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We note that the essential idea of inflation, that the Universe underwent a brief period of accelerated

expansion followed by a long period of decelerated expansion, can be encapsulated in a ‘‘closure

condition’’ which relates the amount of accelerated expansion during inflation to the amount of

decelerated expansion afterward. We present a protocol for systematically testing the validity of this

condition observationally.
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Is it possible to show convincingly that inflation [1,2] is
responsible for the large-scale homogeneity, isotropy, and
flatness of the Universe, and the primordial spectrum of
metric fluctuations that seeded galaxy formation and
sourced the temperature and polarization variations in the
cosmic microwave background (CMB)? Some would
claim no, because there is too much freedom in construct-
ing inflationary models. Even if one shows that the obser-
vations are consistent with the predictions of a particular
inflationary model, this is unconvincing because, for vir-
tually any given combination of observations, one can
design many inflationary models that reproduce them. If
a theory allows everything, it has no predictive power.

In this Letter, though, we describe how to combine
observations into a sequence of ‘‘bootstrap tests’’ that, if
any one of them is passed, will be the most direct con-
firmation possible that the Universe underwent a brief
period of acceleration (d2a=dt2 > 0) followed by a long
period of deceleration (d2a=dt2 < 0). [Here aðtÞ is the
Robertson-Walker scale factor and HðtÞ � dðlnaÞ=dt is
the Hubble rate [2].] Let us briefly summarize the basic
idea, with details postponed until the next section. First,
note that aðtÞHðtÞ grows during acceleration, and shrinks
during deceleration. According to the inflationary scenario
[2], any observable Fourier mode of the cosmological
density field with comoving wave number k� reached a
moment during inflation known as ‘‘horizon exit,’’ at
which the ratio aðtÞHðtÞ=k� was unity; then, during the
period remaining before the end of inflation, this ratio grew
by Nbefðk�Þ e folds; and finally, after inflation, the ratio
shrunk by Naft e folds, reaching the value of a0H0=k� < 1
measured today. Thus, in this picture, the mode k� must
satisfy the ‘‘closure condition’’

lnða0H0=k�Þ ¼ Nbefðk�Þ � Naft: (1)

How can we test this equation? If we know the temporal
evolution ofH, from the moment that k� leaves the horizon
until the end of inflation, we have enough information to
compute Nbefðk�Þ and Naft and check that Eq. (1) is correct.

Unfortunately, cosmological observations will never give
us this much information; instead, assuming inflation is
correct, they will provide the first few terms in a Taylor
approximation to H around the moment that the ‘‘WMAP
wave number’’ [3] k� ¼ 0:002=Mpc left the horizon.
Imagine we only have enough observations to determine
this Taylor approximation up to jth order: this is our best
guess forH given the available data. Under the assumption
that this guess remains valid all the way to the end of
inflation, we can check whether Eq. (1) is true. If it is,
then we not only have evidence for our guess, but for the
idea of inflation on which it is based: we have pulled
ourselves up by our bootstraps. Note that a0H0=k�, as
measured today, is exponentially sensitive to both
Nbefðk�Þ, which depends on the expansion history during
inflation, and Naft, which depends on the expansion history
after inflation. Thus, if observations can be used to deter-
mine all three quantities and if they are shown to satisfy the
closure condition, even an ardent skeptic would be hard
pressed to discount it as coincidence; it would be strong
evidence for inflation, and a tall challenge for any compet-
ing theory. And if there are any doubters, the bootstrap
method offers in some cases a series of follow-up checks
that can turn a convincing verification into an overwhelm-
ing one.
As discussed in the conclusion, the closure test also has

the advantage that it is experimentally easier to apply
compared to other proposed inflationary tests, such as the
‘‘consistency relations’’ [4,5]. As for failing the closure
test, this does not mean inflation is ruled out, because it is
always possible to construct inflationary models that fit the
data; as precision improves, observers can continue to
distinguish viable and nonviable models. However, in
this sad circumstance, cosmological observations will
probably never yield the kind of convincing confirmation
of inflation discussed here.
Key observables and equations.—Before describing the

bootstrap tests, let us introduce the key observables, equa-
tions and parameters we will need. From�2

RðkÞ and�2
hðkÞ,
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the scalar and tensor power spectra, one defines the tensor
to scalar ratio r � �2

h=�
2
R, the scalar index ns � 1 �

dðln�2
RÞ=dðlnkÞ, its ‘‘running’’ �s � dns=dðlnkÞ, the

‘‘running of the running’’ �s � d�s=dðlnkÞ, and so on,
all measured at the wave number k� at which they are
most precisely determined. We follow the standard
WMAP definitions for all of these observables [3],
and for concreteness fix k� ¼ 0:002=Mpc following
WMAP [3].

