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Abstract: The volume fractions of vacua in an eternally inflating multiverse are described

by a coarse-grain rate equation, which accounts for volume expansion and vacuum transi-

tions via bubble formation. We generalize the rate equation to account for bubble collisions,

including the possibility of classical transitions. Classical transitions can modify the details

of the hierarchical structure among the volume fractions, with potential implications for the

staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been

established by a classical transition depends on the detailed relationships among transition

rates in the landscape.
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1. Introduction

We might live in an eternally inflating multiverse. Eternal inflation occurs whenever a suffi-

ciently large volume is in a state sufficiently close to a vacuum in which the energy density is

positive and the decay rate is smaller than the Hubble rate [1], and/or whenever a sufficiently

homogeneous field configuration evolves in a sufficiently flat, positive interaction potential

[2, 3]. These statements contain a number of qualifications, so it is worth noting that the

first set of conditions is satisfied by the observed state of the local universe, if the so-called

dark energy is due to vacuum energy, while the second set is similar to the initial conditions

implicit in the simplest models of slow-roll inflation, though with the inflaton further up its

potential [4]. When it occurs, eternal inflation generates an endless spacetime in which every

phase of vacuum takes place in a fractal mosaic of widely separated domains [5, 6], the various

vacua being attained either by bubble formation [7, 8], by stochastic diffusion [9], and/or by

other processes [10, 11, 12, 13, 14, 15].
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In an eternally inflating multiverse, the fraction of the global spacetime volume occupied

by any of the various vacua is not directly observable. Nevertheless, these volume fractions

might be relevant to understanding the local conditions in our universe. For instance, the

proper theory of initial conditions might be a theory of the multiverse as a whole, with our

local “initial” conditions—i.e. the conditions describing the onset of slow-roll inflation in the

particular phase of vacuum that gives rise to our universe—being selected according to their

prevalence in the global spacetime. It is also possible that these volume fractions express a

holographic dual to bulk spacetime physics [16, 17, 18, 19, 20, 21].

In a multiverse where vacuum transitions occur predominantly via bubble formation, the

volume fractions occupied by the various vacua are described by a rate equation [6, 22]. An

important caveat is that the predictions of the rate equation depend on the choice of global

time foliation. This is because different global time foliations explore different regions in the

diverging spacetime at different rates, while the exponential expansion of eternal inflation

ensures that most of the total volume is near the boundary at any finite time cutoff. This

expresses the measure problem of eternal inflation (for some recent reviews, see for example

[23, 24, 25, 26]) Resolving the measure problem is of fundamental importance to (eternal)

inflationary cosmology, but it is tangential to the thrust of this paper.

This paper concerns another shortcoming of the rate equation, which is that it ignores

bubble collisions. Semiclassical vacuum transition rates are exponentially suppressed, and a

contribution to the rate equation from a bubble collision should involve a product of two such

rates (one for each bubble in the collision), and so one might argue that bubble collisions can

be ignored by expanding in powers of transition rates. However, these rates are exponentially

staggered, meaning the product of two transition rates could be much larger than another

transition rate. Moreover, over the course of its evolution each bubble collides with a diverging

number of other bubbles. This divergence is regulated by the aforementioned measure, but

it is not a priori clear how this resolution will play out.

Although the detailed phenomenology of the rate equation is rather technical, for those

very familiar with the literature (including the standard notation and assumptions) our con-

clusions are simple to state. (Those less familiar with the literature will find the conclusions

of this paragraph explained more thoroughly in the main text.) After including the effects of

bubble collisions, the rate-equation transition matrix becomes

Mij = κij − δijκi +
∑

k,ℓ

γikℓjκℓjκkj , (1.1)

where γikℓj is related to the average volume fraction in vacuum i in the causal futures of

collisions between bubbles of vacua k and ℓ, when these bubbles nucleate in vacuum j. The

effects of bubble collisions are most significant when the first two terms in (1.1) are zero but

(because of classical transitions) the third term is not. Meanwhile, the components of the

dominant eigenvector si of Mij are, to leading order,

si =
∑

{pa}

κip1+
∑

j,k γijkp1κjp1κkp1
κi − q

× . . .×
κpn1 +

∑

j,k γpnjk1κj1κk1

κpn− q
, (1.2)
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where the sum covers the sequences of transitions that connect the dominant vacuum “1” to

the vacuum i using the fewest number of upward transitions (and “leading order” refers to

an expansion in these upward transition rates). Again, the effects of classical transitions can

be significant because the first term in each factor can be zero when the second term is not.

Note that the dominant vacuum—defined as the positive-energy vacuum with the smallest

decay rate—still dominates the volume fraction. In particular, even if the dominant vacuum

can set up classical transitions to another positive-energy vacuum, the volume fraction of the

latter is still much less than unity. On the other hand, the detailed hierarchical structure

among the components of si can be modified by the existence of classical transitions.

The detailed hierarchical structure among the volume fractions of the various vacua in

the landscape are relevant to the so-called staggering issue, which concerns the competition

between anthropic selection for small (magnitude) vacuum energies and cosmological selection

for large volume fractions when attempting to explain the observed size of the cosmological

constant; see for example [27, 28, 29, 30]. It is also relevant to the so-called Boltzmann-brain

issue, which concerns the likelihood for observers to arise in an extremely low-entropy Hubble

volume such as we observe, as opposed to in a relatively high-entropy Hubble volume such as

describes the distant future [31, 32, 33, 34, 35]. One might also take interest in the likelihood

that our vacuum was created by a classical transition, as opposed to by semiclassical bubble

formation. Although we discuss these issues, a conclusive investigation requires a detailed

understanding of the landscape, and is beyond the scope of this paper.

The remainder of this paper is organized as follows. In Section 2 we review the construc-

tion of the rate equation, ignoring bubble collisions, while in Section 3 we include bubble

collisions. We predominantly work in terms of a scale-factor-time foliation, though we briefly

explain how to translate the results into those of a lightcone-time foliation. The phenome-

nology of the rate equation is studied in Section 4. We begin with a review of a simple toy

landscape, ignoring bubble collisions, and then we explore the toy landscape while including

the effects of some representative classical transitions. We extend our results to a more gen-

eral landscape in Section 4.3, where we briefly discuss the staggering issue. In Section 4.4 we

discuss the Boltzmann-brain issue and in Section 4.5 we discuss the likelihood of a classical

transition in our past. Finally, we draw our conclusions in Section 5.

2. Rate equation without bubble collisions

To begin, we reconstruct the standard rate equation, adopting the usual assumptions [6, 22].

In particular, we take the spacetime to be everywhere (3+1)-dimensional (the rate equation

in a transdimensional multiverse is studied in [36]), we assume that all vacuum transitions

occur via semiclassical bubble formation, we coarse-grain over the time scales of any transient

cosmological evolution between epochs of vacuum-energy domination, we assume there are no

vacua with precisely zero vacuum energy,1 and we ignore bubble collisions. In the next section

we include bubble collisions, but the other assumptions are held throughout the analysis.

1The scale-factor and lightcone-time cutoff measures both fail to regulate the volume in bubbles with precisely
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The rate equation describes the volume fractions of vacua in terms of some global time

variable t. To establish the global time foliation, we start with a large, spacelike hypersurface

Σ0 on which we set t = 0. Note that it is not necessary for Σ0 to be a Cauchy surface: if Σ0

intersects an eternal worldline (that is, a worldline that never sees a vacuum energy density

less than zero), then the rate equation describing the future evolution of Σ0 will possess an

attractor solution that is independent of the detailed orientation and distribution of vacua on

Σ0. This implies that the volume fractions are independent of the choice of Σ0.

