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At small AdS radius, the superstring on AdS5 × S5 was conjectured by Maldacena

to be equivalent to N = 4 super-Yang-Mills at small ‘t Hooft coupling where thickened

Feynman diagrams can be used to compute scattering amplitudes. It was previously shown

that the pure spinor worldsheet action of the AdS5 × S5 superstring can be expressed as

the sum of a BRST-trivial term and a “B-term” which is antisymmetric in worldsheet

derivatives. Using the explicit form of the pure spinor vertex operators, it will be argued

here that the free super-Yang-Mills Feynman diagrams are described by the BRST-trivial

term where the thickened propagators are the regions of the string worldsheet near the

AdS boundary and the holes are the regions near the AdS horizon. Evidence will then be

presented that the antisymmetric B-term generates the super-Yang-Mills vertex so that,

at small radius and arbitrary genus, the superstring amplitudes correctly reproduce the

super-Yang-Mills Feynman diagram expansion.
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1. Introduction

Although string theory in an AdS5 × S5 background has mostly been studied at

large AdS radius where the supergravity approximation is valid, there have been several

approaches [1][2][3][4][5][6][7][8][9][10][11][12][13][14] to studying AdS5 × S5 string theory

at small radius where the dual super-Yang-Mills theory is weakly coupled. Using the pure

spinor formalism, BRST invariance and PSU(2, 2|4) invariance of this background imply

that the worldsheet action is not renormalized and can be expressed for arbitrary radius

R as [15][16]

S = R2

∫
d2z(

1

2
J2J2 −

3

4
J1J3 −

1

4
J3J1) + ghost terms (1.1)

where the ghost terms describe the coupling of the pure spinor worldsheet ghosts and

(J1, J2, J3) = g−1∂g and (J1, J2, J3) = g−1∂g are the usual left-invariant currents [17]

constructed from the supercoset g ∈ PSU(2,2|4)
SO(4,1)×SO(5) that parametrizes AdS5 × S5.

As was shown in [18], this worldsheet action can expressed as the sum of a BRST-trival

term and an antisymmetric B-term as

S = QΛ+R2

∫
d2zB where (1.2)

B =
1

4
(J3J1 − J3J1) + ... (1.3)

and ... includes terms depending on the pure spinor ghosts. So at small radius, the string

theory can be studied by expanding around the BRST-trival term with the perturbation

R2
∫
d2zB. It will be argued here that this expansion reproduces the standard Feynman

diagram expansion of super-Yang-Mills at small ‘t Hooft coupling λtHooft, thereby proving

the Maldacena conjecture at small radius.

Using the explicit form of the pure spinor vertex operators, it will first be argued that

the topological string described by (1.2) at R = 0 reproduces the free super-Yang-Mills

Feynman diagrams where the Feynman propagators are the regions of the string worldsheet

near the AdS boundary and the holes in the Feynman diagram are the regions of the string

worldsheet near the AdS horizon. These holes will be related to D3 branes in a manner

similar to the closed-open string dualities discussed in [1][4][10].

Evidence will then be presented that the B-term in the action of (1.2) generates the

cubic super-Yang-Mills vertex proportional to R2 ∼
√
λtHooft where antisymmetric terms

of the type f(∂g∂h − ∂g∂h) in B generate commutator terms of the type f [g, h] in the
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cubic vertex. And since the genus g string amplitude is proportional to (gs)
2g−2 ∼ N2−2g,

one obtains the usual ‘t Hooft expansion in 1
N

for the non-planar Feynman diagrams.

Section 2 of this paper will describe the structure of AdS5 × S5 vertex operators at

small radius, section 3 will discuss the relation of the topological action and free super-

Yang-Mills, section 4 will compare the B term and the cubic super-Yang-Mills vertex, and

the Appendix will review the construction of the AdS5 × S5 topological action.

