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Combining intervals of ekpyrotic (ultra-slow) contraction with a (non-singular) classical bounce naturally 
leads to a novel cyclic theory of the universe in which the Hubble parameter, energy density and 
temperature oscillate periodically, but the scale factor grows by an exponential factor from one cycle 
to the next. The resulting cosmology not only resolves the homogeneity, isotropy, flatness and monopole 
problems and generates a nearly scale invariant spectrum of density perturbations, but it also addresses 
a number of age-old cosmological issues that big bang inflationary cosmology does not. There may also 
be wider-ranging implications for fundamental physics, black holes and quantum measurement.
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1. Introduction

Historically, dating back to Friedmann and Tolman, cyclic 
cosmological models have been based on having a Friedmann-
Robertson-Walker scale factor a(t) that oscillates at regularly 
spaced intervals of time between zero and some large finite value 
[1,2]. This leads to problems: As a(t) approaches zero, the ordinary 
matter and radiation densities approach the Planck density and any 
macroscopic compact objects existing well before the bounce (such 
as black holes) merge together, potentially obstructing the bounce. 
Understanding the currently unknown effects of quantum gravity 
at these densities becomes critical in determining if and how a 
(singular) quantum bounce occurs.

The cyclic model considered here is fundamentally different. 
The Hubble parameter H(t) ≡ ȧ/a, where dot denotes differenti-
ation with respect to time t , oscillates periodically between posi-
tive and negative values from cycle to cycle, as one might expect. 
However, a(t) does not. Instead, a(t) grows substantially during 
the usual radiation, matter and dark energy dominated expand-
ing phases, but shrinks very little during the contraction phases. 
The result for a(t) is an overall, substantial increase from one cycle 
to the next. See Fig. 1. The radically different time-dependence of 
H(t) and a(t) is a straightforward but inherently general relativis-
tic effect with no simple Newtonian interpretation.
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A local observer (like us) judges the evolution to be cyclic be-
cause the energy density, temperature, and the concentrations of 
individual physical quantities (baryon density, dark matter den-
sity, black hole density, etc.) all vary periodically with H(t). The 
fact that a(t) has grown by an exponential factor over the pre-
vious cycle has no measurable consequences to the local observer 
who cannot ‘see’ beyond a Hubble radius, rH (t) ≡ 1/|H(t)|, in units 
where the speed of light is set equal to unity. Globally, the aver-
age behavior of a(t) over many cycles is de Sitter-like with a small 
effective Hubble parameter, a factor of ten or so times the current 
Hubble parameter H0. The on-average de Sitter-like behavior en-
sures that entropy and compact objects created in earlier cycles 
are diluted and, hence, irrelevant in later cycles. In this and other 
ways explained below, this new cyclic scenario is a curious mix of 
elements already familiar to cosmologists but rearranged to pro-
duce a surprisingly different yet compelling outcome.

First, the new cyclic theory resolves the homogeneity, isotropy, 
flatness, and monopole problems and generates a nearly scale-
invariant spectrum of primordial adiabatic, gaussian density fluc-
tuations without requiring special initial conditions or triggering 
the kind of quantum runaway that leads to the multiverse effect. 
Second, the density perturbations are generated without produc-
ing a primordial spectrum of tensor fluctuations, a combination 
that is in agreement with current observations. Third, the evo-
lution of the universe is described to leading order by classical 
equations of motion at every stage. Consequently, the theory’s out-
comes are true predictions in the conventional sense, meaning the 
theory is testable – making predictions about density fluctuations, 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. In the new cyclic model, the Hubble parameter H(t) oscillates (upper panel) 
with an amplitude, say, of ∼ 1010 GeV over a period tcyc . The scale factor a(t), 
by contrast, is not periodic. Rather, it goes through long periods of expansion fol-
lowed by shorter periods of contraction. The net result is an exponential increase 
in a(t) over the course of each cycle, producing an on-average de Sitter-like expan-
sion over many cycles. The thin filled rectangular tickmarks indicate the cross-overs 
from contraction to expansion due to a (non-singular) classical bounce. The thin un-
filled rectangular tickmarks indicate the cross-overs from accelerated expansion to 
ekpyrotic (ultra-slow) contraction. See also Fig. 2.

cosmic gravitational waves, dark energy, and the stability of the 
vacuum. Fourth, the new cyclic theory evades some of the foun-
dational problems of cosmological models based on having a big 
bang. The cosmic singularity, cosmic quantum-to-classical transi-
tion, and trans-planckian fluctuation problems of earlier theories 
are avoided. There may even be intriguing implications for black 
holes, cosmic censorship, and the quantum measurement prob-
lem.