Suppose the total physical volume of Σ0 in vacuum i is Vi. To construct the rate equation,

we first compute the change in physical volume in vacuum i over a time interval ∆t, i.e.

∆Vi = Vi(Σ∆t)− Vi(Σ0) , (2.1)

where Σ∆t denotes the hypersurface of constant t = ∆t. The coarse-grain approach explores

the limit of large ∆t to compute the various contributions to ∆Vi, but then expands in

∆t≪ 1 to construct a differential equation. In the context of bubbles with positive vacuum

energy densities—henceforth referred to as dS bubbles—this means that the rate equation

ignores the transient cosmological evolution between epochs of vacuum energy domination. In

the context of bubbles with negative vacuum energy densities—henceforth referred to as AdS

bubbles—it means the rate equation ignores the cosmological evolution altogether.2 Although

the coarse-grain rate equation does not by itself provide an accurate assessment of the physical

volume fractions in AdS vacua, it is convenient to track the volume fractions in these vacua

anyway. We do this by simply conserving comoving volume during transitions to AdS vacua,

and ignoring the subsequent evolution of the volume.

2.1 Scale-factor time

We first take t to be the scale-factor time [37, 38, 39, 40, 41],

dt = Hdτ , (2.2)

where τ is the proper time evaluated along a geodesic congruence orthogonal to Σ0, and H is

the local Hubble rate, in particular we can take H ≡ (1/3)uµ;µ in terms of the four-velocity

field uµ along the congruence. Although a precise definition of scale-factor time involves some

subtleties in the treatment of locally contracting spacetime regions [39, 40, 41], these can be

ignored in the coarse-grain analysis, which smears over such regions.

Before proceeding, it is helpful to collect some facts about bubble formation. Consider a

region in some dS vacuum i with cosmological constant Λi. On scales that are small compared

zero vacuum energy. (The author thanks Adam Brown for explaining the problem with the scale-factor cutoff

measure.) Note that four-dimensional vacua with precisely zero vacuum energy might not exist.
2This does not imply that the rate equation cannot be used to study cosmological evolution on time scales

that are smaller than the coarse-graining, in dS or AdS vacua. The rate equation gives the bubble nucleation

rate for all vacua that are reached primarily via semiclassical bubble nucleation starting from a dS vacuum.

The bubble nucleation rate can then be combined with a more fine-grained analysis to study the dynamics

in bubbles on smaller time scales. Some examples are reviewed in the appendix of [26].
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to the curvature radius, the line element can be written

ds2 = −dτ2 +
1

4H2
i

e2Hiτ
(

dr2 + r2 dΩ2
)

, (2.3)

where

Hi ≡
√

|Λi|/3 , (2.4)

dΩ2 is the line element on the unit 2-sphere, and the absolute value is inserted to establish a

general definition for when we consider negative values of Λi. Now suppose an initially point-

like bubble nucleates at time τ = τnuc. To facilitate future reference we take the hypersurface

τ = τnuc to coincide with the aforementioned Σ0, at least in the vicinity of the bubble. (A

diagram is provided in Figure 1.) The bubble wall of a point-like bubble expands at the speed

of light. Therefore, the comoving radius of the bubble at times τ ≥ τnuc is

rw(τ) = 2 e−Hiτnuc − 2 e−Hiτ . (2.5)

The bubble expands so as to subtend a finite comoving volume (32π/3) e−3Hiτnuc in the limit

τ →∞. Note that this comoving volume corresponds to a physical volume (4π/3)H−3
i on the

hypersurface Σ0. Therefore, the loss of physical volume in vacuum i in the future evolution

of Σ0 due to the nucleation of this bubble is equivalent (in the limit τ → ∞) to the loss of

physical volume that results from simply ignoring the would-be future evolution of a physical

volume (4π/3)H−3
i on the hypersurface Σ0.

Now suppose that this bubble is a dS bubble. The coarse-grain analysis ignores dynamics

on time scales smaller than the time scale of vacuum domination; therefore the line element

in the bubble can generically be written

ds2 = −dτ2 +
1

4H2
j

e2Hjτ
[

dξ2 + sinh2(ξ) dΩ2
]

, (2.6)

where j labels the vacuum in the bubble, and it is implicit that we focus on bubble FRW

times τ ≫ H−1
j . Importantly, surfaces of constant FRW time τ in the bubble are not surfaces

of constant scale-factor time t in the global foliation. In particular, it can be shown that

the change in scale-factor time between the hypersurface Σ0 (corresponding to τ = τnuc) in

vacuum i and a hypersurface of constant τ in the bubble is [39]

∆t = Hjτ + ln(Hi/Hj)− ln(2) + ξ +
2

3
ln

(

1

2
+

1

2
e−ξ

)

. (2.7)

Therefore, the induced metric on Σ∆t when it overlaps with the bubble is

ds2 =

{

1

H2
i

e2∆t

(

1

2
+

1

2
e−ξ

)−4/3

e−2ξ −
1

H2
j

[

1−
2

3

(

1 + eξ
)−1

]2
}

dξ2

+
1

H2
i

e2∆t

(

1

2
+

1

2
e−ξ

)−4/3

e−2ξ sinh2(ξ) dΩ2 . (2.8)
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t = 0

t = Dt
SDt

Figure 1: Toy conformal diagram of (dS) bubble formation. The bubble wall asymptotes to the thick

dashed line. Outside of the bubble, curves indicate surfaces of constant r (solid) and τ (dotted) in

the spatially flat chart. Surfaces of constant τ are also surfaces of constant scale-factor time t; the

surfaces t = 0 and t = ∆t are illustrated (see main text). Inside the bubble, curves indicate surfaces

of constant ξ (solid) and τ (dotted) in the open FRW chart. The thick solid curve indicates a geodesic

that is initially comoving with respect to the spatially flat chart which enters the bubble and soon

becomes comoving with respect to the open FRW chart. The thick dotted line marked Σ∆t continues

the surface of constant scale-factor time t = ∆t into the bubble.

The coarse-grain approximation explores the limit where the first term in brackets dominates

over the second (because the coarse-grain approximation implies for example ∆t > Hi/Hj).

Accordingly, the physical three-volume of the intersection of Σ∆t and the bubble is
∫ ∞

0
dξ 4π sinh2(ξ)

1

H3
i

e3∆t

(

1

2
+

1

2
e−ξ

)−2

e−3ξ =
4π

3H3
i

e3∆t . (2.9)

Technically, the integrand in (2.9) is invalid at large values of ξ, for which the hypersurface

Σ∆t explores times τ . H−1
j and the above results receive corrections. Nevertheless, for

sufficiently large values of ∆t the physical volume on Σ∆t is dominated by regions for which

τ ≫ H−1
j , and the above approximations are accurate.

Recall that we modeled the initial bubble as point-like. A realistic bubble has some

nonzero initial radius, and the bubble wall has zero initial velocity. However, the bubble wall

accelerates, its velocity approaching the speed of light. Therefore, in the limit of large ∆t,

our results for point-like initial bubbles coincide with the results for more realistic bubbles.

An important exception to this rule is an “upward” transition from lower to higher vacuum

energy, for which the bubble wall fills the horizon [8]. Lacking any clearer guidance, we simply

use the above results for these vacua as well.
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We now return to the rate equation. Breaking the calculation of ∆Vi up into parts, we

first compute the change in physical volume in comoving regions that begin and remain in

vacuum i over the interval ∆t. This is given by the definition of scale-factor time:

∆Vi =
(

e3∆t − 1
)

Vi → 3Vi ∆t , (2.10)

for any dS vacuum i. As mentioned above, we simply ignore the change in physical volume

in comoving regions that begin and remain in the same AdS vacuum, as these vacua collapse

into a big-crunch singularity on time scales that are small compared to the coarse-graining.