2. AdS Vertex Operators at Small Radius

2.1. Half-BPS vertex operators

To construct AdS5×S5 vertex operators at small AdS radius, it will be useful to first

consider the half-BPS vertex operators describing supergravity states, since their form is

expected to be independent of the radius. As in any supergravity background, these vertex

operators can be expressed as [19]

V = λαLλ
β
RAαβ(X, Y, θL, θR) (2.1)

satisfying QV = 0 where X ∈ AdS5, Y ∈ S5, (θαL, θ
α
R) are the fermionic variables for α = 1

to 16, λαL and λαR are pure spinors satisfying λLγ
aλL = λRγ

aλR = 0 for a = 0 to 9, and

Q = λαL∇Lα + λαR∇Rα is the pure spinor BRST operator.

To express these vertex operators in PSU(2, 2|4) covariant form, parameterize the
PSU(2,2|4)

SO(4,1)×SO(5) coset as

g(X, Y, θ, θ̂) = exp(θRJ q
J
R) exp(θ

J
Rq

R
J )G

R
R̃
(X)HJ

J̃
(Y ) (2.2)

where GR
R̃
(X) is an SO(4,2)

SO(4,1) coset for AdS5, H
J
J̃
(Y ) is an SO(6)

SO(5) coset for S5, R = 1 to 4 and

J = 1 to 4 are SU(2, 2) and SU(4) spinor indices, R̃ = 1 to 4 and J̃ = 1 to 4 are SO(4, 1)

and SO(5) spinor indices, (qJR, q
R
J ) are the 32 fermionic generators of PSU(2, 2|4), and

XRS and Y JK are SO(4, 2) and SO(6) vectors normalized to satisfy ǫRSTUX
RSXTU =

ǫJKLMY
JKY LM = 8. Under global PSU(2, 2|4) transformations parameterized by Σ,

δg = Σg + gΩ (2.3)

where Ω is a local SO(4, 1)× SO(5) gauge transformation. And under a BRST transfor-

mation,

δg = g[(λL + λR)
R̃
J̃
qJ̃
R̃
+ (λL − λR)

J̃
R̃
qR̃
J̃
] + gΩ′ (2.4)
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where Ω′ is another local SO(4, 1) × SO(5) gauge transformation. Under these gauge

transformations, (λL, λR) transform as SO(4, 1)× SO(5) spinors, i.e.

δ(λL)
R̃
J̃
= (Ω + Ω′)R̃

S̃
(λL)

S̃
J̃
− (Ω + Ω′)K̃

J̃
(λL)

R̃
K̃
, (2.5)

δ(λR)
R̃

J̃
= (Ω + Ω′)R̃

S̃
(λR)

S̃

J̃
− (Ω + Ω′)K̃

J̃
(λR)

R̃

K̃
.

Since the vertex operators must be invariant under the local SO(4, 1)× SO(5) gauge

transformations, it is convenient to define SO(4, 1) × SO(5) gauge-invariant worldsheet

ghost variables as

(λ̃L)
R
J = GR

R̃
(H−1)J̃J (λL)

R̃
J̃
, (λ̃R)

R
J = GR

R̃
(H−1)J̃J(λR)

R̃
J̃

(2.6)

(λ̃L)
J
R = (G−1)R̃RH

J

J̃
(λL)

J̃

R̃
, (λ̃R)

R
J = (G−1)R̃RH

J

J̃
(λR)

J̃

R̃

which transform as SO(4, 2)× SO(6) spinors under the global isometries. Note that

(λ̃L)
R
J = XRSYJK(λ̃L)

K
S , (λ̃R)

R
J = −XRSYJK(λ̃R)

K
S (2.7)

where the AdS5 and S5 variables XRS and Y JK are defined in terms of the parameteriza-

tion of (2.2) as

XRS = GR

R̃
σR̃S̃
6 GS

S̃
, Y JK = HJ

J̃
σJ̃K̃
6 HK

K̃
(2.8)

and σ6 is the 4× 4 matrix which commutes with the SO(4, 1) and SO(5) Pauli matrices.

The pure spinor condition λLγ
aλL = λRγ

aλR = 0 for a = 0 to 9 implies that λ̃L and λ̃R

satisfy

(λ̃L)
R
J (λ̃L)

J
S =

1

4
δRS (λ̃L)

2, (λ̃L)
J
R(λ̃L)

R
K =

1

4
δJK(λ̃L)

2, (2.9)

(λ̃L)
[J
R (λ̃L)

K]
S =

1

2
ǫJKLMǫRSTU (λ̃L)

T
L(λ̃L)

U
M ,

and similarly for λ̃R.

