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Abstract

Linde has recently argued that compact flat or negatively curved spatial sections should, in many
circumstances, be considered typical in Inflationary cosmologies. We suggest that the “large brane
instability” of Seiberg and Witten eliminates the negative candidates in the context of string the-
ory. That leaves the flat, compact, three-dimensional manifolds—ConypéatigcosmsWe show
that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, Seiberg—
Witten instability can be avoided only with difficulty. Using a specific cosmological model of the
Maldacena—Maoz type, we explain how to do this, and we also show how the list of platycosmic
candidates can be reduced to three. This leads to an extension of the basic idea: the conformal
compactification of the entire Euclidean spacetime also has the topology of a flat, compact, four-
dimensional space.

0 2004 Elsevier B.V. All rights reserved.
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1. Nearlyflat or really flat?

Linde has recently argugd] that, at least in some circumstances, we should regard
cosmological models with flat or negatively curveampactspatial sections as the norm
from an Inflationary point of view. Here we wish to argue that cosmic holography, in the
novel form proposed by Maldacena and M4®f, gives a deep new interpretation of this
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idea, and also sharpens it vemyrsiderably to exclude the native case. This focuses our
attention on cosmological models witllat, compacspatial sections.

Current observation8] show that the spatial sections of our Universe (as defined by
observers for whom local isotropy obtains) are fairly close to being flat: the total density
parameter? satisfies2 = 1.02+ 0.02 at 95% confidence level, if we allow the imposition
of a reasonable prioid] on the Hubble parameter. (See, howeys},for a cautionary
note.) The present era of “precision cosmoloff] is based on the assumption that the
true value of$2 is even closer to unity than the observations demand—see, for example,
[7]. Applications of precision cosmology depend on this “almost exactly flat” assumption
in a crucial way: for example, Wang and Tegmk stress that without this assumption
essentially nothing can be said about the evolution of the dark energy density. Turning
to the theoretical situation, we find that the leading theory, Inflg@y1h0], also demands
values of$2 which are extremely close, though not exactly equal, to unity. Most versions
require unityplus or minussome small number (typicalf@] about 10%).

Of course, Inflation itself explains why the Universe curremtpearsto be flat: any
local evidence of curvature is “inflated away”. But here we wish to propose that this process
merely restores the local spatial geometry to its initial and most natural global state, namely
that of aperfectly flat, compact three-dimensional manifditiat is, we suggest that the
fundamental value of2 is exactly not nearly, unity; this is proposed as an exact initial
condition for stringy cosmology.

The reader is entitled to ask whether the distinction between approximate and exact
initial flatness really has any content. For it is clear that ordinaryKfatan be given
a constant negative curvature of any magnitude, however small, since hyperbolic space
H?3 has this sam&3 topology. Similarly,R3 can be consistently deformed so that it has
positive Ricci curvature everywhetelhus flatR3 can be deformed in a way which leads
to either positive or negative Ricci curvature, of any magnitude, at every point, and so it is
hard to see how there can be a difference between extremely small curvature and exactly
zero curvature.

This, however, is where the assumptionamimpactnesss crucial. For the topology
of an exactly flat compact manifold is radically different from that of either a positively
or a negatively curved space, whether catpor not. A consequence of this is that it is
impossible to deform a compact flat manifold in such a way that its sectional curvature is
everywhere negative; on the other hand, it is also impossible to deform it so that even the
scalar curvature becomes positive everywhere. (B8 and p. 306 of13].) Of course,
such a space can be locally deformed (by the presence of a galaxy, say) but not in a way
leading consistently to curvature of a definite sign. If the Universe had spatial sections of
this kind, and if the matter content were smoothed out, then the geometry hegtb be
exactly flat, as a result of these extremely deep geometric theorems. Thus, the hypothesis
of exact underlying flatness does make sense if the spatial sections are compact.

1 Examples of this can be constructed, but of course in this case the Ricci curvature caromsthat that is,

the metric cannot be Einstein, if the metric is complete. Inftat}, R3 is the only non-compact three-dimensional
manifold which can accept a complete metric of positive Ricci curvature.
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The suggestion that the spatial topology of our Universe is not trivial is of course an
old one[14]. Some current interest in this idea focuses on the relation to the AAS/CFT
correspondencpi5—-19] Inflation explains why we probably cannot §@€] direct evi-
dence of such non-triviality: the fundamentiimain is inflated to a size larger than the
current cosmological horizon. Nevertheless, the idea that the spatial sections may be com-
pact continues to attract attention, from many different points of view. In the specific case
of flat, compact sections, discussions include simple models of components of dark energy
[21,22]and string/brane gas cosmold@B—28} in particular it is interesting that, whether
or not string/brane gas cosmology succeeds in explaining the dimensionality of observed
space, the Brandenberger—Vafa scenario, with its toral modall spatial directions, is
still widely regarded as a natural initial condition for string cosmology.

Most relevantly for our work here, it has long been knd2®,30]that flat or negatively
curvedcompactpatial sections arise very naturally in quantum cosmology. More recently,
Linde [31] has emphasised that such constructions are also natural from the Inflationary
point of view; and, more recently still, as we mentioned earlier, he has strengthened this
to the claim that compact buiot positively curvedpatial sections should be considered
to be typical in Inflationary quantum gravity rather than ex$tit Linde stresses that
there is no conflict, in Inflationary theory, between the assumption of compactness and the
Inflationary prediction that the effects of compactness should naiirketly observable.

In fact, the compactness of the spatial sections may play a vital role in ensuring sufficient
initial homogeneity for Inflation to beginnlthis connection, it has recently been argued
[32] that Inflationrequiresus to take a global viewpoint and not to ignore the structure
beyond the horizon.

It is the objective of this work to argue that the hypothesis of exact spatial flatness, but
not negative curvature, is natural from thelographicpoint of view.

The form of cosmic holography in which we are interested here, due to Maldacena
and Maoz[2] is one which adapts the basic ideas of the AdS/CFT correspondence to the
cosmological case. As in AAS/CFT, the stagtpoint is anti-de Sitter spacetime, but now
transformed into a cosmological spacetime by the introduction of some kind of ig&8ter
36]. The resulting cosmology has both a Bang and a Crunch, bRuitideanversion is
entirely non-singular and has a well-behaved conformal infinity, on which the dual field
theory is to be defined. Each connected component of this conformal infinifyréeisely
the same topologgs the spatial sections of the Lorentzian version of the spacétime.

If there is a holographic AdS/CFT-style duality here, it follows that the cosmological
model is controlled by a field theory which does not “care” how large the spatial sections
may be at any particular time, such as the present. Whatever their size, the field theory is
still sensitive to their structure, includingeh topological structurglFor concrete exam-
ples of the profound ways in which non-trivial topology can affect the behaviour of field
theories, sef88,39]) In short, cosmic holography allows us to probe the global form of the

2 This picture is actually consistent withettypothesis that the spatial sections@mpact for in the gener-
alized Euclidean AdS/CFT correspondence it is usually desirable for the CFT to be defined on a compact space;
see Section 2.3 d87].
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spatial sections, whether or Adhe fundamental domain is far larger than the current hori-
zon: it is capable of thisdcause an AAS/CFT type of duality is a correspondence between
theentirebulk and its infinity.

As an application of these ideas, we shall try to constrain the structure of the spatial
sections. We do this with the aid of the “large brane instability” discussed by Seiberg and
Witten[43]. We shall see that holography rules out negative curvatureoimpacttosmo-
logical spatial sectiongjo matter how smalhe curvature may be in magnitude; in fact,
it is possible to make this argument even if the well-known “BKL" behaviour (describing
the growth of anisotropies during the apach to cosmological singularities) is taken into
account. We shall also see that holography does allow flat, compact spatial sections, but
only if specific conditions are §afied close to the singularities.

If the spatial sections of our world are flat and compact, then it is potentially important to
determine which of the ten possible topolod4] has been selected—and why. We shall
not completely succeed in fixing the topology, but the list of candidates will be greatly
reduced, from ten to three. One of the three survivors is the Hantzsche—Wend[4fjace
or “didicosm” (in the naming system due to Conwjdg], which we adopt here), the most
complex of the ten.

