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a b s t r a c t

We derive a Higgs inflationary model in the context of a complex geometrical scalar-tensor theory
of gravity. In this model the Higgs inflaton scalar field has geometrical origin playing the role of the
Weyl scalar field in the original non-riemannian background geometry. The energy scale enough to
generate inflation from the Higgs energy scale is achieved due to the compatibility of the theory with
its background complex Weyl-integrable geometry. We found that for a number of e-foldings N = 63,
a nearly scale invariant spectrum for the inflaton is obtained with an spectral index ns ≃ 0.9735 and
a scalar to tensor ratio r ≃ 0.01, which are in agreement with Planck observational data.

© 2020 Published by Elsevier B.V.

1. Introduction

Inflationary models represent a cornerstone of modern cos-
mology. By postulating the existence of the inflaton scalar field,
inflation solves the old problems of the big bang cosmology and
also provides a mechanism to explain the formation of cosmo-
logical structure. In this theory the inflaton must be capable to
generate the enough vacuum energy density to have a suitable
model compatible with CMB observational data and the matter
distribution in the universe. In the literature we can find different
inflationary models that use more than one scalar field, as for
example the hybrid inflation models [1–4].

However, until now, the only scalar particle that has exper-
imental evidence of his existence is the Higgs boson [5,6]. The
idea that the inflaton field might be the same as the Higgs scalar
field has already been considered [7]. The main problem of this
idea relies in the fact that the energy scale of the Higgs field is
too small to generate the enough quantity of inflation required
to solve the problems of the big bang cosmology. In particular,
to have the enough inflation to solve the big bang problems, the
inflaton is estimated to have a mass ∼1013 GeV, and in some
models it prefers a small-interacting quartic coupling constant
λ ≤ 10−9 [7–9]. However, all the parameters associated with the
Higgs field are determined at TeV scale, such as the dimensionless
Higgs quartic coupling 0.11 < λ < 0.27 [9,10]. Models attempt-
ing to solve this problem have already appeared in the literature,
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which in much are non-minimal coupling models [11–14]. In
addition, recently there has been a lot of interest in the Higgs
inflationary models in the Palatini formulation, where a Palatini
variational principle is implemented on an Einstein–Hilbert form
of the action. More about these models can be found for example
in [15–19].

On the other hand, scalar-tensor theories incorporate a scalar
field in the action. However, for some researchers it is not so clear
if the scalar field describes gravity or matter [20]. This happens in
the so called Jordan frame. By means of a conformal transforma-
tion of the metric appears the Einstein frame. In the Jordan frame
gravity exhibits a non-minimal coupling with the scalar field
while in the Einstein frame it is obtained a minimal coupling [21].
The main controversy relies in determine which of the both
frames is the physical one. In the literature we can find opinions
in favour of one or the other [20]. However, on the other hand,
it is a well-known fact that a geometry is characterized by the
compatibility condition between the connection and the metric:
∇µgαβ = Nαβµ. However, in general the compatibility condition
does not remain invariant only under conformal transformations
of the metric. Therefore, the usual manner in which we can
pass from the Jordan to Einstein frame in standard scalar-tensor
theories, changes the background geometry, and this is why the
physics in one or another frame can be different. In particular
geodesic observers in one frame are not in the other [20,22,23].

This controversy can be alleviated if the background geometry
is not fixed apriori as Riemannian. This is the main idea in a
recently introduced new kind of scalar-tensor theories known
as geometrical scalar-tensor theories of gravity [22,23]. In this
theories the background geometry is obtained via the Palatini
variational principle. The resulting geometry is one of the Weyl-
integrable type [22,23]. As a consequence, the scalar field that
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appears in scalar-tensor theories becomes part of the affine struc-
ture of the space–time and in this sense can be considered as
geometrical in origin. Hence, the background geometry is essen-
tially the same for both the Weyl and the Riemann frames, which
are the analogous for the Jordan and Einstein frames in usual
scalar-tensor theories. Hence, the ambiguity about the nature
of the scalar field that usually arises in standard scalar-tensor
theories and the controversy between the two frames is not
present in this new approach [20,22,23]. In the framework of this
theory topics like (2 + 1) gravity models, inflationary cosmology
and cosmic magnetic fields, quintessence and some cosmological
models have been studied [24–27].

