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We present some solutions of Bianchi type I cosmological models with bulk viscosity. Exact solutions are given when the uni- 
verse is filled with stiff matter while the viscosity coefficients are constant or proportional to the energy density. Effects of the 
bulk viscosity are found to smooth out the anisotropy of the universe and create matter by the gravitational field in the course of 
evolution. At the final stage, cosmologies are driven to the infinite expansion state, the de Sitter spacetime, or the isotropic 
Friedmann universe. 

1. Introduction 

Cosmological evolution with a fluid containing 
viscosities has already attracted the attention of many 
investigators. Misner [ 1 ] suggested that neutrino 
viscosity may considerably reduce the anisotropy of 
the black-body radiation. Murphy [2] obtained an 
exactly soluble cosmological model of the zero cur- 
vature Friedmann model in the presence of bulk vis- 
cosity alone. The solutions exhibit the interesting 
feature that the big bang type singularity appears in 
the infinite past. Belinskii and Khalatnikov [ 3 ] ana- 
lyzed Bianchi type I cosmological models under the 
influence of viscosity. They then found the remark- 
able property that near the initial singularity the 
gravitational field creates matter. 

The viscosity mechanism in cosmology can ac- 
count for the high entropy of the present universe 
[ 4,5 1. Bulk viscosity associated with the grand-un- 
ified-theory phase transition [ 61 may lead to an in- 
flationary scenario [ 7,s 1. (The inflationary cosmol- 
ogy formulated by Guth in 198 1 [ 9 ] is used to over- 
come several important problems in the standard big 
bang cosmology. ) 

Exact solutions of the isotropic homogeneous cos- 
mology with general viscosity for the open, closed 
and flat universe had been found by Santos et al. 
[ 10 1. Using certain simplifying assumptions, 
Banerjee and Santos [ 11,121 obtained some exact 

solutions for the homogeneous anisotropic model. 
Recently Banerjee et al. [ 13 ] obtained some Bianchi 
type I solutions for the case of stiff matter by using 
the assumption that shear viscosity coefficients are 
power functions of the energy density. However, the 
bulk viscosity coefficients adopted in their model are 
zero or constant. 

In this paper, without introducing shear viscosity, 
we shall examine Bianchi type I cosmological models 
with bulk viscosity alone. The exact solutions are ob- 
tained for the stiff matter if the viscosity coefficient 
is constant or proportional to the energy density. We 
find that the isotropic de Sitter spacetime is an at- 
tractor state as t-co if the viscosity coefficient is 
constant. It is thus in accord with the “cosmic no 
hair” theorem [ 14-161 even though the strong en- 
ergy condition [ 17 ] is violated [ 18 1. However, con- 
trary to the finding of Murphy [ 21, whose 
investigation of the isotropic model leads to the big 
bang model without singularity, our model exhibits 
the R = 0 singularity with infinite energy density at 
finite past [ 3,10,13 1. Effects of bulk viscosity pro- 
portional to the energy density are found to reduce 
the anisotropy of the universe and create matter by 
the gravitational field in the course of the evolution 
of cosmology. Finally, just as in the isotropic model, 
the cosmology evolves to an infinite expansion state, 
the de Sitter spacetime, or the Friedmann universe, 
in agreement with previous results [ 3,131. 

0375-9601/88/$ 03.50 0 Elsevier Science Publishers B.V. 
( North-Holland Physics Publishing Division ) 

429 



Volume 129, number 8,9 PHYSICS LETTERS A 13 June 1988 

The space time we considered is described by the 
metric 

2. Einstein’s field equations where y is defined by the equation of state 

p=(y-I)E, l<y<2. (14) 

In the following sections we only discuss stiff matter, 
i.e. y=2, which is a possible relevance of the equa- 
tion of state p= E as regards the matter content of the 
early universe [ 19,201. 

d.s2= -dt2+X2d_x2+ Y2(dy2+dz2) , (1) 

where X and Y are functions of time alone. The en- 
ergy-momentum tensor of a bulk viscous fluid is 
written in the form 

T,, = (e+B)u,u, +Ps,y 9 (2) 

P=P-WA;2 > (3) 

U”UA = - 1 ) (4) 

where E is the energy density, p the pressure, 7 the 
bulk viscosity coefficient, and u, is the four-velocity. 
Choosing a comoving frame where ~,=6’~, Ein- 
stein’s field equations become 

dH 
dt +HW=j(t-8) , (5) 

g +hW=f(E--p) ) (6) 

W2- (2H2+h2)=2c, (7) 

where 

H= dYldt 
Y ’ 

/,_ dxldt -- 
x ’ (8b) 

W=2HSh. (8~) 

A linear combination of eq. (5 ) with eq. (6) gives 

$+ wL$(e-p) ) (9) 

$ (h-H)+ (h-H) W=O . (10) 

The Bianchi identities imply 

$+(e+p)w=o. (11) 

We also know that 

t-+(2-y)e+?7W, (12) 

t+p=ye-VW, (13) 
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3. Solutions 

Consider first the simplest case with constant vis- 
cosity, i.e. q=qo. Then the field equations (5) and 
(6 ) become 

dH 
dt =(?ivo-WW+h) , (15) 

dh 
z =(jqO-h)(2H+h). (16) 

The zeros of eqs. ( 15) and ( 16) give the fixed points 
in the phase plane h x H. A stable one is the de Sitter 
state with H=h= fqo. Dividing eq. (16) by eq. (17), 
we find a simple equation relating h and H, 

dh trio-h -=- 
dH fqo -H’ 

(17) 

The above equation can be easily integrated to give 

h=CH+fqo(l-C), (18) 

where C is the integration constant. Substituting eq. 
(18) into eq. (10) we have 

g+(l+jC)(H-;qo) (19) 

After integration we finally obtain the exact solution 

3rlo *-cc 
H= 

2(2+C)[exp(~~ot)-l]+1v0 
- Irlo, 

(20) 

h= 
3CVo 

2(2+C) [exp($vot)- 11 
+fvo- *-O” li?o. 

