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THE BASIC CONUNDRUM 
Proposals for describing the initial state of the universe 

hardly ever address a certain fundamental conundrum [1] 
— yet this is a conundrum whose significance is, in a 
certain sense, obvious. The issue arises from one of the 
most fundamental principles of physics: the Second Law 
of thermodynamics. According to the Second Law, 
roughly speaking, the entropy of the universe increases 
with time, where the term “entropy” refers to an 
appropriate measure of disorder or lack of “specialness” 
of the state of the universe. Since the entropy increases in 
the future direction of time, it must decrease in the past 
time-direction. Accordingly, the initial state of the 
universe must be the most special of all, so any proposal 
for the actual nature of this initial state must account for 
its extreme specialness. Proposals have been put forward 
from time to time (such as in various forms of 
“inflationary cosmology” and the previously popular 
“chaotic cosmology”) in which it is suggested that the 
initial state of the universe ought to have been in some 
sense “random”, and various physical processes are 
invoked in order to provide mechanisms whereby the 
universe might be driven into the special state in which it 
appears actually to have been in, at slightly later stages. 
But “random” means “non-special” in the extreme; hence 
the conundrum just referred to. 

Sometimes theorists have tried to find an explanation 
via the fact that the early universe was very “small”, this 
smallness perhaps allowing only a tiny number of 
alternative initial states, or perhaps they try to take refuge 
in the anthropic principle, which would be a selection 
principle in favour of certain special initial states that 
allow the eventual evolution of intelligent life. Neither of 
these suggested explanations gets close to resolving the 
issue, however. It may be seen that, with time-
symmetrical dynamical laws, the mere smallness of the 
early universe does not provide a restriction on its degrees 
of freedom. For we may contemplate a universe model in 
the final stages of collapse. It must do something, in 
accordance with its dynamical laws, and we expect it to 
collapse to some sort of complicated space-time 
singularity, a singularity encompassing as many degrees 
of freedom as were already present in its earlier non-
singular collapsing phase. Time-reversing this situation, 
we see that an initial singular state could also contain as 
many degrees of freedom as such a collapsing one. But in 
our actual universe, almost all of those degrees of 
freedom were somehow not activated. 

What about the anthropic principle? Again, this is 
virtually no help to us whatever in resolving our 

conundrum. It is normally assumed that life had to arise 
via complicated evolutionary processes, and these 
processes required particular conditions, and particular 
physical laws, including the Second Law. The Second 
Law was certainly a crucial part of evolution, in the way 
that our particular form of life actually came about. But 
the very action of this Second Law tells us that however 
special the universe may be now, with life existing in it 
now, it must have been far more special at an earlier stage 
in which life was not present. From the purely anthropic 
point of view, this earlier far more special phase was not 
needed; it would have been much more likely that our 
present “improbable” stage came about simply by chance, 
rather than coming about via an earlier even more 
improbable stage. When the Second Law is a crucial 
component, there is always a far more probable set of 
initial conditions that would lead to this same state of 
affairs, namely one in which the Second Law was 
violated prior to the situation now! 

As another aspect of this same issue, we may think of 
the vastness of our actual universe, most of which had no 
actual bearing on our existence. Though very special 
initial conditions were indeed required for our existence 
in our particular spatial location, we did not actually need 
these same special conditions at distant places in the 
universe. Yet as we look out at the universe, we see the 
same kind of conditions, acting according to the same 
Second Law of thermodynamics, no matter how far out 
we look. If we take the view that the Second Law was 
introduced in our vicinity merely for our own benefit, 
then we are left with no explanation for the extravagance 
of this same Second Law having to be invoked uniformly 
throughout the universe, as it appears to be as far as our 
powerful instruments are able to probe. 

THE ENORMITY OF THE SPECIALNESS 
In order to stress the extraordinary scale of this 

problem, and the intrinsic implausibility of explanations 
of this kind, it is helpful to enter a little more precisely 
into the definition of entropy, and to estimate the entropy 
magnitudes that we have to contend with. Boltzmann 
provided us with a beautiful formula for the entropy S of a 
system: 

S = k log V. 