In this letter we extend the formalism of previous geometrical
scalar-tensor theories to construct a geometrical Higgs inflation-
ary model. The letter is organized as follows. Section 1 is left for
a little motivation and introduction. In Section 2 is developed the
general formalism in the Weyl frame. In Section 3 it is obtained
the effective field action in the Riemann frame. In Section 4 we
present a Higgs inflationary model. Finally, Section 5 is devoted
to some final comments.

2. Basic formalism in the Weyl frame

Let us start considering an action for a complex scalar-tensor
theory of gravity, which in vacuum is given by

S =
1

16π

∫
d4x

√
−g
[
Φ̃Φ̃†R +

W̃ (Φ̃Φ̃†)

Φ̃Φ̃†
gµνΦ̃,µΦ̃,ν − Ũ(Φ̃Φ̃†)

]
(1)

where R denotes the Ricci scalar, W̃ (Φ̃Φ̃†) is a well-behaved
differentiable function of Φ̃Φ̃†, the dagger † denotes transposed
complex conjugate and Ũ(Φ̃Φ̃†) is a scalar potential. With the
help of the transformation Φ̃ =

1
√
G
Φ the action (1) can be

written in the form

S =

∫
d4x

√
−g

[
ΦΦ†R
16πG

+
ω̃(ΦΦ†)

ΦΦ†
gµνΦ,µΦ,ν − Ṽ (ΦΦ†)

]
,

(2)

where ω̃(ΦΦ†) = W̃ (Φ̃Φ̃†)/(16π ) and the redefined potential is
Ṽ (ΦΦ†) = Ũ(Φ̃Φ̃†)/(16π ). A Palatini variation of the action (2)
with respect to the affine connection leaves to the compatibility
condition

∇µgαβ = −[ln(ΦΦ†)],µgαβ . (3)

Hence, the natural background geometry associated to (1) is a
non-Riemannian geometry with a quadratic in Φ non-metricity
and null torsion. However, through the field transformation Φ =

e−ϕ , the non-metricity in (3) can be linearized and written in the
form

∇µgαβ = (ϕ + ϕ†),µgαβ . (4)

Notice that this compatibility condition is of the Weyl-Integrable
type. Thus, in terms of the new field ϕ the action (2) reads

S =

∫
d4x

√
−ge−(ϕ+ϕ†)

[
R

16πG
+ ω̂(ϕ + ϕ†)gµνϕ,µϕ†

,ν

− V̂ (ϕ + ϕ†)
]

, (5)

where we have made the identifications ω̂(ϕ + ϕ†) = ω̃(ϕ +

ϕ†)eϕ+ϕ†
and V̂ (ϕ + ϕ†) = Ṽ (ϕ + ϕ†)eϕ+ϕ†

. Now, we must note
that the compatibility condition (4) remains invariant when we
apply, at the same time, the transformations

ḡµν = ef+f †gµν, (6)

ϕ̄ = ϕ + f , (7)
ϕ̄†

= ϕ†
+ f †, (8)

where f = f (xα) is a well defined complex function of the
space–time coordinates. Thus for the action (5) to be an scalar
under the group of transformations of the background geometry,
it must be an invariant under the diffeomorphism group and the
transformations (6)–(8). However, under (6)–(8) the kinetic term
in (5) transforms as√

−ḡ ¯̂ω(ϕ̄ + ϕ̄†)ḡµν ϕ̄,µϕ†
,ν =

e2(f+f †)√
−g ω̂(ϕ + f + ϕ†

+ f †)gµν(ϕ,µ + f,µ)(ϕ†
,ν + f †

,ν), (9)

which indicates that the kinetic term in (5) results to be not
invariant and consequently the action (5) is not either. In order
to solve this problem we propose the new action

