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Answer to Question #15 [‘‘What space scales participate
in cosmic expansion?,”” Frank Munley, Am. J.
Phys. 63(4), 297 (1995)]

To answer the question being asked here, it is necessary to
know what the questioner means by expansion, cosmic or
otherwise. Presumably, he is referring to the fact that, in a
big-bang cosmology, the so-called proper distance ds be-
tween neighboring co-moving points (ct,x,y,z) and (ct,x
+dx,y+dy,z+dz), given by

ds>=R(t)*(dx?*+dy*+dz?),

is increasing with cosmic time ¢ as long as the scale factor
R(¢) is an increasing function of ¢. (For simplicity, I take the
form of ds to be that of a spatially flat Robertson—Walker
(RW) space-time.) Take this to be the case. Then the con-
ventional answer is that only cosmic-sized objects participate
in the cosmic expansion. In particular, measuring rods and
clocks are immune to it. Otherwise, as the questioner asserts,
“‘the expansion would be invisible and hence meaningless.”’
In their encyclopedia work, Misner, Thorne and Wheeler!
(MTW) argue that the situation is analogous to pennies at-
tached to the surface of a balloon. As the balloon is blown up
the distance between the pennies increases while their size
does not change. But what if, instead of pennies, one paints
dots on the balloon? And one can ask, if small scales are
immune to the expansion, at what scale does the expansion
begin? Are clusters of galaxies immune? Are superclusters?
If measuring rods and clocks are immune, what are the ex-
pressions for the proper distance and time that they do mea-
sure? Does this mean that clocks and rods exist in a space-
time different from cosmic space-time and if so, how are
these space-times joined? I am going to argue that there is
only one space-time and that the dynamics of all extended
objects from atoms to superclusters and beyond plays out its
role in this space-time. It does not follow, however, that all
extended objects expand and that the expansion is therefore
invisible. Since the major evidence for the cosmic expansion
comes from red-shift observations, the question to ask is, if
the expansion takes place on all scales, would one observe a
cosmological red-shift?

To answer this latter question, one must ask yet another
question, namely, what time do clocks measure. It is some-
times asserted that, in relativity, clocks measure proper time.
What kind of clocks? Ideal clocks. Okay, but then, what is an
ideal clock? At this point in the discussion it is usually as-
serted that ‘‘atomic’’ clocks, e.g., hydrogen atoms, are ideal
clocks. But what justifies this assertion? Certainly, if my
digital watch, which is a kind of atomic clock, is dropped on
the floor, it may not measure proper time along its trajectory
at all because it has ceased functioning.

In an attempt to answer these questions, I have considered
two simple clock models, one an electromagnetic clock con-
sisting of two charges rotating about their center of mass—
one a kind of classical hydrogen atom and the other a gravi-
tational clock consisting of two masses so rotating, e.g., a
double star system such as the Hulse~Taylor binary pulsar
PSR1913-16. To determine what kind of time these model
clocks measure, one, of course, needs to know their equa-
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tions of motion. However, simply to postulate such equations
is no help since to do so is only slightly better than asserting
that atomic clocks measure proper time. We seem to be
caught in a kind of vicious circle.

There is, however, a way out. The equations of motion for
a classical hydrogen atom or a double star system can be
derived from the Einstein—Maxwell field equations using the
Einstein—Infeld—Hoffmann (EIH) surface integral method.?
In deriving these equations, the only assumption I have made
is that these clocks ‘‘feel’” the effect of the cosmological
field so that one perturbs off a RW rather than the ‘‘flat”
Minkowski field used by Einstein and his co-workers. The
resulting equations of motion are, of course, only approxi-
mate and are restricted to clocks whose characteristic periods
are large compared to the light travel time across them, but
small compared to the expansion time (the inverse of the
Hubble parameter R/R) of the universe as a whole.®> Al-
though the details of the calculation are complicated, the
results, at least in the lowest order of approximation—the
so-called Newtonian approximation—can be easily stated.
There are two effects of the cosmic expansion. One is a kind
of cosmic viscosity that is proportional to the product of the
Hubble parameter and the particle velocity. (This term ap-
pears in the geodesic equations for a test body moving in a
RW field.) The other effect is to modify the Newtonian or
Coulomb interaction between the components of the clock
by a factor 1/R>. The resulting equations of motion thus have
the form

. 1 asap R
muyX,=——5
ATA R§<4 rup

3 rAB_zmAExA ’

where ryp=r,—rp and a, =m, for a gravitational clock and
|ga| for an electromagnetic clock.