Hence, for these vacua we take ∆Vi = 0.

Next, we compute the change in physical volume due to vacuum decay in comoving

regions that begin in vacuum i. Referring to the above analysis, we note that when i is a dS

vacuum then the effect of such decays is equivalent to removing physical volume (4π/3)H−3
i

for each bubble nucleation, at the time of its nucleation. The number of such nucleations in

an interval ∆t is equal to the four-volume in vacuum i in that interval times the decay rate,

∆Ndecay =
∑

j

ΓjiVi∆τ(∆t) =
∑

j

Γji

Hi
Vi ∆t , (2.11)

where Γji denotes the transition rate from vacuum i to vacuum j, per unit physical three-

volume per unit proper time, and we have used ∆t = Hi∆τ in vacuum i. The corresponding

change in volume in vacuum i is therefore

∆Vi = −
∑

j

4πΓji

3H4
i

Vi ∆t . (2.12)

This result assumes that i is a dS vacuum. Although AdS vacua can also decay [42], when

they do so they transition exclusively to other AdS vacua, and therefore in the coarse-grain

approach these transitions can be ignored (i.e. we set Γij = 0 for AdS j).

Finally, we compute the change in physical volume due to transitions to vacuum i from

comoving regions that begin in some other vacuum. The number of such transitions is com-

puted in analogy to (2.11), but now with reference to the transition rate from some (dS)

vacuum j to vacuum i, summing over the relevant vacua j. In the limit of large ∆t, each such

transition generates a physical volume (2.9) in vacuum i, when i is a dS vacuum. This can

be interpreted as the immediate creation of a physical volume (4π/3)H−3
j , times a growth

factor e3∆t which is already accounted for in (2.10). Thus we write

∆Vi =
∑

j

4πΓij

3H4
j

Vj ∆t , (2.13)

for a dS vacuum i. For AdS vacua i, the analysis surrounding (2.9) no longer applies. Note

however that the physical volume created in i due to transitions from a given dS vacuum

j in (2.13) is precisely the same as the physical volume lost in j due to transitions to a

given vacuum i in (2.12) (which requires exchanging the indices i ↔ j). Since both of these
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expressions have the volume expansion factors stripped away, this equivalence expresses the

conservation of comoving volume in vacuum transitions. Extending this principle to AdS

vacua indicates that we should use (2.13) when describing the creation of volume in vacua i

for dS and AdS vacua i. We make an error for AdS vacua since we ignore transitions from one

AdS vacuum to another; however since these transition rates are exponentially suppressed

next to the time scales of the AdS big crunches, this error is small.

Combining results and taking the infinitesimal limit, we obtain

dVi

dt
= 3Vi +

∑

j

κijVj −
∑

j

κjiVi , (2.14)

where the first term is understood to apply only when i is a dS vacuum, and we have defined

the dimensionless decay rates

κij ≡
4πΓij

3H4
j

. (2.15)

It is convenient to also define the volume fractions fi, where

fi ≡
Vi

∑

j Vj
. (2.16)

Since the dS vacua dominate the physical volume in the future evolution of Σ0, we can write
d
dt

∑

j Vj = 3
∑

j Vj , which means the rate equation can be written

dfi
dt

= Mijfj , (2.17)

where the transition matrix is Mij ≡ κij − δij
∑

k κki. The solution to (2.17) is [22]

fi(t) ∝ f
(0)
i + si e

−qt + . . . (anti–de Sitter)

fi(t) ∝ si e
−qt + . . . (de Sitter) ,

(2.18)

where the f
(0)
i are constants reflecting the initial conditions, q > 0 is (minus) the smallest-

magnitude eigenvalue of Mij , si is the corresponding eigenvector—called the dominant eigen-

vector—and the ellipses denote terms that fall off faster than e−qt. Although we have pre-

sented the solutions for both dS and AdS vacua, as we have remarked the coarse-grain rate

equation does not reliably assess the volume fractions in the AdS vacua.

2.2 Lightcone time

The above analysis is sensitive to the choice of scale-factor time as the global time parameter

t. Another popular choice is lightcone time [18, 19], defined according to

t = −
1

3
ln
{

V0

[

I+(p)
]}

, (2.19)

where V0[I
+(p)] is the volume on Σ0 subtended by the subset of an initially uniform geodesic

congruence orthogonal to Σ0 that intersects the causal future I
+(p) of the point p at which the
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lightcone time is being evaluated. One can think of the geodesic congruence as a tool to project

the asymptotic comoving volume of I+(p) back onto Σ0. Thus, as one considers points p

progressively further to the future of Σ0, this projection covers a progressively smaller volume

on Σ0, and the lightcone time increases according to negative one third of the logarithm of

this (another, equivalent definition is given in [19]).

Rather than repeat the full analysis of the previous subsection, we simply refer to the

results of [21]. The crucial difference in comparison to scale-factor time is in the analogue of

(2.7), i.e. the change in lightcone time between Σ0 and a hypersurface of fixed FRW time τ

in a bubble that nucleates on Σ0. In the case of lightcone time, this is [21]3

∆t = Hjτ − ln(2) + ξ +
2

3
ln

(

1

2
+

1

2
e−ξ

)

+
1

3
ln

[

(Hi +Hje
−ξ)4

(Hi +Hj)H3
i

]

. (2.20)

Proceeding as in the previous section, the full consequence of this difference is to multiply

(2.9) by a factor of H3
i /H

3
j , which corresponds to multiplying the second term in (2.14) by a

factor of H3
j /H

3
i . Thus, we recover a rate equation of the form (2.14) if we work in terms of

the rescaled volumes Ṽi = H3
i Vi. Likewise we define

f̃i =
Ṽi

∑

j Ṽj

=
H3

i Vi
∑

j H
3
j Vj

. (2.21)

Since in the coarse-grain approach the various Hi are simply constants, this gives an equation

of the form (2.17), from which the solutions can be read off.

3. Including bubble collisions

The calculation of Section 2 neglects the effects of bubble collisions, which we now address.

Consider the collision between one bubble of vacuum j and another bubble of vacuum

k, the two bubbles having nucleated in vacuum i (see in Figure 2). We assume that both

j and k have smaller vacuum energies than i. When the bubbles collide, either the bubble

walls annihilate (if j = k), or one or two domain walls form after the collision. In the case of

one domain wall, the causal future of the collision contains both vacua j and k, their relative

volume fraction determined by the trajectory of the domain wall. In the case of two domain

walls, the domain walls contain some different vacuum ℓ 6= j, k. If the vacuum energy of ℓ is

larger than the vacuum energies of j and k, the domain walls accelerate toward each other.

Nevertheless, if the vacuum energy of ℓ is less than the vacuum energy of i, the domain walls

do not necessarily collide before future infinity. This is called a classical transition to vacuum

ℓ [11, 12, 44, 45, 46]; in this case the causal future of the collision contains vacua j, k, and ℓ,

with the relative volume fractions determined by the trajectories of the domain walls.

3The analysis of [21] does not keep track of all of the terms that we include here; for a more thorough analysis

see [43]. That paper actually studies CAH time, but in the coarse-grain limit CAH time is proportional to

the exponent of lightcone time, allowing us to convert from the results of that paper.
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i

j

j k k

i

j

j k
kl

Figure 2: Left panel: toy spacetime diagram of a bubble collision producing a single domain wall.