In terms of these SO(4, 1)×SO(5) gauge-invariant variables, one can easily construct

the half-BPS vertex operators in a PSU(2, 2|4)-invariant manner. First consider the su-

pergravity state dual to the super-Yang-Mills state Tr((Φ12(0))
n) where ΦJK(x) are the six

super-Yang-Mills scalars and Φ12(0) is the complex scalar located at xm = 0 with charge

+1 with respect to a U(1) subgroup J of the SO(6) R-symmetries. This state is described

by the BRST-invariant vertex operator

V = (λLλR)(
Y12

X12
)n

8∏

A=1

θAδ(Q(θA)) (2.10)

3



where X12 carries +1 dilatation charge, Y12 carries +1 U(1) charge, θA for A = 1 to

8 are the fermionic variables which carry +1
2 dilatation charge and +1

2 U(1) charge, and

(λLλR) ≡ λαLγ
01234
αβ λ

β
R is the unintegrated vertex operator of ghost-number 2 for the radius

modulus.

To verify that (2.10) is BRST-invariant, first note that (λLλR) and
∏8

A=1 θ
Aδ(Q(θA))

are BRST invariant where the operator θAδ(Q(θA)) has the form of a picture-lowering

operator as in [20]. If (∆ + J) charge is the sum of the dilatation and U(1) charge, the

anticommutation of {q, q} only generates a transformation of Y12

X12

when one of the q’s carry

+1 (∆+ J) charge and the other q carries −1 (∆+ J) charge. As will now be shown, this

implies that Y12

X12

is BRST invariant when multiplied by
∏8

A=1 θ
Aδ(Q(θA)).

When the q carrying −1 (∆ + J) charge comes from the BRST operator, the BRST

transformation of g in (2.4) is proportional to Q(θA). And when the q carrying −1 (∆+J)

charge comes from g, the BRST transformation of g in (2.4) is proportional to θA. So in

both cases, the BRST transformation is cancelled by the factor of
∏8

A=1 θ
Aδ(Q(θA)). For

a similar reason, (2.10) is invariant under all supersymmetries except for the 8 q’s which

carry −1 (∆+ J) charge, which are the same 24 supersymmetries that leave invariant the

scalar Φ12(0).

To relate V of (2.10) with the usual unintegrated vertex operator of (2.1), one needs

to hit V with the eight picture-raising operators Q(ξA) where, using Friedan-Martinec-

Shenker bosonization, λ̃A = ηAeφA for A = 1 to 8 are the eight components of λ̃α with +1

(∆+ J) charge and ξA are the conjugate momenta to ηA. More explicitly, one can use the

relation ξ1δ(λ̃
1) = ξ1e

−φ1

= (λ̃1)−1 to write

Q(ξ1)V = [Q, (λLλR)(
Y12

X12
)n
θ1

λ̃1
θ2δ(λ̃2)...θ8δ(λ̃8)]. (2.11)

Note that QV = 0 implies that [Q, (λLλR)(
Y12

X12

)nθ1θ2δ(λ̃2)...θ8δ(λ̃8)] is proportional to

λ̃1, so (2.11) has no poles when λ̃1 = 0. As will be shown in a future paper, the vertex

operator obtained after hitting (2.10) with eight picture-raising operators has the expected

form of (2.1) for the half-BPS state dual to Tr((Φ12(0))
n).

2.2. General non-BPS vertex operators at small radius

For the half-BPS state dual to Tr((Φ12(0))
n), the unintegrated vertex operator of

(2.10) can be expressed in the “zero picture” as

V = (λLλR) C D (
Y12

X12
)n (2.12)
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where C =
∏8

A=1Q(ξA) is the ”picture-raising” operator and D =
∏8

A=1 θ
Aδ(Q(θA))

is the “picture-lowering” operator. Since adding an equal number of picture-raising and

picture-lowering operators is a BRST-trivial operation, one can also write

V = (λLλR)(C D
Y12

X12
)n. (2.13)