We focus first on the case where the Hubble expansion
rate H during inflation is governed by a single order
parameter that acts just like a single inflaton scalar field,
’ [6–8] (Generalizations will be discussed in the conclud-
ing section.) For a clear derivation and presentation of all
of the equations in this section, see Liddle et al. [6].
Subscripts ‘‘*’’ and ‘‘end’’ will be used to indicate that
the corresponding quantity is to be evaluated at the mo-
ment when k� exits the horizon, or at the end of inflation,
respectively. Without loss of generality, we can choose
’� ¼ 0, and Taylor expand

Hð’Þ ¼ H� þH0�’þ 1
2H

00�’2 þ 1
6H

000� ’3 þ . . . : (2)

If, again without loss of generality, we take d’=dt > 0 (or,
equivalently, H0� < 0), and choose ‘‘reduced Planck units’’
with @ ¼ c ¼ 8�G ¼ 1, then the first few coefficients are

H� ¼
�ð�2

RÞ1=2
2

ð2rÞ1=2; (3a)

H0� ¼
�ð�2

RÞ1=2
8

ð�rÞ; (3b)

H00� ¼ �ð�2
RÞ1=2
32

ð2rÞ1=2½rþ 4ðns � 1Þ�; (3c)

H000� ¼ �ð�2
RÞ1=2

128
½64�s � 3r2 � 20rðns � 1Þ�: (3d)

The end of inflation (H ¼ Hend and ’ ¼ ’end) occurs
when €a ¼ 0 or, equivalently,

Hend ¼ � ffiffiffi
2

p
H0

end: (4)

Finally, in the closure condition (1), we have

Nbefðk�Þ ¼ lnðHend=H�Þ � 1

2

Z ’end

’�
d’½Hð’Þ=H0ð’Þ� (5)

and

Naft ¼ ln½�1=4
rad ðHend=H0Þ1=2� þ �N; (6)

where �rad is the current ratio of the radiation density to
the critical density and

�N � ð1=12Þ½ð1� 3wreÞ=ð1þ wreÞ� lnð�re=�endÞ (7)

represents the uncertain physics of the epoch between the
end of inflation and the start of radiation domination: wre is
the effective equation-of-state during this epoch, and �re is
the energy density at the start of radiation domination. We
first consider the case where �N � 0, which corresponds
to ‘‘efficient’’ reheating (wre � 1=3 or �re � �end).

However, the uncertainty in �N, does not seriously inter-
fere with the bootstrap test. To illustrate the point, we let
�N be a free parameter, subject only to the weak assump-
tions that 0 � wre � 1=3 and �bbn � �re � �end, where
�bbn � ð1 MeVÞ4 is roughly the energy density during
big bang nucleosynthesis (BBN); then �N � 0.
The bootstrap tests.—The bootstrap test uses precise

observations at k ¼ k� to obtain progessively better esti-
mates of Hð’Þ and Hend, which are, then, applied to
determine if the closure condition is satisfied. If we regard
�2

R ¼ ð2:45� 0:1Þ � 10�9 [3] as an already-measured

quantity, then the Taylor expansion (2) and (3) of Hð’Þ
organizes the remaining observables into an ordered list
fr; ns; �s; �s; . . .g in the sense that, if we imagine that we
only know the first j items in this list, then we can only
determine the Taylor expansion up to jth order [9]. This is
the best guess for Hð’Þ based on the available data; using
it, Hend is computed from Eq. (4); Nbefðk�Þ and Naft are
determined from Eqs. (5) and (6); and, finally., the closure
condition (1) is checked.
The jth bootstrap test is satisfied if the first j observables

satisfy the closure condition. In practice, only the first three
observables fr; ns; �sg can be detected or constrained
tightly enough to be relevant for confirming inflation.
Therefore, the first three bootstrap tests are the relevant
ones, for all practical purposes: let us describe them and
explain how they may be confirmed and cross-checked
with forthcoming observations.
First bootstrap test.—To start, imagine we are only given

the first observable, r, so our best guess for Hð’Þ is H� þ
H0�’. We introduce this into Eq. (4) to obtain ’end ¼
21=2½ð16=rÞ1=2 � 1�, and apply these expressions for
Hð’Þ and ’end to Eqs. (5) and (6) to obtain Nbefðk�Þ and
Naft. Then, the closure condition, Eq. (1), is satisfied if

rð�NÞ ¼ 8=½Aþ �N þ 1=2�; (8)

where A � lnða0H0=k�Þ þ 1
4 lnð8�rad�

2�2
R=H2

0Þ � 61.

