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The bulk viscosity is introduced to model the current observational cosmos and the unified dark matter (dark matter and dark
energy). The viscous unified model assumes that the universe is filled with a single nonperfect fluid with a bulk viscosity. We
review the general framework for the viscous cosmology model building finding that the Hubble parameter has possessed a direct
connection with the bulk viscosity coefficient. For the concrete form of the bulk viscosity, the Hubble parameter which has the
scaling relation with the redshift can be obtained generally. We discuss two viscosity models and the cosmological evolution to
which they lead in detail. Using SNe Ia data, CMB shift, as well as BAO observations, the viscosity model parameters can be fitted
very well. We also briefly review the fitting method in this paper.

1. Introduction

Both the dark matter problem and the cosmic acceleration
problem challenge physicists’ understanding of the universe.
In the standard ΛCDM model, two mixed fluids dark
matter and dark energy fluid, are assumed. These two fluids
influence the cosmic evolution separately. However, present
gravitational probe does not have the ability to differentiate
these two fluids. This is the dark degeneracy problem [1, 2].
It is reasonable to model dark matter and dark energy with
single fluid or single-field assumption. Some unified models
have been proposed to detect the possibility of this unified
assumption, like unified dark fluid model [3–7], which
assumes the single-fluid equation of state; Chaplygin gas
model and generalized Chaplygin gas model [8–12], which
discuss the cosmology consequences of an exotic equation of
state; scalar field method [13–15].

The introduction of viscosity into cosmology has been
investigated from different viewpoints [16, 17]. There are
some recent developments like dark energy model [18–21],
the cosmic singularity [22]. In this paper, we give a brief
introduction to unify dark matter and dark energy with
viscosity medium. In such models, the universe is assumed to
be filled with viscous single fluid [23–29]. The cosmic density
is not separated as dark energy part and dark matter part.

The bulk viscosity contributes to the cosmic pressure and
plays the role of accelerating the universe. After considering
the bulk viscosity, the cosmic pressure can be written as

p = (γ − 1
)
ρ− 3ζH , (1)

where γ parameterizes the equation of state. Generally
the form of bulk viscosity is chosen as a time-dependent
function. In [30–35], a density-dependent viscosity ζ =
αρm coefficient is investigated extensively. For modeling the
unified dark matter and dark energy, it is often assumed that
the parameter γ = 1, that the pressure of the viscosity fluid is
zero, and the viscosity term contributes an effective pressure.
There arise some problems here. From the observational
results [36], the cosmic density is nearly equals to the cosmic
pressure. In the viscosity model, the viscosity term dominates
the cosmic pressure and surpasses the pressure contributions
from other cosmic matter constitutions, which contradicts
the traditional fluid theory. The works in [37, 38] propose
nonstandard interaction mechanism to solve this problem.
Obviously, it is important to build solid foundation for the
research of the viscous cosmology.

Equation of state w < −1 lies in the phantom region.
It is shown that cosmology models with such equation of
state possess the so-called the future singularity that is called
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the Big Rip [39]. The larger viscosity model parameter space
can help to solve the cosmic singularity problem and produce
different kinds of evolution modes of the future universe; for
more details [28].

The rest of this paper is organized as follows. In Section 2,
general framework of the viscosity model will be reviewed. In
Section 3, we discuss the modeling of the unified model with
viscosity. In this section, two concrete models are analyzed.
In Section 4, data fitting method is introduced briefly.

2. General Framework

We consider the standard Friedmann-Robertson-Walker
metric

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)

. (2)

For the sake of simplicity, we choose the flat geometry k =
0, which is also favored by the update result of the cosmic
background radiation measurement.

The general stress-energy-momentum tensor is

Tμν =
(
ρ + p

)
UμUν + pgμν − ζθhμν, (3)

where ζ is the bulk viscosity. The expansion factor θ is
defined by θ = U

μ
;μ = 3(ȧ/a), and the projection tensor

hμν ≡ gμν + UμUν. In the comoving coordinates, the four
velocity Uμ = (1, 0, 0, 0). We do not specify the concrete
form of ζ in this section. Generally speaking, ζ is a quantity
evolving with time t or the scale factor a(t). We will see below
that nontrivial and more complicated ζ can produce different
results especially useful for the late universe modeling.

From the usual Einstein equation

Gμν = Rμν − 1
2
Rgμν = 8πGTμν, (4)

we obtain the two equations which we call the modified
Friedmann equations:

ȧ2

a2
= 8πG

3
ρ,

ä

a
= −4πG

3

(
ρ + 3 p̃

)
,

(5)

where p̃ is an effective pressure and p̃ = p − ζθ.