We begin with a very brief introduction to a class of cosmological mg@335]which
generalize those proposed by Maldacenadliagz by allowing for a period of accelera-
tion, in accord with current observatiofé7]. Throughout this discussion, we shall for
simplicity ignore all forms of matter other than the quintessence field; this includes the
inflaton, though we stress thaltimately (as explained ifiL]) we rely on Inflation to en-
sure detailed agreement with current observations. We then explain how these models are
compatible with cosmic holography, laying particular stress on the stringent conditions im-
posed by the Seiberg—Witten instabilj33]. Next, we argue that a holographic one-to-one
bulk/infinity correspondence can be maintdonly by extending our basic hypothesis to
the entire spacetime: that is, we propose that the compactification of the (Euclidean) ver-
sion is globally conformal to a four-dimensional flat compact manifold. We will see that
this imposes conditions which only a few candidate topologies (for the three-dimensional
sections) are able to meet. Because we aneerned with the topology (and not with the
precise geometry) of these spaces, it is o@able to hope that our conclusions are valid
even though our concrete cosmological model is too simple to be realistic.

Throughout this work we follow Maldacena and Mg@% in assuming that the back-
ground geometry, prior to the introduction of some kind of matter, is thahtifde Sitter
spacetime, Ad$ (See[48-52]for relevant work on AdS-based cosmology.) Of course,
many efforts have been made to developwicsholography on a de Sitter-like background;
seg[53] for a very clear analysis of the current state of such attempts. Constraints on cos-
mic topology can also be developed in that context[$6e17]

3 All current data areompatiblewith Inflationary expectéons regarding spatial curvature and topology, but
this is not to say that alternatives (see, for exampl6--42) have been completely ruled out. For the sake of
clarity, however, we shall assume here that they have been.
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2. Flatness, acceleration, and Breitenlohner—Freedman

For our subsequent discussions it will bewbelpful to have a concrete model of the
various physical mechanisms to be considered. In this section, we introduce an extremely
simple cosmological model which can play this role. No claim is made that this model
itself is realistic, though possibly it could be made so by superimposing matter, radiation,
inflaton and other fields on the simple spacetime to be defined below.

The basic cosmological model we shall consider is one with a Bang and a Crunch.
There are in fact very general argumefid] which suggest that the ultimate state of our
Universe will be a Crunch of the kind that arises naturally when potentials are allowed to
be negativg55]. If our Universe ismmowanti-de Sitter-like—something that is not excluded
by observations, since such spacetimes can accelerate, though only temgagarity
then this is a straightforward consequence of having a negative cosmological constant in
the background. But even if the present state of the Universe is de Sitter-like, this probably
corresponds to a metastable state which eventually fluctuates or tunnebatt-de Sitter-
like basin of attraction of some potential. (The alternative is decompactification, but this
possibility only arises if one has some argument which rules out negative potentials.)

Maldacena and Mad2] analyse Bang/Crunch spacetimes with metrics of the form

g = (A7) +a” (1) (), @
wherer~ is propertimeqa~ () is the scale factor (which vanishes at both ends of some fi-
nite interval), angt™ (X) is a metric on dime-independerthree-dimensional Riemannian
manifold ¥ which acts as a model for the spatial sections. (Throughout this work, we use a
‘+’ superscriptto indicate a Euclidean coordinate or field, a negative sign for its Lorentzian
counterpart.) Note that such metrics do néetanto account the evolution of anisotropies,
which we shall consider, in specific cases, in later sections of this work.

One way of obtaining spacetimes of this kiiscto introduce matter into anti-de Sitter
spacetime, allowing it to act on the geometnaotord with Einstein’s equation. The result
is typically a Bang/Crunch spacetime. Maltena and Maoz observe that the Euclidean ver-
sion will in general be non-singular and asymptotically hyperbolic (that is, asymptotically
like Euclidean AdS). It will therefore have a well-defined conformal boundary. The hope is
that, in some way that is not yet fully understood, the non-singular Euclidean boundary “re-
places” the singularities of the Lorentziarrsion. A field theoy on the boundary should
give a holographic description of the bulk in the familiar vialiotice that, by contrast,
de Sitter spacetime does not have a holographic Euclidean version, since the usual Euclid-
ean version of d§ the four-sphere, has no boundary. In this sense, Euclidean holography
favours Adg over dg as the fundamental “background” for cosmology.

Maldacena and Maoz also observe that thelieean versions of their Bang/Crunch
cosmologies are topologically non-trivial:ef refer to such spaces as Euclidean “worm-
holes”. For this reason they use particutatter configurations such as Yang—Mills merons
and instantons to construct their cosmologitaldels. Unfortunately, such matter cannot

4 This is the sense in which we shall understand “haipby”. Note that other intpretations, involving
entropy bounds, may not be consistent with Maldacena—Maoz cosmologies: see in pg4&jular
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lead to cosmic acceleration. On the othendhaordinary scalar matter, in the guise of
“quintessence”, can easily lead to accelenatbut it cannot generate a topologically non-
trivial Euclidean “spacetime[56,57] We are thus led, as i8], to consider &uclidean
axionas the matter content of the Euclideamsien of the spacetime; for axions appear
to be unique in leadinbothto acceleratiomndto topological non-triviality. Other forms
of matter and radiation, as well as the inflaton, have well-known effects on the expansion
history, so for simplicity we shall not consider them here.

Motivated by the discussion of quintessence superpotentifg9]jnin [35] we proposed
to develop a Euclidean axion cosmology by postulating a superpotential. Since the potential
should be periodic for an axion, the same applies to the superpotential; and since the axion
field T is a pseudo-scalar, it is natural to restrict attention to superpotentials which are
odd ing™. Thus we consider superpotentials of the form

ad 4
wt (go+) = C Sin<k — <p+>, (2
2,k

wherew is a positive constant. If we take only one term for simplicity, we can assume it
to be the first; requiring the potential to yield the usual negative cosmological constant for
pure Euclidean Ad$ with all sectional curvatures equal+dal/L2, when(W*)’ vanishes,

we can fix the constan, and so we obtain

wt (g0+) = 16:7]-TL Siﬂ(@qﬁ). 3)

Higher-order terms in the original expansi@), which we shall consider later, are obtained
by replacingo by @/ k2.
The potential corresponding ¥ may be written as

3
V+(90+) = T8rL2 + V;g(ion’ 4)

where

3—-w?! 4
Vasion = e l? Cog(\/ gﬁfr)- (5)

Thus we are effectively considering Euclidean Ad®ith “energy” density—3/(8z L?),
into which we have introduced a matter field with a potermgjion.

In accordance with our hypothesis that thatil sections of our cosmological model
are to be flat and compact, we reci@] that every compact flat three-manifold can be
expressed ag3/F, whereT? is the three-torus and’ is a small finite group (which is
in fact isomorphic to the holonomy group of the manifold). Locally, therefore, we can use
the usual angular coordinates on a three-torus (taken to be cubic for convenience), and the
Euclidean metric will have the general form

g* = (drf)” + A%a* (r+)°[d6] + o3 + 3], (6)

whereA measures the circumferences of the torus whe@™), the Euclidean scale factor
(which we can abbreviate 0"), is equal to unity.
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The solution fo ™ in the present case, obtained by solvjAg] the Einstein equations
with the potential(5) (and a canonical kinetic term) superimposed on EuclideanyAdS
yields the metric

+
g (@, A) = (dt+)2 + A%cosi” (t—L) [d67 + doZ + dbz2]. (7
w

This is entirely non-singular. If we embed this space as the interior of a manifold-with-
boundary, then the boundary has two connected componentsat-co. However, it was
argued in35] that holography dictates that these two components should be topologically
identified, and that is what we propose to investigate below.

The Lorentzian version of all this is significantly different: we now have a Bang/Crunch
spacetime with metric

¢ (@, A) = —(dr)? + A2cog” (;—_L>[d912+d922+d9§]. (®)

Contrary to what is often said, such coswgies can be perfectly compatible with current
observations, a point stressed recently by Wang ¢68]. Notice that this metric allows
for a period of acceleratecpansion provided that is not too small; in fact there is such
an interval if > 1. The Lorentzian version af™, denotedy—, is a quintessence field
[61-63]with an exponential-like potential given by

_ 3—w 1 T _
Vauintessencs ~g- 72 cosif <\/ ¢ >§ 9)

this is superimposed on an Agl§eometry with cosmological constan8/L2. The energy
density ofp~ can be computed in terms of the Lorentzian scale functio¢—) (which
we abbreviate ta~); the resul{33] is

3 o
o) =gzla) . (10)

The total energy density is the sum of this and the energy density of the background AdS
If we had taken the k-th order term (&) instead of the first, then the densityg@f would

vary as(a*)*z"z/w; so thek = 1 term dominates when the Universe is large, while the
higher order terms in the Fourier expansion are important very near to the Bang and the
Crunch.