The bubble walls are represented by solid curves following null rays until they collide, producing a

domain wall. Regions in vacua i, j, and k are labeled; the causal future of the collision is bounded by

dotted lines and shaded gray. Right panel: the same as in the left panel, except the collision produces

two domain walls (a classical transition) enclosing vacuum ℓ.

We use λℓkji to denote volume fraction in vacuum ℓ in the causal future of a collision

between bubbles of vacua k and j which nucleated in vacuum i. As remarked above, for

any given collision this volume fraction depends on the trajectories of domain walls. These

depend on the model-dependent interaction potential governing the tunneling fields, as well

as on the collision-dependent placement of the colliding bubbles. We are uninterested in these

details, and instead simply take the λℓkji as given, taking the given quantities to average over

the relative placement of colliding bubbles (further details are presented below).

3.1 Volume corrections from bubble collisions in scale-factor time

Consider a dS bubble of vacuum j, which nucleates in some vacuum i at t = 0. According to

(2.9), the physical volume in this bubble on the constant scale-factor hypersurface Σ∆t is

V =
4π

3H3
i

e3∆t , (3.1)

for large ∆t. However, some fraction of this volume is not actually in vacuum j, because it

resides in the causal future of collisions between the bubble of vacuum j and other bubbles.

To account for this, we first compute the total volume in the causal futures of these collisions,

so that we can subtract this volume of j from the rate equation. We then discuss the volume

of each vacuum that should be put back into the rate equation so as to reflect the vacuum

composition of the causal futures of these collisions.

Part of the calculation is laid out nicely in [47], and we begin by translating the relevant

result into our notation. To do so, consider a 2-sphere of radius ξ on a constant FRW time

slice in the bubble geometry (2.6). According to the symmetries of the collision, if the causal

future of a collision intersects this 2-sphere, the intersection corresponds to a disk on the 2-

sphere. This disk subtends a certain solid angle, and we are interested in the total solid angle

subtended by summing over the causal futures of all bubble collisions. This is the calculation
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performed in [47], and the resulting solid angle (in the limit of late FRW time slices) is

4π f(ξ) = 4π
[

1− e−Ωtot(ξ)/4π
]

, (3.2)

where

Ωtot(ξ) = 4π
∑

k

κki

{

H2
i

H2
j

+ ln

[

H2
i

H2
j

+ 2
Hi

Hj
cosh(ξ) + 1

]}

, (3.3)

where the sum runs over all vacua k into which the vacuum i can decay (with Λk ≤ Λi). We

have used tan(Tco) = (Hi/Hj) tanh(Hjτ/2)→ Hi/Hj in converting from the notation of [47]

in the context of the coarse-grain focus on the late-FRW-time limit in the bubble.

To obtain the physical volume on Σ∆t that intersects these causal futures, we integrate

over 2-spheres of radii ξ, but using the solid angle (3.2) instead of the usual 4π, and using

the induced metric (2.8) to switch from a constant-τ to a constant-t hypersurface. This gives

∫ ∞

0
dξ 4π sinh2(ξ)H−3

i e3∆t

(

1

2
+

1

2
e−ξ

)−2

e−3ξ f(ξ) ≡ H−3
i e3∆t F , (3.4)

where the second expression defines F , which is a dimensionless function of R ≡ Hi/Hj and

κi ≡
∑

k κki. The integral in F can be evaluated in terms of hypergeometric functions, but

the result is not very illuminating. Instead we focus on the situation where R ≫ 1, and we

assume κi ≪ 1. Then we can approximate

F =

∫ ∞

0
dξ 4π sinh2(ξ)

(

1

2
+

1

2
e−ξ

)−2

e−3ξ

{

1− e−κiR
2
[

R2 + 2R cosh(ξ) + 1
]−κi

}

(3.5)

≈

∫ ln(R)

0
dξ 4π sinh2(ξ)

(

1

2
+

1

2
e−ξ

)−2

e−3ξ
(

1− e−κiR
2

R−2κi

)

+

∫ ∞

ln(R)
dξ 4π e−ξ

[

1−R−κie−κi(R2+ξ)
]

(3.6)

≈
4π

3

H2
i

H2
j

∑

k

κki , (3.7)

where we have kept only the leading-order terms in Hi/Hj and κij. Combining with (3.4),

we find that the physical volume in the causal future of these bubble collisions is

4π

3H2
jHi

e3∆t
∑

k

κki . (3.8)

Note that the volume subtracted from a bubble of vacuum j due to a collision with a

bubble of vacuum k is not symmetric with respect to the indices j and k. In other words,

when a bubble of vacuum j collides with a bubble of vacuum k, the causal future of the

collision intersects a different “would-be” volume on Σ∆t in the bubble of vacuum j, than the

“would-be” volume on Σ∆t that it intersects in the bubble of vacuum k. There is no reason

these two volumes should have been the same, because neither of them represents the actual
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geometry in the causal future of the collision; instead they represent the volume that would

have been there had these bubbles not collided, and this counterfactual volume is different

between the two bubbles because the two bubbles have different Hubble rates.

After we subtract the volume (3.8) from a bubble of vacuum j, we must specify how much

volume of each type of vacuum to put back in its place. We write the volume of vacuum ℓ

on the hypersurface Σ∆t in the causal futures of the collisions between a bubble of vacuum j

and other bubbles of vacuum k, for all k, as

4π

3H2
ℓHi

e3∆t
∑

k

κkiλℓkji , (3.9)

where i labels the vacuum in which the bubbles of vacua j and k nucleate. Of course, all of

the microphysics is contained in the λℓkji, which are also understood to reflect the average

volume fractions after considering the various possible relative placements of the colliding

bubbles that contribute to each term in (3.9). The other factors in (3.9) are chosen so that

if collisions with bubbles of a given vacuum k always produce a domain wall that runs along

the causal future of the collision into the bubble of vacuum k—that is, from the perspective

of the bubble of vacuum j, collisions with bubbles of vacuum k have no effect on the interior

of the bubble of vacuum j—then λℓkji = δℓj (this returns all of the volume that had been

removed from the bubble of vacuum j, but none of the volume that had been removed from

the bubbles of vacuum k).

The result (3.8) assumes that both i and j are dS vacua. Since we ignore transitions out

of AdS vacua, this assumption about i is sufficient. On the other hand, it is important to keep

track of the case where the vacuum j is AdS. This is because it is possible for the collision

between two AdS bubbles to create a classical transition to a dS vacuum.4 Guided by the

results of Section 2 in which conservation of comoving volume implied that after stripping

away the volume expansion factors the same expressions could be used for transitions to dS

and AdS vacua, we assume that (3.8) can be used to describe the volume in the causal future

of bubble collisions for both dS and AdS vacua j, modulo the volume expansion factor e3∆t.

Likewise, we use (3.9) for both dS and AdS vacua ℓ (and j and k). Although it is possible

that using (3.8) for AdS vacua j introduces an error, technically this error can be removed

by an appropriate choice for the factors λℓkji in (3.9). Our analysis is unconcerned with such

details; in our analysis it is only important whether λℓkji is precisely zero or not.