The covariant conservation equation T
0μ
;μ = 0 yields

ρ̇ +
(
ρ + p̃

)
θ = 0. (6)

The existence of a bulk viscosity contributes a modification
to the pressure p, thus we see that the Friedmann equation
and the covariant conservation equation are invariant under
the transformation

p −→ p̃ = p − ζθ. (7)

The covariant energy conservation equation becomes

ρ̇ +
(
ρ − ζθ

)
θ = 0. (8)

We define the dimensionless Hubble parameter here as

h2 = H2

H2
0
= ρ

ρcr
, (9)

where ρcr = 3H2
0 /8πG is the critical density now. Using the

dimensionless Hubble parameter, (8) can be transformed as

1
H0

d
(
h2
)

dt
+ 3h3 = 9λh2, (10)

where the bulk viscosity is redefined as λ = H0ζ/ρcr. Through
the simple relation between scale factor a(t) and the redshift
z

dt = 1
aH

da, (11)

we transform (10) into a differential equation with respect to
the scale factor a(t) as follows:

dH
da

+
3

2a
H = 3ζ

2a
. (12)

Solving this equation, we obtain an integral form of H(a) as

H(a)=C1a
−3/2 +

[∫
3ζ
2a

exp
(∫

3
2a

da
)

da
]

exp
(
−
∫

3
2a

da
)
.

(13)

Different forms of viscosity can be used here to make this
integral calculable, numerically or exactly.

3. Unified Single Fluid

3.1. Redshift-Dependent Model. In [40], the authors assume
that the bulk viscosity takes the form of a Hubble parameter-
dependent function. A redshift-dependent viscosity is pro-
posed in [27]. This bulk viscosity is a combination of a
constant and a scaling relation term

9λ = λ0 + λ1(1 + z)n, (14)

where n is an integer and λ0 and λ1 are two constants, which
will be fitted from the observational datasets.

After taking account of this ansatz, the integration is easy
to work out. We get

h2(z) = λ2
2(1 + z)3 +

2
3
λ0λ2(1 + z)1.5

− 2λ0λ1

3(2n− 3)
(1 + z)n +

λ2
1

(2n− 3)2 (1 + z)2n

− 2λ1λ2

2n− 3
(1 + z)n+1.5 +

λ2
0

9
.

(15)

Since we have assumed the spatial flatness of the universe, the
consistency condition requires that h(0) = 1. Thus this sets a
constraint on the model parameters as

λ0

3
= 1− λ2 +

λ1

2n− 3
. (16)
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We remind the readers that we make the single-fluid
assumption above, and we do not concretely specify the
constitutions of the cosmic density ρ. In this single-fluid
model, values of model parameters λ0, λ1, and λ2 will be
fitted, and their meanings are not explained. But when we
compare it with two-fluid model, having in mind that the
universe is filled with dark matter and dark energy fluid,
more constraints can be added. The solution consists of
terms with different scaling relation. The first term has the
form of C(1 + z)3, which has the same evolution behavior
as that of the cold dark matter. Their simplicity leads us to
parameter λ2 correspond to dark matter ratio Ωm

λ2
2 = Ωm. (17)

This identity can help us utilize more data to constrain
the viscosity model. The result is also consistent with that
obtained from the standard model (ΛCDM). The shift
parameter R [41, 42] and the distance parameter A are
defined as

R ≡
√
Ωm

∫ z∗

0

d z′

h(z′)
, (18)

A ≡
√
Ωm h(zb)−1/3

(
1
zb

∫ zb

0

dz′

h(z′)

)2/3

, (19)

respectively. Both of them are dependent on dark matter
ratio Ωm, and in the joint statistical analysis, they provide
strong constraint on Ωm.

3.2. Effective Equation of State Model. Another viscosity
model reviewed here is proposed in [25], where a general
form of time-dependent viscosity is discussed:

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

ȧ
. (20)

An interesting feature of this model is its effective equivalence
to the following equation of state:

p = (γ − 1
)
ρ + p0 + wHH + wH2H

2 + wdHḢ , (21)

where p0, wH , wH2, and wdh are free parameters. The
corresponding between two groups of coefficients are

wH = −3ζ0,

wH2 = −3(ζ1 + ζ2),

wdH = −3ζ2.

(22)

The parameterized bulk viscosity combines terms related to
the “velocity” ȧ and “acceleration” ä, which can be seen to
describe the dynamics of the cosmic nonperfect fluid. After
eliminating p and ρ, a differential equation about the scale
factor a(t) can be obtained as

ä

a
= −(3γ − 2

)
/2− (κ2/2

)
wH2 +

(
κ2
)
wdH

1 + (κ2)wdH

(
ȧ

a

)2

+
−(κ2

)
wH

1 + (κ2/2)wdH

ȧ

a
+

−(κ2/2
)
p0

1 + (κ2/2)wdH
.

(23)

Another feature of this model is that this differential equation
can be solved exactly, and the evolution function of the scale
factor a(t) is definite. This evolution function is especially
convenient for discussing the cosmic singularity.

With the initial conditions a(t0) = a0 and θ(t0) = θ0,
when γ̃ /= 0, the scale factor can be obtained as

a(t) = a0

{
1
2

(
1 + γ̃θ0T − T

T1

)
exp
[
t − t0

2

(
1
T

+
1
T1

)]

+
1
2

(
1−γ̃θ0T+

T

T1

)
exp
[
− t − t0

2

(
1
T
− 1
T1

)]}2/3γ̃

,

(24)

where the parameters are redefined as

γ̃ = γ +
(
κ2/3

)
wH2

1 + (κ2/2)wdH
,

1
T1
= −(κ2/2

)
wH

1 + (κ2/2)wdH
,

1
T2

2
= −(κ2/2

)
p0

1 + (κ2/2)wdH
,

1
T2

= 1
T2

1
+

6γ̃

T2
2
.