Clearly the Lorentzian metrig™ (e, A) given by(8) is not asymptotically AdS. Never-
theless its Euclidean version, given (§), is asymptotically hyperbolic, that is, asymp-
totically similar to EuclideanAdS. Since the Maldacena—Ma formulation of cosmic
holography is based on an interplay between the Euclidean and Lorentzian versions, any
constraint on the parameters which we danive from this fact must be accepted as physi-
cally relevant. A fundamental example of e constraint is the Breitenlohner—Freedman
bound[64], which, as explained if37], is also valid in the Euclidean case. (Notice that
the Euclidean space is compactified only in some directions: its volume is infinite towards
either component of the boundary. The discussiofBif] applies here.) The BF bound
imposes a very interesting condition an, as we now explain.
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The field 9™ does not decay to zero towards eitheér= oo or —oo, but rather to
+% /@ [4m, respectively: this can be seen from the explicit solution for it,

_ o tt
ot = i\/%cos [sec)’(aﬂ. (11)

This behaviour is necessary in order to ensure that the total energy density should tend to
the AdS; value —3/8r L2 near infinity (see Eq(5)). Concentrating on the— +oo end
of the manifold, we therefore find it convenient to define a new fietdby

yt = % w Jar — ¢t (12)
Substituting this into Eq(5) we see that the mass ¢f" is given by
-1
me=2" (13)

wl?
In general, one can expect an AdS/CFT-style correspondence to brealf@swhthe
Breitenlohner—Freedman bound fails; since weafrcourse ultimately interested in estab-
lishing a correspondence of this kind for cosmology, we must ensure that the BF bound
is satisfied here. In four dimensions this bounehs> (3/4) A, where A is the negative
cosmological constant of an AdS background. Thaiscan be negative without causing
any instability, as long as it is not too negative. Here this bound becomes

3-w» 1 -9
- >

Z 720 14
w L2 412 (14)
whence we have for positive
2 1
o> —. 15
1++/23 (15)
Thus the parameter is allowed to go below the value/3, which means thavlg;ion

(Eq.(5)) is allowed to be negative. However, the lowest valuesoéllowed by(15)is not
very far below ¥3; it is in fact equal to about 82.8% 0§ 3.

In fact, cosmological datf85] require the basic value @b to be quite large; in par-
ticular, there is a period of cosmic acesdtion, as observed, if and onlyadf is greater
than unity. However, our discussion here is based on the assumption that we take only the
first term in the expansio(®). If we drop this assumption, th€a5) can be interpreted as
requiring us to truncate the expansion in such a way thatabels the final term, then not
just but alsow /k? satisfies the inequality. In view of the discussion around (&),
this last term will be the dominant one near to the Bang and the Crunch in the Lorentzian
version of the spacetime.

Combining all these results, we conclude that our Euclidean axion is governed by a
superpotential given by a finite sum in E&). We can ignore all terms in the sum apart
from the first (which dominates when the Universe is large) and the last (which dominates
near to the Bang and the Crunch). The quintessence density will grow very rapidly near
to the Bang/Crunch: it can in fact grow (as tends to zero) more rapidly thaa ).
However, evaluating the right side ¢f5), we find that the maximum rate at which the



B. Mclnnes / Nuclear Physics B 709 (2005) 213-240 221

density can grow is as (approximately) )~ 72426 This “window” between the exponent
six and a value just over 7.2 will be considered in detail below.

Having introduced a concrete example of a holographic cosmology, we can turn to the
qguestion of how holography influences the structure of the spatial sections of spacetimes
of this general kind.

3. Flatness, holography and Seiber g-Witten instability

Linde[1] argues that compact spatial sections are favoured by Inflationary theory. There
are in fact several strong advantages in caotsections: for example, because compact
sections are (under some circumstances) circumnavigable, it is easy and natural in such
cosmologies to arrange for sufficient homogenization for Inflation to begin. On the other
hand,positivecurvature is generically disfavoured in quantum-gravitational studies of ini-
tial conditions for Inflation[30]. Thus Inflationary quantum gravity firmly directs our
attention towards either flat or negativelyreed compact spatial sections. There is, of
course, an enormous number of such manifolds, but we shall now see that this number is
drastically reduced when we study Bang/Crunch cosmologies from the AdS/CFT point of
view.

In [43], Seiberg and Witten have studied theesdion of the AdS/CFT correspondence
to general geometries of the AdS type: ttmtthey considered the consequences of doing
string theory on non-compact Euclidean spaeath negative Ricci curvature, admitting a
conformal compactification in the sense of Penrose. One of their more remarkable findings
was that BPS branes “near” to the conformal boundary (“large branes”) will give rise to
an instability if the conformal structure at infinity is represented by a metric of negative
scalar curvature. (When discussing compact conformal manifolds, we can, without loss
of generality, assume that the scalar curvature is a constant of arbitrary magnitude but
of a fixed sign[66].) The unexpected role of the scalar curvature is a strong hint that
this instability is “holographic”, for one knows that the scalar curvature is an essential
component of the conformally invariant Laplace operator,

At n—2
4n—1)

defined by the conformal structure atdimensional) infinity. (It is important to note that
everything we say here is based on the assumptiomtisagreater than 2The case of two-
dimensional boundaries is special and will not be considered here.) Indeed, Seiberg and
Witten were able to show that negative scalar curvature does induce the instability in the
field theory at infinity that holography demands given the large brane instability in the bulk.
Seiberg—Witten instability has been subjected to a deep study recefly]iand[68]; it
represents a fundamental constraint on possible boundary geometries and topologies in
any generalized version of the AdS/CFT correspondence. For it is clear that it would not
be consistent to ignore the effects of such unstable processes on the underlying geometry,
and these effects could be drastic.

This comment applies with particular fam the context of Maldacena—Maoz hologra-
phy[2]. For here the idea is that, however, singular the Lorentzian cosmology may be, its

ACONFORMAL = R, (16)
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Euclidean version should be sufficiently well-behaved that there are asymptotically AdS
regions which are not, for example, cut off by some kind of disturbance resulting from the
unrestrained growth of large branes in those regions. Thus Seiberg—Witten instabaity

be avoided in cosmic holography.

The relevance of all this arises from the following simple observation: the spatial sec-
tions of the particular spacetimes consideiredhe previous section, and by Maldacena
and Maoz, have theameconformal geometry as the space on which the dual theory is
defined; for example, it is clear that if the manifold with metric given by &Q.is em-
bedded as the interior of a manifold-wiloundary, then each component of the boundary
has the structure of the flat spaf@/ F, with its “flat” conformal structure. An analogous
statement would hold if we considered a simdaacetime but with negatively curved spa-
tial sections. If the Maldacena—Maoz cosmo&mjare a correct implesmtation of string
theory in cosmology, it therefore follows that string thegngdicts that the spatial sec-
tions of our Universe cannot be negatively curyviedieed, they cannot even have negative
scalar curvature. However, this argument ignores perturbations. We will deal with these
after introducing some mathematical machinery.

The first result we need is thazdan—Warner classificatiq69]—see[70] for a recent
discussion—of all compact manifolds of dimension at least three. This is concerned with
the following question: given such a manifold and any smooth funcion it, does there
exist a metric on that manifold havirngjas its scalar curvature? This is ultimately a ques-
tion about the tieformability of the manifold® For example, can a sphere (of dimension
greater than two) be deformed to such an extieat its scalar curvature becomes negative
everywher@ Such questions are answered by the Kazdan—Warner classification theorem:

Theorem (Kazdan—Warner)All compact manifolds of dimension at least three fall into
precisely one of the following three classes

[P] On these manifolds, every smooth function is the scalar curvature of some Rie-
mannian metric.

[Z] On these manifolds, a smooth function can be a scalar curvature of some Rie-
mannian metric if and only if it either takes a negative value somewhere, or is identically
zero.

[N] On these manifolds, a smooth function can be a scalar curvature of some Rie-
mannian metric if and only if it takes a negative value somewhere.