2. Ingredients

The necessary ingredients are prosaic: the known forms of 
matter and radiation, including dark matter; scalar fields, includ-
ing one responsible for the current cosmic acceleration and the 
ultra-slow contraction that follows; three spatial dimensions and 
ordinary (classical) time. We emphasize that we do not invoke extra 
dimensions, branes, and other elements inspired by string theory for this 
new approach to cyclic cosmology.

Mechanisms for constructing models with a non-singular classi-
cal bounce (see, e.g., [3] and references therein) or ekpyrotic (ultra-
slow) contraction [4,5], have been discussed extensively elsewhere 
in other contexts. For the purposes of this paper, the microphysics 
details underlying these mechanisms are not essential. (Sec. 4 de-
scribes a specific example.) All one needs to assume is that the 
mechanisms are possible. The novelty is realizing how the ele-
ments combine in a natural evolutionary sequence to produce a 
scenario with the wide-ranging explanatory and predictive power 
noted above.
3. The basic scenario

Arranging for H(t) to oscillate between large positive and large 
negative values while a(t) increases from cycle to cycle, as shown 
in Fig. 1, is not a contrivance. It is an automatic consequence of 
general relativity in a cyclic model that combines ekpyrotic (ultra-
slow) contraction and (non-singular) classical bounces. According 
to the Friedmann equations, a(t) ∼ |t|1/ε and |H(t)| is proportional 
to a−ε during a phase with equation-of-state ε. By definition, the 
equation-of-state is ε± ≡ (3/2)(1 + p/�), where p is the pressure 
and � is the energy density. We will henceforth add the subscript 
− when referring to the value of ε during the contracting (H < 0) 
phase and a subscript + to indicate the value during the expand-
ing (H > 0) phase.

During the expanding phase of a cycle, H(t) begins large and 
positive and decreases. The universe undergoes periods in which 
the dominant form of energy density is radiation (ε+ = 2), mat-
ter (ε+ = 3/2), and dark energy (ε+ ≈ 0), just as in conventional 
big bang cosmology. Because ε+ = O(1) and the expansion phase 
lasts a long time, it is possible for a(t) ∼ |t|1/ε+ to increase and for 
H(t) ∼ a−ε+ to decrease by large exponential factors by the time 
the expanding phase ends.

The expanding phase ends and the ekpyrotic contracting phase 
begins when H(t) passes below zero and continues to decrease, 
as described in Sec. 3.1 below. An ekpyrotic phase corresponds to 
ε− � 1. Because ε− � 1, the magnitude of H(t), which is pro-
portional to a−ε− , can increase by an exponential factor while 
a(t) ∼ |t|1/ε− may only shrink by a factor of O(1).

During a (non-singular) classical bounce phase, H(t) rapidly in-
creases from a large negative value to a large positive value of 
roughly the same magnitude while a(t) is roughly unchanged. At 
that moment, the universe enters the next expansion phase and 
a new cycle begins. We note that, recently, the first example of a 
non-singular classical bounce has been worked out that is locally 
well-behaved to perturbative order, overcoming problems of earlier 
models; for details see [6].

The net result over the course of a full cycle is that: (i) H(t) os-
cillates between exponentially large positive and negative values; 
and, (ii) a(t) grows exponentially during the expansion phase but 
decreases very little during the contraction and bounce phases, re-
sulting in an overall exponential increase in a(t) by the end of the 
cycle, as shown in Fig. 1.

3.1. A single cycle of evolution: an illustrative example

The bounce ensures that the evolution of the universe is dom-
inantly classical at all stages of the cycle. In particular, as H(t)
oscillates, it never reaches close to the Planck mass, ∼ 1019 GeV. 
Likewise, the Hubble radius, rH (t) ≡ 1/|H(t)|, never reaches the 
Planck length, ∼ 10−33 cm, and the energy density associated with 
the scalar field driving the ekpyrotic (ultra-slow) contraction does 
not reach close to the Planck density ∼ (1019 GeV)4. As an illustra-
tive example that satisfies all known quantitative constraints, we 
choose the minimum value of rH to be ∼ 10−25 cm, corresponding 
to a maximum |H | ∼ 1010 GeV and a maximum energy density of 
� ∼ (1015 GeV)4.