S =

∫
d4x

√
−g e−(ϕ+ϕ†)

[
R

16πG
+ ω̂(ϕ + ϕ†)gµνϕ:µϕ†

:ν

− e−(ϕ+ϕ†)V̂ (ϕ + ϕ†)
]

, (10)

where we have introduced a gauge covariant derivative defined
by ϕ:µ =

(w)
∇µϕ+γ Bµϕ, with Bµ being a gauge vector field, (w)

∇µ

being the Weyl covariant derivative determined by (4) and γ is a
pure imaginary coupling constant introduced to have the correct
physical units. Thus, it is not difficult to verify that the invariance
under (6) to (8) of (10) is achieved when the vector field Bµ, the
function ω̂ and the scalar potential V̂ (ϕ), obey respectively the
transformation rules

ϕ̄B̄µ = ϕBµ − γ −1f,µ, (11)

ϕ̄†B̄µ = ϕBµ + γ −1f †
,µ, (12)

¯̂ω(ϕ̄ + ϕ̄†) ≡ ω̂(ϕ̄ + ϕ̄†
− f − f †) = ω̂(ϕ + ϕ†), (13)

V̄ (ϕ + ϕ†) ≡ V (ϕ̄ + ϕ̄†
− f − f †) = V (ϕ + ϕ†). (14)

Notice that (11) and (12) are transformation rules for the product
ϕBµ. Besides they have the same algebraic form of the algebra of
the U(1) group, used to describe the electromagnetic interaction.
Thus, we may include a dynamics for ϕBα extending the action
(10) by adding an electromagnetic type term in the form

S =

∫
d4x

√
−g e−(ϕ+ϕ†)

[
R

16πG
+

1
2
ω̂(ϕ + ϕ†)gαβϕ:αϕ:β

− e−(ϕ+ϕ†)V̂ (ϕ + ϕ†) −
1
4
e(ϕ+ϕ†)HαβHαβ

]
, (15)

where Hαβ = (ϕBβ ),α − (ϕBα),β is the field strength associated to
the gauge boson field Bµ. The action (15) is an invariant action
compatible with its background geometry and originates a new
kind of complex scalar-tensor theory of gravity. Given that its
background geometry has a non-metricity of the Weyl-Integrable
type, we will refer to (M, g, ϕ, ϕ†, Bµ) as the Weyl frame. In this
frame the dynamics is governed by the field equations derived
from the action (15). In addition, the transformations (6) to (8)
can be interpreted geometrically as they lead from one frame
(M, g, ϕ, ϕ†, Bµ) to another (M, ḡ, ϕ̄, ϕ̄†, B̄µ) sharing the same
geometry, the one determined by (4). In this sense all the Weyl
frames belong to the same equivalence class. However, there is
one element of the class in which by redefining the metric tensor,
an effective Riemannian geometry can be obtained. This issue will
be the start point of the next section.

3. Field equations in the Riemann frame

As it was mentioned in the previous section, the transfor-
mations (6)–(8) lead from one Weyl frame (M, g, ϕ, ϕ†, Bα) to
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another (M, ḡ, ϕ̄, ϕ̄†, B̄α). However, for the particular choice f =

−ϕ, we can define the effective metric hµν = ḡµν = ef+f †gµν

such that ϕ̄ = ϕ̄†
= 0. The interesting of this election is that in

this case the condition (4) reduces to the effective Riemannian
metricity condition: ∇λhαβ = 0. For this reason we will refer
to this frame (M, ḡ, ϕ̄ = 0, ϕ̄†

= 0, B̄α) = (M, h, B̄α), as the
Riemann frame. We will use this terminology to differentiate it
from the traditional Einstein and Jordan frames employed in the
scalar tensor theories we can find in the literature. The main
reason to differentiate both terminologies is that in the traditional
approaches the geodesics are not preserved under conformal
transformations, while in the new kind of theories the geodesics
are Weyl invariant [24].