(21) 

The solutions tell us that bulk viscosity can be used 
to drive the anisotropic cosmology to the isotropic 
de Sitter universe. However, an initial singular phase 



Volume 129, number 8,9 PHYSICS LETTERS A 13 June 1988 

of expansion occurs at finite past (t=O) where both 
Hubble parameters and energy density are infinitely 
large. Therefore, contrary to the claims of Murphy 
[ 21, bulk viscosity cannot remove the cosmological 
singularity in our model. These properties are also 
found in the other models [ 3,10,13] in which the 
shear viscosities have been included. 

We next consider the case where the viscosity coef- 
ficient is proportional to the energy density, i.e. 
~=r,+~t. From eqs. (5)-(S), (12) we obtain 

g =;H(H+2h)(H+2h-2) ) (22) 

g =~(H+2h)[H(H+2h)-2h] ) (23) 

where H and h have been resealed by a factor qo. 
From the above two equations we find that there are 
three classes of fixed points in the phase plane h x Hz 

the de Sitter universe with h= H=2/3, the Min- 
kowski spacetime with h=H=O and states with 
H+2h= 0. Using eq. (7) we know that the energy 
density vanishes on the lines H= 0 and H+ 2h = 0, so 

that the de Sitter state is the only fixed point with 
non-zero energy density. 

Dividing eq. (23) by eq. (22) we obtain 

dh H(H+2h)-2h 
-= 
dH H(H+2h)-2H’ 

(24) 

This equation can be written as 

dL L(3H-2) 
-= 
dH H(L-2) ’ 

(25) 

where 

L=H+2h. (26) 

The general solutions of eq. (25) are 

h-H-ln( 1+2h/H)+C=O, (27) 

where C is the integration constant. We can further- 
more express h and H in terms of the variables r and 

8, 

h=rsine, (28) 

H=rcos8, (29) 

and eq. (27) reduces to the elegant expression 

r= C-ln(1+2tane) 
c0s e-sin 8 . 

(30) 

Fig. 1. The phase plane trajectories determined by eq. (30). Ar- 
rows denote the directions of increasing cosmic time. D is the 
saddle point which corresponds to the de Sitter spacetime. 

This is an exact solution of the anisotropic extended 
Murphy model. 

Using the above equation we can determine the 
flows in the phase space h x H and thus find the dy- 
namical evolutions of cosmology. Some solutions are 
shown in fig. 1 for a variety of possible values of C. 
The point D in fig. 1 is the de Sitter state which be- 
comes a saddle point now. The arrows in the trajec- 
tories can be easily determined by eqs. (22) and 
(23). The evolution of a cosmology are known to 
start from a fixed point or at infinity and end in an- 
other fixed point or infinity in the phase plane. (We 
only consider the physical plane where the trajec- 
tories evolute to positive Hubble parameters in the 
latter stage. The regions where t < 0 violate the dom- 
inate energy condition [ 17 ] are also neglected. ) 

We then find that, except in the isotropic model 
(h = H) which had been investigated by Murphy [ 21, 
the cosmologies always begin with zero energy den- 
sity at the initial phase of singularity. During the 
evolution, the energy density is increasing subse- 
quently and the anisotropies of the universe are 
smoothed out. At the final stage as ~+oc), depending 
on the integration constant C in eq. (30)) there are 
three classes of states which may be approached 
asymptotically: 

( 1) Both the energy density and Hubble param- 
eters go to infinity if H> h, C> In 3 or h> H, 

ln3>C>O. 
(2) The energy density is finite and spacetime is 
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attracted to the de Sitter universe if C=ln 3. 
( 3) Both the energy density and Hubble param- 

eters decrease to approach zero and the model is dri- 
ven to the isotropic Friedmann universe if H>h, 
ln3>C>O or h>H, C>ln3. 

It is noted that these final states are also found in 
isotropic models. 

4. Conclusion 

Assuming that the bulk viscous coefficient is con- 
stant or proportional to the energy density we have 
presented the exact solutions of the Bianchi type I 
cosmologies with a stiff fluid. Many characteristic 
traits, such as isotropization of cosmology, evoluting 
towards the de Sitter space and the creation of mat- 
ter during the evolution, appear in our model. Al- 
though only two cosmic scale functions are used in 
our metrics, we expect that these traits will still exist 
in the Bianchi type I models with three cosmic scale 
functions. However, as the characteristic features of 
the cosmological models depend on the functional 
form of the viscosity coefficients [ 3,131, searching 
for the exact solution with general viscosity is cer- 
tainly worth while. It remains to be found. 

Finally, we want to mention that the solutions 
studied in this paper have been discussed qualita- 
tively (but not given exactly) by Barrow [ 21-231. 
There it is pointed out that the r]cce case results in 
a violation of the dominate energy condition E +p> 0 
as t-0. Barrow [ 241 also gave a further discussion 
of bulk viscous models in theories possessing qua- 
dratic curvature. 
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