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Inflation, large branes, and the shape of space
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Abstract

Linde has recently argued that compact flat or negatively curved spatial sections should, i
circumstances, be considered typical in Inflationary cosmologies. We suggest that the “larg
instability” of Seiberg and Witten eliminates the negative candidates in the context of strin
ory. That leaves the flat, compact, three-dimensional manifolds—Conway’splatycosms. We show
that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, S
Witten instability can be avoided only with difficulty. Using a specific cosmological model o
Maldacena–Maoz type, we explain how to do this, and we also show how the list of platyc
candidates can be reduced to three. This leads to an extension of the basic idea: the co
compactification of the entire Euclidean spacetime also has the topology of a flat, compac
dimensional space.
 2004 Elsevier B.V. All rights reserved.

PACS:11.10.Lm; 98.80.-k; 04.20.Gz

1. Nearly flat or really flat?

Linde has recently argued[1] that, at least in some circumstances, we should re
cosmological models with flat or negatively curvedcompactspatial sections as the nor
from an Inflationary point of view. Here we wish to argue that cosmic holography, in
novel form proposed by Maldacena and Maoz[2], gives a deep new interpretation of th
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idea, and also sharpens it very considerably to exclude the negative case. This focuses o
attention on cosmological models withflat, compactspatial sections.

Current observations[3] show that the spatial sections of our Universe (as define
observers for whom local isotropy obtains) are fairly close to being flat: the total de
parameterΩ satisfiesΩ = 1.02±0.02 at 95% confidence level, if we allow the impositi
of a reasonable prior[4] on the Hubble parameter. (See, however,[5] for a cautionary
note.) The present era of “precision cosmology”[6] is based on the assumption that t
true value ofΩ is even closer to unity than the observations demand—see, for exa
[7]. Applications of precision cosmology depend on this “almost exactly flat” assum
in a crucial way: for example, Wang and Tegmark[8] stress that without this assumptio
essentially nothing can be said about the evolution of the dark energy density. T
to the theoretical situation, we find that the leading theory, Inflation[9,10], also demand
values ofΩ which are extremely close, though not exactly equal, to unity. Most vers
require unityplus or minussome small number (typically[9] about 10−4).

Of course, Inflation itself explains why the Universe currentlyappearsto be flat: any
local evidence of curvature is “inflated away”. But here we wish to propose that this pr
merely restores the local spatial geometry to its initial and most natural global state, n
that of aperfectly flat, compact three-dimensional manifold. That is, we suggest that th
fundamental value ofΩ is exactly, not nearly, unity; this is proposed as an exact ini
condition for stringy cosmology.

The reader is entitled to ask whether the distinction between approximate and
initial flatness really has any content. For it is clear that ordinary, flatR

3 can be given
a constant negative curvature of any magnitude, however small, since hyperbolic
H 3 has this sameR3 topology. Similarly,R3 can be consistently deformed so that it h
positive Ricci curvature everywhere.1 Thus flatR3 can be deformed in a way which lea
to either positive or negative Ricci curvature, of any magnitude, at every point, and s
hard to see how there can be a difference between extremely small curvature and
zero curvature.

This, however, is where the assumption ofcompactnessis crucial. For the topology
of an exactly flat compact manifold is radically different from that of either a positi
or a negatively curved space, whether compact or not. A consequence of this is that it
impossible to deform a compact flat manifold in such a way that its sectional curvat
everywhere negative; on the other hand, it is also impossible to deform it so that ev
scalar curvature becomes positive everywhere. (See[12] and p. 306 of[13].) Of course,
such a space can be locally deformed (by the presence of a galaxy, say) but not in
leading consistently to curvature of a definite sign. If the Universe had spatial secti
this kind, and if the matter content were smoothed out, then the geometry wouldhaveto be
exactly flat, as a result of these extremely deep geometric theorems. Thus, the hyp
of exact underlying flatness does make sense if the spatial sections are compact.

1 Examples of this can be constructed, but of course in this case the Ricci curvature cannot beconstant, that is,
the metric cannot be Einstein, if the metric is complete. In fact[11], R
3 is the only non-compact three-dimensional

manifold which can accept a complete metric of positive Ricci curvature.
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The suggestion that the spatial topology of our Universe is not trivial is of cours
old one[14]. Some current interest in this idea focuses on the relation to the AdS
correspondence[15–19]. Inflation explains why we probably cannot see[20] direct evi-
dence of such non-triviality: the fundamentaldomain is inflated to a size larger than t
current cosmological horizon. Nevertheless, the idea that the spatial sections may b
pact continues to attract attention, from many different points of view. In the specific
of flat, compact sections, discussions include simple models of components of dark
[21,22]and string/brane gas cosmology[23–28]; in particular it is interesting that, wheth
or not string/brane gas cosmology succeeds in explaining the dimensionality of ob
space, the Brandenberger–Vafa scenario, with its toral model ofall spatial directions, is
still widely regarded as a natural initial condition for string cosmology.

Most relevantly for our work here, it has long been known[29,30]that flat or negatively
curvedcompactspatial sections arise very naturally in quantum cosmology. More rece
Linde [31] has emphasised that such constructions are also natural from the Inflat
point of view; and, more recently still, as we mentioned earlier, he has strengthene
to the claim that compact butnot positively curvedspatial sections should be consider
to be typical in Inflationary quantum gravity rather than exotic[1]. Linde stresses tha
there is no conflict, in Inflationary theory, between the assumption of compactness a
Inflationary prediction that the effects of compactness should not bedirectly observable
In fact, the compactness of the spatial sections may play a vital role in ensuring suf
initial homogeneity for Inflation to begin. In this connection, it has recently been argu
[32] that Inflationrequiresus to take a global viewpoint and not to ignore the struc
beyond the horizon.

It is the objective of this work to argue that the hypothesis of exact spatial flatnes
not negative curvature, is natural from theholographicpoint of view.

The form of cosmic holography in which we are interested here, due to Malda
and Maoz[2] is one which adapts the basic ideas of the AdS/CFT correspondence
cosmological case. As in AdS/CFT, the starting point is anti-de Sitter spacetime, but no
transformed into a cosmological spacetime by the introduction of some kind of matte[33–
36]. The resulting cosmology has both a Bang and a Crunch, but itsEuclideanversion is
entirely non-singular and has a well-behaved conformal infinity, on which the dual
theory is to be defined. Each connected component of this conformal infinity hasprecisely
the same topologyas the spatial sections of the Lorentzian version of the spacetime.2

If there is a holographic AdS/CFT-style duality here, it follows that the cosmolog
model is controlled by a field theory which does not “care” how large the spatial sec
may be at any particular time, such as the present. Whatever their size, the field th
still sensitive to their structure, including their topological structure.(For concrete exam
ples of the profound ways in which non-trivial topology can affect the behaviour of
theories, see[38,39].) In short, cosmic holography allows us to probe the global form o

2 This picture is actually consistent with the hypothesis that the spatial sections arecompact, for in the gener-

alized Euclidean AdS/CFT correspondence it is usually desirable for the CFT to be defined on a compact space;
see Section 2.3 of[37].
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spatial sections, whether or not3 the fundamental domain is far larger than the current h
zon: it is capable of this because an AdS/CFT type of duality is a correspondence bet
theentirebulk and its infinity.

As an application of these ideas, we shall try to constrain the structure of the s
sections. We do this with the aid of the “large brane instability” discussed by Seiber
Witten [43]. We shall see that holography rules out negative curvature forcompactcosmo-
logical spatial sections,no matter how smallthe curvature may be in magnitude; in fa
it is possible to make this argument even if the well-known “BKL” behaviour (descri
the growth of anisotropies during the approach to cosmological singularities) is taken in
account. We shall also see that holography does allow flat, compact spatial sectio
only if specific conditions are satisfied close to the singularities.

If the spatial sections of our world are flat and compact, then it is potentially importa
determine which of the ten possible topologies[44] has been selected—and why. We sh
not completely succeed in fixing the topology, but the list of candidates will be gr
reduced, from ten to three. One of the three survivors is the Hantzsche–Wendt spa[45]
or “didicosm” (in the naming system due to Conway[46], which we adopt here), the mo
complex of the ten.