In the Weyl frame the scalar field plays the role of a dilatonic
geometrical scalar field while in the Riemann frame the Weyl
field is no longer part of the affine structure. It means that when
we go from the Weyl to the Riemann frame, the Weyl field pass
from being geometrical to a physical one. In addition, once we are
in the Riemann frame the action needs to be invariant only under
the diffeomorphism group, and it implies that the geometrical
invariance requirement for the gauge vector field Bµ given by
(11) is no more valid in this frame. Thus due to the change of
geometry, the scalar field ϕ and the gauge vector field Bµ have
different properties and interpretations in each frame.

Once we have established some of the physical and geome-
trical differences between both frames, it is not difficult to verify
that the action (15) in the Riemann frame acquires the form

S =

∫
d4x

√
−h

[
R

16πG
+ ω̂(ϕ + ϕ†)hµνDµϕDνϕ

†

− V̂ (ϕ + ϕ†) −
1
4
HµνHµν

]
, (16)

where now the gauge covariant derivative becomes Dµ =
(R)

∇µ+

γ Bµ and the operator (R)
∇µ denotes the Riemannian covariant

derivative.
Thus, in order to restore the quadratic dependence in the

scalar field, lost when we linearized (3) to obtain (4), we intro-
duce the field transformations

ζ =

√
ξ e−ϕ, (17)

Aµ = Bµ ln(ζ/
√

ξ ), (18)

where ξ is a constant introduced so that the field ζ has the correct
physical units. Hence, the action (16) can be written as

S =

∫
d4x

√
−h

[
R

16πG
+

1
2
ω(ζ ζ †)hµνDµζ (Dνζ )†

− V (ζ ζ †) −
1
4
FµνFµν

]
, (19)

being Dµζ ≡ ζDµ(ln ζ
√

ξ
) =

(R)
∇µζ+γAµζ the effective covariant

derivative, Fµν ≡ ∂µAν − ∂νAµ = −Hµν is the Faraday tensor and
where we have made the following identifications

ω(ζ ζ †)
2

≡
ω̂(ln ζ ζ†

ξ
)

ζ ζ †
, (20)

V (ζ ζ †) ≡ V̂
(
ln

ζ ζ †

ξ

)
. (21)

Notice that the action (19) is invariant under the gauge transfor-
mations

ζ̄ = ζ eγ θ (x) (22)
Āµ = Aµ − θ,µ, (23)

where θ (x) is a well-behaved function. Hence, due to the presence
of the last term in (19) and the transformations (22) and (23),

we can interpret that Aµ can play the role of an electromagnetic
potential.

The action (19) corresponds to an action of a complex scalar
field minimally coupled to gravity in the presence of a free elec-
tromagnetic field where the scalar field has U(1) symmetry. Thus,
due to the fact that the electromagnetic potential Aµ enters in
the covariant derivative Dµ, the theory derived from (19) can be
interpreted as a gravitoelectromagnetic theory. Notice that in our
formalism, the part of (19) that we relate with electromagnetism
has its origin in the Weyl invariance of the action (10), which is
not the case when electromagnetism is introduced in traditional
approaches of scalar-tensor theories of gravity.

4. A Higgs inflation model

In this section we formulate a Higgs inflationary model from
the gravitoelectromagnetic theory developed in the previous sec-
tions. With this idea in mind let us consider the Higgs potential
in the Weyl frame in the form

Ṽ (ΦΦ†) =
λ

4

(
ΦΦ†

− σ 2)2 , (24)

where λ = 0.129 and the vacuum expectation value for elec-
troweak interaction σ = 246 GeV. These values according to the
best-fit experimental data [28,29]. Thus, the Higgs potential in
terms of the field ζ in the Riemann frame reads

V (ζ ζ †) =
λ

4

(
ζ ζ †

ξ
− σ 2

)2

. (25)