If rH is ∼ 10−25 cm and the temperature is T ∼ 1015 GeV at 
the start of the expansion phase, the scale factor a(t) increases by 
a factor f ∼ e120/ε+ ∼ e60 by the time the temperature reaches to-
day’s cosmic microwave background temperature, where here we 
have taken account of the duration of the radiation, matter and 
dark energy dominated phases. Over this same period, the Hub-
ble radius increases by a factor of aε+ = f 2 ∼ e120 from a micro-
scopic size of 10−25 cm to the current value of the Hubble radius 
1028 cm.
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That takes us up to the present epoch. The current dark en-
ergy dominated phase may continue for a period into the future, 
but, in a cyclic universe, it must eventually terminate. For ex-
ample, the dark energy may be due to a quintessence-like scalar 
field φ with scalar field potential V (φ). During the radiation- and 
matter-dominated phases, φ is frozen at a value where V (φ) > 0
by Hubble friction. The field begins to roll downhill only when 
the dark energy comes to dominate, which is only recently at 
H(t) ∼ H0, the present value of the Hubble parameter. The accel-
erated expansion phase ends and contraction begins when φ rolls 
from V (φ) > 0 to V (φ) < 0, which may be a few Hubble times. At 
this point, the scalar field changes from a quintessence-like field 
that drives accelerated expansion to an ekpyrotic field that gov-
erns the subsequent phase of ultra-slow contraction.

Note that the dark energy density plays several roles in the new cyclic 
theory: it sets the time when dark energy first comes to domi-
nate, which is approximately the current Hubble time H0; it sets 
the characteristic time scale (up to a modest numerical factor) for 
the duration of the expanding phase; it also sets the contracting 
phase that follows (see below), and, hence, the total period of 
a cycle. For our example, let’s suppose that the current acceler-
ated expansion lasts an additional 10 Hubble times into the future 
or, equivalently, 10 e-folds of increase in a(t) before acceleration 
ends and the ekpyrotic (ultra-slow) contraction phase begins. In 
this case, the total cycle lasts O (10) H−1

0 .
The equation-of-state for a homogeneous scalar field with 

canonical kinetic energy density is given by

ε− = 3 ×
1
2 φ̇2

1
2 φ̇2 + V (φ)

. (1)

For the case of a negative exponential potential V = −V 0eφ/M

(where V 0 > 0 is constant and we use reduced Planck units 
8πGN = 1 for Newton’s gravitational constant G N ), the equation-
of-state during the contracting phase can be shown to be nearly 
constant with ε− = 1/(2M2). It is not difficult to reach large val-
ues of ε−; for example, for M = 0.1, the value is ε− = 50.

The ekpyrotic contraction phase with ε− � 1 plays two im-
portant roles in the cyclic scenario. First, it is a remarkably pow-
erful smoothing and flattening mechanism, the only mechanism 
currently known that not only smooths classically but also when 
quantum fluctuations are included.

Classically, because the ekpyrotic scalar field energy density is 
proportional to 1/a2ε− and all other components (matter, radiation, 
dark energy, gradient energy, spatial curvature, anisotropy) scale 
as 1/a2q where q � ε− , the homogeneous ekpyrotic field energy 
grows overwhelmingly faster than all the other components as a(t)
contracts, driving the universe towards an ultra-uniform, ultra-flat, 
ultra-local state exponentially dominated by scalar field energy as 
the bounce approaches. The larger the value of ε− , the faster and 
more powerful is the classical smoothing and flattening effect. The 
extraordinarily rapid convergence to homogeneous and isotropic 
Friedmann-Robertson-Walker conditions has been demonstrated 
beginning from wildly nonlinear initial conditions using numeri-
cal general relativity [7].

Quantum mechanically, quantum fluctuations in the ekpyrotic 
field produce decaying mode adiabatic curvature fluctuations [8]
that do not interfere with the classical smoothing. This is to be 
contrasted with inflaton fields that generically produce growing 
mode scalar and tensor perturbations. Growing modes are the root 
cause of B-modes with substantial amplitudes (which have not 
been observed), quantum runaway, and the multiverse effect. Be-
cause the ekpyrotic contraction phase produces decaying modes, it 
does not have these problematic features. (See Sec. 4 for a discus-
Fig. 2. A plot of lna(t) vs. t showing the behavior of the scale factor and the three 
phases that repeat during each cycle: the bounce phase (∼ 10−35 sec, thin solid 
line), the expanding phase (∼ 1011 yr, thick solid line), and the contracting phase 
(∼ 109 yr, dashed line), where the numbers of parentheses correspond to the il-
lustrative example discussed in the text. The result is a net exponential increase in 
a(t) from one cycle to the next, resulting in an on-average exponential (de Sitter-
like) expansion rate over many cycles (dashed line). In our example, the dashed line 
corresponds to a(t) ∼ exp H̄(t) where H̄ is O(10)H0 and H0 is the current value of 
the Hubble parameter.

sion of how a nearly-scale-invariant spectrum of density perturba-
tions is generated.)