3.2 Modifying the rate equation in scale factor time

We can now compute the change in volume in vacuum i, ∆Vi, after a scale-factor time interval

∆t, due to bubble collisions. We first consider the loss of volume in bubbles of vacuum type

4The vacuum reached by a classical transition must have a smaller vacuum energy than the vacuum in which

the colliding bubbles nucleate. Therefore, two (AdS) bubbles that nucleate in an AdS vacuum cannot collide

to produce a classical transition to a dS vacuum. This is one reason why it remains unimportant to track

bubble nucleations in AdS vacua.
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i due to collisions with other bubbles. This is

∆Vi = −
∑

j,k

Γij

Hj
Vj ∆t

4π

3H2
i Hj

κkj = −
∑

j,k

κijκkj
H2

j

H2
i

Vj ∆t . (3.10)

The first three terms in the first expression give the number of bubbles of vacuum i that

nucleate in vacuum j in the time ∆t, according to (2.11). The other terms in this expression

give the volume in each such bubble that is in the causal future of collisions with bubbles of

vacuum k, given by (3.8), but where we have removed the expansion factor e3∆t, which in

the coarse-grain analysis is accounted for by the factor of 3Vi in (2.14).

Next we consider the change in volume in vacuum i, due to the physical volume in vacuum

i in the causal future of bubble collisions. This can be written

∆Vi =
∑

j,k,ℓ

Γℓj

Hj
Vj ∆t

4π

3H2
i Hj

κkj λikℓj =
∑

j,k,ℓ

λikℓj κkjκℓj
H2

j

H2
i

Vj ∆t . (3.11)

The first three terms in the first expression give the number of bubbles of type ℓ that nucleate

in vacuum j in the time ∆t, according to (2.11). The other terms in this expression give the

volume in vacuum i in the causal futures of the collisions between each such bubble of vacuum

ℓ and bubbles of vacuum k, given by (3.9), but where we have removed the expansion factor

e3∆t, which in the coarse-grain analysis is accounted for by the factor of 3Vi in (2.14).

Putting everything together and taking the infinitesimal limit, we obtain

dVi

dt
= 3Vi +

∑

j

κijVj −
∑

j

κjiVi +
∑

j,k,ℓ

λikℓjκkjκℓj
H2

j

H2
i

Vj −
∑

j,k

κijκkj
H2

j

H2
i

Vj . (3.12)

In terms of the volume fractions fi defined in (2.16), we have

dfi
dt

= Mijfj , (3.13)

where now

Mij ≡ κij − δij
∑

k

κki +
∑

k,ℓ

γikℓjκkjκℓj , (3.14)

where for later convenience we have defined

γikℓj ≡
H2

j

H2
i

(λikℓj − δiℓ) . (3.15)

Note that conservation of comoving volume implies that the sum over rows in any column of

Mij must be zero. This implies a useful constraint on the γikℓj, namely

∑

i,k,ℓ

γikℓj = 0 . (3.16)
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3.3 Lightcone time

The previous two subsections worked in terms of scale-factor time. However, the only place

where the actual definition of the global time parameter enters is in the induced metric used

in (3.4) (and results, such as (3.1), taken from Section 2). Meanwhile, in Section 2.2 we

found that the only effect of using lightcone time instead of scale-factor time corresponded to

multiplying the second term in (2.14) by H3
j /H

3
i . The same applies here with respect to the

second term in (3.12), and because of the modification to (3.4) we multiply the fourth and

fifth terms in (3.12) by H3
j /H

3
i as well. It is easily checked that if we define f̃i and Ṽi as in

(2.21) and above it, we obtain

df̃i
dt

= Mij f̃j , (3.17)

with Mij given by (3.14). Therefore, given a solution in terms of scale-factor time, we can

again read off the solution in terms of lightcone time.

4. Phenomenology

To develop intuition for the phenomenology of the rate equation, we study a simple toy model

of the landscape [22, 48, 40]. The model can be represented by the diagram

1 ←→ 2 ←→ 3
↓ ↓ ↓
4 5 6

. (4.1)

The numbers label different vacua, while the arrows indicate the direct transitions that are

allowed among the vacua. (We use the phrase “direct transition” to designate semiclassical

bubble formation via quantum tunneling through one potential barrier, which we take to be

the dominant form of vacuum transition, aside from perhaps classical transitions, which are

discussed below.) For concreteness, we assume the vacuum energies of this model obey

Λ4, Λ5, Λ6 < 0 < Λ1, Λ3 < Λ2 . (4.2)

That is, the labels “1,” “2,” and “3” designate dS vacua, while the other labels designate AdS

vacua. We also assume that “1” corresponds to the dS vacuum with the smallest decay rate.

4.1 Toy model without bubble collisions

We first ignore bubble collisions. Then this model is similar to models studied elsewhere in

the literature [22, 48, 40]. Seeking the late-time attractor solution—that is, the dominant

eigenvector—we insert the ansatz fi, f̃i = sie
−qt into the rate equation, obtaining

−qs1 = κ12s2 − κ1s1 (4.3)

−qs2 = κ21s1 + κ23s3 − κ2s2 (4.4)

−qs3 = κ32s2 − κ3s3 , (4.5)
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where we focus on the volume fractions of the dS vacua, and κi ≡
∑

j κji. This system of

equations can be solved algebraically, but the solution is complicated and not very enlight-

ening. Since κ21 and κ23 are transition rates from lower to higher vacuum energy, they are

expected to be exponentially suppressed relative to the other transition rates. We therefore

solve the above system of equations by expanding in κ21 and κ23, treating them as similar in

order for the purpose of the expansion.

At zeroth order the only nonzero dS component of si is s1, which we can set to unity.

The corresponding value of q is

q = κ41 + κ51 = κ1 , (4.6)

where the second equality implicitly evaluates κ1 at zeroth order, a notational shorthand that

we also employ below to help simplify expressions. The other dS components of si become

relevant at first order, and are given by

s2 =
κ21

κ2 − q
, s3 =

κ21κ32
(κ2 − q)(κ3 − q)

. (4.7)

The zeroth-order solutions for s1 and q receive first-order corrections, but these are subdomi-

nant and so we ignore them. We see that the dS components of si are dominated by “1”—the

dS vacuum with the smallest decay rate—which is accordingly called the dominant vacuum

(this assumes that the decay rates are not tuned so as to make q very near to κ2 or κ3, in

which case there could be a set of degenerate dominant vacua [40]). Intuitively, the dominant

vacuum dominates the asymptotic volume of spacetime due to its small decay rate, and the

volume fractions of all of the other vacua reflect in part the relative likelihood of transitioning

to them from the dominant vacuum. In particular, s2 carries a factor of κ21, reflecting the

transition from “1” to “2,” while s3 carries the factor κ21κ32, reflecting transitions first from

“1” to “2,” then from “2” to “3.” These factors also contain total decay rates in the denomi-

nator, so they only correspond to suppression factors when a transition rate in the numerator

is relatively suppressed. This applies to κ21 in the first-order terms in (4.7), and it applies

to contributions to the si that arise due to transitions through “3,” which are suppressed

relative to the above contributions.

4.2 Effects of bubble collisions

The above discussion summarizes previous work. Our goal is to understand the implications

of allowing for bubble collisions. Collisions that result in a single domain wall, and therefore

merely shift the volume fractions of the vacua involved in the collision by order-unity factors,

are not consequential in the context of the qualitative dynamics described above. However,

the possibility of classical transitions might change the above conclusions in more dramatic

ways. To explore this, we first assume that bubbles of vacua “4” can collide and produce a

classical transition to vacuum “3.” We denote this with the diagram

4)(4→ 3 . (4.8)
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Note that this transition requires that Λ3 < Λ1 [12, 45]. Although the landscape (4.1) per-

mits other bubble collisions, for the moment we assume that these do not produce classical

transitions so that we can ignore them. Then the full set of nonzero γijkℓ can be taken to be

γ4441 = −
H2

1

H2
3

, γ3441 =
H2

1

H2
3

. (4.9)

The first term accounts for the subtraction of volume in the causal future of the collisions

that would be in vacuum “4” but for the collision, while the second term accounts for the

restoration of this volume but in vacuum “3,” a consequence of the classical transition. In a

realistic model we expect some of the causal future of the collision to be in “4,” which means

that γ4441 should be less negative and γ3441 should be smaller. However, these effects change

our results by factors that are negligible next to the exponential staggering of decay rates,

and so for simplicity we ignore them.