The minimum of the potential ∥ζ ζ †
∥ =

√
ξσ results to be also

invariant under (22). However, if we propose ζ = ζ † we get
∥ζ

2
∥ ̸= ∥ζ 2

∥ , breaking in this manner the symmetry. Thus,
excitations about the ground state of (25) can be written in the
form

ζ (xµ) =

√
ξ σ + Q(xµ), (26)

where Q(x) is the Higgs scalar field. It can be verified with the
help of (26) that the kinetic term in (19) gives
ω(ζ )
2

DνζDνζ =
ωeff (Q)

2

(
∂νQ∂νQ − γ 2ξσ 2AνAν

− 2γ 2
√

ξ σQAνAν − γ 2Q2AνAν

)
, (27)

where ωeff (Q) = ω(
√

ξσ + Q). However, in order to develop a
Higgs inflationary model, the cosmological principle restricts the
existence of the field Aµ on large cosmological scales. Thus, it
results convenient the gauge election: θ,µ = Aµ or equivalently
Aµ = 0. Under this gauge election, the terms in (27) that depend
of the electromagnetic field Aµ become null and thus the action
(19) leads to

S =

∫
d4x

√
−h

[
R

16πG
+

1
2
ωeff (Q)hµνQ,µQν − Veff (Q)

]
, (28)

where Veff (Q) = V (
√

ξσ +Q). Now, in order to have a scalar field
with a canonical kinetic term we use the field transformation

φ(xσ ) =

∫ √
ωeff (Q) dQ. (29)

Thus, the action for the Higgs field (28) yields

S =

∫
d4x

√
−h

[
R

16πG
+

1
2
hµνφ,µφ,ν − U(φ)

]
, (30)

where

U(φ) = Veff [Q(φ)] =
λ

4

[
(
√

ξσ + Q(φ))2

ξ
− σ 2

]2
, (31)
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is the potential written in term of the new field φ. Straightfor-
ward calculations show that the action (30) leads to the field
equations

Gαβ = −8πG[φ,αφ,β −
1
2
hαβ

(
φ,µφ,µ + 2U(φ)

)
], (32)

□φ + U ′(φ) = 0, (33)

with □ denoting the D’Alambertian operator and the prime rep-
resenting derivative with respect to φ. Now, we consider a 3D-
spatially flat Friedmann–Robertson–Walker metric in the form

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (34)

with a(t) being the usual cosmological scale factor. As it is usually
done in inflationary frameworks, the cosmological principle allow
us to assume that the inflaton scalar field φ, given by (29), can be
written in the form

φ(xλ) = φc(t) + δφ(xλ), (35)

where φc(t) =
⟨
φ(xλ)

⟩
, ⟨δφ⟩ =

⟨
δφ̇
⟩

= 0. Here δφ denotes the
quantum fluctuations of the inflaton scalar field and ⟨⟩ represents
expectation value. The fluctuations of the inflaton field corre-
spond in the Weyl frame to fluctuations of the affine connection.
It follows from the Eqs. (33) and (34) that the classical and
quantum parts for the inflaton field can be written respectively
as

φ̈c + 3Hφ̇c + U ′(φc) = 0, (36)

¨δφ + 3H ˙δφ −
1
a2

∇δφ + U ′′(φc)δφ = 0, (37)

where H = ȧ/a is the Hubble parameter. Now, considering that
the universe is filled with a perfect fluid, the classical part of (32)
leads to the Friedmann equations

H2
=

ρ

3M2
p
, (38)

Ḣ = −
1

2M2
p
(ρ + p), (39)

where Mp = (8πG)−1/2
= 2.45 · 1018 GeV is our planckian

mass convention, ρ =
1
2 φ̇

2
c + U(φc) is the energy density and

p =
1
2 φ̇

2
c − U(φc) is the pressure, all measured respect to a class

of comoving observers. Under the slow-roll condition |φ̇2
c /2| ≪

|U(φc)|, the equation of state parameter become ηφ = p/ρ ≃ −1,
which is a necessary condition to have inflation. In this manner,
the classical part of the inflaton field is given by the Eqs. (36),
(38) and (39), whereas their quantum fluctuations are governed
by the expression (37).