Here k is Boltzmann’s constant and V is the volume of a 
certain region in the total phase space P of the system 
under consideration. We are assuming P to be “coarse-
grained” into sub-regions, each sub-region representing 
states that are deemed to be indistinguishable with regard 
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to any reasonable macroscopic parameter. (There is 
clearly an element of arbitrariness or subjectivity, here, as 
to which parameters are to be regarded as 
macroscopically discernible and which are deemed to be 
effectively “unmeasurable”. In practice, there is a 
considerable robustness with regard to this arbitrariness, 
and it is reasonable to disregard this issue in the present 
discussion.) Any particular state of the system under 
consideration will be specified by some point x of P, and 
the quantity V is then the volume of the particular sub-
region of P which contains x. 

With regard to future time-evolution of the system, the 
Second Law can be understood as the fact that, as the 
system evolves, the point x moves within P so that with 
overwhelming probability it enters sub-regions of 
successively larger and larger volume V. This arises from 
the fact that, in practice, the sub-regions differ 
stupendously in size. The logarithm in Boltzmann’s 
formula helps here (as does the smallness of k, in ordinary 
units), because there need only be a modest increase in S 
when x moves from one sub-region into a neighbouring 
one of stupendously larger volume. But this is only the 
easy half of our understanding of the Second Law. The 
difficult half is to understand why, when we reverse time, 
x enters successively tinier sub-regions of P. It does this 
because it has ultimately to reach the exceptionally tiny 
region B which represents the Big Bang itself. The 
difficult half of the Second Law involves an 
understanding of why the universe had to start off in such 
an extraordinarily special state. And to understand how 
special the Big Bang actually was, we need to compare 
the volume of B with that of the entire phase space P. 

One point of concern is the fact that the entire volume 
might be infinite, as it certainly would be in the case of a 
spatially infinite universe. This issue, while of relevance, 
is not of major importance for our considerations here. 
There is also the issue of how we get a finite phase-space 
volume when some of the parameters would be describing 
continuous fields. I shall evade this latter issue by 
assuming that it is dealt with by quantum mechanics, 
where for a finite universe of bounded energy content we 
may assume only finitely many quantum states. 

To deal with a spatially infinite universe, I shall assume 
that we need consider only, say, that comoving portion of 
the universe that intersects our past light cone. This 
contains something of the order of 1080 baryons. To 
obtain a lower bound for the volume of P, for this 
situation, we can consider the entropy that arises when 
this number of baryons is collapsed into a black hole. For 
this, we use the Bekenstein–Hawking entropy formula 
SBH=8π2kGm2/hc for a spherical black hole of mass m and 
find a value of the order of 10123. If we collapsed the dark 
matter also into this black hole, we would get a 
considerably larger entropy (and, for a continually 
expanding universe, we  should consider even larger 
values than this), but this value represents a usable lower 
bound. Recalling the logarithm in Boltzmann’s formula (a 
natural logarithm, but that is of no concern), we get that 

the volume of P is greater than that of B by a factor that 
exceeds 

1010123
. 

This gives us some idea of the enormity of the precision 
in the Big Bang! 

THE GEOMETRIC NATURE OF THE 
SPECIALNESS 

A seeming paradox arises from the fact that our best 
evidence for the very existence of the Big Bang arises 
from observations of the microwave background 
radiation—frequently referred to as the “flash of the Big 
Bang”, greatly cooled down to its present value of ~2.7K. 
The intensity of this radiation, as a function of frequency, 
matches the Planck radiation formula extraordinarily 
closely, giving us impressive evidence of an early 
universe state with matter in thermal equilibrium. But 
thermal equilibrium is represented, in phase space P, as 
the coarse-graining sub-region of largest volume (so large 
that it normally exceeds all others put together). This 
corresponds to maximum entropy, so we reasonably ask: 
how can this be consistent with the Second Law, 
according to which the universe started with a very tiny 
entropy? 

The answer lies in the fact that the high entropy of the 
microwave background refers only to the matter content 
of the universe and not to the gravitation field, as would 
be encoded in its space-time geometry in accordance with 
Einstein’s general relativity. What we find, in the early 
universe, is an extraordinary uniformity, and this can be 
interpreted as the gravitational degrees of freedom that 
are potentially available to the universe being not excited 
at all. As time progresses, the entropy rises as the initially 
uniform distribution of matter begins to clump, as the 
gravitational degrees of freedom begin to be taken up. 
This allows stars to be formed, which become much 
hotter than their surroundings (a thermal imbalance that 
all life on Earth depends upon), and finally this 
gravitational clumping leads to the presence of black 
holes (particularly the huge ones in galactic centres), 
which represent an enormous increase in entropy. 