We begin with a very brief introduction to a class of cosmological models[33,35]which
generalize those proposed by Maldacena andMaoz by allowing for a period of acceler
tion, in accord with current observations[47]. Throughout this discussion, we shall f
simplicity ignore all forms of matter other than the quintessence field; this include
inflaton, though we stress thatultimately (as explained in[1]) we rely on Inflation to en-
sure detailed agreement with current observations. We then explain how these mod
compatible with cosmic holography, laying particular stress on the stringent condition
posed by the Seiberg–Witten instability[43]. Next, we argue that a holographic one-to-o
bulk/infinity correspondence can be maintained only by extending our basic hypothesis
the entire spacetime: that is, we propose that the compactification of the (Euclidea
sion is globally conformal to a four-dimensional flat compact manifold. We will see
this imposes conditions which only a few candidate topologies (for the three-dimen
sections) are able to meet. Because we are concerned with the topology (and not with th
precise geometry) of these spaces, it is reasonable to hope that our conclusions are va
even though our concrete cosmological model is too simple to be realistic.

Throughout this work we follow Maldacena and Maoz[2] in assuming that the back
ground geometry, prior to the introduction of some kind of matter, is that ofanti-de Sitter
spacetime, AdS4. (See[48–52] for relevant work on AdS-based cosmology.) Of cour
many efforts have been made to develop cosmic holography on a de Sitter-like backgroun
see[53] for a very clear analysis of the current state of such attempts. Constraints o
mic topology can also be developed in that context: see[15–17].

3 All current data arecompatiblewith Inflationary expectations regarding spatial curvature and topology,

this is not to say that alternatives (see, for example,[40–42]) have been completely ruled out. For the sake of
clarity, however, we shall assume here that they have been.



e
remely
odel

iation,

unch.
ur
ed to
ed

tant in
bably

t this
.)

e fi-
n
use a
tzian
s,

er
ult
ver-
ically
pe is
ry “re-
d
,
Euclid-
raphy

ch
m-
ns
ot
B. McInnes / Nuclear Physics B 709 (2005) 213–240 217

2. Flatness, acceleration, and Breitenlohner–Freedman

For our subsequent discussions it will be very helpful to have a concrete model of th
various physical mechanisms to be considered. In this section, we introduce an ext
simple cosmological model which can play this role. No claim is made that this m
itself is realistic, though possibly it could be made so by superimposing matter, rad
inflaton and other fields on the simple spacetime to be defined below.

The basic cosmological model we shall consider is one with a Bang and a Cr
There are in fact very general arguments[54] which suggest that the ultimate state of o
Universe will be a Crunch of the kind that arises naturally when potentials are allow
be negative[55]. If our Universe isnowanti-de Sitter-like—something that is not exclud
by observations, since such spacetimes can accelerate, though only temporarily[33]—
then this is a straightforward consequence of having a negative cosmological cons
the background. But even if the present state of the Universe is de Sitter-like, this pro
corresponds to a metastable state which eventually fluctuates or tunnels to ananti-de Sitter-
like basin of attraction of some potential. (The alternative is decompactification, bu
possibility only arises if one has some argument which rules out negative potentials

Maldacena and Maoz[2] analyse Bang/Crunch spacetimes with metrics of the form

(1)g−
MM = −(

dt−
)2 + a−(

t−
)2

g+(Σ),

wheret− is proper time,a−(t−) is the scale factor (which vanishes at both ends of som
nite interval), andg+(Σ) is a metric on atime-independentthree-dimensional Riemannia
manifoldΣ which acts as a model for the spatial sections. (Throughout this work, we
‘+’ superscript to indicate a Euclidean coordinate or field, a negative sign for its Loren
counterpart.) Note that such metrics do not take into account the evolution of anisotropie
which we shall consider, in specific cases, in later sections of this work.

One way of obtaining spacetimes of this kindis to introduce matter into anti-de Sitt
spacetime, allowing it to act on the geometry inaccord with Einstein’s equation. The res
is typically a Bang/Crunch spacetime. Maldacena and Maoz observe that the Euclidean
sion will in general be non-singular and asymptotically hyperbolic (that is, asymptot
like Euclidean AdS). It will therefore have a well-defined conformal boundary. The ho
that, in some way that is not yet fully understood, the non-singular Euclidean bounda
places” the singularities of the Lorentzian version. A field theory on the boundary shoul
give a holographic description of the bulk in the familiar way.4 Notice that, by contrast
de Sitter spacetime does not have a holographic Euclidean version, since the usual
ean version of dS4, the four-sphere, has no boundary. In this sense, Euclidean holog
favours AdS4 over dS4 as the fundamental “background” for cosmology.

Maldacena and Maoz also observe that the Euclidean versions of their Bang/Crun
cosmologies are topologically non-trivial: they refer to such spaces as Euclidean “wor
holes”. For this reason they use particularmatter configurations such as Yang–Mills mero
and instantons to construct their cosmologicalmodels. Unfortunately, such matter cann
4 This is the sense in which we shall understand “holography”. Note that other interpretations, involving
entropy bounds, may not be consistent with Maldacena–Maoz cosmologies: see in particular[48].
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lead to cosmic acceleration. On the other hand, ordinary scalar matter, in the guise
“quintessence”, can easily lead to acceleration, but it cannot generate a topologically no
trivial Euclidean “spacetime”[56,57]. We are thus led, as in[58], to consider aEuclidean
axionas the matter content of the Euclidean version of the spacetime; for axions appe
to be unique in leadingboth to accelerationand to topological non-triviality. Other form
of matter and radiation, as well as the inflaton, have well-known effects on the expa
history, so for simplicity we shall not consider them here.

Motivated by the discussion of quintessence superpotentials in[59], in [35] we proposed
to develop a Euclidean axion cosmology by postulating a superpotential. Since the po
should be periodic for an axion, the same applies to the superpotential; and since th
field ϕ+ is a pseudo-scalar, it is natural to restrict attention to superpotentials whic
odd inϕ+. Thus we consider superpotentials of the form

(2)W+(
ϕ+) =

∞∑
k=1

Ck sin

(
k

√
4π

�
ϕ+

)
,

where� is a positive constant. If we take only one term for simplicity, we can assum
to be the first; requiring the potential to yield the usual negative cosmological consta
pure Euclidean AdS4, with all sectional curvatures equal to−1/L2, when(W+)′ vanishes,
we can fix the constantC, and so we obtain

(3)W+(
ϕ+) = 1

16πL
sin

(√
4π

�
ϕ+

)
.

Higher-order terms in the original expansion(2), which we shall consider later, are obtain
by replacing� by �/k2.

The potential corresponding toW+ may be written as

(4)V +(
ϕ+) = − 3

8πL2 + V +
Axion,

where

(5)V +
Axion = 3− �−1

8πL2 cos2
(√

4π

�
ϕ+

)
.

Thus we are effectively considering Euclidean AdS4, with “energy” density−3/(8πL2),
into which we have introduced a matter field with a potentialV +

Axion.
In accordance with our hypothesis that the spatial sections of our cosmological mod

are to be flat and compact, we recall[44] that every compact flat three-manifold can
expressed asT 3/F , whereT 3 is the three-torus andF is a small finite group (which is
in fact isomorphic to the holonomy group of the manifold). Locally, therefore, we can
the usual angular coordinates on a three-torus (taken to be cubic for convenience),
Euclidean metric will have the general form

(6)g+ = (
dt+

)2 + A2a+(
t+

)2[dθ2
1 + dθ2

2 + dθ2
3

]
,

whereA measures the circumferences of the torus whena+(t+), the Euclidean scale factor
(which we can abbreviate toa+), is equal to unity.
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The solution fora+ in the present case, obtained by solving[33] the Einstein equation
with the potential(5) (and a canonical kinetic term) superimposed on Euclidean A4,
yields the metric

(7)g+(�,A) = (
dt+

)2 + A2 cosh2�

(
t+

�L

)[
dθ2

1 + dθ2
2 + dθ2

3

]
.

This is entirely non-singular. If we embed this space as the interior of a manifold-
boundary, then the boundary has two connected components att+ = ±∞. However, it was
argued in[35] that holography dictates that these two components should be topolog
identified, and that is what we propose to investigate below.

The Lorentzian version of all this is significantly different: we now have a Bang/Cr
spacetime with metric

(8)g−(�,A) = −(
dt−

)2 + A2 cos2�

(
t−

�L

)[
dθ2

1 + dθ2
2 + dθ2

3

]
.

Contrary to what is often said, such cosmologies can be perfectly compatible with curre
observations, a point stressed recently by Wang et al.[60]. Notice that this metric allow
for a period of accelerated expansion provided that� is not too small; in fact there is suc
an interval if� > 1. The Lorentzian version ofϕ+, denotedϕ−, is a quintessence fiel
[61–63]with an exponential-like potential given by

(9)V −
Quintessence=

3− �−1

8πL2
cosh2

(√
4π

�
ϕ−

)
;

this is superimposed on an AdS4 geometry with cosmological constant−3/L2. The energy
density ofϕ− can be computed in terms of the Lorentzian scale functiona−(t−) (which
we abbreviate toa−); the result[33] is

(10)ρ
(
ϕ−) = 3

8πL2

(
a−)−2/�

.