Including these collisions and their effects, the rate equation gives

−qs1 = κ12s2 − κ1s1 (4.10)

−qs2 = κ21s1 + κ23s3 − κ2s2 (4.11)

−qs3 = κ32s2 − κ3s3 + γ3441κ
2
41s1 , (4.12)

where again we focus on the dS components of si. As before, the solution is more transparent

if we expand it in terms of κ21 and κ23. At zeroth order, we find

s1 =

(

1 +
γ3441κ

2
41

κ3 − q

)−1

, s3 =
γ3441κ

2
41

κ3 − q
, (4.13)

where we have normalized the zeroth-order solution so that
∑

i si = 1, where the sum runs

over dS vacua i, and q is unchanged from before: q = κ1. The leading-order contribution to

s2 still appears at first order in the expansion,

s2 =
κ21s1
κ2 − q

+
κ23s3
κ2 − q

, (4.14)

where s1 and s3 refer to the zeroth-order quantities. Evidently, the hierarchical structure

of the dominant eigenvector is qualitatively changed relative to before. In particular, while

the dominant vacuum “1” still dominates the dS components of si, the component s3 now

contains a product of two downward transition rates from “1,” as opposed to an upward

transition rate. Note that since “1” is by definition the dS state with the smallest decay rate,

we still expect s3 to be exponentially suppressed relative to s1. Nevertheless, the size of the

suppression is dramatically reduced. Meanwhile, the volume fraction of “2” is still suppressed

by an upward transition rate, but this can come from “1” or from “3.”

Although the results are changed from when we ignored bubble collisions, our intuition

for the solution is maintained. In particular, the dS vacuum with the smallest decay rate

dominates the asymptotic volume fraction, and the volume fractions of the other dS vacua
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reflect the relative likelihood of transitioning to them from the dominant vacuum. In the case

of “3,” this likelihood is enhanced by the possibility for classical transitions. This in turn

enhances the volume fraction of “2,” insofar as it can be reached by transitions from “3.”

The classical transition represented by (4.8) is not the only possibility in the landscape

(4.1). Another possibility occurs when bubbles collide in vacuum “2.” We now focus on the

possibility that collisions between bubbles of vacua “5” can result in a classical transition to

“3,” represented by the diagram

5)(5→ 3 , (4.15)

and ignore all other possible collisions. Then the full set of nonzero γijkℓ can be taken to be

γ5552 = −
H2

2

H2
3

, γ3552 =
H2

2

H2
3

, (4.16)

where the discussion below (4.9) applies here as well. The resulting rate equation gives

−qs1 = κ12s2 − κ1s1 (4.17)

−qs2 = κ21s1 + κ23s3 − κ2s2 (4.18)

−qs3 = κ32s2 − κ3s3 + γ3552κ
2
52s2 . (4.19)

We again expand in terms of κ21 and κ23. The zeroth order dS components are the same as

without classical transitions; namely the only nonzero component is s1, which we can set to

unity. The other dS components of si become relevant at first order, and are given by

s2 =
κ21

κ2 − q
, s3 =

(κ32 + γ3552κ
2
52)κ21

(κ2 − q)(κ3 − q)
. (4.20)

Note that s2 and s3 are still suppressed by an upward transition rate out of “1.” Therefore,

the effects of classical transitions do not change the qualitative expectations for the dominant

eigenvector described above. On the other hand, it is possible for the component s3 to be

enhanced relative to before, depending on the relative size of γ3552κ
2
52 and κ32.

4.3 Generalization of the toy model

The toy landscape model (4.1) is simple, but the intuition developed above extends to more

general landscapes. Indeed, it is possible to compute the components of the dominant eigen-

vector si for any number of vacua and for any set of transitions among them, by expanding

in the off-diagonal elements of the transition matrix Mij [29, 49]. As before, we assume the

dS vacuum with the smallest decay rate is unique and denote it as “1.” The (unnormalized)

dS components of si are then, to leading order,

si =
∑

{pa}

κip1
κi − q

× . . .×
κpn1

κpn− q
≈

∑

{pa}

q

κi

κip1
κp1
× . . .×

κpn1
q

, (4.21)

where q is the decay rate of “1” and the sum covers the sequences of transitions that connect

“1” to i using the fewest number of upward transitions. In the second expression we have
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exploited the fact that q is the smallest decay rate to write κi − q ≈ κi, which allows for the

terms to be rearranged so as to express factors as branching ratios.

We expect the dS vacuum with the smallest decay rate to also possess a small vacuum

energy (for some discussion of this matter see [40]). This ensures that transitions from “1”

to other dS states are either transitions to larger vacuum energy or transitions that involve a

very small change in vacuum energy compared to the expected size of the barrier. The rates

associated with such transitions are exponentially suppressed relative to the rates associated

with transitions to AdS vacua with much larger magnitude vacuum energies [7]. Therefore,

we expect the rightmost term in (4.21) to be exponentially small, while all of the other factors

are less than one by definition. This maintains the notion of “1” as the state that dominates

the volume fractions, i.e. the dominant vacuum.

It is straightforward to generalize the above result to include the effects of bubble col-

lisions. In particular, the effect of bubble collisions is simply to add the (small) quantity
∑

k,ℓ γikℓjκkjκℓj to the quantity κij corresponding to each off-diagonal perturbative element

of the transition matrix Mij. We can then read off the results from the analyses of [29, 49]:

si =
∑

{pa}

κip1+
∑

j,k γijkp1κjp1κkp1

κi − q
× . . .×

κpn1 +
∑

j,k γpnjk1κj1κk1

κpn− q
(4.22)

≈
∑

{pa}

q

κi

κip1+
∑

j,k γijkp1κjp1κkp1

κp1
× . . . ×

κpn1 +
∑

j,k γpnjk1κj1κk1

q
. (4.23)

Of course, it is not necessary for both terms in a given factor to be nonzero, and in fact the

consequences of bubble collisions are most significant when the first term in at least one of

these factors is zero, as with the classical transitions described above.

Note that the dS vacuum with the smallest decay rate, vacuum “1,” still dominates the

volume fractions. To elaborate, we repeat the argument given above for the case where bubble

collisions are ignored, which holds unless the first term in the numerator of the rightmost factor

of (4.23) is zero. This occurs when a dS vacuum i can be reached via classical transitions

caused by bubble collisions in “1.” In this case, each contribution to (4.23) contains a factor of

the form κi1/q, which is necessarily less than one, in addition to a factor of the form γijk1κk1,

which we expect to be much less than one. The latter expectation arises because although

any γijk1 involves a ratio of Hubble rates (squared), which in principle could be very large,

the factor κk1 is expected to be doubly exponentially small, as it is less than the decay rate

per Hubble volume of the longest-lived dS state.