The second critical role of an ekpyrotic contraction phase with 
ε− � 1 is that it enables the magnitude of H(t) (which propor-
tional to aε− ) to grow by a large factor of f 2 ∼ e120 to its orig-
inal value during a period in which a(t) shrinks by a factor of 
e120/ε− =O(10). Because a(t) hardly decreases during the contrac-
tion phase, the density of matter and radiation hardly increases 
during the contraction phase. Likewise, the physical distance be-
tween black holes and other compact objects hardly decreases at 
all. There is no issue of compact objects created in earlier cycles 
merging and disrupting the contraction and bounce phases. This 
aspect is unlike cyclic models of the past. The only significantly 
growing component is the scalar field energy density, which expo-
nentially dominates all other forms energy density by the time the 
ekpyrotic contraction phase ends.

Finally, the cycle completes with a (non-singular) classical 
bounce. During this phase, H(t) rapidly increases from − f 2 ∼ e120

to + f 2 ∼ e120, returning to the value it had at the beginning 
of the cycle (just after the previous bounce). The large energy 
density stored in the ekpyrotic scalar field is converted to mat-
ter and radiation through a reheating process analogous to that 
assumed in inflation (see, e.g., [9]). The value of H(t) and the 
density of matter and radiation have returned to the values they 
had a cycle ago and a new period of oscillation in H(t) begins. 
Over this same cycle, a(t) has grown by an exponential factor of 
e10 f ∼ e70 ∼ 1030 during the expanding phase and shrunk by only 
a factor of e120/ε+ =O(10) during the contraction phase.

3.2. Multiple cycles and de Sitter-like behavior

Fig. 2 illustrates the three basic phases (bounce, expansion and 
contraction) that repeat from cycle to cycle. To estimate the times 
for each of these phases, recall that, in our example, the Hubble 
radius rH grows by a factor of f 2 during the time interval �t be-
tween the beginning of the expansion phase and today. According 
the Friedmann equation, rH = ε+�t . Then, during the contraction 
phase, rH shrinks by a factor of f 2 during an interval of time 
�′

t = (ε+/ε−)�t . The difference in ε in the expansion and con-
traction phases means that the duration of the contracting phase 
is shorter than the duration of the expansion phase. Hence, if the 
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expansion phase lasts 150 billion years, as in our example (assum-
ing an additional 10 e-folds of dark energy expansion in our future 
before contraction begins), then the ensuing ekpyrotic contraction 
phase might last, say, less than 10 billion years. This modest dif-
ference is indicated in Figs. 1 and 2.

Because of the overall exponential increase in a(t) over an en-
tire cycle, the volume of space that grows to the size of the cur-
rent observable universe (∼ H−1

0 ) a cycle from now is microscopic 
today, about 10−25 f cm or about 10 cm, a bit bigger than the di-
ameter of a baseball.

That is, an empty volume of space equal to the diameter of a base-
ball today will evolve to the size of our observable universe (∼ H−1

0 ∼
1028 cm) a cycle from now. This can be understood as follows. Today, 
the size of the observable universe is about the current Hubble 
radius (∼ H−1

0 ), exponentially larger than a baseball. During con-
traction, the baseball-sized volume (∝ a(t)) will hardly change, but, 
due to the ekpyrotic scalar field, the Hubble radius (∝ aε− ) will 
shrink by a factor of f 2 to about 10−25 cm. At this point, the 
Hubble radius has become exponentially smaller than a baseball, 
by a factor of f . During the expansion phase, ordinary radiation 
and matter domination causes the Hubble radius to grow again 
by aε+ ∼ f 2; during the same period, the baseball-sized volume 
of space has grown by f . The two are the same. This is what we 
mean when we say a baseball-sized volume today will evolve to 
the size of the current Hubble radius one cycle from now.

The repeated exponential increase in a(t) cycle after cycle leads 
to a surprising effect. Namely, the scale factor follows an on-
average de Sitter-like exponential growth curve, as shown in Fig. 2. 
This means that the energy, matter, and entropy created in earlier 
cycles is exponentially diluted from one cycle to the next such that 
only an infinitesimal fraction is observable within a Hubble radius 
during the subsequent expanding phases.

The matter and radiation observed today was created during 
or just after the most recent bounce, i.e., the event that occurred 
about 14 billion years ago and that has often been attributed to 
the big bang. More specifically, as we have explained above, dur-
ing each period of ekpyrotic contraction, the gravitational blueshift 
effect naturally pumps exponentially large amounts of energy into 
the ekpyrotic scalar field that drives the dark energy and ultra-
slow contraction phases. After the ekpyrotic contraction phase 
completes, a reheating process converts scalar field energy density 
to ordinary matter and radiation, producing the same energy den-
sities after the bounce as in previous cycles. Anything we observe 
today is created from the new matter and radiation, effectively re-
setting the horizon to equal the Hubble radius at reheating.