The total energy density is the sum of this and the energy density of the background4.
If we had taken the k-th order term in(2) instead of the first, then the density ofϕ− would
vary as(a−)−2k2/� ; so thek = 1 term dominates when the Universe is large, while
higher order terms in the Fourier expansion are important very near to the Bang a
Crunch.

Clearly the Lorentzian metricg−(�,A) given by(8) is not asymptotically AdS. Never
theless its Euclidean version, given by(7), is asymptotically hyperbolic, that is, asym
totically similar to EuclideanAdS. Since the Maldacena–Maoz formulation of cosmic
holography is based on an interplay between the Euclidean and Lorentzian versio
constraint on the parameters which we canderive from this fact must be accepted as ph
cally relevant. A fundamental example of such a constraint is the Breitenlohner–Freedm
bound[64], which, as explained in[37], is also valid in the Euclidean case. (Notice th
the Euclidean space is compactified only in some directions: its volume is infinite to

either component of the boundary. The discussion in[37] applies here.) The BF bound
imposes a very interesting condition on� , as we now explain.
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The field ϕ+ does not decay to zero towards eithert+ = ∞ or −∞, but rather to
±π

2

√
�/4π , respectively: this can be seen from the explicit solution for it,

(11)ϕ+ = ±
√

�

4π
cos−1

[
sech

(
t+

�L

)]
.

This behaviour is necessary in order to ensure that the total energy density should
the AdS4 value−3/8πL2 near infinity (see Eq.(5)). Concentrating on thet → +∞ end
of the manifold, we therefore find it convenient to define a new fieldψ+ by

(12)ψ+ = π

2

√
�/4π − ϕ+.

Substituting this into Eq.(5) we see that the mass ofψ+ is given by

(13)m2 = 3− �−1

�L2 .

In general, one can expect an AdS/CFT-style correspondence to break down[65] if the
Breitenlohner–Freedman bound fails; since we are of course ultimately interested in esta
lishing a correspondence of this kind for cosmology, we must ensure that the BF
is satisfied here. In four dimensions this bound ism2 � (3/4)Λ, whereΛ is the negative
cosmological constant of an AdS background. That is,m2 can be negative without causin
any instability, as long as it is not too negative. Here this bound becomes

(14)
3− �−1

�L2
� −9

4L2
,

whence we have for positive�

(15)� � 2

1+ √
2

1

3
.

Thus the parameter� is allowed to go below the value 1/3, which means thatV +
Axion

(Eq.(5)) is allowed to be negative. However, the lowest value of� allowed by(15) is not
very far below 1/3; it is in fact equal to about 82.8% of 1/3.

In fact, cosmological data[35] require the basic value of� to be quite large; in par
ticular, there is a period of cosmic acceleration, as observed, if and only if� is greater
than unity. However, our discussion here is based on the assumption that we take o
first term in the expansion(2). If we drop this assumption, then(15) can be interpreted a
requiring us to truncate the expansion in such a way that ifk labels the final term, then no
just � but also�/k2 satisfies the inequality. In view of the discussion around Eq.(10),
this last term will be the dominant one near to the Bang and the Crunch in the Lore
version of the spacetime.

Combining all these results, we conclude that our Euclidean axion is governed
superpotential given by a finite sum in Eq.(2). We can ignore all terms in the sum ap
from the first (which dominates when the Universe is large) and the last (which dom
near to the Bang and the Crunch). The quintessence density will grow very rapidly

to the Bang/Crunch: it can in fact grow (asa− tends to zero) more rapidly than(a−)−6.
However, evaluating the right side of(15), we find that the maximum rate at which the



t

to the
etimes

There
act
in such
other
f ini-
ur
of
ber is

int of

ce
ing
a

ndings
se to
ative
t loss
de but
that

ential

at
-
rg and
in the
bulk.

gies in
ld not
ometry,
B. McInnes / Nuclear Physics B 709 (2005) 213–240 221

density can grow is as (approximately)(a−)−7.2426. This “window” between the exponen
six and a value just over 7.2 will be considered in detail below.

Having introduced a concrete example of a holographic cosmology, we can turn
question of how holography influences the structure of the spatial sections of spac
of this general kind.

3. Flatness, holography and Seiberg–Witten instability

Linde[1] argues that compact spatial sections are favoured by Inflationary theory.
are in fact several strong advantages in compact sections: for example, because comp
sections are (under some circumstances) circumnavigable, it is easy and natural
cosmologies to arrange for sufficient homogenization for Inflation to begin. On the
hand,positivecurvature is generically disfavoured in quantum-gravitational studies o
tial conditions for Inflation[30]. Thus Inflationary quantum gravity firmly directs o
attention towards either flat or negatively curved compact spatial sections. There is,
course, an enormous number of such manifolds, but we shall now see that this num
drastically reduced when we study Bang/Crunch cosmologies from the AdS/CFT po
view.

In [43], Seiberg and Witten have studied the extension of the AdS/CFT corresponden
to general geometries of the AdS type: that is, they considered the consequences of do
string theory on non-compact Euclidean spaces, with negative Ricci curvature, admitting
conformal compactification in the sense of Penrose. One of their more remarkable fi
was that BPS branes “near” to the conformal boundary (“large branes”) will give ri
an instability if the conformal structure at infinity is represented by a metric of neg
scalar curvature. (When discussing compact conformal manifolds, we can, withou
of generality, assume that the scalar curvature is a constant of arbitrary magnitu
of a fixed sign[66].) The unexpected role of the scalar curvature is a strong hint
this instability is “holographic”, for one knows that the scalar curvature is an ess
component of the conformally invariant Laplace operator,

(16)∆CONFORMAL = ∆ + n − 2

4(n − 1)
R,

defined by the conformal structure at (n-dimensional) infinity. (It is important to note th
everything we say here is based on the assumption thatn is greater than 2. The case of two
dimensional boundaries is special and will not be considered here.) Indeed, Seibe
Witten were able to show that negative scalar curvature does induce the instability
field theory at infinity that holography demands given the large brane instability in the
Seiberg–Witten instability has been subjected to a deep study recently in[67] and[68]; it
represents a fundamental constraint on possible boundary geometries and topolo
any generalized version of the AdS/CFT correspondence. For it is clear that it wou
be consistent to ignore the effects of such unstable processes on the underlying ge
and these effects could be drastic.
This comment applies with particular force in the context of Maldacena–Maoz hologra-
phy [2]. For here the idea is that, however, singular the Lorentzian cosmology may be, its
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Euclidean version should be sufficiently well-behaved that there are asymptotically
regions which are not, for example, cut off by some kind of disturbance resulting fro
unrestrained growth of large branes in those regions. Thus Seiberg–Witten instabilitmust
be avoided in cosmic holography.

The relevance of all this arises from the following simple observation: the spatia
tions of the particular spacetimes consideredin the previous section, and by Maldace
and Maoz, have thesameconformal geometry as the space on which the dual theo
defined; for example, it is clear that if the manifold with metric given by Eq.(7) is em-
bedded as the interior of a manifold-with-boundary, then each component of the bound
has the structure of the flat spaceT 3/F , with its “flat” conformal structure. An analogou
statement would hold if we considered a similar spacetime but with negatively curved sp
tial sections. If the Maldacena–Maoz cosmologies are a correct implementation of string
theory in cosmology, it therefore follows that string theorypredicts that the spatial sec
tions of our Universe cannot be negatively curved; indeed, they cannot even have nega
scalar curvature. However, this argument ignores perturbations. We will deal with
after introducing some mathematical machinery.

The first result we need is theKazdan–Warner classification[69]—see[70] for a recent
discussion—of all compact manifolds of dimension at least three. This is concerne
the following question: given such a manifold and any smooth functionS on it, does there
exist a metric on that manifold havingS as its scalar curvature? This is ultimately a qu
tion about the “deformability” of the manifold.5 For example, can a sphere (of dimens
greater than two) be deformed to such an extentthat its scalar curvature becomes nega
everywhere? Such questions are answered by the Kazdan–Warner classification the

Theorem (Kazdan–Warner). All compact manifolds of dimension at least three fall i
precisely one of the following three classes:

[P] On these manifolds, every smooth function is the scalar curvature of some
mannian metric.

[Z] On these manifolds, a smooth function can be a scalar curvature of some
mannian metric if and only if it either takes a negative value somewhere, or is ident
zero.

[N] On these manifolds, a smooth function can be a scalar curvature of some
mannian metric if and only if it takes a negative value somewhere.