This corresponds to r ¼ 0:13 if �N ¼ 0, and 0:13< r <
0:17 if the uncertainty in �N is included.
If observations pass this first bootstrap test, it will be a

remarkable success for the inflationary paradigm, and one
that can be checked: since true success should not be
spoiled by the next observable, ns, we expect ns ¼ 1�
r=4 (so that H00� � 0). If this follow-up test is also success-
ful, then it should not be spoiled by the next observable,�s:
thus we expect �s ¼ ½3r2 þ 20rðns � 1Þ�=64 (so that
H000� � 0). If observations pass the first bootstrap test (1),
plus the two follow-up tests, it will be overwhelming
evidence for a period of inflationary expansion.
Second bootstrap test.—If the first bootstrap test fails,

proceed to the second. Given the measured values of
fr; nsg, the best guess for Hð’Þ is now H� þH0�’þ
1
2H

00�’2. We introduce this expression into (4) and find

the smallest positive root: ’endðr; nsÞ. Next these formulae
for Hð’Þ and ’end can be used in Eqs. (5) and (6) to find
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Nbefðk�Þ and Naft. Finally, substituting all of this into the
closure condition (1), we obtain a relation between r, ns
corresponding to the solid black curve in Fig. 1; allowing
for the uncertainty in �N thickens the curve to the shaded
region in the figure. Passing the second bootstrap test
would be nearly as remarkable as passing the first, and,
here again, the success can be verified by measuring the
next observable, �s, and finding that �s ¼ ½3r2 þ
20rðns � 1Þ�=64 (so that H000� � 0).

Third bootstrap test.—If the first two bootstrap tests fail,
proceed to next order. Use the first three observables
fr; ns; �sg to determine the coefficients in Hð’Þ ¼ H� þ
H0�’þ 1

2H
00�’2 þ 1

6H
000� ’3. Introduce this into Eq. (4) to

find the smallest positive root ’endðr; ns; �sÞ and use the
expressions for Hð’Þ and ’end in Eqs. (5) and (6), to
compute Nbefðk�Þ and Naft. Finally, substitute these expres-
sions into Eq. (1) to check the closure condition. If
�N ¼ 0, the closure condition will be satisfied for a two-
dimensional surface in the three-dimensional space pa-
rametrized by fr; ns; �sg: several surface contours are
shown in Fig. 2. Allowing for the uncertainty in �N
thickens this surface into a ‘‘thin slab’’ (or, equivalently,
each curve in Fig. 2 extends downward to form a strip). In
the limit of extremely small r, this slab has a simple

analytic description: ’endðr; ns; �sÞ is given by ’end ¼
ð�2=�sÞ1=2r1=4, and r ¼ rðns; �s;�NÞ satisfies

r ¼ 8 exp

�
8�� 16 arctan½ð1� nsÞ=y�

y
� 4ðAþ�NÞ

�
;

(9)

where y � ½�4�s � ðns � 1Þ2�1=2.

We can make �s as negative as possible (for fixed ns) by
first letting r be as small as possible [for illustration, let us
take the relatively weak assumption �f > ð1 TeVÞ4 and

hence r > 8� 10�55], and then letting �N be as negative
as possible (wre ¼ 0 and �re ¼ �bbn). In this way, we find
that, if fr; ns; �sg pass the third bootstrap test, then �s has a
lower bound [10] �s > �min

s ðnsÞ, where �min
s ðnsÞ varies

smoothly from �min
s ¼ �0:0094 (for ns ¼ 0:9) to �min

s ¼
�0:0161 (for ns ¼ 1).
We have seen that, if the first bootstrap test is passed,

then ns and �s provide two cross-checks, and, similarly, if
the second bootstrap is passed, then �s provides a single
cross-check. But if the third bootstrap relation correctly
predicts that the fr; ns; �sg lie in the slab described above,
there will be no analogous cross-checks available, since we
will have used up our observables (see below for caveats).
Nevertheless, passing the third test is an impressive verifi-
cation of the inflationary principle.
Discussion.—Observations will measure r and ns to a

precision of roughly �0:01 in this decade, and perhaps
�0:001 eventually. The first bootstrap test would give the
most impressive proof of inflation, since it makes the
largest number of verifiable follow-up predictions; the
ranges 0:13< r < 0:17 and ns ¼ 1� r=4 still agree well
with current observations [3], but will either be confirmed
or ruled out within the next few years. If the first bootstrap
test fails, the second may be passed for a wider range of r,
but since it relates r to ns, the allowed range of r may be
restricted by constraining ns. For example, if ns > 0:94, as
suggested by WMAP5 [3], then the second bootstrap test
only requires searching for r > 0:01, and thus may also be
completed over the coming decade. And then, if CMB