If R is changing slowly compared to the particle coordi-
nates X, , then one can solve this set of equations of motion
using the adiabatic approximation. The result is that for both
the gravitational and electromagnetic clock

(Rr)’w?=A and Rrw=B,

where w is the frequency of the clock, r is its coordinate
radius, and A and B are constants. It follows that the fre-
quencies of our clocks are independent of the cosmic time ¢
and hence that such clocks will measure cosmic time. Fur-
thermore, one sees that the quantity Rr, which is usually
taken to be the physical separation between the components
of the clocks, is also a constant. If one such clock were
sitting on a distant galaxy and emitting a wave, another one
here on earth would measure the usual cosmological red-
shift, even though both clocks are experiencing the effect of
the cosmic expansion. Thus one sees that, to the extent that
the approximations used in obtaining our results are appli-
cable, our model clocks behave like the pennies on the MTW
balloon, even though they live in the space-time of the ex-
panding universe. On the other hand, if the clock period is
comparable to the Hubble time, then it will behave like a dot
painted on the balloon and will not measure cosmic time. In
either case, one expects that the expansion of the universe
will make itself felt in the higher orders of approximation,
that the effects will be different for gravitational and electro-
magnetic clocks, and that neither kind of clock will measure
cosmic time exactly.

There is an important conclusion to be drawn from the
above discussion and I will end my reply with it. We saw
that it was unnecessary to invoke either the notion of an ideal
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clock or the notion of proper time to answer the question of

what kind of time our model clocks measure. In principle,

the question of what kind of time a given clock measures

must be answered from a knowledge of its dynamics and, at

least in the case of the simple clocks considered here, that

knowledge comes directly from the field equations of general

relativity. In a very real sense, general relativity has elimi-

nated the need for ‘geometry in physics and replaced it by the
gravitational field.

James L. Anderson

Department of Physics

Stevens Institute of Technology

Hoboken, New Jersey 07030

ISee, for example, C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravi-
tation (Freeman, San Francisco, 1973), p. 719.

2A. Einstein, L. Infeld, and B. Hoffmann, ‘“Gravitational equations and the
problems of motion,”” Ann. Math., Ser. 2 39, 65-100 (1939); A. Einstein
and L. Infeld, ‘‘Gravitational equations and the problems of motion. II,”
Ann. Math., Ser. 2 40, 455-464 (1940); A. Einstein and L. Infeld, ‘‘Mo-
tion of particles in general relativity theory,”” Can. J. Math. 3, 209-241
(1949).

3James L. Anderson, ‘‘Multiparticle dynamics in an expanding universe,””
Phys. Rev. 75 (20), 3602-3604 (1995).

4After this answer was submitted, an answer by Steven K. Blau, Am. J.
Phys. 63(9), 779-780 (1995), to the question discussed here appeared that
is, I contend, fundamentally wrong and also assumes tactitly what is to be
proven. It is not true that the number of meter sticks that will fit between
Earth and a galaxy is constant, as Blau contends. As the above discussion
demonstrates, this number will increase. Also, in deriving the expression
for the cosmic red shift, Blau assumes that the frequency of emission of an
atom remains constant over cosmic times. This is true but not obvious and
must be demonstrated as I have outlined here.