The second law is obeyed: the total entropy of the universe in-
creases; but the entropy observed within the Hubble radius is the 
same from cycle to cycle. Entropy, black holes, matter and radia-
tion from earlier cycles lie beyond our horizon, spread thinly over 
the vast expanses of space created as a result of the overall expo-
nential increases in a(t) that occur from cycle to cycle.

4. Cosmological consequences

The cyclic theory described in the previous section combines 
features of earlier cosmological models. The behavior of H(t) is 
cyclic. Within each cycle is a conventional hot big bang-like ex-
pansion phase. A smooth exponentially increasing curve can be 
drawn through the minima of a(t), which would describe an ex-
panding de Sitter phase with constant H = O(10H0); see Fig. 2. 
But note that this on-average de Sitter expansion occurs at an ex-
ponentially lower value of H compared to inflation and so plays no 
role in smoothing or flattening the universe or in generating den-
sity perturbations. Rather, it is the period of ekpyrotic (ultra-slow) 
contraction that is responsible for these features.
Although many of the building-block ideas are familiar, the way 
they are put together produces a scenario that resolves cosmo-
logical problems while avoiding the pitfalls of earlier approaches 
and shedding new light on some long-standing puzzles. The es-
sential feature is that the evolution of the universe through all stages 
is dominantly classical. Quantum corrections are always small. That 
means there is no period of quantum domination at any time 
during cosmic evolution: no big bang, no quantum-determined initial 
conditions, no quantum runaway that leads to the multiverse effect. All 
coarse-grain properties of the universe are deterministically set by 
the governing classical equations. Fine details, such as the precise 
distribution of small density perturbations after the bounce, are 
determined by random quantum fluctuations, but their statistical 
properties are set by classically-determined coarse-grain properties 
of the universe.

This condition is made possible by having a (non-singular) clas-
sical bounce, which requires a classical violation of the null conver-
gence condition, Rαβnαnβ ≥ 0, for all null vectors nα , where Rαβ

is the Ricci tensor. This can be achieved through an appropri-
ate modification of Einstein gravity at high energy densities near 
the bounce (� ∼ (1015 GeV)4) or stress-energy that violates the 
null energy condition or both. A well-developed set of examples 
is based on a modification of Einstein gravity described in Horn-
deski and Galileon theories that results in braiding the scalar field 
and extrinsic curvature [6,10]. The modification introduces, among 
other things, an amendment to the Friedmann equation that is 
proportional to a combination of H and φ̇.

During most of the cycle, H and φ̇ are so small that the braid-
ing effect is negligible because the two quantities are both individ-
ually small. They are only significant during the contracting phase, 
as H becomes increasingly negative and φ̇ increases due to gravita-
tional blue shift. When the braiding term becomes non-negligible, 
the bounce phase begins. After the bounce, the universe expands, 
H and φ̇ decrease, and the braiding term becomes insignificant 
again.

It is appropriate to view the classical bounce as a solution to 
the cosmic singularity problem. Just as an event horizon shields the 
outside observer from the time-like singularity within a black hole, 
the bounce shields the universe from a space-like cosmic singular-
ity. In this sense, the bounce can be considered as an extension of 
cosmic censorship to cosmological singularities.

The causal horizon problem is immediately resolved by replacing 
the big bang with a bounce preceded by a period of contraction. 
The homogeneity, isotropy and flatness problems are resolved if the 
preceding period consists of a long enough period of ekpyrotic 
(ultra-slow) contraction where ‘long enough’ means that the H(t)
shrinks by at least 60 e-folds. Ekpyrotic contraction means that 
H(t) shrinks a lot while a(t) shrinks comparatively less; in this 
case, we emphasize that there can be hardly any shrinkage in a(t)
at all. If the reheating temperature is sufficiently low (< 1016 GeV, 
say), the monopole problem is resolved because the monopoles 
would be too massive to be abundantly created.

The generation of density fluctuations occurs during the ekpy-
rotic contraction phase. The scale factor a(t) is nearly constant but 
rH = |H−1| is shrinking so fast that a/rH grows exponentially. In 
this way, quantum fluctuations generated on sub-horizon scales 
(k > a/rH ) become super-horizon modes (k � a/rH ) as contraction 
proceeds. Notably, the fluctuations and the Hubble radius are much 
larger than the Planck scale at all stages. Unlike inflation, there is 
no issue of trans-planckian fluctuations.