For example, spheres are evidently not in [Z] or [N], so they must be in [P]. (It fol
that a sphere of dimension at least threecan be deformed in such a way that its sca
curvature is negative everywhere—see[68] for an explicit construction.) It can be show
(using some deep theorems to be discussed below) that compact manifolds of negat
tional curvature are in [N]. This means thateveryconformal structure on such a manifo
is represented by a metric of constant negative scalar curvature:no matter how we deform
it, its scalar curvature can never vanish or become positive everywhere. Thus, the Seiberg
5 It is interesting thatLorentziancompact manifolds are probably[70] arbitrarily “deformable” in this sense.
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Witten instability in this case is particularly radical, since it is independent of the choi
metric and must arise from the topology of the space—the Kazdan–Warner classificat
depends only on the (differential)6 topology of the manifold. One says that the instabilit
is induced topologically[71].

This topological aspect of Seiberg–Witten instability has a direct physical consequen
as follows. The classical Belinsky–Khalatnikov–Lifschitz analysis of the approach to
mological singularities (see[72] for a recent discussion) would lead one to expect that,
Bang or a Crunch is approached, the geometry of the spatial sections would becom
and more anisotropic, and this distortion might well become so extreme that the prec
ture of the conformal structure induced at Euclidean infinity would no longer be clear.
however, we see that such anisotropies are irrelevant: no matter how complicated th
be, the scalar curvature induced at Euclidean infinity can never be positive or zero—
amount of distortion can avert Seiberg–Witten instability in this case. For whatever ha
pens to the conformal geometry during the evolution, the topology of the spatial se
does not change, and the topology of conformal infinity remains that of a space on whic
everymetric defines a conformal structure with negative scalar curvature. We conclud
holography totally forbids spatial sections of negative curvature, even if perturbations ar
taken into account.

Notice that the theory forbids negative curvature of any magnitude, no matter how
because in any case it does not make sense to speak of “small” curvatures on the b
(which only has a conformal structure, not a Riemannian metric). Thus there is ind
real distinction betweenextremely smallnegative curvature andzerocurvature on the bulk
spatial sections (which do of course have a Riemannian structure). This distinctio
direct reflection of theholographic nature of Maldacena–Maoz cosmology.

To summarize, we have here a very strong prediction from cosmic holography: th
ory could not be saved if any value ofΩ below unity were confirmed by observatio
It is interesting to note that, until the discovery of cosmic acceleration, the cosmolo
ical data actually pointed strongly towards negative spatial curvature; so we ha
example in which cosmic holography makes a statement which might easily have
falsified.

Now let us turn to the case of principal interest to us: cosmological models with
compact boundaries and spatial sections. Seiberg and Witten did not consider th
where the scalar curvature of the boundary is zero. Here the analysis depends on
order terms[68] in the expansion of the brane action, and unfortunately it is difficu
give a general statement of the precise conditions needed to avert instability. Ho
much can be learned regarding this case by studying ground states for AdS black
with flat, compact event horizons; for these spacetimes have flat conformal structu
conformal infinity. The ground state for suchblack holes is not anti-de Sitter spacetime

6 By this we mean that, in some examples of high-dimensional topological spaces which can adm

than one differentiable structure, the KW class can changeif the differentiable structure is changed, even if the
underlying topological structure doesnot change. But this cannot happen in the cases considered in this work.
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rather the “AdS instanton” with (Euclidean) metric[73] given inn + 1 dimensions by

(17)

g+(AdSI) = L2

r2

(
1− rn

0

rn

)−1

dr2

+
(

r2

L2

)[(
dt+

)2 +
(

1− rn
0

rn

)
dx2 +

n−2∑
1

(
dxi

)2

]
.

Herex andxi are coordinates on the circumferences of circles of various radii; that is
are proportional to angles. In the Euclidean case, the “time” coordinate too is angula
conformal structure at infinity(r → ∞) is represented by the flat metric

(18)g+(AdSI,∞) = (
dt+

)2 + dx2 +
n−2∑

1

(
dxi

)2
,

and this is a metric on acompactmanifold, since all of the coordinates are angular. T
the structure at infinity for the AdS instanton is precisely a compact, flat,n-dimensional
manifold. The very fact that the instantonis a well-behaved, unique ground state[74–76]
for these black holes strongly suggests that vanishing scalar curvature on the boun
compatible with a stable field theory there, dual to one of these physically well-define
configurations. Thus, we do have a large classof examples in which zero scalar curvatu
at the boundary is not pathological. While there undoubtedly exist other examples in
it is, one expects that these examples must involve highly intricate geometric constru
not the very simple structures we are considering here.

For concreteness, and in order to avoid giving an analysis which is too model-depe
we shall assume that scalar-flat boundaries ofMaldacena–Maoz cosmologies—which a
after all geometrically much simpler than AdS black holes with flat event horizons
not lead to large brane instabilities in the bulk. Under this assumption, the cosmol
model we considered above is of course stable in the Seiberg–Witten sense, sin
clear that the conformal structure induced on both connected components of Euc
infinity is represented by a flat, hence scalar-flat, metric. As in the negatively curved cas
however, one has to consider whether perturbations can disturb this simple picture
flat manifold can be deformed: a generic distortion produces a new conformal str
not represented by a flat metric. To assess the consequences of this, we need some fur
results in global differential geometry.

First, we need the concept of anenlargeablemanifold [13, p. 302]. These aren-
dimensional manifoldsM such that, given any positiveε, there exists an orientable Ri
mannian coveringM∗ and a mapf (which is constant at infinity and of non-zero degr
from M∗ to the Riemanniann-sphere of curvature unity, wheref contracts all lengths
by a factor of at leastε. In other words,M must have “arbitrarily large” covering space
Notice that enlargeability is a topological condition. Clearly all compact flat manifolds a
enlargeable.
The work of Schoen, Yau[12], Gromov, and Lawson[13, p. 306]can be summarized
as follows:
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Theorem (Schoen–Yau–Gromov–Lawson). There is no metric of positive scalar curv
ture on any compact enlargeable spin manifold.

It follows that compact enlargeable spin manifolds can never be in Kazdan–Warner c
[P]. Now tori are compact, enlargeable, and spin; hence, no matter how a torus is deform
the scalar curvature can never become positiveeverywhere, and it follows that the same
true of any quotient of a torus. Since every flat compact manifold is a quotient of a toru
see that this statement is true of any compact flat manifold. On the other hand, it is o
that flat compact manifolds are not in Kazdan–Warner class [N]. It follows that they a
[Z]. But this means that the only way to avoid a negative scalar curvature metric on
spaces is to ensure that the scalar curvature is precisely zero everywhere. This appears t
be a strong constraint. In fact, it isfar strongerthan it seems. For Gromov and Lawso
extending a theorem of Bourguignon, were able to prove[13, p. 308]the following result.

Theorem (Bourguignon–Gromov–Lawson). If a metric on a compact enlargeable sp
manifold has zero scalar curvature, then that metric must be exactly flat, that is, the curva-
ture tensor must vanish everywhere.

This is a remarkable result: the vanishing ofa single scalar invariant, the scalar curv
ture, forces theentire curvature tensor to vanish exactly on these manifolds. Recall no
Schoen’s theorem[66] to the effect that any conformal structure on a compact manifo
represented by a metric with constant scalarcurvature; recall also that a smooth functi
on a manifold in KW class [Z] has to be negative somewhere if it is the scalar curv
of some metric, unless it is exactly zero. Combining all these observations, we ha
following statement:

Corollary. Let g be a metric on a manifold with the topology of a compact flat manif
Then unlessg itself is conformal to a flat metric, it is conformal to a metric of constan
negative scalar curvature.

That is, if such a manifold is a component of the conformal boundary of a manifo
the kind considered by Seiberg and Witten, and if a flat metric on the boundary is dis
however, slightly, so that it ceases to be conformally flat, then the system will becom
unstable to the production of large branes. The situation here regarding Seiberg–
instability is thus almost as severe as it is in the negatively curved case: the instabil
be avoided only if the boundary is perfectly (conformally) flat.

