present work, new version of modified gravity which in-
cludes strong coupling of gravitational and matter fields, Rμν T μν

has been studied. The physical motivation for such theory comes
from the covariant Hořava-like gravity with dynamical break-
ing of Lorentz invariance [14]. In fact, such a covariant power-
counting renormalizable theory [14] represents simplest power-
law F (R, T , Rμν T μν) gravity.

Such modified gravity contains extra terms that allow to re-
construct viable cosmological evolution. In this sense, several cos-
mological solutions have been studied, and corresponding gravita-
tional action is reconstructed. Nevertheless, the dynamics of the
matter sector, a perfect fluid in the cases studied above, has to
be fixed previously in order to guarantee the same evolution as in
GR, or in other words to satisfy the continuity equation. Otherwise,
a generic f (R, T , Rμν T μν) may give a realistic Hubble parameter
H(z), but would give rise an anomalous behavior for baryonic, dark
matter, and any other perfect fluid present in the equations, as
shown in the first part of Section 3. In addition, this kind of the-
ories allows to reproduce pure de Sitter universe in the presence
of non-constant fluids what is usually a forbidden solution in GR,
and f (R) or Gauss–Bonnet gravities.

Moreover, the �CDM universe can naturally occur in f (R, T ,

Rμν T μν) gravity, where the usual evolution for dust matter, ρ ∝
(1 + z)3, is set. This is shown in the second part of Section 3 for
the model described by the Hilbert–Einstein action plus correc-
tions accounted by the functions f (Rμν T μν) and g(T ) has been
considered. The complexity of the equations does not allow to get
an analytical and exact expression, but using numerical results the
behavior of f (Rμν T μν) and g(T ) has been obtained, as shown in
Fig. 1.

The last section has been devoted to the study of matter
instability within these theories. The equation of the perturba-
tions was obtained. It implies perturbations not just on the Ricci
scalar but also on the Ricci tensor. This fact makes complicated
to get the analytical results since the equation should be reduced
to a fourth order differential equation on the metric tensor by
using the definitions of R and Rμν . Nevertheless, by imposing
some restrictions, qualitative information has been obtained: it
was shown that the reconstruction of f3(Rμν T μν) requires ad-
ditional constraints in order to avoid matter instability. More-
over, assuming that δP is negligible in comparison with δR , some
constraints on the action are also obtained [13]. Then, some vi-
able models, similarly as those in f (R) gravity, capable of re-
producing the realistic cosmological evolution could be recon-
structed.

On the other hand, note that in general, the theory under con-
sideration may contain ghosts due to higher-derivative terms in the
action. However, one can find some version of the theory which
are free from ghosts. For instance, the theory with Lagrangian
L = F (R) + f1(T ) or some versions of the theory with Lagrangian
(3) (from Ref. [14]) are ghost free.

Finally, It would be interesting to develop further the study
of cosmological dynamics of the theory under discussion with at-
tempts to simplify its Lagrangian formulation. This maybe probably
achieved via the introduction of Lagrangian multipliers [14] and
subsequent mapping of the theory to power-counting renormaliz-
able covariant gravity with dynamical breaking of Lorentz invari-
ance. In its turn this may indicate to nice ultraviolet properties
of some f (R, T , Rμν T μν) models and its relation with underlying
quantum gravity.
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