As noted above, an ekpyrotic phase with a single scalar field 
generates adiabatic curvature fluctuations that decay in ampli-
tude during the contracting phase; for the same reason, primor-
dial tensor (gravitational wave) fluctuations are not generated [11]. 
However, the nearly scale-invariant spectrum of curvature fluctuations
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observed in the cosmic microwave background can be straight-
forwardly generated if there is a second scalar field through the 
well-known isocurvature mechanism that has been described else-
where [12,13]. Namely, the second field generates a scale-invariant 
spectrum of isocurvature (a.k.a. entropic) fluctuations that are con-
verted into curvature fluctuations after the ekpyrotic phase is com-
pleted.

There is a subtlety regarding gaussianity that is worth noting 
since it has caused some confusion in the literature. In some (in 
fact, historically, the originally proposed) models of ekpyrosis [14], 
the predicted density fluctuations have a significantly non-gaussian 
distribution. This occurs, for example, if the ekpyrotic phase is 
dominated by two scalar fields, both with canonical kinetic en-
ergy and both with exponentially steep potentials. In terms of the 
standard (local) non-gaussianity parameter f N L , the prediction is 
f N L ≥ O(10), which is marginally inconsistent with current obser-
vations [15].

However, non-gaussianity is not generic. It only occurs in cases 
like the example cited, where the ekpyrotic field trajectory is in-
herently unstable to small quantum fluctuations away from the 
ideal path, as illustrated in the upper panel of Fig. 3. A model like 
this is poorly suited for cyclic theories because the initial condi-
tions at the beginning of each ekpyrotic phase must be repeatedly 
finely-tuned in order for the ekpyrotic phase during each cycle to 
last long enough.

Simple ekpyrotic models with completely stable field trajecto-
ries, as illustrated in the lower panel of Fig. 3 [16], avoid the in-
stability. In these models, only one field has an exponentially steep 
potential and the other has a non-linear sigma model-type kinetic 
coupling to the first. The kinetic coupling strongly damps the clas-
sical motion of the second field as the first rolls downs its poten-
tial. The result is a stable trajectory. Models like these with stable 
trajectories are the natural choice for scenarios with repeated cy-
cling because they do not require fine-tuning of initial conditions 
at the beginning of each ekpyrotic phase. The stability has an im-
portant observational consequence for cyclic models: the fluctuation 
spectrum is predicted to be very nearly gaussian, f N L ≤O(1), in accor-
dance with current observations.

This phase must connect smoothly to later phases of the cyclic 
model. Although the downhill profile during the ekpyrotic smooth-
ing phase is required to be exponentially steep, as discussed below 
Eq. (1), the potential must also be bounded below to avoid insta-
bilities and a cosmic singularity. A simple example that connects 
smoothly to the rest of the scenario is a symmetric potential of the 
form V (φ) = V D E − Vmin · sech(φ/M) where V D E > 0 is chosen so 
that the value of V today is equal to the dark energy density. Dur-
ing the expanding phase, φ is frozen by the Hubble friction (due 
to matter and radiation) at some point on the flat rim of the po-
tential with V = V D E corresponding to the dark energy density 
at the beginning of the accelerating expansion phase. Once the 
dark energy density due to V comes to dominate, the field rolls 
down the rim from positive to negative V . Following the Fried-
mann equations, expansion stops and contraction begins as the 
Hubble parameter passes through zero. The evolution down the 
steep potential produces the ekpyrotic (ultra-slow) contraction dis-
cussed below Eq. (1) until the field trajectory reaches the bottom 
of the potential.

The next stage involves a combination of conversion of isocur-
vature to curvature perturbations, bouncing from contraction to 
expansion, and reheating. The conversion from isocurvature to cur-
vature perturbations can be achieved by turning the field trajectory 
away from the pure φ direction, as can be easily obtained through 
the kinetic coupling of the two fields [17]. This sets up the con-
ditions needed for the bounce as well, as detailed in Ref. [6]. A 
bounce can be achieved with a negative potential, for example, if 
Fig. 3. The generation of perturbations during an ekpyrotic phase in a model with 
two scalar fields. One linear combination (σ ) sets the trajectory along the poten-
tial (solid black line) which, in turn, sets the background equation-of-state. Quan-
tum fluctuations along the trajectory δσ decay during a contracting phase and are 
therefore irrelevant. Another linear combination of fields (s) experiences quantum 
fluctuations δs that generate a nearly scale-invariant spectrum of entropic fluc-
tuations that are converted to curvature perturbations after the ekpyrotic phase 
completes. In some examples, the field trajectory is unstable along the s-direction 
(upper panel), in which case the curvature fluctuation spectrum can have signifi-
cant non-gaussianity ( f N L ≥ O(10)). However, the instability makes these models 
unsuitable for repeated cycling. Ekpyrotic phases with no instability (lower panel) 
are compatible with repeated cycling; these are cases in which the non-gaussianity 
is negligible ( f N L ≤ O(1)).