FIG. 1 (color online). First and second bootstrap tests: The first
test is satisfied for r and ns corresponding to the open white
circle for efficient reheating; the circle becomes a short arc
(dotted) if one includes the uncertainty in the ‘‘reheating epoch’’
(parameterized by �N). The second test is passed if r and ns lie
anywhere along the solid black curve or, allowing for the
uncertainty in �N, the black curve plus shaded region.

FIG. 2. The third bootstrap relation constrains (r, ns, �s) to lie
on a curve, as shown, assuming efficient reheating (�N ¼ 0);
including this uncertainty extends each curve downward (to-
wards more easily observable values of �s) into a strip of finite
thickness. Note that these curves include values of (r, ns) that
fail the first two bootstrap tests.
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polarization experiments determine that r < 0:01, all is not
lost: the third bootstrap test may still be passed, but only if
�s has a substantially negative value (see Fig. 2)—e.g.,
negative enough to be detected by a proposed high-redshift
galaxy survey designed to measure j�sj 	 0:001 [11]. But
if �s is too negative, all three bootstrap tests fail: e.g., if
�s <�0:016, then the tests fail for all ns < 1, according to
the discussion above.

Passing the bootstrap tests would be consistent with
many of the most appealing and commonly arising infla-
tionary models, with the fewest degrees of freedom, fewest
parameters, and smoothest evolution [12]. For example, in
Fig. 1, Vð’Þ ¼ m2’2 corresponds to the open circle (and
hence passes the first bootstrap test); Vð’Þ ¼ �’4 corre-
sponds to the upper endpoint of the solid curve; the
symmetry-breaking (Higgs) potential Vð’Þ ¼ �4½1�
ð’=�Þ2�2 corresponds to the part of the solid curve below
the open circle; and the pseudo-Nambu-Goldstone-boson
(axion) potential Vð’Þ ¼ �4½1� cosð’=�Þ� lies within
the shaded region. On the other hand, hybridlike inflation
models, including some of the widely discussed proposals
motivated by string theory, would not pass the tests [13].

The bootstrap tests have the advantage that they can be
performed with forthcoming data. Compare them with the
well-known consistency relations for single-field inflation:
(i) a hierarchy of relations between the scalar and tensor
power spectra [4]; and (ii) a hierarchy of relations between
the primordial scalarN-point functions [5]. Confirming any
of these relations requires measuring either (i) a nonzero
value for the tensor spectral index nt, or (ii) a non-Gaussian
primordial N-point function, both of which will be ex-
tremely difficult given the single-field inflationary predic-
tions. Failure (detection of large deviations from the
consistency relations) is observationally much easier than
confirmation given the limitations of technology and fore-
grounds. By contrast, with the bootstrap tests, inflation can
be precisely tested and confirmed using accessible technol-
ogy and plausible foregrounds. (The consistency relations
might eventually yield additional confirming tests.)

What if the bootstrap tests fail? Of course, there will still
be some inflationary models and parameters that agree with
the observations, and some that do not. But is there another
way of confirming that inflation itself took place? Perhaps
there is a generalized framework for inflation that gives rise
to a generalized set of bootstrap tests which might still be
passed? Interestingly, the two most common generaliza-
tions (allowing multiple order parameters [14,15], or re-
placing the canonical kinetic termX ¼ 1

2 ð@’Þ2 by a general
function of X [16]) give rise to frameworks that are not
testable in our bootstrap sense: the observables
f�2

R; r; ns; �s; . . .g do not intrinsically point to a best guess
for both Nbefðk�Þ and Naft. An exception is the subclass of
single-field k-inflation models [16] which only depend on
X. In this case, a bootstrap test of (1) can be performed if one
can also measure the tensor tilt nt (although, as mentioned

above, this is likely to be very difficult). An interesting
corollary of our analyses is that, in all cases, a direct con-
firmation of inflation relies on being able to detect cosmic
gravitational waves and measure accurately at least r.
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