For example, spheres are evidently not in [Z] or [N], so they must be in [P]. (It follows
that a sphere of dimension at least those be deformed in such a way that its scalar
curvature is negative everywhere—g68] for an explicit construction.) It can be shown
(using some deep theorems to be discussed below) that compact manifolds of negative sec-
tional curvature are in [N]. This means thateryconformal structure on such a manifold
is represented by a metric of constant negative scalar curvairaatter how we deform
it, its scalar curvature can never vanish or become positive everywhbuss, the Seiberg—

5 Itis interesting that.orentziancompact manifolds are probaHyo] arbitrarily “deformable” in this sense.
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Witten instability in this case is particularly radical, since it is independent of the choice of
metric and must arise from the topology oéthpace—the Kazdan—Warner classification
depends only on the (differenti&fopology of the manifold. Om says that the instability
isinduced topologically71].

This topological aspect of Seiberg—Wittentasility has a direct physical consequence,
as follows. The classical Belinsky—Khalatnikov—Lifschitz analysis of the approach to cos-
mological singularities (s€@2] for a recent discussion) would lead one to expect that, as a
Bang or a Crunch is approached, the geometry of the spatial sections would become more
and more anisotropic, and this distortion might well become so extreme that the precise na-
ture of the conformal structure induced at Euclidean infinity would no longer be clear. Now,
however, we see that such anisotropies are irrelevant: no matter how complicated they may
be, the scalar curvature induced at Euedid infinity can never be positive or zero—no
amount of distortion can avert Seiberg—Wittastability in this case. For whatever hap-
pens to the conformal geometry during the evolution, the topology of the spatial sections
does not change, and the topology of confdrmfinity remains that of a space on which
everymetric defines a conformal structure with negative scalar curvature. We conclude that
holography totally forbids spatial sections of negative curvatexen if perturbations are
taken into account.

Notice that the theory forbids negative curvature of any magnitude, no matter how small,
because in any case it does not make sense to speak of “small” curvatures on the boundary
(which only has a conformal structure, not a Riemannian metric). Thus there is indeed a
real distinction betweeaxtremely smalhegative curvature armkrocurvature on the bulk
spatial sections (which do of course have a Riemannian structure). This distinction is a
direct reflection of thénolographic nature of Mdacena—Maoz cosmology.

To summarize, we have here a very strong prediction from cosmic holography: the the-
ory could not be saved if any value &2 below unity were confirmed by observation.

It is interesting to note that, until the disvery of cosmic acceleration, the cosmolog-
ical data actually pointed strongly towards negative spatial curvature; so we have an
example in which cosmic holography makes a statement which might easily have been
falsified.

Now let us turn to the case of principal interest to us: cosmological models with flat,
compact boundaries and spatial sections. Seiberg and Witten did not consider the case
where the scalar curvature of the boundary is zero. Here the analysis depends on higher-
order termgd68] in the expansion of the brane action, and unfortunately it is difficult to
give a general statement of the precise conditions needed to avert instability. However,
much can be learned regarding this case by studying ground states for AdS black holes
with flat, compact event horizons; for these spacetimes have flat conformal structures on
conformal infinity. The ground state for sublack holes is not anti-de Sitter spacetime but

6 By this we mean that, in some examples of high-dimensional topological spaces which can admit more
than one differentiable structure, the KW class can chainpe differentiable structure is changed, even if the
underlying topological structure doast change. But this cannot happen in the cases considered in this work.
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rather the “AdS instanton” with (Euclidean) metfi3] given inn + 1 dimensions by

L2 ny\ —1
gt (AdSl) = = (1 - r_0> dr?
r

; (;—Z) [<dt+>2 (18 w2 f(dﬂ)z]- an

Herex andx’ are coordinates on the circumferences of circles of various radii; that is, they
are proportional to angles. In the Euclidean case, the “time” coordinate too is angular. The
conformal structure at infinityr — 00) is represented by the flat metric

n—2
gt (ASI, 00) = (di )+ dv? + D ()2, (18)
1

and this is a metric on aompactmanifold, since all of the coordinates are angular. Thus
the structure at infinity for the AdS instanton is precisely a compact,sfldimensional
manifold. The very fact that the instant@a well-behaved, unique ground st§fd—76]

for these black holes strongly suggests that vanishing scalar curvature on the boundary is
compatible with a stable field theory there, dual to one of these physically well-defined bulk
configurations. Thus, we do have a large clafssxamples in which zero scalar curvature

at the boundary is not pathological. While there undoubtedly exist other examples in which
itis, one expects that these examples must involve highly intricate geometric constructions,
not the very simple structures we are considering here.

For concreteness, and in order to avoid giving an analysis which is too model-dependent,
we shall assume that scalar-flat boundarieBlafdacena—Maoz cosmologies—which are
after all geometrically much simpler than AdS black holes with flat event horizons—do
not lead to large brane instabilities in the bulk. Under this assumption, the cosmological
model we considered above is of course stable in the Seiberg—Witten sense, since it is
clear that the conformal structure induced on both connected components of Euclidean
infinity is represented by a flat, hence scalat;finetric. As in the negatively curved case,
however, one has to consider whether perturbations can disturb this simple picture. For a
flat manifold can be deformed: a generic distortion produces a new conformal structure
not represented by a flat metric. To assesscbnsequences of this, we need some further
results in global differential geometry.

First, we need the concept of @&mnlargeablemanifold [13, p. 302] These aren-
dimensional manifoldd/ such that, given any positive there exists an orientable Rie-
mannian covering/* and a mapf (which is constant at infinity and of non-zero degree)
from M* to the Riemanniam-sphere of curvature unity, wherg contracts all lengths
by a factor of at least. In other wordsM must have “arbitrarily large” covering spaces.
Notice that enlargeability is a topological conditi Clearly all compact flat manifolds are
enlargeable.

The work of Schoen, Ya[l2], Gromov, and Lawsofil3, p. 306]can be summarized
as follows:
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Theorem (Schoen-Yau—-Gromov—Lawsofhere is no metric of positive scalar curva-
ture on any compact enlargeable spin manifold.

It follows that compact enlagpble spin manifolds can never be in Kazdan—Warner class
[P]. Now tori are compact, enlargeable, anthshence, no matter how a torus is deformed,
the scalar curvature can never become poséixarywhere, and it follows that the same is
true of any quotient of a torus. Since every flat compact manifold is a quotient of a torus, we
see that this statement is true of any compact flat manifold. On the other hand, it is obvious
that flat compact manifolds are not in Kazdan—Warner class [N]. It follows that they are in
[Z]. But this means that the only way to avoid a negative scalar curvature metric on these
spaces is to ensure that the scalar curvaturegsigely zero everywdre. This appears to
be a strong constraint. In fact, it far strongerthan it seems. For Gromov and Lawson,
extending a theorem of Bourguignon, were able to pf@3ep. 308]the following result.

Theorem (Bourguignon—Gromov—Lawsonlf a metric on a compact enlargeable spin
manifold has zero scalar curvatyrdnen that metric must be exactly flgtat is the curva-
ture tensor must vanish everywhere.

This is a remarkable result: the vanishingao$ingle scalar invariant, the scalar curva-
ture, forces theentire curvature tensor to vanish esxthcon these manifolds. Recall now
Schoen’s theorerf66] to the effect that any conformal structure on a compact manifold is
represented by a metric with constant scalarvature; recall also that a smooth function
on a manifold in KW class [Z] has to be negative somewhere if it is the scalar curvature
of some metric, unless it is exactly zero. Combining all these observations, we have the
following statement:

Corollary. Let g be a metric on a manifold with the topology of a compact flat manifold.
Then unlesg itself is conformal to a flat metrjat is conformal to a metric of constant
negative scalar curvature.

That is, if such a manifold is a component of the conformal boundary of a manifold of
the kind considered by Seiberg and Witten, and if a flat metric on the boundary is distorted,
however, slightly, so that it ceases to bentormally flat, then the system will become
unstable to the production of large branes. The situation here regarding Seiberg—Witten
instability is thus almost as severe as it is in the negatively curved case: the instability can
be avoided only if the boundary is perfectly (conformally) flat.