Answer to Question #22 [*“Is there a gravitational force
or not?,”’ Barbara S. Andereck, Am. J. Phys.
63(7), 583 (1995)]

How can gravity be unified with the other fundamental
forces of physics if, as general relativity teaches us, there is
no gravitational force but just the geometry of spacetime,
i.e., particles in a gravitational field have geodesic world
lines? There are, broadly speaking, two answers, depending
on how one understands unification. The first is that one
gives a geometrical account of the nongeometrical forces;
the second is that one gives up a geometrical account of
gravity at a fundamental level.

An example of the first answer is the Kaluza—Klein pro-
gram. Here, for example, to unify gravity and electromag-
netism, we postulate that spacetime has 4+1 dimensions
and that Einstein’s field equations are satisfied in 5 di-
mensions, and all particles have geodesic world lines in
the S5-dimensional spacetime. Relative to the effective
3+1-dimensional world, however, the -electromagnetic
four-vector potential A,~g,s. ‘‘Charged” particles are
those which travel curved (relative to the 3+1 world) world
lines when the electromagnetic field is nonzero. To general-
ize the scheme to the weak and strong interactions requires
still further spatial dimensions satisfying appropriate isome-
tries.

In general, examples of the first answer are classical, in
the sense that general relativity is a classical theory, where-
as those of the second answer are quantum mechanical. In
fact, it is difficult to discuss the second answer in a straight-
forward way because there is no successful quantum theory
of gravity—whether unified or not. But generally, we can
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say that if we had such a successful quantum theory of grav-
ity, then we would not expect the equations of general rela-
tivity to be valid at a fundamental level. Rather, we would
expect them to hold only as expectation values relative to
certain semiclassical states, such as a coherent state or a
WKB wave function. Gravity as geometry would therefore
emerge at a phenomenal macroscopic (i.e., above the Planck
scale) level, even though it would not hold at a fundamental
level.

An instructive example of a possible unified theory con-
taining gravity is string theory. Here, the quanta of all the
forces, including gravity, are different excitations of the fun-
damental strings (or string field). The gravitational field can-
not then be fundamental to the theory, but only a special
state of the string (or string field). Since the gravitational
field is the metric field (or metric curvature) of spacetime,
the metrical geometry of spacetime would not be present at a
fundamental level.

Craig Callender

Robert Weingard

Department of Philosophy

Rutgers University

New Brunswick, New Jersey 08903

Answer to Question #22. [*“Is there a gravitational force
or not?,”’ Barbara S. Andereck, Am. J. Phys.
63(7), 583 (1995)]

The beauty of general relativity with its apparent geom-
etrization of gravity motivated a quest for the geometrization
of all of the forces of nature. Einstein himself spent the last
years of his life attempting to construct a theory of gravity
and electromagnetism in which both fields were parts of an
underlying unified geometrical object which itself was to be
determined by simple geometrical requirements. Sadly, all of
these attempts by Einstein and others ultimately failed. Nev-
ertheless, the geometrical interpretation of the gravitational
force has become a standard dogma of present day physics.
But, as the author of this question points out, it leads to a
seeming paradox.

My answer to the question posed here is that general rela-
tivity actually eliminated geometry from physics. In both
Newtonian mechanics and special relativity one made use of
geometric objects to formulate the basic laws of these struc-
tures. In Newtonian mechanics one introduced planes of ab-
solute simultaneity and straight lines, while in special rela-
tivity the planes of absolute simultaneity were replaced by
light cones. But, in both cases, these geometrical objects
were fixed and independent of whatever else went on. What
general relativity succeeded in doing was to replace these
absolute geometrical objects by the dynamical gravitational
field, obeying field equations in many ways similar to the
field equations of electromagnetism. What was not clear in
the beginning but by now has been recognized is that one
does not need the ‘‘geometrical”’ hypotheses of the theory,
namely, the identification of a metric with the gravitational
field, the assumption of geodesic motion, and the assumption
that ““ideal’”’ clocks measure proper time as determined by
this metric. Indeed, we now know that both of these latter
assumptions follow as approximate results directly from the
field equations of the theory without further assumptions.’
Thus one can, and in my view should, eschew any geometri-
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