gravity at high energy scales (i.e., sufficiently large |H |) experiences 
non-negligible modifications of the Horndeski type. The modifi-
cations are only significant when |H | and the scalar field kinetic 
energy density are large, which is precisely the condition after 
the conversion. We note that the Horndeski modification may be 
sourced by the entropic field alone or by a linear combination of 
the entropic and ekpyrotic field. The scale at which these effects 
become important are set by introducing a fundamental energy 
scale into the Horndeski theory (analogous to setting the height 
of the potential in inflationary models). The universe is now ex-
panding and a linear combination of scalar fields has large kinetic 
energy density. The trajectory continues and rapidly moves up the 
potential to reach positive values of V ≈ V D E . As we have noted, 
numerous mechanisms similar to those used in inflationary mod-
els exist for converting the kinetic energy to matter and radiation
[9,18]). At this point, the fields are frozen at some point on the 
nearly flat rim of the potential and held in place by the Hubble 
friction due to the new matter and radiation.

The conditions are now as they were at the beginning of the 
previous expansion phase and the process can repeat indefinitely. 
During each cycle, gravitational energy is converted to scalar field 
energy (through blue shift of the scalar field kinetic energy dur-
ing the contraction phase) which is converted to new matter and 
radiation. See Ref. [5], for a discussion of how a cyclic picture com-
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bined with the standard model of particle physics can be geodesi-
cally complete.

As for the B-mode problem, we have explained that primordial 
tensor fluctuations are not generated during ekpyrotic contraction 
for the same reason that adiabatic density fluctuations are not. 
Furthermore, the isocurvature mechanism does not generate pri-
mordial tensor fluctuations. This feature is in agreement with cur-
rent observations that have not (yet) detected primordial B-modes. 
However, there is not simply a null prediction. Secondary gravita-
tional waves created when density fluctuations re-enter the hori-
zon are predicted to be the leading-order contributions to the 
tensor fluctuation spectrum with tensor-to-scalar ratios r � 10−6

[19]. While current experiments are not sensitive to detect these 
modes, they may be detectable in the future.

Compared to the single bounce model described in Ref. [3], a 
cyclic model has the advantage that it evades the issue of ini-
tial conditions and is more predictive as it ties together the early 
evolution of the expanding universe to its future evolution. An un-
avoidable prediction is that the current vacuum and accelerated 
expansion are temporary. That is, the vacuum today is either un-
stable and slowly changing with time, as in the example discussed 
above; or metastable, protected by an energy barrier that will 
eventually be bypassed through quantum tunneling. The possibility 
that we live in an unstable or metastable phase is well-motivated. 
In fact, in many formulations of unified theories, including super-
symmetric and string theories, there are strong arguments to sug-
gest that the global minimum has negative vacuum energy density 
(see, e.g., [20]). If there exist vacua with negative energy density, 
classical or quantum mechanics will eventually find it. The current 
accelerated expansion phase cannot be eternal. This dovetails with 
the cyclic picture. If the transition from expansion to contraction 
and a bounce to a new phase of expansion could happen once (as 
in the single bounce picture), it would almost inevitably repeat 
because there would remain the same state of negative energy 
density and the same laws of classical and quantum mechanics 
returning the universe to it. That is, if we conclude from future ob-
servations that there was a bounce 13.8 billion years ago, there are good 
reasons to believe there have been earlier bounces and there will be fur-
ther bounces in our future.

Stepping back, we would argue that an appealing aspect of the 
cyclic scenario is that it relies on a natural progression of equations-
of-state that make it straightforward to fit together the different 
stages of evolution. By ‘natural progression,’ we mean that, as the 
universe expands, the evolution sequence should go from stages 
dominated by high pressure (large ε+) components to stages dom-
inated by low pressure (smaller ε+) components because the en-
ergy density decreases as 1/a2ε . For example, in the cyclic picture, 
expansion begins at about the time when the ekpyrotic scalar field 
decays predominantly to radiation (ε = 2), which gives way to 
matter (ε = 3/2), and finally to dark energy (ε ≈ 0).