These deep geometric results thus impose an extremely demanding self-cons
check on our proposal. For the conformal structure at Euclidean infinity is obtain
taking a suitablelimit of the metric on the spatial sections, after removing the confo
factor. (See the following section for the details.) This means that, on the Lorentzian
we have to ensure that the spatial sections tend to become increasingly flat (aga
removing the conformal factor) as both the Bang and the Crunch are approached
mologies like the one discussed in the previous section, with the Lorentzian metric

by Eq.(8). That is, of course, trivial for this precise metric, but this simplicity is based on
the assumption that no other form of matter is present. If we introduce small anisotropies
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corresponding to local concentrations of matter or radiation, it is far from clear tha
spatial sections will be so well-behaved near to the Bang and to the Crunch. Inde
Belinsky–Khalatnikov–Lifschitz analysis mentioned above indicates that under sma
turbations a generic spacetime with ordinary matter sources can be expected to deve
severe anisotropies as one approaches a Bang or a Crunch, and so one wouldnot in general
expect a more realistic version of(8) to induce flat metrics on the spatial sections at v
early or very late times; therefore, it is far from clear that the conformal structure at in
will be represented by a perfectly flat metric.

We shall now see how this problem is naturally avoided by the cosmological m
introduced in the preceding section, for some values of the fundamental parameter� but
not for others.

4. Ensuring flatness at infinity

In order to discuss anisotropies, we need to recall some aspects of the metrics
ymptotically AdS” Euclidean spaces. The formal definition of such metrics is discuss
length in[33], and we need not rehearse all the details here: the main point is sim
follows. Under conditions which will always be satisfied for the spaces discussed here,
metric of an asymptotically AdS Euclidean spaceM (with asymptotic sectional curvatu
−1/L2) can be written, near to any connected component of the conformal boundar

(19)g+(M) = L2

ρ2

[
dρ2 + g+

ρ

]
,

whereρ is a coordinate such that the given component of the conformal boundary
ρ = 0. Hereg+

ρ is a metric on the spaces transverse to the boundary. The point we w
stress is thatg+

ρ doesin general have a non-trivial dependence onρ; the conformal structure
at this component of infinity is represented by a metric which is obtained by taking thelimit
of g+

ρ asρ tends to zero. In this sense, the metrics of the form(1) considered above wer
very special cases, since we did not need to take this limit. A good example of this limiting
process is provided by Lorentzian AdS4 itself: in global coordinates(t, r, θ,φ) the metric
can be expressed as

(20)

g−(AdS4) = cosh2(r/L)
(−dt2 + sech2(r/L)dr2

+ L2 tanh2(r/L)
[
dθ2 + sin2(θ)dφ2]),

and we see that the metric still depends onr even after the divergent conformal fact
cosh2(r/L) is removed. (Here, of course, the boundary is obtained by lettingr tend to
infinity, so that tanh2(r/L) tends to unity and we obtain the usual cylindrical conform
boundary of AdS4.)

This kind of behaviour is actually quite well-adapted to the cosmological case, si
is well known (see, for example,[72]) that the approach to cosmological singularities
ultralocal: that is, ultimately, only the (proper) time dependence of the metric is impor

Hence, in studying the very late or very early stages of a Bang/Crunch cosmology, we can
indeed concentrate on metrics which resemble(19), in the sense that the metric at infinity
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is obtained by stripping away a conformal factor and then taking the limit of a fami
metrics parametrized by a single parameter. In the notation of[72], we can express th
metric in the ultralocal phase as

(21)g−
Anisotropic= −(

dt−
)2 + (

a−)2 ∑
i

e2βi
(
σ i

)2
,

wherea−(t−) is an overall scale factor, where theσ i are orthogonal, time-independe
one-forms on the spatial slices, where theβi are three distinct functions of proper tim
satisfying

(22)β1 + β2 + β3 = 0,

and where all dependence on spatial position has been suppressed. For locally fla
sections one finds that

(23)
dβi

dt−
= ci

(
a−)−3

,

and one can show[72] that the scale factor satisfies a FRW equation of the form

(24)3H 2 = 8π

[
ρ + σ 2

(a−)6

]
,

whereH is the Hubble parameter, whereρ is the total energy density and where

(25)σ 2 = 1

2

[
c2

1 + c2
2 + c2

3

];
thus σ is a constant which is an overall measure of the extent of anisotropy in s
spacetime.

In our case,ρ is the sum of the energy density of the background AdS4, namely,
−3/8πL2, with the energy density of the quintessence field. Now with regard to this
ter, recall that we saw that the Breitenlohner–Freedman bound requires that the serie
Eq.(2) should terminate, with the last value ofk being the largest integer satisfying

(26)
2

1+ √
2

1

3
� �

k2 .

For example, in the case of� = 10 (see[35]), the last value ofk is 6, and this mean
that the corresponding quintessence component has a density proportional to(a−)−7.2.
(Recall that the magnitude of the exponent must not exceed 7.2426.) In general, if the l
value ofk satisfies(26), then it mayalso satisfy�/k2 < 1/3. If this is so, then we se
from equation(10) that the quintessence energy density grows, asa− tends to zero, mor
rapidly than(a−)−6. For example, in the case where� = 10, this means that, extreme
near to the Bang or the Crunch—notat other times—Eq.(24)becomes

(27)3H 2 = 8π

[ −3

8πL2 + 3

8πL2(a−)7.2 + σ 2

(a−)6

]
.

Clearly, the second term on the right is the dominant one near to the Bang and the
Crunch—and this would remain true even if we included the contributions of ordinary
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matter, radiation, and so on. In particular, whatever the initial anisotropyσ may have been
it will be completely insignificant compared to this term: one has a kind of “cosmic
hair” theorem.

The situation here is exactly analogous to the way, as one movesawayfrom the initial
singularity, the inflaton potential dominates all other terms in the Friedmann equ
so that anisotropies are “inflated away” by the inflationary expansion: here the
quintessence componenthas the same effect as the singularities areapproached, because
its density grows more rapidly than that of any other contribution. Since there is no
to the contraction, there is no limit to this effect—all local anisotropies will be comple
wiped out in the very last stages of the approach to the singularities. A very simila
nomenon plays a crucial role in the cyclic cosmologies[77], and we see that it is equal
important here, although we stress that there isno “bounce” in our case: we need rap
density growth rates not to prepare for a phase of expansion succeeding a crunch
ensure that the metric induced on (Euclidean) infinity is indeed flat. (Because of this di
ference, it turns out that much larger values of the effective equation-of-state parame
required in the cyclic case than here; as we know, in our case the magnitude of the
exponent of the scale factor is never much larger than six.)

The essential point here is that a three-dimensional Riemannian manifold which
cally isotropic around each point—that is, there is a local isometry mapping any unit vect
at any point to any other unit vector at that point—has a sectional curvature wh
independent of direction. For inthree dimensions each unit vector at a point uniquely
determines a two-dimensional subspace of the tangent space, namely, the subsp
pendicular to it. But if the sectional curvature of a Riemannian manifold of dimensi
least three is independent of direction, then[78, p. 202]it is also independent of position
that is, the curvature is constant. Since compact manifolds of constant negative cu
are in Kazdan–Warner class [N], while those of constant positive curvature are in
follows that the only way that a metric on a manifold with the topologies we are cons
ing here can be locally isotropic is by being perfectly flat. We conclude that the confo
structure induced at Euclideaninfinity is represented by a perfectly flat metric, provid
that the matter content of our spacetime is such that all local anisotropies are elimina
a “final” quintessence component with�/k2 < 1/3.

We require, then, that the final value ofk should satisfy

(28)
2

1+ √
2

1

3
� �

k2
<

1

3
.

These inequalities express the competing demands of the Breitenlohner–Freedman bo
(which requires the lower bound)and of Seiberg–Witten instability (which, via the Schoe
Yau–Gromov–Lawson theorems, requires theupper bound). It is striking that the allowe
interval is so short.

The effect of(28) is to exclude certain values of� ; the only allowed values are thos
lying in intervals[a, b) where(28)is satisfied for some integerk. These intervals are give
in Table 1. The intervals are closed to the left, open to the right (so that, for example,� = 3
is not permitted).
Notice that there is an upper bound on the values of� so excluded, because the allowed
interval for k = 11 overlaps the allowed interval fork = 12, and all subsequent allowed
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Table 1

k a b

1 0.276142 0.333333
2 1.104570 1.333333
3 2.485281 3.000000
4 4.418278 5.333333
5 6.903559 8.333333
6 9.941126 12.000000
7 13.530976 16.333333
8 17.673112 21.333333
9 22.367532 27.000000

10 27.614238 33.333333
11 33.413227 40.333333
12 39.764502 48.000000

intervals overlap their successors. (One sees this either by consulting the table or by
of a simple calculation based on requiring the lower end of one interval to be smalle
the upper end of its predecessor.) This upper bound is given by

(29)�forbidden<
242

3

(√
2− 1

) ≈ 33.4132.