And all other half-BPS vertex operators can be obtained by hitting (2.13) with the appro-

priate PSU(2, 2|4) generators.
At zero radius, the closed string states can be represented as “necklaces” made of

“beads” where each bead is a free super-Yang-Mills state. This suggests writing the half-

BPS vertex operator as

V = (λLλR(0)) (2.14)

C(σ1 − ǫ) D(σ1)
Y12

X12
(σ1)C(σ2 − ǫ) D(σ2)

Y12

X12
(σ2)...C(σn − ǫ) D(σn)

Y12

X12
(σn)

where (σ1, ..., σn) are n cyclically ordered points on a small closed string which mark the

locations of the“beads”, the picture-raising operators C are placed between the beads on

the necklace, and the operator (λLλR) is placed at the center of the small necklace. Since

the operators (λLλR), C and D Y12

X12

are all BRST-closed, QV = 0. And by hitting D Y12

X12

with different PSU(2, 2|4) generators at the different beads, V can be easily generalized

for an arbitrary non-BPS state at zero radius to the vertex operator

V = (λLλR(0))C(σ1 − ǫ) E1(σ1) C(σ2 − ǫ) E2(σ2)...C(σn − ǫ) En(σn) (2.15)

where E(σ) is obtained from D(σ) Y12

X12

(σ) by acting with the PSU(2, 2|4) transformation

which takes Φ12(0) into the desired super-Yang-Mills state. Note that for half-BPS states,

the cyclic ordering of the E’s in (2.15) is irrelevant since the E’s have no singular OPE’s

with each other. But for non-BPS states, the E’s have singular OPE’s with each other so

normal-ordering of (2.15) needs to be performed, and different cyclic orderings of the E’s

describe different vertex operators.

3. Free Super-Yang-Mills

3.1. Topological action

As reviewed in the appendix, it was shown in [18] that if one assumes (λLλR) is

non-vanishing so that (λLλR)
−1 is well-defined, the pure spinor AdS5 × S5 superstring

worldsheet action can be expressed as

S = QΛ+R2

∫
d2zB where (3.1)
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B =
1

4
(J3ηJ1 − J3ηJ1)−

(λLηγabλR) + (λLγabηλR)

4(λLλR)
Ja
2 J

b

2 (3.2)

−(λLηγaηJ1)(λLγ
aJ1)

4(λLλR)
+

(λRηγaηJ3)(λRγ
aJ3)

4(λLλR)

and ηαβ ≡ γ01234αβ . At zero radius, the worldsheet action of (3.1) becomes BRST-trivial and

the n-point genus g scattering amplitude An,g reduces to an integral over the worldsheet

zero modes of (x, θ, λ) of the vertex operator insertions, i.e.

An,g = 〈V1(z1)...Vn(zn)〉g (3.3)

where (z1, ..., zn) are arbitrary points on the genus g worldsheet and sufficient powers of

(λLλR)
−1 are included in the vertex operators of (2.15) so that An,g has the appropriate

ghost number to be non-zero at genus g. Although one naively might think one needs to

integrate the vertex operator locations zr over the worldsheet and integrate the parameters

of the genus g worldsheet over Teichmuller moduli space, these integrals are unnecessary

since the worldsheet action is independent of the worldsheet metric [21]. So the amplitudes

are “topological”, i.e. are independent of the choice of zr and Teichmuller parameters. It

will now be argued that (3.3) correctly reproduces the correlation functions of free super-

Yang-Mills computed using the thickened Feynman diagrams.

3.2. Emergence of propagators

The first step will be to argue that the worldsheet splits into regions which are close

to the AdS boundary and regions which are close to the AdS horizon. At the locations

of the picture-lowering operators D, the components of the bosonic worldsheet ghosts

(λ̃AL , λ̃
A
R) with +1 (∆ + J) charge vanish. And at the locations of the picture-raising

operators C, these same ghost components diverge. Note that the relation of (2.6) implies

that λ̃AL ∼ √
zAdSλ

A
L and λ̃AR ∼ √

zAdSλ
A
R where zAdS is the fifth AdS5 coordinate which

measures the distance to the boundary. So if the original SO(4, 1) × SO(5) pure spinor

ghosts (λL, λR) are regular at the locations of these operators, the relation (2.6) implies

that zAdS is near the boundary (i.e. zAdS → 0) at the picture-lowering operator locations

and is near the horizon (i.e. zAdS → ∞) at the picture-raising operator locations.