These deep geometric results thus impose an extremely demanding self-consistency
check on our proposal. For the conformal structure at Euclidean infinity is obtained by
taking a suitabldimit of the metric on the spatial sections, after removing the conformal
factor. (See the following section for the details.) This means that, on the Lorentzian side,
we have to ensure that the spatial sections tend to become increasingly flat (again after
removing the conformal factor) as both the Bang and the Crunch are approached in cos-
mologies like the one discussed in the previous section, with the Lorentzian metric given
by Eq.(8). That is, of course, trivial for this precise metric, but this simplicity is based on
the assumption that no other form of matter is present. If we introduce small anisotropies
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corresponding to local concentrations of matter or radiation, it is far from clear that the
spatial sections will be so well-behaved near to the Bang and to the Crunch. Indeed, the
Belinsky—Khalatnikov—Lifschitz analysis mentioned above indicates that under small per-
turbations a generic spacetime with ordinanatter sources can be expected to develop
severe anisotropies as one approaches a Bang or a Crunch, and so oneatioudéneral
expect a more realistic version (8) to induce flat metrics on the spatial sections at very
early or very late times; therefore, it is far from clear that the conformal structure at infinity
will be represented by a perfectly flat metric.

We shall now see how this problem is naturally avoided by the cosmological models
introduced in the preceding section, for soralues of the fundamental parametetbut
not for others.

4. Ensuring flatness at infinity

In order to discuss anisotropies, we need to recall some aspects of the metrics of “as-
ymptotically AdS” Euclidean spaces. The formal definition of such metrics is discussed at
length in[33], and we need not rehearse all the details here: the main point is simply as
follows. Under conditions which will always betssfied for the spaces discussed here, the
metric of an asymptotically AdS Euclidean spade(with asymptotic sectional curvature
—1/L?) can be written, near to any connected component of the conformal boundary, as

L2
gt (M) = ?[dpz +gr. (19)

wherep is a coordinate such that the given component of the conformal boundary is at
p=0. Hereg;r is a metric on the spaces transverse to the boundary. The point we wish to
stressis thag; doesn general have a non-trivial dependenceothe conformal structure

at this component of infinity is represented by a metric which is obtained by takitigiihe

of g;f asp tends to zero. In this sense, the metrics of the f@hconsidered above were
very special cases, since we did not needke tais limit. A good example of this limiting
process is provided by Lorentzian Agiself: in global coordinateg, r, 6, ¢) the metric

can be expressed as

¢~ (AdSy) = costf(r/L)(—dr? + secl(r/L) dr?
+ L?tantf(r/L)[d6? + sirf(9) dg?]), (20)

and we see that the metric still dependsroaven after the divergent conformal factor
cosH(r/L) is removed. (Here, of course, the boundary is obtained by lettitend to
infinity, so that tanfi(r/L) tends to unity and we obtain the usual cylindrical conformal
boundary of Ad$3.)

This kind of behaviour is actually quite well-adapted to the cosmological case, since it
is well known (see, for exampl§72]) that the approach to cosmological singularities is
ultralocal: that is, ultimately, only the (proper) time dependence of the metric is important.
Hence, in studying the very late or very early stages of a Bang/Crunch cosmology, we can
indeed concentrate on metrics which resentb®), in the sense that the metric at infinity
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is obtained by stripping away a conformal factor and then taking the limit of a family of
metrics parametrized by a simgparameter. In the notation 2], we can express the
metric in the ultralocal phase as

g;nisotropic: _(dti)z + (ai)z ZeZﬁi (gi)z’ (21)

wherea~(+7) is an overall scale factor, where thé are orthogonal, time-independent
one-forms on the spatial slices, where fieare three distinct functions of proper time
satisfying

B1+ B2+ B3=0, (22)

and where all dependence on spatial position has been suppressed. For locally flat spatial
sections one finds that

P ) 23)
and one can shoyv2] that the scale factor satisfies a FRW equation of the form
3H?>=8rx |:,0+ 0—2:| (24)
(@8]
whereH is the Hubble parameter, whepds the total energy density and where
%= %[c%—l—cé%—c%]; (25)

thuso is a constant which is an overall measure of the extent of anisotropy in such a
spacetime.

In our case,p is the sum of the energy density of the background Ad&mely,
—3/87 L2, with the energy density of the quintessence field. Now with regard to this lat-
ter, recall that we saw that the Breitenlondereedman bound requires that the series in
Eq. (2) should terminate, with the last valuelobeing the largest integer satisfying

2 1 - w
1+23 k2
For example, in the case ef = 10 (se€[35]), the last value ok is 6, and this means
that the corresponding quintessencenponent has a density proportional @ )~"-2.
(Recall that the magnitude of the exponentstmuot exceed 7.2426.) In general, if the last
value ofk satisfies(26), then itmayalso satisfyw /k? < 1/3. If this is so, then we see
from equation(10) that the quintessence energy density grows; agends to zero, more

rapidly than(a—)~%. For example, in the case whese = 10, this means that, extremely
near to the Bang or the Crunchiaetat other times—Eq(24) becomes

-3 N 3 N o2
87L2 87L2a )2  (a)b|

Clearly, the second term on the right is the dominant one near to the Bang and the
Crunch—and this would remain true even if we included the contributions of ordinary

(26)

3H? = 87r|: (27)
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matter, radiation, and so on. In particular, whatever the initial anisotramgay have been,
it will be completely insignificant compared to this term: one has a kind of “cosmic no-
hair” theorem.

The situation here is exactly analogous to the way, as one naavagfrom the initial
singularity, the inflaton potential dominates all other terms in the Friedmann equation,
so that anisotropies are “inflated away” by the inflationary expansion: here the “last”
guintessence compondmis the same effect as the singularitiesagproachegdbecause
its density grows more rapidly than that of any other contribution. Since there is no limit
to the contraction, there is no limit to this effect—all local anisotropies will be completely
wiped out in the very last stages of the approach to the singularities. A very similar phe-
nomenon plays a crucial role in the cyclic cosmolodi€d, and we see that it is equally
important here, although we stress that theraasbounce” in our case: we need rapid
density growth rates not to prepare for a phase of expansion succeeding a crunch, but to
ensure that the metric induced on (Euclideanfinity is indeed flat. (Because of this dif-
ference, it turns out that much larger values of the effective equation-of-state parameter are
required in the cyclic case than here; as we know, in our case the magnitude of the largest
exponent of the scale factor is never much larger than six.)

The essential point here is that a three-dimensional Riemannian manifold which is lo-
cally isotropic around each point—that s, thés a local isometry mapping any unit vector
at any point to any other unit vector at that point—has a sectional curvature which is
independent of direction. For ithree dimensions each unit vamtat a point uniquely
determines a two-dimensional subspace of the tangent space, namely, the subspace per-
pendicular to it. But if the sectional curvature of a Riemannian manifold of dimension at
least three is independent of direction, tHié8, p. 202]it is also independent of position;
that is, the curvature is constant. Since compact manifolds of constant negative curvature
are in Kazdan—Warner class [N], while those of constant positive curvature are in [P], it
follows that the only way that a metric on a manifold with the topologies we are consider-
ing here can be locally isotropic is by being perfectly flat. We conclude that the conformal
structure induced at Euclideamfinity is represented by a perfectly flat metric, provided
that the matter content of our spacetime is such that all local anisotropies are eliminated by
a “final” quintessence component with/ k2 < 1/3.

We require, then, that the final value/othould satisfy

2 1 <T 1
1+v23 k2 3
These inequalities express the competiegidnds of the Breitenlohner—Freedman bound
(which requires the lower boundihd of Seiberg—Witten instability (which, via the Schoen—
Yau—-Gromov—Lawson theorems, requires tipper bound). It is striking that the allowed
interval is so short.

The effect of(28) is to exclude certain values af ; the only allowed values are those
lying in intervals|a, b) where(28)is satisfied for some integér These intervals are given
in Table 1 The intervals are closed to the left, open to the right (so that, for exampte3
is not permitted).