Although, in general, there is no clear geometric 
measure of the entropy in a gravitational field in general 
relativity, we can at least provide proposals for the non-
activation of gravitational degrees of freedom at the Big 
Bang. I have referred to such a proposal as the Weyl 
Curvature Hypothesis (WCH) [2]. In Einstein’s theory the 
Ricci curvature Rab is directly determined by the 
gravitational sources, via the energy-momentum tensor of 
matter (analogue of the charge-current vector Ja in 
Maxwell’s electromagnetic theory) and the remaining part 
of the space-time Riemann curvature, namely the Weyl 
curvature Cabcd, describes gravitational degrees of 
freedom (analogue of the field tensor Fab of Maxwell’s 
theory). WCH—which is a time-asymmetrical 
hypothesis—asserts that initial space-time singularities 
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must be constrained to have Cabcd=0 (in some appropriate 
sense), whereas final space-time singularities (as occur 
inside black holes) are unconstrained. 

What appears to be the most satisfactory form of WCH 
has been studied extensively by Paul Tod [3]. This 
proposes that an initial space-time singularity can always 
be represented as a smooth past boundary to the 
conformal geometry of space-time. In conformal 
geometry, we consider the space-time structure that is 
invariant under rescalings of the metric 

gab   →   ĝab  =  Ω2 gab 

where Ω is taken to be a smooth positive scalar field on 
space-time. Another way of specifying the conformal 
geometry of space-time is simply to take the family of 
null cones (in the tangent spaces of the space-time points) 
as defining the geometry. It may be noted that the 
conformal structure contains 9 out of the 10 components 
of the metric, the overall scale providing, in effect, the 
10th. 

Tod’s formulation of WCH is the hypothesis that we 
can adjoin a (past-spacelike) hypersurface boundary to 
space-time in which the conformal geometry can be 
mathematically extended smoothly through it, to the past 
side of this boundary. This amounts to “stretching” the 
metric by a conformal factor Ω which becomes infinite at 
the Big Bang singularity, so that we get a smooth metric 
ĝab which actually extends across this boundary. 

CONFORMAL CYCLIC COSMOLOGY 
So far, we regard the conformal “space-time” prior to 

the Big Bang as a mathematical fiction, introduced solely 
in order to formulate WCH in a mathematically neat way. 
However, my “outrageous” proposal [4] is to take this 
mathematical fiction seriously as something physically 
real. But what “physical reality” can we consistently 
attach to this space-time occurring “before the Big 
Bang”? As a clue to this possibility, we should consider 
the nature of the physics that is presumed to be taking 
place just after the Big Bang. (I am going to ignore the 
possibility of inflation here, and assume that such 
exponential expansion did not actually take place after the 
Big Bang. The issue of inflation, in relation to this 
scheme, is considered in the section on physical 
implications, below.)  As we approach the Big Bang, 
moving back in time, we expect to find temperatures that 
are increasingly great. And the greater the temperature, 
the more irrelevant the rest masses of the particles 
involved will become, so these particles are effectively 
massless near the Big Bang. Now, massless particles (of 
whatever spin) satisfy conformally invariant equations 
[5]. I am going to suppose that the interactions between 
these massless entities are also described by conformally 
invariant equations. (This seems to be consistent with 
current understanding of particle physics.) With such 
conformal invariance holding in the very early universe, 
the universe has no way of “building a clock”. So it loses 

track of the scaling which determines the full space-time 
metric, while retaining its conformal geometry. 

We may apply considerations of this kind also to the 
distant future of the universe. If we assume that in the 
very remote future, conformally invariant equations again 
govern the universe’s contents, then we can apply the 
same mathematical trick as before, but now in the reverse 
sense that we look for a boundary at which the conformal 
factor Ω becomes zero, rather than infinite. This amounts 
to using a metric, such as ĝab above, in which the future 
infinity is “squashed down” to be a finite boundary to 
space-time, which is conformally regular in the sense that 
the space-time can be mathematically extended across this 
future boundary as a smooth conformal manifold [5]. If 
we also assume that there is a positive cosmological 
constant present, as current observations appear to point 
strongly towards, then we find that this future conformal 
boundary is spacelike.  