That is, all values of� above this number are allowed.Below it, there is a haphazar
set of intervals which are allowed, alternating with intervals which are not. For exa
� = 10, an example studied in detail in[35], is allowed; on the other hand,� = 9.90 is
not; nor is� = 2, also studied in[35]. In short, values of� below 33.4132 entail carefu
fine-tuning; larger values do not. If we can argue on independent grounds that� is large,
then there are no difficulties with fine tuning.

We conclude that if we take� to be large, then “cosmic baldness” will automatica
ensure that the conformal structure induced at Euclidean infinity is represented by
actly flat metric, and this can be achieved without violating the Breitenlohner–Free
bound. In fact, the observations[35] require� to be at least this large. Furthermore, th
are general theoreticalreasons for expecting� to be larger still. In many string theor
compactifications[79,80]there is a general tendency to predict that the fundamental le
scale of our observed spacetime should be very short. But one sees from Eqs.(7) and (8)
that the natural length scales of the Euclidean and Lorentzian versions of our spacet
are different: in the former case, the space is asymptotic to a Euclidean AdS4 with “radius”
L, whereas in the latter case the Universe is finite in all directions, including time, w
total lifetime ofπ�L. ThusL can indeed be small without contradicting the observati
provided that� is very large.

To summarize: Seiberg–Witten instability allows us, in the context of cosmic holo
phy, to draw several surprisingly strong conclusions regarding the spatial sections
Universe. The first is that negatively curvedcompact spatial sections are completely ru
out in string theory. In this case, the instability is particularly persistent, because it istopo-

logical: the spatial sections can be arbitrarily deformed as we trace them back to the Bang
or forward to the Crunch, yet the system is still subject to instabilities arising from the



idean)

t
he
at
rved
They

y
at

ar
hoice

le, the
s only
–
ur

of the
uced
eral as

of the

would
the
n),
torus

of the
inds:
ain
rvable,

such a
lected
imple
230 B. McInnes / Nuclear Physics B 709 (2005) 213–240

nucleation of branes which lower their action as they are moved towards the (Eucl
boundary.

Combining this with Linde’s[1] analysis discussed earlier, we find thatthe flat compac
three-manifolds are uniquein their ability to satisfy all of the strictures imposed by t
requirements of Inflation (which accommodates positively curved sections only with gre
difficulty) and large brane instability (which even more firmly rules out negatively cu
sections). Even the flat manifolds only narrowly escape Seiberg–Witten instability.
escape it if we can make the boundaryexactlyconformally flat; we saw that our “to
model” of an accelerating holographic cosmos was able to perform this feat, provided th
the parameter� is sufficiently large, as is naturally the case.

The conclusions we have reached here, whiledeveloped in the context of a particul
model, are in fact extremely robust. That is, they do not depend on the particular c
we made—a Euclidean axion—for the matter content of our cosmology: for examp
prohibition on negatively curved spatial sections is extremely general, since it depend
on the topology of these spaces and not on their geometry. Our ability to avoid Seiberg
Witten instability in the case of a boundary in KW class [Z] did depend on the ability of o
matter model to flatten the sections as the singularities are approached, but this is attainable
for many matter models—see[77].

However, we shall now see that the list of candidates for the spatial geometry
world can be still further reduced if we do adopt the specific matter model introd
earlier. Thus the findings of the next section should not be considered to be as gen
those of this section.

5. Finite—and (conformally) flat—in all directions

With the help of Seiberg–Witten instability[43], cosmic holography[2], and Inflation-
ary arguments[1], we have reduced the number of candidates for the spatial sections
Universe to a mere ten. That is nevertheless nine too many.

If we knew precisely which of these ten has been chosen by Nature, then we
have a valuable clue as to the true nature of the initial state. The ten candidates, dubbed
platycosmsby Rossetti and Conway[46] (a term we adopt here as a useful abbreviatio
are of varying degrees of complexity. Among those which are orientable, we have the
T 3, the dicosmT 3/Z2, the tricosmT 3/Z3, the tetracosmT 3/Z4, the hexacosmT 3/Z6,
and the didicosm or Hantzsche–Wendt spaceT 3/[Z2 × Z2].

For all that we know, the spatial sections of our Universe could have the structure
didicosm. Unlike the torus, this space has non-trivial holonomies, of two different k
the holonomy group isZ2 × Z2, a finite subgroup of SO(3). The fundamental dom
here is a rhombic dodecahedron, and, if this domain were small enough to be obse
the resulting patterns in the microwave sky would be remarkable indeed[45]. Even if it
is not directly observable, a theoretical deduction that the spatial sections have
complicated structure would surely be a strong hint that the initial state has been se
with great precision, presumably by something very much more intricate than a s

classical singularity. But how can such a theoretical deduction be made? In this section, we
shall show how our toy model, with Euclidean metric(7) (where the transverse sections are
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not necessarily globallyT 3) leads to a partial answer to this question. The hope, of co
is that a more realistic matter model would yield a more complete answer.

Eq. (7) indicates thatif we interpret the underlying manifold as the interior o
manifold-with-boundary, then that boundary is disconnected: it has two connected
ponents. It was emphasised by Maldacena and Maoz[2] themselves that the status
Euclidean manifolds with a disconnected boundary is very problematic from a hologr
point of view. In general, this apparent failure of a one-to-one correspondence is
deep question (see[81–83] for discussions), but in[35] we suggested that it may hav
a very simple resolutionin the particular casewith which we are concerned here. T
argument is as follows.

The two-dimensional open cylinder(0,1)×S1 can be compactified in (at least) two d
ferent ways. The first is to regard it as the interior of the compact manifold-with-boun
[0,1] × S1 (the closed cylinder); the second is to regard it as an open submanifold
torusS1 × S1 = T 2 (obtained fromT 2 by deleting a circle). Neither option is “correct
one makes a choice depending on the circumstances. The difference, of course, is
the first case we have to addtwo circles, whereas in the second case we only need to
one. This led us, in[35], to suggest that the second kind of interpretation is require
cosmic holography.

In the case at hand, we can reexpress the metric(7) in the following way. Define a
constantc� by

(30)c� = �

π

∞∫
0

sech� (ζ )dζ,

and a new coordinateθ by

(31)c� Ldθ = ±sech�
(

t+

�L

)
dt+,

where the sign is ‘+’ when t+ is positive, ‘−’ when t+ is negative. The range ofθ is −π

to +π . Now solve fort+ in terms ofθ and use this to express sech�( t+
�L

) in terms ofθ .
Denote this function byG� (θ); thenG� (θ) vanishes at±π , andg+(�,A) is given in
terms of the coordinateθ as

(32)g+(�,A) = c2
� L2G−2

� (θ)

[
dθ2 +

(
A

c� L

)2(
dθ2

1 + dθ2
2 + dθ2

3

)]
.

As it stands, the coordinateθ cannot be extended to the whole circle: we have to de
the (single) point θ = ±π , becauseg+(�,A) is singular there. However, removing th
prefactor on the right side of(32) by a conformal transformation, we obtain precisely
standard local metric for a non-cubic four-dimensional torus. (The numberA/c�L can in
fact be constrained by observational data: see[35].)

If we had begun with(32) instead of(7), we would undoubtedly have declared th
the natural compactification of our Euclidean space is a space with the local geom
of a torus. Infinity here is not a boundary; it is instead a “submanifold at infinity”.

real point, however, is that infinity isconnectedin this interpretation. Clearly the “double
boundary” problem simply does not arise if we adopt this viewpoint.
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Thus, we propose an extremely simple extension of our hypothesis of flat, compa
tial sections: not only the spatial sections, but also (the compactified Euclidean vers
the entire four-dimensional spacetimeshould have the topology of a compact flat ma
fold. In short, the spatial sections are flat, compact three-manifolds, while the compa
spacetime is globally conformal (Eq.(32)) to a flat, compact four-manifold.

Now recall that the adoption of the local three-dimensional metricA2(dθ2
1 +dθ2

2 +dθ2
3)

in Eq.(6) did not commit us to the global geometry and topology of the three-dimens
torus:manydistinct compact flat three-dimensional manifold have this local metric, sinc
all such manifolds can be expressed topologically asT 3/F , for some finite groupF .
(Recall that we assumed for simplicity that the covering torus was cubic, but trivial
ifications allow us to consider the most general case.) In the same way, the appearanc
the metric of a four-dimensional torus in(32)does not mean that we have here a mani
with the topology ofT 4 or even that ofS1 × T 3/F . In constructing a general compa
flat manifold, the procedure is as in the familiar case of a torus, but one is free to
various isometries before performing theidentifications that produce a compact space
three dimensions, there are ten ways of doing this; in four dimensions[44], there are no
fewer than 75, though we hasten to add that most of these 75 cannot be constructed fr
manifolds of the formT 3/F in the above way.