When zAdS is finite, the exponential of the topological worldsheet action is

exp(−Λ

∫
dτdσ[z−2

AdS∂x
m∂xm + ...]). (3.4)
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Since the action is BRST-trivial, one can take Λ → ∞ so that all non-zero modes of the

worldsheet variables must vanish and only the constant worldsheet modes contribute to the

functional integral. However, when zAdS → ∞, the inverse factor of zAdS in the worldsheet

action means that the four xm variables of +1 dilatation charge and the sixteen θ variables

with +1
2 dilatation charge can be discontinuous. So the worldsheet splits into regions

separated by the zAdS = ∞ discontinuity where the (xm, θα) zero modes can take different

values in the disconnected regions. However, the five S5 variables of zero dilatation charge

and the 16 θα variables with −1
2
dilatation charge have no discontinuities at zAdS → ∞,

so they take the same value in all regions. Therefore, the discontinuities that separate the

different regions are similar to D3-branes located at zAdS = ∞ and a fixed point Y = y0

of S5.

Each of the disconnected regions contains at least one “bead” which is located at

zAdS = 0, so these regions are all near the AdS boundary. Suppose one of the regions

contains r beads, so that its contribution to the amplitude is proportional to

∫
d4x

∫
d11λ

∫
d16θ E1E2...Er|zAdS=0,Y=y0

. (3.5)

Since each E contributes 8 θ’s and there are 16 θ zero modes, one easily sees that (3.5)

vanishes unless r = 2. So each disconnected region must contain precisely two beads.

Therefore, the worldsheet splits into “thickened propagators” near the AdS boundary

which connect two beads, and which are separated by “D3 branes” located at zAdS = ∞
and Y = y0 that connect picture-raising operators. For example, see Figure 1 at the end

of this paper for a worldsheet which splits into three thickened propagators near the AdS

boundary and two D3-brane holes near the AdS horizon.

Furthermore, one can argue by PSU(2, 2|4) symmetry that the contribution of (3.5)

when r = 2 is proportional to the standard propagator for the super-Yang-Mills states

described by E1 and E2. For example, if E1 and E2 correspond to Yang-Mills scalars

ΦJK(x1) and ΦLM (x2) as in (2.10),

∫
d4x

∫
d11λ

∫
d16θ EJK

1 (x1)E
LM
2 (x2)|zAdS=0,Y=y0

(3.6)

∼ ǫJKLM lim
zAdS→0

∫
d4x

∫
d11λf(x, λ)

zAdS

(x− x1)2 + z2AdS

zAdS

(x− x2)2 + z2AdS

where the factor of ǫJKLM comes from integration over the 16 θ’s in E1E2, and the factor of

f(x, λ) comes from writing the 16 δ(λ̃) factors in E1E2 in terms of the (xm, λα) coordinates.
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Note that only the points xm = xm1 and xm = xm2 contribute to (3.6) in the limit zAdS → 0,

and assuming that the factor of f(x, λ) cancels the integration over d4x and d11λ, (3.6)

reproduces the expected propagator ǫJKLM

(x1−x2)2
. It would be interesting to better understand

how to integrate over the λ̃ variables in this topological string and compute the factor of

f(x, λ).

3.3. Topological amplitudes

For the scattering amplitude defined in (3.3), the worldsheet splits into propagators

and holes so that An,g reproduces the standard computation for super-Yang-Mills using

thickened Feynman diagrams in the absence of vertices. For example, Figure 1 describes

the worldsheet of a three-point tree-level amplitude A3,0 where the three vertex operators

correspond to Tr(Φ2) super-Yang-Mills operators.

Furthermore, on a worldsheet of genus g, there is the standard factor of (gS)
2g−2

where gs =
λtHooft

N
is the string coupling constant and N is the number of colors. Using

the ’t Hooft expansion at large N , thickened Feynman diagrams of genus g carry a factor

of N2−2g = λ
2−2g
tHooft(gs)

2g−2. So up to a factor of λ2g−2
tHooft, the genus g string scattering

amplitude at zero radius correctly reproduces the standard Feynman diagram rules for free

super-Yang-Mills with gauge group SU(N).