Evidently, classical transitions can modify the detailed hierarchical structure among the

components of the dominant eigenvector. For instance, a given ratio si/sj could be exponen-

tially large or small depending on whether one ignores classical transitions or not. Moreover,

the existence of classical transitions can modify the distribution of components of si as a

function of their size. To illustrate these conclusions, we organize the vacua in the landscape

according to the number Nup of upward transition rates that appear in the numerators of

the factors in the corresponding components of si. For instance, a vacuum i for which the
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sequences of transitions {pa} in the summation of (4.23) contain three upward transitions has

Nup = 3. Accounting for classical transitions can allow for sequences of transitions that re-

duce Nup relative to otherwise, for a given vacuum in the landscape. Since upward transition

rates are exponentially suppressed relative to downward transition rates, this exponentially

increases the volume fractions of certain vacua (relative to not including classical transitions),

and it modifies the distribution of vacua as a function of volume fraction.

This is relevant to the staggering issue, which concerns the competition between anthropic

selection for a small (magnitude) cosmological constant Λ and cosmological selection for a

large volume fraction when attempting to explain the observed value of Λ [27, 28, 29, 30]. To

elaborate, imagine organizing the various vacua in the landscape into bins according to the

size of Λ, and consider the total volume fraction represented by the vacua in each bin. The

landscape explanation of the observed value of Λ assumes that for a bin size ∆Λ less than

the observed value of Λ, the total volume fraction in each bin is roughly independent of Λ for

small |Λ|. The validity of this assumption depends on the number of vacua in the landscape

as well as the distribution of these vacua as a function of volume fraction. If the number of

vacua is too small, then the number of vacua in each bin will be small and their total volume

fraction will vary wildly from bin to bin. If the distribution of vacua as a function of volume

fraction falls too steeply, then the total volume fraction in each bin will be dominated by the

volume fractions of a few vacua, and again the total volume fraction will vary wildly from bin

to bin. In either case, the anthropic suppression associated with a set of vacua with Λ many

orders of magnitude larger than the value we observe could be compensated by a much larger

volume fraction occupied by these vacua. The quantitative analysis is model dependent and

further discussion of this issue is beyond the scope of this paper.

4.4 Boltzmann brains

The volume fractions represented by si are also relevant to the Boltzmann-brain issue, which

concerns the likelihood for an observer to arise after reheating from a relatively low-entropy

inflationary state, as opposed to after a quantum fluctuation from a relatively high-entropy

vacuum-energy-dominated state [31, 32, 33, 34, 35]. The former observers are called normal

observers and the latter observers are called Boltzmann brains. To discuss this issue, it is

helpful to first summarize the case where bubble collisions are ignored. With respect to

the scale-factor cutoff measure, the ratio of Boltzmann brains to normal observers can be

approximated by [40]

N BB

N NO
∼

∑

i κ
BB

i si
∑

i,j n
NO

ij κijsj
, (4.24)

where κBB

i is the Boltzmann-brain formation rate per unit Hubble volume in vacuum i, nNO

ij

is the peak number of normal observers per unit Hubble volume in a bubble of vacuum i that

nucleates in vacuum j, and the sums are understood to run over only dS vacua.

To analyze (4.24), first note that Boltzmann-brain formation rates are generically doubly

exponentially small. For example, simply demanding that a Boltzmann brain possess at least
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the information content of a human brain gives the upper bound κBB

i . e−1016 [40]. Second,

note that any transition rate out of a dS vacuum i must exceed the recurrence rate in i, i.e.

κij > e−3π/GΛj . Therefore, assuming that there exists a sequence of transitions that connects

the dominant vacuum “1” to a given vacuum i such that no vacuum between “1” and i has

GΛ . −1/ ln(κBB

i ), we can use (4.21) to write [39]

∑

i

κBB

i si ∼ max{κBB

i si} ∼ max

{

κBB

1

q
, e−3π/GΛ1

κBB

i

κi

}

, (4.25)

where we use the arithmetic of double exponentials (whereby if x is a double exponential and

| ln(y)| < | ln(x)|, then xy ∼ x/y ∼ x) to ignore the various factors of κjk/κk in si next to

κBB

i , applying the principle of detailed balance to write κBB

i κj1 = κBB

i e3π/GΛj−3π/GΛ1κ1j ∼

e−3π/GΛ1κBB

i . Finally, assuming that there exists a sequence of transitions that connects “1”

to a vacuum i with | ln(nNO

ij )| < | ln(max{κBB

k })|, such that no vacuum between “1” and i has

GΛ . −1/ ln(κBB

i ), we can apply the same techniques to the denominator of (4.24) to obtain

N BB

N NO
∼ max

{

e3π/GΛ1
κBB

1

q
,
κBB

i

κi

}

. (4.26)

Note that e3π/GΛ1 sets the scale for the recurrence time in the dominant vacuum. Therefore, if

it is possible for Boltzmann brains to form in the dominant vacuum, the first term in brackets

is much greater than one and Boltzmann brains dominate over normal observers. Conse-

quently, we assume that the dynamics of the dominant vacuum are insufficient to support

Boltzmann brains—a plausible assumption considering the complex dynamics that under-

lies our existence. Then, normal observers dominate if we furthermore assume that in each

vacuum the decay rate is larger than the Boltzmann-brain formation rate.

It is straightforward to repeat this analysis including the effects of bubble collisions. The

denominator of (4.24) essentially expresses the bubble formation rate, and generalizes to

∑

i,j

nNO

ij κijsj →
∑

i,j

nNO

ij κijsj +
∑

i,j,k,ℓ

(Hj/Hi)
2nNO

ikℓjλikℓjκkjκℓjsj , (4.27)

where nNO

ikℓj is defined in analogy to nNO

ij and the sums over k and ℓ are understood to include

AdS vacua. The subsequent analysis is unchanged except for the possibility that Boltzmann

brains form in a dS vacuum that can be reached via classical transitions caused by collisions

between AdS bubbles in the dominant vacuum. (This affects the analysis because we cannot

use detailed balance to rewrite κj1 in terms of κ1j for an AdS vacuum j.) Accounting for this

additional possibility, we find

N BB

N NO
∼ max

{

e3π/GΛ1
κBB

1

q
,
κBB

i

κi
, e3π/GΛ1

κBB

ℓ

κℓ
γℓjk1κj1κk1

}

, (4.28)

where we have assumed that any vacua reached by classical transitions from bubble collisions

in the dominant vacuum do not produce normal observers (as would be the case if for example
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these transitions do not establish a period of slow-roll inflation followed by reheating). Note

that if normal observers are produced in these vacua, then we simply obtain (4.26) again,

since factors of the form e3π/GΛ1γℓjk1κj1κk1 cancel between the numerator and denominator

of (4.24) (according to the algebra of double exponentials).

As with (4.26), to avoid Boltzmann-brain domination we must assume that in each vac-

uum the decay rate is larger than the Boltzmann-brain formation rate, and that the dominant

vacuum does not support Boltzmann brains. Given these assumptions, the last term in the

brackets does not exceed e3π/GΛ1κBB

i for any of the relevant vacua i. Therefore, we still avoid

Boltzmann-brain domination unless GΛ1 < −1/ ln(κBB

i ) < 10−16. While such small values of

Λ are presumably very uncommon in a Planck-scale landscape, the dominant vacuum “1” is

specially selected for the smallness of its decay rate, and it seems plausible that this might

also select for an extremely small value of Λ. Accepting this as a possibility, the next question

is how plausible is it that “1” can set up a classical transition to a dS vacuum ℓ that supports

Boltzmann brains, bearing in mind that vacua with sufficiently complex degrees of freedom

and interactions are presumably rare, and the classical transition only occurs if Λℓ < Λ1.