Now, by means of (36) and (38), the classical part of the
inflaton field φc is determined by

φ̇c = −
Mp
√
3

U ′(φc)
√
U(φc)

. (40)

Thus, in order to illustrate how the formalism works let us con-
sider the anzats

ωeff (Q ) =
1[

1 − β2(
√

ξσ + Q )4
]5/2 , (41)

where β is a constant parameter with units of M−2
p . Thus Eq. (29)

yields

φ =

√
ξσ + Q[

1 − β2(
√

ξσ + Q )4
]1/4 . (42)

The expression (41) is free of pole singularities when 1−β(
√

ξσ+

Q )4 > 0, i.e. when φ4

1+βφ4 < 1
β2 holds, which is fulfilled during

inflation. Therefore the potential (31) reads

U(φ) =
λ

4ξ 2

(
φ4

1 + β2φ4

)
. (43)

It is not difficult to see that the choice of the anzats (41) allows
the effective Higgs potential (31) to exhibit a plateau for enough
large field values making possible a suitable slow-roll inflation.
Something similar is used for example in [30]. After inflation
begins when the condition β2φ4

≪ 1 holds, the potential (43)
becomes

U(φ) ≃
λ

4ξ 2 φ4. (44)

Thus, it follows from (43) and (40) that φc is given implicitly by

t − t0 +
β2

6α

(
φ4
c

√
1 + β2φ4

c − φ4
0

√
1 + β2φ4

0

)
+

2
3α

(√
1 + β2φ4

c −

√
1 + β2φ4

0

)
+

1
2α

tanh−1

(
1√

1 + β2φ4
c

)
−

1
2α

tanh−1

⎛⎝ 1√
1 + β2φ4

0

⎞⎠
= 0, (45)

where φ0 = φ(t0) with t0 being the time when inflation begins.
Thus, in view that the number of e-foldings is given by

N(φ) = M−2
p

∫ φ

φe

U(φ)
U ′(φ)

dφ, (46)

being φe the value of the inflaton field at the end of inflation, the
classical scalar field φc in terms of N has the form

φc(N) =

√
β∆1/3

(
∆2/3 − 1

)
β∆1/3 , (47)

where

∆ = 12βNM2
p +

√
1 + 144N2β2M4

p . (48)

For the potential (44) the expression (45) reduces to

φc(t) = φee
2Mp

√
λ

3ξ2
(te−t)

, (49)

which near to the end of inflation can be approximated by

φc(t) ≃ φe

[
1 + 2Mp

√
λ

3ξ 2 (te − t)

]
, (50)

with te denoting the time when inflation ends. Thus, employing
(38), (44) and (49) it is obtained an approximated scale factor of
the form

a = ae exp

[
φ2
e

8M2
p

(
1 − exp

(
4Mp

√
λ

3ξ 2 (te − t)

))]
, (51)

where ae = a(te). For t ≃ te (51) can be approximated by

a(t) ≃ ãe exp

(
φ2
e

2Mp

√
λ

3ξ 2 t

)
(52)

where ãe = ae exp
(
−

φ2
e

2Mp

√
λ

3ξ2
te
)
. Thus the Hubble parameter

associated with (51) is then

H(t) =
1

√
3Mp

√
λ

4ξ 2 φ2
e exp

(
4Mp

√
λ

3ξ 2 (te − t)

)
. (53)
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Therefore, near to the end of inflation (53) can be approximated
by

H(t) ≃
φ2
e

√
3Mp

√
λ

4ξ 2

[
1 + 4Mp

√
λ

3ξ 2 (te − t)

]
. (54)

On the other hand, in order to have agreement with PLANCK
data, Higgs inflation requires an energy scale corresponding to
an initial Hubble parameter of the order H0 ≃ 1011–1012 GeV,
for an average Higgs mass of the order Mh ≃ 125.7 GeV [31,32].
Therefore we obtain

H0 ≃
λ

2
√
3

1
βξMp

≃ 1011
− 1012 GeV. (55)

Using λ = 0.13 and Mp = 1.22 · 1019 GeV [32], we ob-
tain that ξ must vary in the interval: [3.7528 · 10−14, 3.7528 ·

10−13
](βMp)−1 (GeV)−1.