Notice that there is an upper bound on the values &o excluded, because the allowed
interval fork = 11 overlaps the allowed interval féar= 12, and all subsequent allowed

(28)
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Table 1

k a b
1 0.276142 0333333
2 1104570 1333333
3 2485281 3000000
4 4418278 5333333
5 6.903559 8333333
6 9941126 12000000
7 13530976 16333333
8 17673112 21333333
9 22367532 27000000

10 27614238 33333333

11 33413227 40333333

12 39764502 48000000

intervals overlap their successors. (One sees this either by consulting the table or by means
of a simple calculation based on requiring the lower end of one interval to be smaller than
the upper end of its predecessor.) This upper bound is given by

Drorbidden < 2%2(\5 — 1)~ 334132 (29)
That is, all values ofo above this number are alloweBelow it, there is a haphazard
set of intervals which are allowed, alternating with intervals which are not. For example,
@ = 10, an example studied in detail [B5], is allowed; on the other handy = 9.90 is
not; nor isw = 2, also studied ifi35]. In short, values ofo below 33.4132 entail careful
fine-tuning; larger values do not. If we can argue on independent grounds tisdtarge,
then there are no difficulties with fine tuning.

We conclude that if we taker to be large, then “cosmic baldness” will automatically
ensure that the conformal structure induced at Euclidean infinity is represented by an ex-
actly flat metric, and this can be achieved without violating the Breitenlohner—Freedman
bound. In fact, the observatiof5] requirew to be at least this large. Furthermore, there
are general theoreticaéasons for expectingr to be larger still. In many string theory
compactification§79,80]there is a general tendency to predict that the fundamental length
scale of our observed spacetime should be very short. But one sees fro(i@)easd (8)
that the natural length scales of the Euelth and Lorentzian versions of our spacetime
are different: in the former case, theese is asymptotic to a Euclidean Ad8ith “radius”

L, whereas in the latter case the Universe is finite in all directions, including time, with a
total lifetime of r e L. ThusL can indeed be small without contradicting the observations,
provided thato is very large.

To summarize: Seiberg—Witten instability allows us, in the context of cosmic hologra-
phy, to draw several surprisingly strong conclusions regarding the spatial sections of the
Universe. The first is that negatively curvegimpact spatial sections are completely ruled
outin string theory. In this case, the instability is particularly persistent, becaugeis
logical: the spatial sections can be arbitrarilffoiened as we trace &m back to the Bang
or forward to the Crunch, yet the system is still subject to instabilities arising from the
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nucleation of branes which lower their action as they are moved towards the (Euclidean)
boundary.

Combining this with Linde’§1] analysis discussed earlier, we find tte flat compact
three-manifolds are uniquim their ability to satisfy all of the strictures imposed by the
requirements of Inflation (which accommodafmsitively curved sections only with great
difficulty) and large brane instability (which even more firmly rules out negatively curved
sections). Even the flat manifolds only narrowly escape Seiberg—Witten instability. They
escape it if we can make the boundaxactly conformally flat; we saw that our “toy
model” of an accelerating holographic cosmassvable to perform this feat, provided that
the parametets is sufficiently large, as is naturally the case.

The conclusions we have reached here, whégeloped in the context of a particular
model, are in fact extremely robust. That is, they do not depend on the particular choice
we made—a Euclidean axion—for the matter content of our cosmology: for example, the
prohibition on negatively curved spatial sections is extremely general, since it depends only
on the topology of these spaces and not onrthebmetry. Our ability to avoid Seiberg—
Witten instability in the cas of a boundary in KW class [Z] did depend on the ability of our
matter model to flatten the sections as the siagtiés are approachedjtthis is attainable
for many matter models—s¢e7].

However, we shall now see that the list of candidates for the spatial geometry of the
world can be still further reduced if we do adopt the specific matter model introduced
earlier. Thus the findings of the next section should not be considered to be as general as
those of this section.

5. Finite—and (confor mally) flat—in all directions

With the help of Seiberg—Witten instabilif$3], cosmic holographj2], and Inflation-
ary argumentgl], we have reduced the number of candidates for the spatial sections of the
Universe to a mere ten. That is nevertheless nine too many.

If we knew precisely which of these ten has been chosen by Nature, then we would
have a valuable clue as to the true nature efitiitial state. The ten candidates, dubbed the
platycosmdby Rossetti and Conwg@6] (a term we adopt here as a useful abbreviation),
are of varying degrees of complexity. Among those which are orientable, we have the torus
T3, the dicosmI'3/Zy, the tricosmT3/Zs, the tetracosnT3/Z4, the hexacosni'3/Zsg,
and the didicosm or Hantzsche—-Wendt spﬁ%;é[Zz x Z].

For all that we know, the spatial sections of our Universe could have the structure of the
didicosm. Unlike the torus, this space has non-trivial holonomies, of two different kinds:
the holonomy group i¥> x Z>, a finite subgroup of SO(3). The fundamental domain
here is a rhombic dodecahedron, and, if this domain were small enough to be observable,
the resulting patterns in the microwave sky would be remarkable ingegddEven if it
is not directly observable, a theoretical deduction that the spatial sections have such a
complicated structure would surely be a strong hint that the initial state has been selected
with great precision, presumably by something very much more intricate than a simple
classical singularity. But how can such a theoretical deduction be made? In this section, we
shall show how our toy model, with Euclidean mef{{i¢ (where the transverse sections are



B. Mclnnes / Nuclear Physics B 709 (2005) 213-240 231

not necessarily globall§3) leads to a partial answer to this question. The hope, of course,
is that a more realistic matter model would yield a more complete answer.

Eq. (7) indicates thatif we interpret the underlying manifold as the interior of a
manifold-with-boundary, then that boundary is disconnected: it has two connected com-
ponents. It was emphasised by Maldacena and Mapthemselves that the status of
Euclidean manifolds with a disconnected boundary is very problematic from a holographic
point of view. In general, this apparent failure of a one-to-one correspondence is a very
deep question (s€@1-83]for discussions), but ifi35] we suggested that it may have
a very simple resolutioin the particular casewith which we are concerned here. The
argument is as follows.

The two-dimensional open cylindéd, 1) x S can be compactified in (at least) two dif-
ferent ways. The first is to regard it as the interior of the compact manifold-with-boundary
[0, 1] x ST (the closed cylinder); the second is to regard it as an open submanifold of the
torus S x 1 = 72 (obtained fromrI'2 by deleting a circle). Neither option is “correct”:
one makes a choice depending on the circumstances. The difference, of course, is that in
the first case we have to adldo circles, whereas in the second case we only need to add
one. This led us, if35], to suggest that the second kind of interpretation is required by
cosmic holography.

In the case at hand, we can reexpress the méfjiin the following way. Define a
constant,, by

o0
o =2 [ sect? (©) (30)
T
0
and a new coordinateby
t+
Cow L d = £ secl¥ (—) art, (31)
w L

where the sign is+’ when ¢ is positive, —’ when ¢t is negative. The range ofis —x
to +7. Now solve fort™ in terms ofg and use this to express sédn%) in terms ofo.
Denote this function by, (9); then G (8) vanishes atkr, andg™ (ww, A) is given in
terms of the coordinaté as

2

¢ (@, A)=c2 L2G2(0) [doz + (%) (doZ + do3 + deg)}. (32)
w

As it stands, the coordinatecannot be extended to the whole circle: we have to delete

the single) point§ = £, becauser ™ (ww, A) is singular there. However, removing the

prefactor on the right side ¢82) by a conformal transformation, we obtain precisely the

standard local metric for a non-cubic four-dimensional torus. (The numpey L can in

fact be constrained by observational data:[8&2.)

If we had begun with(32) instead of(7), we would undoubtedly have declared that
the natural compactification of our Euaidn space is a space with the local geometry
of a torus. Infinity here is not a boundary; it is instead a “submanifold at infinity”. The
real point, however, is that infinity isonnectedn this interpretation. Clearly the “double
boundary” problem simply does not arise if we adopt this viewpoint.
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Thus, we propose an extremely simple extension of our hypothesis of flat, compact spa-
tial sections: not only the spatial sections, but also (the compactified Euclidean version of)
the entire four-dimensional spacetirsbould have the topology of a compact flat mani-
fold. In short, the spatial sections are flat, compact three-manifolds, while the compactified
spacetime is globally conformal (E(B2)) to a flat, compact four-manifold.

Now recall that the adoption of thedal three-dimensional metrit?(do? + do2 + do2)
in Eq.(6) did not commit us to the global geometry and topology of the three-dimensional
torus:manydistinct compact flat three-dimensionaanifold have this local metric, since
all such manifolds can be expressed topologicallyTdgF, for some finite groupF.
(Recall that we assumed for simplicity that the covering torus was cubic, but trivial mod-
ifications allow us to consider the most geslerase.) In the same way, the appearance of
the metric of a four-dimensional torus (B2) does not mean that we have here a manifold
with the topology ofT'* or even that ofS* x T3/F. In constructing a general compact
flat manifold, the procedure is as in the familiar case of a torus, but one is free to apply
various isometries before performing tigentifications that produce a compact space. In
three dimensions, there are ten ways of doing this; in four dimen§esthere are no
fewer than 75, though we hasten to add thashof these 75 cannot be constructed from
manifolds of the forn'3/ F in the above way.