To explore this question, we consider a large landscape of N vacua to arise in a roughly

log(N)-dimensional configuration space [50, 51, 52]. Thus, we assume that each vacuum can

directly transition to roughly log(N) nearby states. Classical transitions are permitted based

on special relationships among local minima in the vacuum configuration space, such that

each unique pair of vacua involved in a collision can classically transition to at most one

unique state [12, 44, 46]. Hence, there are at most roughly log2(N) distinct states that can

be reached by collisions consequent the direct transitions mentioned above. In the context of

string theory, it is commonly argued that log(N) ∼ O(1000) or so [50, 51]. Based on these

considerations, it seems very unlikely that the dominant vacuum could set up a classical

transition to a vacuum i with 0 < GΛi < −1/ ln(κ
BB

i ) < 10−16, let alone such a vacuum that

can also support Boltzmann brains.

On the other hand, it is not evident that we should only consider direct transitions out

of the dominant vacuum. Naively, if “1” transitions to i at the rate κi1 and if i transitions

to j at the rate κji, then “1” transitions to j at roughly the rate κjiκi1. Although κjiκi1 is

exponentially suppressed relative to κi1, the factor e
3π/GΛ1 in the last term in the brackets of

(4.28) is doubly exponentially large, and it seems possible that it could take an exponential

number of factors of transition rates to cancel it. If so, classical transitions set up by the

dominant vacuum could access a significant fraction of the landscape, presumably including

many dS vacua capable of supporting Boltzmann brains. On the other hand, if these classical

transitions also access a dS vacuum capable of supporting normal observers, then granting

the assumption that κBB

i < κi for all dS vacua i, these normal observers will dominate over all

of the Boltzmann brains reached in this way. Recently, it has been argued that the number of

vacua capable of supporting Boltzmann brains is “only” exponentially (as opposed to doubly

exponentially) larger than the number of vacua capable of forming normal observers [53].

(Specifically, [53] argues that the number of bubbles that feature a significant amount of

slow-roll inflation is “only” exponentially suppressed relative to the number that do not.) If
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so, it would seem to take a fine-tuning for the dominant vacuum to set up classical transitions

that reach enough vacua to include one supporting Boltzmann brains, but not enough so as

to also include one that forms normal observers.

4.5 Probability to observe a classical transition

So far our discussion has focused on global volume fractions. On the other hand, if the initial

conditions for the phase of slow-roll inflation believed to describe our past were established by

a classical transition—as opposed to by the formation of a single bubble—then this could have

consequences for observational cosmology, at least if slow-roll inflation did not last too long.

Indeed, the collision geometry retains an SO(2,1) symmetry [54], and so the phenomenological

consequences should resemble those of the “anisotropic bubble nucleation” scenario studied

in [55, 56]. We leave further exploration of these signatures to future work, and here focus

on assessing the relative likelihood of this possibility.

One way to approach this problem is to compare the rate of classical transitions to our

vacuum to the rate of bubble nucleations of our vacuum. The results of Section 3 allow us to

go a step further, since there we have computed the physical volume on a fixed scale-factor

time hypersurface in the causal futures of these events. In short, these are given respectively

by the fourth and second terms on the right-hand side of the physical-volume rate equation,

(3.12). Using Vi ∝ si e
(3−q)t, we write the ratio of the volume in i in the causal future of a

classical transition to the volume in i in the causal future of a bubble nucleation

R =

∑

j,k,ℓ λikℓjκkjκℓj(Hj/Hi)
2sj

∑

j κijsj
. (4.29)

Evidently, R depends on the detailed microphysics of the landscape. In particular, while the

sums over vacua j in the numerator and denominator both cover all dS vacua j, for almost

all of these vacua the transition rates κij are zero, while the vacua j for which the rates are

nonzero are in general different in the numerator and denominator. Since the components

of the dominant eigenvector si are exponentially staggered, R could be enormous or zero

depending on the detailed structure of a large set of transition rates in the landscape (zero

corresponds to the case where classical transitions cannot create vacuum i).

It is amusing to consider a highly idealized situation. Suppose that classical transitions

to our vacuum can only be caused by bubble collisions in one type of vacuum, and suppose

that bubbles of our vacuum can only nucleate in one type of vacuum, and suppose that the

Hubble rates and the relevant decay rates and the components of the dominant eigenvector

for these vacua are the same: H0, Γ, and s0 respectively. Finally, suppose that the classical

transition converts the entire causal future of the collision into vacuum i. In this situation,

(3.16) and (3.15) imply that
∑

k,ℓ λikℓj = 1. Putting all of this together, we find

R =
4π

3

H2
0

H2
i

Γ

H4
0

. (4.30)

This expression is familiar from the bubble-collision literature, and gives the typical number

of bubble collisions in an observer’s past lightcone (see for example [26]). In this context,
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Hi is the Hubble rate during slow-roll inflation in the observer’s bubble, while H0 and Γ are

respectively the Hubble rate and vacuum decay rate outside of the bubble. The congruence

between these two results is not surprising: the idealized situation that we have established

above is equivalent to comparing the volume in the causal future of bubble collisions to

the volume not in the causal future of bubble collisions, assuming that the volume in the

causal future of two collisions is double-counted, etc. This is equal to the number of bubble

collisions in an observer’s past lightcone. The appearance of the inflationary Hubble rate Hi

in the bubble-collision result, compared to what one might suggest should be the Hubble rate

associated with late-time cosmological constant domination in the relative probability (4.30),

is due to the former focusing on observers like us who arise at finite time while the latter

(interpreted as above) implicitly focuses on hypothetical observers at future infinity.

5. Conclusions

We have updated the rate equation describing the volume fractions of vacua in the multiverse

to account for bubble collisions. The rate equation refers to a global time foliation, and we

have presented our analysis in terms of a scale-factor-time foliation, also providing a couple

of brief remarks on how to translate the results into those of a lightcone-time foliation.

As in the case where bubble collisions are ignored, the intuition for the asymptotic attrac-

tor solution to the rate equation revolves around the dS vacuum with the smallest decay rate.

Owing to its stability, this vacuum dominates the volume fraction of the multiverse—hence

it is called the dominant vacuum—and the relative volume fractions of any other vacua are

understood in terms of the relative likelihoods of the sequences of transitions that connect

the dominant vacuum to them. The most significant effect of bubble collisions stems from

the possibility for classical transitions to vacua that are otherwise not involved in the colli-

sion. These transitions should be included along with bubble nucleations in the sequences of

transitions referred to above. Thus, the existence of classical transitions modifies the detailed

hierarchical structure among components of the dominant eigenvector.

Although the volume fractions of many vacua might be exponentially larger on account

of including classical transitions, the volume fractions of all dS vacua remain exponentially

suppressed relative to the volume fraction of the dS vacuum with the smallest decay rate.

Thus, the notion of this vacuum as the dominant vacuum is maintained. On the other hand,

any modifications to the detailed hierarchical structure among components of the dominant

eigenvector have relevance to the staggering and Boltzmann-brain issues. A conclusive inves-

tigation of these issues is beyond the scope of this paper, yet we have discussed plausible cir-

cumstances under which accounting for classical transitions does not reveal a Boltzmann-brain

problem. In particular, Boltzmann-brain domination occurs only if the dominant vacuum has

a sufficiently small vacuum energy and can set up classical transitions to a dS vacuum that

supports Boltzmann brains but not to any dS vacua that form normal observers.

We have also explored the likelihood that our local Hubble volume was established by a

classical transition, as opposed to a semiclassical bubble formation. We found that the relative
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likelihood of these possibilities depends on the detailed relationships among transition rates

in the landscape.
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