Now, following a standard quantization procedure, the com-
mutator relation for δφ and its canonical conjugate momentum
Π0

(δφ) =
∂L

∂ ˙δφ
is given by[

δφ(t, x̄), Π0
(δφ)(t, x̄

′)
]

= iδ(3)(x̄ − x̄′). (56)

Thus, using Π0
(δφ) =

√
−h [(φ̇c + ˙δφ)] the commutator (56) reads[

δφ(t, x̄), ˙δφ(t, x̄′)
]

=
i

√
−h

δ(3)(x̄ − x̄′). (57)

We introduce the auxiliary field δχ as

δφ(t, x̄) = exp
(

−
3
2

∫
H(t)dt

)
δχ (t, x̄). (58)

We consider the Fourier expansion

δχ (t, x̄) =
1

(2π )3/2

∫
d3k

[
akeik̄·x̄ηk(t) + a†

ke
−ik̄·x̄η∗

k (t)
]
, (59)

with the asterisk mark denoting complex conjugate and, ak and
a†
k being the annihilation and creation operators. These operators

satisfy the commutator algebra[
ak, a

†
k′

]
= iδ(3)(k̄ − k̄′), [ak, ak′ ] =

[
a†
k, a

†
k′

]
= 0. (60)

The quantum modes η
(end)
k (t) at the end of inflation, according to

(37), (43), (52), (54) and (58) are given by

η̈
(end)
k +

[
k2

ã2ee2Het
−

9
4
H2

e + U ′′(φe)
]

η
(end)
k = 0, (61)

where He = H(te) and

U ′′(φe) = −
λφ2

e (−3 + 5β2φ4
e )

ξ 2(1 + β2φ4
e )

. (62)

Selecting the Bunch Davies condition [33], the normalized solu-
tion of (61) reads

η
(end)
k =

1
2ãe

√
π

ãeHe
H(1)

ν [z(t)], (63)

where H(1)
ν is the first kind Hankel function, the parameter ν =

(1/2)
√
9 − (4U ′′(φe)/H2

e ) and z(t) = [k/(ãeHe)]e−Het .
The amplitude of δφ on the infrared sector is given by the

expression⟨
δφ2⟩

IR =
22νΓ 2(ν)
8π3ã2e

e−(3−2ν)Hete

(ãeHe)1−2ν

∫ εkH

0

dk
k
k3−2ν, (64)

where ε = kIRmax/kp ≪ 1 is a dimensionless parameter with
kIRmax = kH (tr ) being the wave number related to the Hubble radius
at the time tr , which is the time when the modes re-enter to the

Fig. 1. This plot shows the spectral index ns versus the number of e-foldings
N , which runs from 50 to 63.

horizon and kp is the Planckian wave number. It is well-known
that for a Hubble parameter H = 0.5 × 10−9 Mp, the values of ε

range between 10−5 and 10−8, and this corresponds to a number
of e-foldings at the end of inflation Ne = 63. Hence the squared
δφ-fluctuations has a power-spectrum

Ps(k) =
22νΓ 2(ν)
8π3ã2e

e−(3−2ν)Hete

(ãeHe)1−2ν k3−2ν . (65)

On the other hand, the scalar to tensor ratio r and the scalar
spectral index ns are given by r = 16ϵ and 1 − ns = 6ϵ − 2η,
being ϵ and η the slow-roll parameters

ϵ =
M2

p

2

(
U ′

U

)
, η = M2

p

(
U ′′

U

)
. (66)