Return temporarily to the interpretation gf (w, A) as a metric on the interior of a
manifold-with-boundary. That boundary consists of two copieg ®fF. What we are
proposing here is that these two copies should be identified. But, before performing the
identification, we are free to apply an isometry, as above, to one of the copies. If we do
this, we shall obtain a space with the same local metri§las 73/F (which is what we
get if the isometry is trivial); that is, we obtain a metric of the fof82). The spaces we
obtain will not be fully general flat compact fadimensional manifals, partly because the
metric in(32) has a special form (the torus is rectangular and has three dimensions of the
same length, while the fourth in general has a different length) and partly because we have
already fixed part of the topology by specifying the gradupNevertheless some freedom
remains, becausg?/ F still has a non-trivial isometry group even after the factoring‘by
Can we reduce this freedom in a physicap®a he answer is that we can, by exploiting
the fact that our matter field is of a very specific kind: it is a (Euclideaidn

The axion fieldp™ is able to distinguish™ = —co from ™ = 400, because from
Eqg.(11)we have

lim ot = [Z 2 Jim o 33
t*%oo(p 47 2 t+ﬁfoo(p ( )

and this sign difference is physical because fromBywe have

W (_\/g g) — (+\/§ g) (34)

This is important, because it apparently gt stop to our plan of identifying the two
boundary components: how can we do so when the field and its superpotential take dif-
ferent values on each component? But redadt tan axion naturally reverses sign under

a reversal of orientation. Thus the problem is solved in a natural, geometric way if—and
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only if—we arrange for the orientation of one boundary component to be reversed before
identifying it with the other. This is precisely the way, in two dimensions, a Klein bottle
[44] is defined, and we can proceed in much thene way here, allowing, however, for

the greater complexity of'3/F. Let us see to what extent this requirement reduces our
freedom in constructing our four-dimensional Euclidean “spacetime”.

The point is simply that not every compact flat three-manifold admits an orientation-
reversing isometry. In essence, factoring a Riemannian manifold by a discrete group usu-
ally reduces the “size” of the isometry group, since not all isometries of the original space
are compatible with the factoring. In the present case, the reduction can obstruct the proce-
dure we outlined above. The isometry groups of all of the platycosms are ligié8]jand
the result we need can simply be stated using that list; however, we can gain more insight
by means of the following elementary argument.

Suppose that one has a maniféfdadmitting a groupg (M) of diffeomorphisms (such
as isometries, conformal symmetries, and so on)./Ldte a subgroup of; (M) and let
N (I') be thenormalizerof I in G(M). Thatis,

NI ={geGWM)|gygtervyer). (35)

Clearly N(I'") contains all those elements 6f(M) which descend to well-defined dif-
feomorphisms of\//I". But notice that every element df itself has no effect on each
element ofM/I". Thus the symmetry group a@ff/I", which we denote by;(M/I"), is
not N (I") but rather the quotieny (I")/I":

G(M/TI')=N(I")/T. (36)

See[16] for more details and for other applications of this formula. The main point to
bear in mind here is that an isometry &f can descend to an isometry &f/I" only if it
normalizesl”.

Let us see how this works in some concrete examples. First, the Totis defined
as follows[44, p. 117] First recall that any isometry @2 can be expressed &8, a),
whereB is an orthogonal matrix and is a vector, and wheréB, a) means that we leB
act first, followed by a translation through Leta;, i = 1, 2, 3, be a fixed basis fdR3. If
I’y is generated over the integers by the isometries (I3, a;), wherels is the identity
matrix, then73 = R3/F§‘. Now consider the isometr2 = (— I3, 0). It is easy to see that
conjugation bys2 just maps each element 6F to its inverse. Thus2 does normalizé’;
and so it projects to an isometry ©f. Of course £2 reverses the orientation &°, so we
see thaf"® does admit an orientation-reversing isometry, which is what we need.

Next, the platycosm of the forrfi3/Z3 (the tricosm) is obtained as follows. First we
constrain the vectors;: we requirea; to be orthogonal to the other two, and we require
az andas to be of the same length and to be inclined at an anglewgB2Next, we set
altri] = (A3[27/3], a1/3), whereAs[27/3] is a 3x 3 matrix corresponding to a rotation
through 2r/3 in theay—agz plane: that isA3[27/3] mapsas to itself, az to a3, andag to
—ap — az. Then the tricosm i®3/I'[tri], where'[tri] is obtained by adjoining(tri] to
the generators of’;'. Now conjugation by? still maps each element @t} to its inverse,
but it does not have this effect eritri]; instead we have

Qaltri|2 ! = (As[27/3], —a1/3). (37)
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The isometry on the right is not the inverseadfri] and isnotan element of "[tri]. Thus

£2 does not descend to an isometry of the tricosm. In fact, in order to do this, an isometry of
IR3 would have to reverse orientation in the plane definedasndas, while also reversing

az; but such an isometry could not be orientation-reversing.

A similar argument works also for the tetracod/Z4 and the hexacosmi3/Zg. It
does not work for the dicosmi®/Z,. To see why, note that this space is defined much as
the tricosm, except that apart from being orthogonalitathe other conditions on, and
ag are dropped, and(tri] is replaced by [di] = (A3[7], a1/2), whereAz[z] isa 3x 3
matrix rotating thezp—a3 plane throughr; then the dicosm i®3/[di], where'[di] is
obtained by adding[di] to the generators afy’. Again, conjugation by2 mapsI’y' to
itself, but now we have

Qa[dil2 ™t = (As[r], —a1/2), (38)

and thisisin I"[di] since it is the inverse af[di] (becauseis[n] is of order two). Thug2

does descend to an orientation-reversing isometry of the dicosm. The didict$p x

Z»] can be constructed in much the same way as the dicosm, but with three additional
generators instead of one, each involving a rotationtby some plane. One can show
that £2 descends to an orientation-reversing isometry in this case also. In the case of the
non-orientable platycosms, a different argument applies, but for those platycosms it is in
any case obvious that there can be no orientation-reversing isomédtnies.the torus,

the dicosm, and the didicosm are the only surviythat is, they are the only platycosms
which can be used to construct a “generalized Klein bottle” of the kind we need in order
to compensate for the fact that the axion field has opposite signs on the two connected
components of infinity in our model.

Let us now show how to construct the final compact flat four-manifolds which, as
explained above, are the pdslsi underlying spaces of the conformal compactification cor-
responding to the metri@2). We shall concentrate on the dicosm: the construction for the
torus is just a simpler version, while thatrfine didicosm is somewhat more complicated
but introduces no essentially new difficulties.

Leta,, whereu = 0 through 3, be an orthogonal basis &, where we takex to be
of length 2rc,, L, while a1, a2, andaz are of length 2 A. Define 4x 4 matricesA4 and
Bg by Ag =diagl, 1, —1, —1) and B4 = diag(1, —1, —1, —1), and then define a pair of
R* isometries as follows.

a=(As,a1/2), B =(Baao/2). (39)

Let A4(I"[di]) be the group generated by these isometries, together with the translations
7, = (14, a,). ThenA4(I'[di]) can be presented as follows:

ol = 71, /32 =10, ﬁaﬂfl =a 1
arooz_l = 10, arza_l = r{l, ozr3a_1 = rgl,

- -1 - -1 - -1
pup =1,  Brp =1,  Bup =1

Aq(I'[di]) is so named because it contains a subgrbig], generated by, 1, 2, and
73, Which corresponds to the fundamental group of the dicosm. One can seftlhigdi])
is a non-abelian infinite group with no elene finite order (other than the identity) and
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with a maximal free abelian subgroufj (generated by the,) consisting of four copies

of Z. From the relations given, it is clear tha) is normal in A4(I"[di]); the quotient
Aq(I'[di])/ Ty is of finite order (it is isomorphic t&, x Zz); one says that’; is of in-

dex 4 in A4(I'[di]) and of rank 4. By the relevant version of the Bieberbach theorems
[44, p. 105]it follows thatR*/A4(I"[di]) is a four-dimensional manifold, covered by a
four-torusR?*/ I’y with the flat metric

8t(Cor L, A) = c2 L2 d6% + A%(d07 + doZ + d2); (40)

hered is an angular coordinate correspondinggowhile thed; correspond to the;.

