and V are no longer independent, and it is elementary and
straightforward to show, using just the first law of thermody-
namics, the equation of state for an ideal gas, and adiabatic-
ity, that the equation describing the expansion is

VTA=const, (1)

where B is a positive constant. From this equation it is self
evident that the universe cools down as it expands.

Alternatively, one can relate the total number of photons N
of the CBR (using properties of black-body radiation) with
the temperature and volume. This relation is®

kT\?
NOC(%) V. 2

since N is constant for adiabatic processes, it is again clear
that the universe cools down as it expands.
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Answers to Question #10 [“Cooling and expansion of
the universe,” J. Richard Christman, Am. J.

Phys. 63 (1), 13 (1995)] and Question #17 [“What
happens to energy in the cosmic expansion?,” Frank
Munley, Am. J. Phys. 63 (5), 394 (1995)]

J. Richard Christman notes' that the universe cools as it
expands and wishes to know why this should be so. After all,
he says, ideal gases do not cool as they expand into a
vacuum. When an ideal gas expands into a vacuum its en-
tropy increases; in particular, the process is not quasistatic.
On the other hand, in the standard cosmology, one takes the
expansion of the universe to be so lethargic that the expan-
sion process is essentially reversible. Then since the universe
has no external environment with which it can exchange
heat, the universal expansion is. a constant entropy process.
More precisely, one imagines that the expansion of the uni-
verse is slow enough that a particle in its nth excited state
remains in this state as the cosmos exgpands. The entropy of a
gas of photons is proportional to VI, so as the gas expands
isentropically, its temperature falls.? The energy of a gas of
photons is proportional to VT*, so during the expansion the
energy also decreases.’ And that brings us to Frank Munley’s
question: essentially, is there any meaning to the notion of
“conservation of energy” in curved spacetimes?*

In a general curved spacetime, in particular in the
Friedman—Robertson—Walker spacetimes most often consid-
ered in cosmology, there is no useful way to define a constant
energy (however in asymptotically flat spacetimes there is;
please see Ref. 5). Nonetheless, cosmologists do speak of a
type of “conservation,” the covariant conservation of the
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energy-momentum tensor. This conservation is consistent
with an energy density proportional to T* and a cosmic ex-
pansion with constant V7T? in the radiation dominated epoch.
That is, that the universal expansion is isentropic, yet vio-
lates the naive conservation of energy, is just what the cova-
riant conservation of energy requires.

The covariant conservation of energy is a statement about
the energy momentum tensor, which summaries the energy,
momentum, pressures, and stresses of the stuff of the uni-
verse and which acts as the source of spacetime curvature in
the general theory of relativity according to the Einstein
equations,’

R, g, R=—87GT,,.

Here R, is the Ricci tensor, and R is its trace. The metric is
8., Everything on the left-hand side of Einstein’s equation
is geometric. On the right-hand side, G is Newton’s constant
and T, is the energy-momentum tensor. It follows from the
definition of the Ricci tensor in terms of various derivatives
of the metric that the left-hand side of Einstein’s equation is
covariently divergenceless. So then is the left-hand side. That
is
T , =0,

the so-called covariant
momentum tensor.

The Friedman—Robertson—Walker cosmologies describe
spacetimes that are homogeneous and isotropic. In cosmic
coordinates the energy momentum tensor is diagonal and has
the simple form

conservation of the energy-

T,”=diag(p,p,p,p),

with p the energy density and p the pressure. For a homoge-
neous and isotropic spacetime (with, for simplicity, flat spa-
tial sections) the line element must have the Friedman—
Robertson—Walker form,

ds’= —dt?+ R*(¢)(dx?*+ dy*+dZ?),

with R(¢) called the scale factor. Given an equation of state
p=p(p), the Einstein equations give the time dependence of
the scale factor. Imposing the covariant conservation of en-
ergy gives a useful way to interpret the results. One finds’

d/dt(pR®)=—pd/dt(R?).

The left-hand side describes the rate of change of what might
reasonably be called the energy. You can see that this energy
is not constant for matter with nonzero pressure. For radia-
tion, p=1/3p, and we have already noted that the energy
density is proportional to T*. Thus, the covariant conserva-
tion of energy is satisfied with RT=const. In the radiation
dominated era, the universe expands with constant entropy,
but the energy pR? is not conserved. In the current matter
dominated era, the pressure is zero. The photon temperature
is still given by RT=const because the cosmic expansion is
isentropic, but in the matter dominated era, radiation makes a
negligible contribution to the cosmic energy.