There is, however, a crucial difference between the use 
of a conformal boundary to study the future asymptotics 
of a space-time and Tod’s use of a conformal boundary to 
treat the Big Bang. For in the latter case the very validity 
of this trick provides a formulation of WCH, whereas it 
the future situation of an expanding universe with 
conformally invariant contents, the validity of this 
procedure is more-or-less automatic [5]. Physically, we 
may think that again in the very remote future, the 
universe “forgets” time in the sense that there is no way to 
build a clock with just conformally invariant material. 
This is related to the fact that massless particles, in 
relativity theory, do not experience any passage of time. 
We might even say that to a massless particle, “eternity is 
no big deal”. So the future boundary, to such an entity is 
just like anywhere else. With conformal invariance both 
in the remote future and at the Big-Bang origin, we can 
try to argue that the two situations are physically 
identical, so the remote future of one phase of the 
universe becomes the Big Bang of the next. This 
suggestion is my “outrageous” conformal cyclic 
cosmology” (CCC) [4]. 

PHYSICAL IMPLICATIONS 
There are certain important assumptions involved in 

CCC, in order that only conformally invariant entities 
survive to eternity . One of these is that black holes will 
all eventually evaporate away and disappear. This 
evaporation is a consequence of Stephen Hawking’s 
quantum considerations, and these are now normally 
accepted. There is, however, the issue (connected with the 
so-called “information paradox”) of whether they would 
actually ultimately disappear or leave some form of 
“remnant”. I am here taking the more conventional view 
that they would indeed disappear in a final 
(cosmologically very mild) explosion. More serious, for 
CCC, is how to get rid of massive fermions and massive 
charged particles. It is not too unconventional to assume 
that protons will ultimately decay, or even that there is 
one variety of neutrino that is massless, but the real 
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problem lies with electrons. A good many of them will 
annihilate with positively charged particles, but there will 
be a relatively small number of “stray” charged particles 
which become trapped in their ultimate event horizons, 
being unable to come in contact with other particles of 
opposite charge. There are various possible ways out of 
this, none of which is part of conventional particle 
physics. One possibility is that electric charge is not 
exactly conserved, so that within the span of eternity, 
electric charge would eventually disappear. A much more 
satisfying possibility, from my own perspective, is that 
the electron’s mass will eventually decay away—and, 
again, there is all of eternity for this to happen, so the 
possibility may not be too outrageous to contemplate. 

This last possibility is tied up with the issue of the 
strength of the gravitational interaction, which I have 
postponed in my discussion here. In the background of 
conformal geometry, the strength of gravity may be 
considered as being infinitely large at the Big Bang 
(which is, in a sense, why the gravitational degrees of 
freedom must initially be set to zero), and this strength 
gets smaller as time progresses, eventually reducing to 
zero at the final boundary. To express all this in a 
satisfactory mathematical framework for CCC, we need 
to reformulate general relativity in a conformally 
invariant way. This can indeed be done. We take 
advantage of the fact that the Weyl tensor Cabc

d is 
conformally invariant, and provides a precise measure of 
the conformal curvature of space-time. We can define the 
gravitational “spin-2 field” Kabc

d to be described by Cabc
d 

with respect to the original space-time metric gab, but 
when we pass to the conformally related metric ĝab=Ω2gab 
we find that, curiously, Kabc

d picks up a factor of Ω−1, 
which Cabc

d does not [5]. 
This has the implication that gravitational radiation 

(described by Kabc
d) actually survives at the future 

boundary (whereas Cabc
d vanishes there) and its presence 

shows up as a non-zero normal derivative of Cabc
d at the 

boundary. This gives rise to density fluctuations at the 
Big bang, and possibly primordial gravitational radiation. 

The details of all this have yet to be worked out, but, in 
principle at least, there should be clear-cut predictions 
which should be observable. One important issue is how 
this compares with the detailed observations of 
temperature variations in the microwave background and 
the near scale-invariance of the initial density 
fluctuations. This scale invariance is normally taken as a 
success of inflationary theory. It will be interesting to see 
whether CCC leads to a similar implication with regard to 
these fluctuations, as it also involves an exponential 
expansion, though this occurs before the Big Bang in 
CCC, rather than afterwards. 
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