(25)

From Friedmann equation, ρ can be written as

ρ(t) = 1
3κ2γ̃2

[(
1 + γ̃θ0T − T/T1

)
(1/T + 1/T1) exp((t − t0)/T)− (1− γ̃θ0T + T/T1

)
(1/T − 1/T1)

(
1 + γ̃θ0T − T/T1

)
exp((t − t0)/T) +

(
1− γ̃θ0T + T/T1

)

]2

. (26)

The model parameters leave enough space to produce
various evolution behaviors, which can be interpreted in

different ways. In this review, we emphasze their power to
unify dark energy and dark matter with the single-fluid
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assumption. According to the parameters redefined above
and the Friedmann equation, the equation of state can be
converted to

p = (γ̃ − 1
)
ρ− 2√

3κT1

√
ρ− 2

κ2T2
2
. (27)

The case γ̃ = 0 and T1 → ∞ corresponds to the ΛCDM.
With the aim to unify dark energy and dark matter, the case
γ̃ = 1 and T2 → ∞ is especially considered. This case
corresponds to a single fluid with constant viscosity. The
relation between p and ρ can be obtained from the general
equation of state above as follows:

p = − 2√
3κT1

√
ρ. (28)

Therefore, it is straightforward to eliminate p from the
covariant energy conservation equation and to work out
the solution of ρ. Using Friedmann equation, H(z) can be
obtained

H(z) = H0

[
Ωγ(1 + z)3/2 +

(
1−Ωγ

)]
, (29)

where Ωγ is the only one model parameter. Its value can be
fitted from SNe Ia observational data.

4. Data Fitting

We review the method to fit the model parameters. More
details are illustrated in [43]. The datasets we use are SNe Ia,
BAO, and CMB. The 397 Constitution sample [44] combines
the Union sample [45] and the low-redshift (z < 0.08)
sample [46]. The comoving distance dM in FRW coordinate
is

dM =
∫ z

0

1
H(z′)

dz′. (30)

The apparent magnitude which is measured is

m ≡M + 5 log10DL(z), (31)

where the dimensionless luminosity DL ≡ H0dL(z) and

dL = (1 + z)dM(z), (32)

where M is the absolute magnitude which is believed to be
constant for all SNe Ia. In the SNe Ia samples, data are given
in terms of the distance modulus μobs ≡ m(z)−Mobs(z). The
χ2 for this procedure is written as

χ2 =
n∑

i=1

[
μobs(zi)− μth(zi; cα)

σobs(zi)

]2

, (33)

where μth means the distance modulus calculated from
model with parameters cα (α = 0, 1, 2, . . .). Together with the
shift parameter R and the distance A, the total χ2

total for the
joint data analysis is given as

χ2
total = χ2 +

(
R −Robs

σR

)2

+
(

A−Aobs

σA

)2

. (34)

For the redshift-dependent model, the relation between dis-
tance modulus and redshift is plotted in Figure 1. The model
calculated value and the Constitution data are compared in
the figure.
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Figure 1: Relation between distance modulus and redshift. The
solid line corresponds to the theoretical value calculated from the
model concerned. The dots with error bar are the data from the 397
Constitution sample.

5. Conclusion

In this review, we discuss three aspects of the viscosity model.

(i) There is general framework for viscosity modeling.
General form of Hubble parameter is presented. This
general form is convenient for comparing different
scale factor- (or redshift-) dependent viscosity mod-
els.

(ii) Two kinds of viscosity models are used to model
unified models.

(iii) Observation constraint is necessary for model build-
ing. We can see that the fitting results are consistent
with data. It is prospected that more accurate direct
measurements of the Hubble constant will provide a
new constraint on cosmological parameters [47].

Especially we focus on its application on modeling the
unified dark energy and dark matter.

In the cosmic background level, dynamical analysis
can be performed. The statefinder method is useful for
discriminating different models [48–52]. Compared with
ΛCDM model, evolution of the statefinder of the viscosity
model is different and can be discriminated easily; more
details can be found in [28, 53]. More plentiful and accurate
data will improve the power of the statefinder method, which
will give enough constraint on the late universe model.

We review the viscosity model which is on the level of
zero order. The perturbation analysis and to confront the
observed large-scale structure are especially useful for the
model building and distinguishing. The model predictions
need to be consistent with CMB and LSS data. Some works
have investigated the perturbation aspects of the viscosity
cosmology model [35, 54]. After choosing properly the
corresponding model parameters, the viscosity cosmology
model has been shown to have the connection with the
Chaplygin gas model. Though the Chaplygin gas model can
fit the SNe Ia data well at the zero order, in the perturbation
level it is found that the Chaplygin gas model does not behave
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in a satisfactory way. Whether the viscosity cosmology
models could behave well needs further investigation.
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