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Lecture plan

®m Lecture 1: Cosmology overview

Basics of inflationary cosmology
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What cosmological model?
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What cosmological model?

These are the principles and physical laws underpinning the Universe.

& Hot big bang cosmology

Describes the global properties of the Universe, its
expansion, and its material content.
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What cosmological parameters?

The standard assumption is that the present Universe contains
five types of material.

m Baryons (ie protons, neutrons and electrons)
Radiation (photons)

Neutrinos

Dark matter

Dark energy (eg cosmological cons
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What cosmological parameters?

The standard assumption is that the present Universe contains
five types of material.

m Baryons (ie protons, neutrons and electrons)
Radiation (photons)

Neutrinos

Dark matter

Dark energy (eg cosmological constant)
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®m What is the fundamental nature of the dark matter?

® [s the dark energy a cosmological constant?
s it due to a new form of matter or a new theory of gravity?
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® [s the dark energy a cosmological constant?
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Inflation is ...

B A prolonged period of accelerated expansion in the very early
Universe,

B which explains why the Universe is approximately homogeneous
and spatially-flat,

B may explain the absence of relic particles predicted by
fundamental physics,

@ and is the leading paradigm for explaining the observed
inhomogeneities in the Universe.
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Conditions for acceleration

The equations of motion are
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Conditions for acceleration

The equations of motion are
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The scalar field potential

In the simplest scenarios, the potential V(9)
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fluctuations are imprinted on the Universe.




Inflation and perturbations

The main motivation for being interested in inflation is that it
leads to a perturbed Universe. During inflation, quantum
fluctuations are imprinted on the Universe.

- . o
o Lipe AR of = D" &l ‘_\_, . Qe A, = _ Bl & [ . N D e 1 ) st B ke R o a4 & -~ -
. at Y, 7t . . CA\U ) L1 s | . A LUl AJ QA ' 1J e .) Pl R N =
h * Mo o ? N Ve h e ‘ - .-’u. P S ? y Y| . b r A e l.-h:q =¥ ™~ ‘-_\ s ey g k . -'-.. i - PRt '. - we
ol 3 - - N y . P : e

® Scalar field fluctuations




Analogies




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.

Perhaps more interestingly, there is an analogous situation in
_ Jelectrod nmlcs

‘!

: & »
R et AT

'
é § L] . < - ] K v 4 . & o -
E - - - . _ 4 or . " Lor 2 Laae LA . N L A RO TE .« - i A ar « Dl & -8 N
- i = o - '.' I o I - ‘ A K A2 & LN - e L . 5 - e “. - ; S 1 g ) e e
g & .v, & e w > 5 - B - - ; PR > 8 1 B iy L) e .- » b - ':‘ -
' .. ” - - (R Y . 4 i . - E - 4 = A



Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.

Perhaps more interestingly, there is an analogous situation in
electrodynamics.




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.

Perhaps more interestingly, there is an analogous situation in
electrodynamics.

uniform electric field




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.

Perhaps more interestingly, there is an analogous situation in
electrodynamics.

uniform electric field




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.

Perhaps more interestingly, there is an analogous situation in
electrodynamics.

uniform electric field




Analogies

The creation of density perturbations during inflation has several
analogues in other areas of physics:

Hawking radiation from a black hole is very similar, with the event
horizon taking the place of the particle horizon in the case of inflation.

Perhaps more interestingly, there is an analogous situation in
electrodynamics.

The pair
obroduction breaks
the initial
nomogeneity.

uniform electric field
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Other inflationary perturbations

It is a very reasonab
paradigm holds, anc

e working hypothesis that the single-field
much work goes into constraining inflationary

models of this type.

But there is a broader phenomenology:
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B Multi-field models.

Perturbations in additional fields can give rise to isocurvature
perturbations, depending on how inflationary degrees of freedom map to
post-inflationary ones. Non-gaussianity also possible but requires tuning.

®m Non-standard kinetic terms (eg DBI fields)

These can give a small perturbation sound speed, leading to large non-
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Other inflationary perturbations

B Multi-field models.

Perturbations in additional fields can give rise to isocurvature
perturbations, depending on how inflationary degrees of freedom map to
post-inflationary ones. Non-gaussianity also possible but requires tuning.

®m Non-standard kinetic terms (eg DBI fields)

These can give a small perturbation sound speed, leading to large non-
gaussianity. Might arise naturally in string theories.
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Other inflationary perturbations

B Multi-field models.

Perturbations in additional fields can give rise to isocurvature
perturbations, depending on how inflationary degrees of freedom map to
post-inflationary ones. Non-gaussianity also possible but requires tuning.

®m Non-standard kinetic terms (eg DBI fields)

These can give a small perturbation sound speed, leading to large non-
gaussianity. Might arise naturally in string theories.
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