As a Riemannian manifold®*/A4(I"[di]) can be expressed &%'/[Z, x Z>], where
T4 is the rectangular torus with aspect ratio givend(c,, L), and whereZ, x Z, is the
linear holonomy group of this space. One of the two independent non-trivial holonomies
reverses orientation, while the other does not. All this can be repeated beginning with the
three-torus instead of the dicosm, resulting in a flat four-manifold with the strutfit&,,
or with the didicosm (Hantzsche—Wendt space), resulting in a flat four-manifold with the
structureT?/[Zs x Zo x Zs].

The overall picture, then, is this. The underlying structure of the compactified Euclid-
ean four-dimensional space is thatft/Z,, T#/[Zo x 7], or T*/[Z2 x 7 x Z>]. Let us
take this last space as a concrete example. The local metric is giyé@)jrit is indistin-
guishable from that of a four-torus, except that the coordinates are not global. However, if
we move around the “time” direction (thfedirection), we find that orientation is reversed
once per cycle. If we arbitrarily seleg¢t= 4+ to be the (single) point on thecircle where
orientation is reversed, then a pseudoscalar such as our Euclidean axion will automatically
reverse sign there. Now suppose that we singledodttr by performing the conformal
transformation that maps the metric(40D) to the one given in E(32). Now 6 = £z has
to be excised, and the space has the topotdgyBang/Crunch spacetime with spatial sec-
tions having the structure of a didicosm. Transforming to the Lorentzian version, we have
the Bang/Crunch cosmology with metr{8). In the reverse direction, we transform the
metric in(8) to its Euclidean version, which is apparently a space with a conformal infinity
consisting of two components, each having the structure of the didicosm; however, we can
naturally identify these after performing an orientation-reversing twist, so as to obtain the
compact four-manifold’#/[Z, x Z x Z»] as the compactification. The dual field theory
resides on thsingle orientable, didicosm section @t £, that is, at infinity.

Linde’s considerations of quantum gravjty], with which we began, allowed the spa-
tial sections of our universe to have any one of the infinite variety of structures possible
for compact three-manifolds of negative zgro curvature. We have narrowed this vast
array down to just three candidates: the tofifs the dicosm7'3/Z,, and the didicosm
T3/[Zz x Zz]. We do not know how to reduce this list to a single candidate. It is note-
worthy, however, that although they seem rather similarhtiraologygroups of the three
surviving candidates are very different: in particular, their first homology groups (with
integer coefficients) are given on p. 122[44] as

H[T3]|=Z x Z x Z,
Hy[T3/Z]) = Z x Zp x Zo,
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H[T3/[Z2 x Z21] = Za x Za. (41)

Notice that this last group inite; thus the cycles around which branes may be wrapped
have a very different structure in the didicosm from those in the torus or the dicosm. It also
follows that the first (and therefore second) Betti numbers are quite different:

bi[T3]=3,  0[T%2Z]=1 ~ b T3/[Z2 x Zo]] =0. (42)

The vanishing ob1[T3/[Z> x Z»]] means that, in sharp contrast to the torus and the di-
cosm, the didicosm has no harmonic one-forms or two-forms. A further study of all of
these properties may lead to a physical way of distinguishing the didicosm from all other
candidates.

6. Conclusion

What is the shape of space? This question, even in its modern form, has exercised lead-
ing minds for over a centunfg4]; see[15] for a discussion of the views of de Sitter and
Schwarzschild). For a time there was hope that it would be settled by direct observation,
but, as this hope has begun to fade, we may have to turn to theory for guidance. There is
a very large literature on observational esfs of topologically non-ivial cosmological
models, but very little is known about the bapttysical principles which might prefer one
topology over another. Indeed, one of the main motivations of this work is to persuade the
reader that it is possible to find such principles.

Itis striking and exciting that Inflation, wth tells us that we should probably not hope
to see direct evidence of non-trivial spatial topology, nevertheless also t¢ll$ thsit this
topology probablys non-trivial. It then becomes a pressing question to determine which
topological structure has been chosen—and how.

In this work, we have argued that our best theories of fundamental physics do allow
us to narrow the field of candidates. The lessons we have learned vary in their degree of
generality.

The most general lessons are based on the assumpti@othatkind of bulk—boundary
duality is valid in cosmologyThis very general assumption already has strong conse-
guences. Most importantly, it tells us that we cannot ignore the most distant regions of
our world, those beyond cosmological horizons: for those regions are just as surely part of
the bulk as the regions near to us in space and time, and their role in the boundary dual
theory cannot be excluded or neglected.

Slightly less generally, if we assume that the spacetime conformal boundary lies to the
future and the past (as in de Sitter spacetime, or in any of the cosmologies of the general
form considered by Maldacena and Md&%), then typically each connected component
of the “dual” space has the same topology as the spatial sections. But if we further assume
that string theory controls the bulk-boundary relationship, then the very general arguments
of Seiberg and Wittefd3] apply. We are still at a very high level of generality at this point,
but already we can, with the help of the them of Kazdan—Warner, make an extremely
strong deduction about the nature of the spatial secttbeg:.cannot be negatively curved
The startling feature of this argument is precisely the fact that tbp®logicat once it
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has been established that a manifold is in KW class [N], its scalar curvature must remain
negative (ensuring Seiberg—Witten instability) no matter how it may be deformed by the
subsequent evolution of spacetime.

If Seiberg—Witten instability rules out negative curvature, and some of the most inter-
esting versions of Inflation disfavour positive curvat[itg then of course we are directed
towards the flat, compact three-manifolds: tiiatycosmg45,46] Already this is a great
reduction, since there are infinitely many compact negatively curved spaces, but only ten
platycosms.

All of these conclusions are very general, since they do not depend on using a specific
cosmological model. If we are willing to be more specific, then we can reduce the list
still further. The particular cosmological model considered here, combined with the (holo-
graphically motivated) requirement that disconnected boundaries must be avoided, leads
to a demand that the spatial sections should have a specific geometric property; and we
found that onlythreecandidates satisfy this condition. We do not ask the reader to take this
particular conclusion very seriously, since it is based on specific properties of a specific
matter model. The more important conclusion is tvathave shown explicitly that it is
indeed possible to use physical principles to effect a vast reduction in the range of candi-
dates It does not seem too far-fetched to imagine that a more sophisticated and realistic
matter model might well succeed in reducing the list ®irglecandidate. It may be that
this is how the shape of space will be discovered: perhaps only one topology is consistent
with our best theories.

Recent work on the (surprisingly deep) gedmef the platycosms sheds interesting
light on this observational/theoretical inpéay for cosmic topology. It has been foujgb]
that it is possible for two platycosms with different topologies tadespectralthat is, the
spectra of their Laplace operators can ba&cpld into a one-to-one correspondence. This
is remarkable, because two three-dimensiomialdan be isospectral only if they have the
same shape and size. Since the analysis of CHda thvolves precisely these spectra, it
could be very difficult to distinguish these two spaces by means of CMB observations,
even if the fundamental domain were small enough for direct observations to be possible.
Yet they are certainly distinguished by our theoretical analysis above. For the isospectral
pairs are obtained by taking a certain specific tdf‘(g’mf a fixed shape (itis a “two-storey”
rectangular torus), and then taking quotients. The quotient of the Tg°'r/rﬁZ2 x Zp]is a
particular example of a didicosm, named “Didi” j85]; the quotient of the fode"/ZA,
is an example of a tetracosm, named “Tetfdidi and Tetra are isospectral, but we saw
above that Didi is acceptable in our specifisgmlogy while Tetra must be excluded. Thus
we have a situation where theoretical arguments are able to distinguish candidates which
may be difficult to separate observationally.

Of course, the main task now is to determine or at least constrain the boundary field the-
ory. Because of the special asymptotic pmbies of the Maldacena—Maoz cosmologies in
the accelerating ca$83], there is reason to believe that the bulk/boundary correspondence
will be unusual here. This is currently under investigation.

7 The name Dexter has also been suggested.
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