During the contracting phase, the reverse should hold. The nat-
ural progression is from low pressure to high. The dark energy 
phase (ε ≈ 0) ends and contraction begins when the scalar field 
causing it rolls or decays to negative potential energy. The value of 
ε grows as the universe contracts to the bounce. The progression 
is natural. One might contrast this with the case of a big bang uni-
verse that begins hot (moderate positive pressure), settles into an 
inflationary phase (negative pressure), which then reverts to radi-
ation (moderate positive pressure); the initial conditions problem 
in inflation is related in part to this non-monotonic pressure se-
quence [21].

Table 1 summarizes the generic features described here. The list 
should give one pause. The first five items are features that infla-
tion is often credited as possessing based on its original formu-
lation. It was not appreciated until later that obtaining sufficient 
Table 1
Generic features of the new cyclic theory.

resolves the causal horizon problem
resolves the homogeneity and isotropy problems
resolves the flatness problem
resolves the monopole problem
generates super-horizon-scale fluctuations
no transplanckian problem ♠
classical (coarse-grain) deterministic evolution at all stages ♠ †
no cosmic singularity problem ♠ †
no big bang ♠
no cosmic quantum-to-classical transition ♠ †
no chaotic mixmaster problem ♠
no initial conditions problem ♠
natural progression of equation-of-state ♠
no quantum runaway (a.k.a. no multiverse) ♠
no detectable primary tensor fluctuations ♠
predicts secondary tensor modes (r � 10−7) ♠
predicts current vacuum is unstable or metastable ♠

Notes. ♠ marks features of the cyclic model that are not claimed 
features of big bang inflationary cosmology; † marks features that 
are not shared by ekpyrotic cyclic models with quantum (singular) 
bounces.

inflation depends sensitively on initial conditions or that quantum 
fluctuations lead to quantum runaway and the multiverse effect. 
When these features are taken into consideration, it is not clear 
what inflation resolves or predicts since the opposite outcome is 
equally possible according to current understanding.

By contrast, precisely because evolution in the cyclic scenario 
is dominantly classical throughout, all of the items in Table 1 are 
undeniable features or testable predictions. This sets a new stan-
dard for cosmological models and provides a strong argument for 
non-singular classical bounces.

5. Further thoughts

These results lead us to some admittedly highly speculative 
remarks inspired – but not required – by the cyclic scenario pre-
sented here.

The idea that it is possible to shield the universe from reach-
ing a stage where quantum physics dominates over classical may 
be more than a feature of a particular cosmological model. One 
could imagine that it is a generic fundamental principle of nature, 
analogous to the cosmic censorship conjecture for black holes. We 
might call this a generalized cosmic censorship principle and suggest 
that it must be satisfied by the ultimate theory that unifies gravity 
with the other fundamental forces.

The idea that Einstein’s theory of general relativity has to be 
modified at very high energies is generally accepted, but the con-
jecture suggests specific properties that the modifications must 
satisfy. Non-singular classical bounces that shield the universe 
from reaching the Planck density would be only one example. 
There should be analogous bounce-like behavior approaching the 
center of a black hole before reaching the point where quantum 
gravity effects would be expected to dominate in Einstein gravity. 
This has implications for the last stages of black hole evaporation, 
the information paradox and the possibility of gravitationally sta-
ble wormholes.

Speculating further, the notion that cosmological evolution is 
dominantly classical at all stages has implications for the quantum 
measurement problem and gravity’s possible role in resolving it: It 
suggests that there exists a combination of scales – curvature ∼ rH , 
mass ∼ r−1

H and energy density ∼ H2 – below which a physical 
system (the universe, compact objects, etc.) can be characterized 
by a set of measurable quantities (observables) that always have 
definite values and can always be determined with no (or negligi-
ble) effect on the state or dynamical evolution. This combination 
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of scales could be understood as a gravitational lower bound for 
macro-realism, i.e., the claim that ‘a physical system which can ob-
tain several macroscopically distinct states exists in exactly one of 
its possible states at any time’ [22].

Whether one finds these speculations appealing or not, they 
demonstrate how identifying the correct story of cosmic evolution 
can impact fundamental physics generally. The advantage of cos-
mology is that there exists the technology today to test theories, 
whereas visiting the interior of a black hole, say, is not advisable. 
Showing that it is possible in principle to combine ekpyrotic con-
traction and classical bounces to obtain a cosmological model with 
the properties listed in Table 1 is a significant step forward, but 
here we have only focused on qualitative features. At this point, 
the quantitative properties are obtained by fixing parameters, as is 
the case for other cosmological theories. The next challenge is to 
further develop the cyclic scenario in conjunction with fundamen-
tal physics to go beyond showing that the quantitative conditions 
are possible and explain why they are likely to occur.
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