In sum, for an isentropic cosmic expansion, photon tem-
perature is inversely proportional to the cosmic scale factor.
The behavior of energy with time is determined by the Ein-
stein field equations. As a consequence of these equations
one realizes the covariant conservation of the energy-
momentum tensor. In the Friedman—Robertson—Walker
spacetimes, the conservation has a ready interpretation in
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terms of the time rate of change of energy. The energy is not
conserved unless the matter of the universe has zero pres-
sure.
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Answer to Question #10 [“Cooling and expansion of the
universe,” J. Richard Christman, Am. J. Phys.
63(1), 13 (1995)]

While it is true that the temperature of an ideal gas re-
mains constant if the gas expands without doing work upon
its surroundings, the expanding universe must be compared
to an expanding nonideal gas. By definition, separated mol-
ecules of an ideal gas exert no forces upon one another.
Therefore, the potential energy of a system of receding ideal
gas molecules remains constant. This implies constant ki-
netic energy and thus constant temperature for the system.
On the other hand, because of attractive forces acting upon
receding particles, the universe, like a nonideal gas, gains
potential energy during expansion. In both cases, system
cooling arises from the resulting decrease in the kinetic en-
ergy of the system.

David Keeports
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Answer to Question #17 [“What happens to energy in
the cosmic expansion?,” Frank Munley, Am. J.
Phys. 63(5), 394 (1995)]

This is really a “response,” not an “answer,” because a
complete answer to the four questions raised by Frank Mun-
ley in Question #17 (Ref. 1) would undoubtedly require the
full machinery of general relativity. Moreover it would seem
that the answers are not even known.? However, w1th1n the
context of special relativity and Newtonian cosmology,>* an
answer can be given for the simpler question which seems to
be at the root of Question #17.

Suppose there is a source of electromagnetic radiation,
€.g., a galaxy, out there somewhere, which, as far as we are
concemed can be characterized by a positive redshift param-
eter, z.° Then, if an observer in the rest frame of the source
(the source observer) notes the emission of photons with
energy E, an observer back here (the detector observer)
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would eventually detect some of the same photons, but with
energy E/(1+2z). That is, the photon energies measured by
the detector observer are reduced by a factor of 1+z from
what the emitter observer measures. What has happened to
the lost photon energy?

The answer to this simpler question, which perhaps is the
question that led to Question #17, is that there is not any lost
photon energy. The two observers, the emitter observer and
the detector observer, have different rest frames. These two
rest frames are, at least in some approximation, inertial
frames, but for z#0 they are different inertial frames. Since
photon energy is not a Lorentz invariant, one should not
expect the measurements of the photon energies by the two
different observers in their two different inertial rest frames
to give the same results; the results should in fact differ by a
factor of 1-+z. Thus, the photons in question have not lost
energy and so there is no need to look for the lost energy.
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Answer to Question #17 [“What happens to energy in
the cosmic expansion?,” Frank Munley, Am. J.
Phys. 63 (5), 394 (1995)]

In cosmology it is a good approximation to neglect pho-
tons from stars, deal only with matter and cosmic back-
ground photons, and assume that matter and radiation are
decoupled and can be treated separately. In the following R
denotes the scale factor [usually written R(¢)] of cosmologi-
cal models which measures the expansion as a function of
time. For matter we treat the universe as a finite spherical
mass distribution with an expansion according to Hubble’s
law. On Newtonian theory the kinetic energy of the expand-

ing distribution can be calculated and is proportional to R?

[R=dR(t)/dt]. The potential energy can be calculated, and
is proportional to —1/R. The energy equation can then be
written down. The same equation is found to hold in general
relativistic cosmology. As the universe expands and R in-
creases, the potential energy of the universe increases (be-
comes less negative). Thus R decreases, and the rate of ex-
pansion of the universe slows down. This result holds for
positive, zero, or negative total energy, i.e., for hyperbolic,
flat, and elliptical geometries.

Now consider the photons. In the early universe when they
interacted with matter they acquired a black bod 1y energy
distribution. It is an important result in cosmology“ that as
the universe expands, a black body distribution remains a
black body distribution (it is not diluted to a grey body) but
with a temperature which gets lower and is given by T
= ToRy/R, where the subscripts denote present values. Thus,
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