Return temporarily to the interpretation ofg+(�,A) as a metric on the interior of
manifold-with-boundary. That boundary consists of two copies ofT 3/F . What we are
proposing here is that these two copies should be identified. But, before performi
identification, we are free to apply an isometry, as above, to one of the copies. If
this, we shall obtain a space with the same local metric asS1 × T 3/F (which is what we
get if the isometry is trivial); that is, we obtain a metric of the form(32). The spaces w
obtain will not be fully general flat compact four-dimensional manifolds, partly because th
metric in(32) has a special form (the torus is rectangular and has three dimensions
same length, while the fourth in general has a different length) and partly because w
already fixed part of the topology by specifying the groupF . Nevertheless some freedo
remains, becauseT 3/F still has a non-trivial isometry group even after the factoring byF .
Can we reduce this freedom in a physical way? The answer is that we can, by exploiti
the fact that our matter field is of a very specific kind: it is a (Euclidean)axion.

The axion fieldϕ+ is able to distinguisht+ = −∞ from t+ = +∞, because from
Eq.(11)we have

(33)lim
t+→∞

ϕ+ =
√

�

4π

π

2
= − lim

t+→−∞
ϕ+,

and this sign difference is physical because from Eq.(3) we have

(34)W+
(

−
√

�

4π

π

2

)
= −W+

(
+

√
�

4π

π

2

)
.

This is important, because it apparently puts a stop to our plan of identifying the tw
boundary components: how can we do so when the field and its superpotential ta

ferent values on each component? But recall that an axion naturally reverses sign under
a reversal of orientation. Thus the problem is solved in a natural, geometric way if—and
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only if—we arrange for the orientation of one boundary component to be reversed
identifying it with the other. This is precisely the way, in two dimensions, a Klein bo
[44] is defined, and we can proceed in much the same way here, allowing, however, f
the greater complexity ofT 3/F . Let us see to what extent this requirement reduces
freedom in constructing our four-dimensional Euclidean “spacetime”.

The point is simply that not every compact flat three-manifold admits an orienta
reversing isometry. In essence, factoring a Riemannian manifold by a discrete grou
ally reduces the “size” of the isometry group, since not all isometries of the original s
are compatible with the factoring. In the present case, the reduction can obstruct the
dure we outlined above. The isometry groups of all of the platycosms are listed in[46], and
the result we need can simply be stated using that list; however, we can gain more
by means of the following elementary argument.

Suppose that one has a manifoldM admitting a groupG(M) of diffeomorphisms (such
as isometries, conformal symmetries, and so on). LetΓ be a subgroup ofG(M) and let
N(Γ ) be thenormalizerof Γ in G(M). That is,

(35)N(Γ ) = {
g ∈ G(M)

∣∣ gγg−1 ∈ Γ ∀γ ∈ Γ
}
.

Clearly N(Γ ) contains all those elements ofG(M) which descend to well-defined di
feomorphisms ofM/Γ . But notice that every element ofΓ itself has no effect on eac
element ofM/Γ . Thus the symmetry group ofM/Γ , which we denote byG(M/Γ ), is
notN(Γ ) but rather the quotientN(Γ )/Γ :

(36)G(M/Γ ) = N(Γ )/Γ.

See[16] for more details and for other applications of this formula. The main poin
bear in mind here is that an isometry ofM can descend to an isometry ofM/Γ only if it
normalizesΓ .

Let us see how this works in some concrete examples. First, the torusT 3 is defined
as follows[44, p. 117]. First recall that any isometry ofR3 can be expressed as(B,a),
whereB is an orthogonal matrix anda is a vector, and where(B,a) means that we letB
act first, followed by a translation througha. Let ai , i = 1,2,3, be a fixed basis forR3. If
Γ ∗

3 is generated over the integers by the isometriesτi = (I3, ai), whereI3 is the identity
matrix, thenT 3 = R

3/Γ ∗
3 . Now consider the isometryΩ = (−I3,0). It is easy to see tha

conjugation byΩ just maps each element ofΓ ∗
3 to its inverse. ThusΩ does normalizeΓ ∗

3
and so it projects to an isometry ofT 3. Of course,Ω reverses the orientation ofR

3, so we
see thatT 3 does admit an orientation-reversing isometry, which is what we need.

Next, the platycosm of the formT 3/Z3 (the tricosm) is obtained as follows. First w
constrain the vectorsai : we requirea1 to be orthogonal to the other two, and we requ
a2 anda3 to be of the same length and to be inclined at an angle of 2π/3. Next, we set
α[tri] = (A3[2π/3], a1/3), whereA3[2π/3] is a 3× 3 matrix corresponding to a rotatio
through 2π/3 in thea2–a3 plane: that is,A3[2π/3] mapsa1 to itself, a2 to a3, anda3 to
−a2 − a3. Then the tricosm isR3/Γ [tri], whereΓ [tri] is obtained by adjoiningα[tri] to
the generators ofΓ ∗

3 . Now conjugation byΩ still maps each element ofΓ ∗
3 to its inverse,

but it does not have this effect onα[tri]; instead we have
(37)Ωα[tri]Ω−1 = (
A3[2π/3],−a1/3

)
.
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The isometry on the right is not the inverse ofα[tri] and isnot an element ofΓ [tri]. Thus
Ω does not descend to an isometry of the tricosm. In fact, in order to do this, an isom
R

3 would have to reverse orientation in the plane defined bya2 anda3, while also reversing
a1; but such an isometry could not be orientation-reversing.

A similar argument works also for the tetracosmT 3/Z4 and the hexacosmT 3/Z6. It
does not work for the dicosmT 3/Z2. To see why, note that this space is defined muc
the tricosm, except that apart from being orthogonal toa1, the other conditions ona2 and
a3 are dropped, andα[tri] is replaced byα[di] = (A3[π], a1/2), whereA3[π] is a 3× 3
matrix rotating thea2–a3 plane throughπ ; then the dicosm isR3/Γ [di], whereΓ [di] is
obtained by addingα[di] to the generators ofΓ ∗

3 . Again, conjugation byΩ mapsΓ ∗
3 to

itself, but now we have

(38)Ωα[di]Ω−1 = (
A3[π],−a1/2

)
,

and thisis in Γ [di] since it is the inverse ofα[di] (becauseA3[π] is of order two). ThusΩ
does descend to an orientation-reversing isometry of the dicosm. The didicosmT 3/[Z2 ×
Z2] can be constructed in much the same way as the dicosm, but with three add
generators instead of one, each involving a rotation byπ in some plane. One can sho
that Ω descends to an orientation-reversing isometry in this case also. In the case
non-orientable platycosms, a different argument applies, but for those platycosms
any case obvious that there can be no orientation-reversing isometries.Thus the torus
the dicosm, and the didicosm are the only survivors, that is, they are the only platycosm
which can be used to construct a “generalized Klein bottle” of the kind we need in
to compensate for the fact that the axion field has opposite signs on the two con
components of infinity in our model.

Let us now show how to construct the final compact flat four-manifolds which
explained above, are the possible underlying spaces of the conformal compactification
responding to the metric(32). We shall concentrate on the dicosm: the construction fo
torus is just a simpler version, while that for the didicosm is somewhat more complicat
but introduces no essentially new difficulties.

Let aµ, whereµ = 0 through 3, be an orthogonal basis forR
4, where we takea0 to be

of length 2πc� L, while a1, a2, anda3 are of length 2πA. Define 4× 4 matricesA4 and
B4 by A4 = diag(1,1,−1,−1) andB4 = diag(1,−1,−1,−1), and then define a pair o
R

4 isometries as follows.

(39)α = (A4, a1/2), β = (B4, a0/2).

Let ∆4(Γ [di]) be the group generated by these isometries, together with the transl
τµ = (I4, aµ). Then∆4(Γ [di]) can be presented as follows:

α2 = τ1, β2 = τ0, βαβ−1 = α−1,

ατ0α
−1 = τ0, ατ2α

−1 = τ−1
2 , ατ3α

−1 = τ−1
3 ,

βτ1β
−1 = τ−1

1 , βτ2β
−1 = τ−1

2 , βτ3β
−1 = τ−1

3 .