Thus, with the help of (43) and (47) the scalar spectral index is
given by

1 − ns =
8βM2

p∆(5∆4/3
− 7∆2/3

+ 5)

(∆2/3 − 1)(∆4/3 − ∆2/3 + 1)2
≃

5
3N

. (67)

It is not difficult to see from (67) that for a number of e-foldings
N = 63 the scalar spectral index is approximately ns ≃ 0.9735,
which is in agreement with PLANCK observations: n = 0.968 ±

0.006 [34]. Similarly, the scalar to tensor ratio results to be

r =
128M2

pβ∆5/3

(∆2/3 − 1)(∆4/3 − ∆2/3 + 1)2
≃

128

β2/3M4/3
p

1
(24N)5/3

. (68)

Again, it follows from (68) that for N = 63 and the parameter
β ≃ 0.01629M−2

p , that the scalar to tensor ratio is of the order
r ≃ 0.01, in consistency with the PLANCK data (r < 0.11).
Hence, for such value of β the parameter ξ must ranges in the
interval (2.81047 · 107, 2.81047 · 108). Thus, taking this value of
ξ Eq. (62) indicates that U ′′(φe) ≪ 1, and therefore ν ≃ 3/2
which according to (65) corresponds to a nearly scale invariant
power spectrum at the end of inflation Ps(k) ∼ H2

e . Fig. 1 exhibits
how vary the spectral index ns versus the number of e-foldings
N, while Fig. 2 shows the behaviour of the scalar to tensor index
versus N and the parameter β .
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Fig. 2. This plot shows the behaviour of the scalar to tensor ratio r versus the
parameter β and the number of e-foldings N . We have used β from 0 to 0.020.

5. Final remarks

In this letter we have derived a Higgs inflationary model on
the framework of a new kind of complex scalar-tensor theory of
gravity that we called: geometrical complex scalar-tensor theory
of gravity. In this approach we consider a complex scalar-tensor
theory compatible with it’s background geometry. We mean by
compatibility the invariance of the action under the symmetry
group of its background geometry. The former is obtained here
by employing the Palatini’s variational principle, resulting that
the background geometry for a complex scalar-tensor theory is
a kind of complex Weyl-integrable geometry. As has occurred
in the case of real geometrical scalar-tensor theories, there are
two frames: the Weyl and the Riemann frames. The Riemann
frame is obtained by a particular gauge election of the Weyl-
transformations: f = −ϕ. In the Weyl frame the scalar field is
part of the affine structure of the space–time manifold, whereas
in the Riemann frame it can be considered as a physical field. This
is why general relativity can be recovered in the Riemann frame.

As an application of the formalism we developed a Higgs
inflationary model. An interesting feature of our model is that
the inflaton and the Higgs fields can be both identified with the
Weyl scalar field. Moreover, due to the compatibility of the new
complex scalar-tensor theory with its background geometry, the
Higgs potential can be rescaled enough to generate the primordial
inflation of the universe. We obtain a super-De-Sitter expansion
at the beginning of inflation. The infrared power spectrum results
nearly scale invariant at the end of inflation for β ≃ 0.01629M−2

p .
For N = 63 e-foldings we obtain an spectral index ns ≃ 0.9735
and a scalar to tensor ratio r ≃ 0.01, which are in agreement
with PLANCK observations [34]. The value of the spectral index
ns could fit even better in PLANCK data, if the contribution of
neutrinos were considered in our formalism, however, we leave
this topic for further investigation. Evidence of this improvement
in ns considering neutrino contributions has already been done
for example in [35].

One important feature of Higgs inflation developed in our
formalism is that the model is free of the unitarity problem. This
is because when we pass from the Weyl to the Riemann frame

by means of the Weyl transformations (6)–(8) the Ricci tensor
is maintained unaltered, avoiding in this way the appearance of
the extra term that originates the unitarity violation. In the Weyl
frame we have employed the Palatini principle and in the same
manner as it was shown in [36], this consideration avoids the
unitarity problem.
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