∆4(Γ [di]) is so named because it contains a subgroupΓ [di], generated byα, τ1, τ2, and

τ3, which corresponds to the fundamental group of the dicosm. One can see that∆4(Γ [di])
is a non-abelian infinite group with no element of finite order (other than the identity) and
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with a maximal free abelian subgroupΓ ∗
4 (generated by theτµ) consisting of four copies

of Z. From the relations given, it is clear thatΓ ∗
4 is normal in∆4(Γ [di]); the quotient

∆4(Γ [di])/Γ ∗
4 is of finite order (it is isomorphic toZ2 × Z2); one says thatΓ ∗

4 is of in-
dex 4 in∆4(Γ [di]) and of rank 4. By the relevant version of the Bieberbach theor
[44, p. 105]it follows that R

4/∆4(Γ [di]) is a four-dimensional manifold, covered by
four-torusR4/Γ ∗

4 with the flat metric

(40)g+
flat(c� L,A) = c2

� L2 dθ2 + A2(dθ2
1 + dθ2

2 + dθ2
3

);
hereθ is an angular coordinate corresponding toa0, while theθi correspond to theai .

As a Riemannian manifold,R4/∆4(Γ [di]) can be expressed asT 4/[Z2 × Z2], where
T 4 is the rectangular torus with aspect ratio given byA/(c�L), and whereZ2 × Z2 is the
linear holonomy group of this space. One of the two independent non-trivial holono
reverses orientation, while the other does not. All this can be repeated beginning w
three-torus instead of the dicosm, resulting in a flat four-manifold with the structureT 4/Z2,
or with the didicosm (Hantzsche–Wendt space), resulting in a flat four-manifold wit
structureT 4/[Z2 × Z2 × Z2].

The overall picture, then, is this. The underlying structure of the compactified Eu
ean four-dimensional space is that ofT 4/Z2, T 4/[Z2 ×Z2], orT 4/[Z2 ×Z2 ×Z2]. Let us
take this last space as a concrete example. The local metric is given in(40); it is indistin-
guishable from that of a four-torus, except that the coordinates are not global. Howe
we move around the “time” direction (theθ direction), we find that orientation is revers
once per cycle. If we arbitrarily selectθ = ±π to be the (single) point on theθ -circle where
orientation is reversed, then a pseudoscalar such as our Euclidean axion will autom
reverse sign there. Now suppose that we single outθ = ±π by performing the conforma
transformation that maps the metric in(40) to the one given in Eq.(32). Now θ = ±π has
to be excised, and the space has the topologyof a Bang/Crunch spacetime with spatial s
tions having the structure of a didicosm. Transforming to the Lorentzian version, we
the Bang/Crunch cosmology with metric(8). In the reverse direction, we transform t
metric in(8) to its Euclidean version, which is apparently a space with a conformal infi
consisting of two components, each having the structure of the didicosm; however, w
naturally identify these after performing an orientation-reversing twist, so as to obta
compact four-manifoldT 4/[Z2 × Z2 × Z2] as the compactification. The dual field theo
resides on thesingle, orientable, didicosm section atθ = ±π , that is, at infinity.

Linde’s considerations of quantum gravity[1], with which we began, allowed the sp
tial sections of our universe to have any one of the infinite variety of structures po
for compact three-manifolds of negative orzero curvature. We have narrowed this v
array down to just three candidates: the torusT 3, the dicosmT 3/Z2, and the didicosm
T 3/[Z2 × Z2]. We do not know how to reduce this list to a single candidate. It is n
worthy, however, that although they seem rather similar, thehomologygroups of the three
surviving candidates are very different: in particular, their first homology groups (
integer coefficients) are given on p. 122 of[44] as

H1
[
T 3] = Z × Z × Z,
H1
[
T 3/Z2

] = Z × Z2 × Z2,
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(41)H1
[
T 3/[Z2 × Z2]

] = Z4 × Z4.

Notice that this last group isfinite; thus the cycles around which branes may be wrap
have a very different structure in the didicosm from those in the torus or the dicosm.
follows that the first (and therefore second) Betti numbers are quite different:

(42)b1
[
T 3] = 3, b1

[
T 3/Z2

] = 1, b1
[
T 3/[Z2 × Z2]

] = 0.

The vanishing ofb1[T 3/[Z2 × Z2]] means that, in sharp contrast to the torus and the
cosm, the didicosm has no harmonic one-forms or two-forms. A further study of
these properties may lead to a physical way of distinguishing the didicosm from all
candidates.

6. Conclusion

What is the shape of space? This question, even in its modern form, has exercise
ing minds for over a century ([84]; see[15] for a discussion of the views of de Sitter a
Schwarzschild). For a time there was hope that it would be settled by direct observ
but, as this hope has begun to fade, we may have to turn to theory for guidance. T
a very large literature on observational aspects of topologically non-trivial cosmological
models, but very little is known about the basicphysical principles which might prefer on
topology over another. Indeed, one of the main motivations of this work is to persua
reader that it is possible to find such principles.

It is striking and exciting that Inflation, which tells us that we should probably not ho
to see direct evidence of non-trivial spatial topology, nevertheless also tells us[1] that this
topology probablyis non-trivial. It then becomes a pressing question to determine w
topological structure has been chosen—and how.

In this work, we have argued that our best theories of fundamental physics do
us to narrow the field of candidates. The lessons we have learned vary in their de
generality.

The most general lessons are based on the assumption thatsome kind of bulk–boundar
duality is valid in cosmology. This very general assumption already has strong co
quences. Most importantly, it tells us that we cannot ignore the most distant regio
our world, those beyond cosmological horizons: for those regions are just as surely
the bulk as the regions near to us in space and time, and their role in the bounda
theory cannot be excluded or neglected.

Slightly less generally, if we assume that the spacetime conformal boundary lies
future and the past (as in de Sitter spacetime, or in any of the cosmologies of the g
form considered by Maldacena and Maoz[2]), then typically each connected compon
of the “dual” space has the same topology as the spatial sections. But if we further a
that string theory controls the bulk-boundary relationship, then the very general argu
of Seiberg and Witten[43] apply. We are still at a very high level of generality at this po
but already we can, with the help of the theorem of Kazdan–Warner, make an extrem

strong deduction about the nature of the spatial sections:they cannot be negatively curved.
The startling feature of this argument is precisely the fact that it istopological: once it
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has been established that a manifold is in KW class [N], its scalar curvature must r
negative (ensuring Seiberg–Witten instability) no matter how it may be deformed b
subsequent evolution of spacetime.

If Seiberg–Witten instability rules out negative curvature, and some of the most
esting versions of Inflation disfavour positive curvature[1], then of course we are directe
towards the flat, compact three-manifolds: theplatycosms[45,46]. Already this is a grea
reduction, since there are infinitely many compact negatively curved spaces, but o
platycosms.

All of these conclusions are very general, since they do not depend on using a s
cosmological model. If we are willing to be more specific, then we can reduce th
still further. The particular cosmological model considered here, combined with the (
graphically motivated) requirement that disconnected boundaries must be avoided
to a demand that the spatial sections should have a specific geometric property;
found that onlythreecandidates satisfy this condition. We do not ask the reader to tak
particular conclusion very seriously, since it is based on specific properties of a sp
matter model. The more important conclusion is thatwe have shown explicitly that it i
indeed possible to use physical principles to effect a vast reduction in the range of
dates. It does not seem too far-fetched to imagine that a more sophisticated and re
matter model might well succeed in reducing the list to asinglecandidate. It may be tha
this is how the shape of space will be discovered: perhaps only one topology is con
with our best theories.

Recent work on the (surprisingly deep) geometry of the platycosms sheds interesti
light on this observational/theoretical interplay for cosmic topology. It has been found[85]
that it is possible for two platycosms with different topologies to beisospectral, that is, the
spectra of their Laplace operators can be placed into a one-to-one correspondence. T
is remarkable, because two three-dimensional tori can be isospectral only if they have t
same shape and size. Since the analysis of CMB data involves precisely these spectra
could be very difficult to distinguish these two spaces by means of CMB observa
even if the fundamental domain were small enough for direct observations to be po
Yet they are certainly distinguished by our theoretical analysis above. For the isosp
pairs are obtained by taking a certain specific torusT 3

0 of a fixed shape (it is a “two-storey
rectangular torus), and then taking quotients. The quotient of the formT 3

0 /[Z2 × Z2] is a
particular example of a didicosm, named “Didi” in[85]; the quotient of the formT 3

0 /Z4

is an example of a tetracosm, named “Tetra”.7 Didi and Tetra are isospectral, but we s
above that Didi is acceptable in our specific cosmology while Tetra must be excluded. Th
we have a situation where theoretical arguments are able to distinguish candidates
may be difficult to separate observationally.

Of course, the main task now is to determine or at least constrain the boundary fie
ory. Because of the special asymptotic properties of the Maldacena–Maoz cosmologies
the accelerating case[33], there is reason to believe that the bulk/boundary correspond
will be unusual here. This is currently under investigation.
7 The name Dexter has also been suggested.
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