One can also use this topological string to define the closed-open vertex by computing

the disk amplitude of one closed string state and n open string massless super-Yang-Mills

states. Note that a similar closed-open vertex was defined in [22] for half-BPS states,

which will now be generalized at zero ‘t Hooft coupling to arbirary closed string states.

The closed-open vertex should vanish unless the closed string state is dual to the n super-

Yang-Mills states, i.e. unless the states E1(σ1) ... En(σn) in (2.15) coincide with the

cyclically ordered n super-Yang-Mills states described by the open string vertex operators.

For the worldsheet of this disk amplitude, the ends of the open strings are located at

n D3-branes near the AdS horizon which are connected to the “holes” containing the n

picture-raising operators C(σ) in the closed string vertex operator of (2.15). For example,

see Figure 2 at the end of this paper for a disk amplitude with three open string vertex

operators.
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4. Cubic Super-Yang-Mills Interaction

4.1. Commutators from B terms

Since the BRST-trivial term in the worldsheet action generates the free super-Yang-

Mills diagrams and the complete AdS5 × S5 worldsheet action is

S = QΩ+R2

∫
dτdσB, (4.1)

it is natural to conjecture that
∫
dτdσB generates the cubic vertex in the super-Yang-Mills

Feynman diagrams where R2 =
√
g2YMN =

√
λtHooft,

B =
1

4
ηαβJ

α
1 ∧ Jβ

3 − (λLηγabλR) + (λLγabηλR)

8(λLλR)
Ja
2 ∧ Jb

2 (4.2)

+
(λLγ

aJ1) ∧ (λLηγaηJ1)

8(λLλR)
+

(λRγ
aJ3) ∧ (λRηγaηJ3)

8(λLλR)
,

and JA∧JB ≡ JA
σ J

B
τ −JA

τ J
B
σ . Note that by introducing an auxiliary field Dab for a, b = 0

to 9, the complete super-Yang-Mills action can be expressed as the sum of the quadratic

and cubic terms

SYM =

∫
d4xTr(DabD

ab + λtHooftψ
αγaαβ[Aa, ψ

β] + λtHooftD
ab[Aa, Ab]) (4.3)

where Aa = 1
λtHooft

∂a +Aa for a = 0 to 3 are the four covariant spacetime derivatives and

Aa = ΦJK for a = 4 to 9 are the six scalars.

To verify this conjecture, first divide the worldsheet integration of B into small squares

of length ∆τ and height ∆σ. Each term in B has the form

∫
dτ

∫
dσ[f(∂τg∂σh− ∂σg∂τh)] = (4.4)

∆τ∆σf(τ, σ)[
g(τ +∆τ, σ)− g(τ, σ)

∆τ

h(τ, σ +∆σ)− h(τ, σ)

∆σ

−g(τ, σ+∆σ)− g(τ, σ)

∆σ

h(τ +∆τ, σ)− h(τ, σ)

∆τ
]

= f(τ, σ)[g(τ +∆τ, σ)h(τ, σ+∆σ)− h(τ +∆τ, σ)g(τ, σ+∆σ)]

+f(τ, σ)g(τ, s)[h(τ +∆τ, σ)− h(τ, σ +∆σ)]− f(τ, s)h(τ, s)[g(τ +∆τ, σ)− g(τ, σ+∆σ)].

9



If the four sides of this square are interpreted as a necklace for a closed string state

whose beads are the four corners, the terms in B can be expressed as

〈f(σ1)g(σ2)h(σ3)− f(σ1)h(σ2)g(σ3)〉 (4.5)

+〈f(σ1)g(σ1)(h(σ2)− h(σ3))〉 − 〈f(σ1)h(σ1)(g(σ2)− g(σ3))〉

= 〈f(σ1)g(σ2)h(σ3)− f(σ1)h(σ2)g(σ3)〉

where the expression is assumed to depend only on the cyclic order of the beads (σ1 ≤
σ2 ≤ σ3 ≤ σ4) since the theory is topological when λtHooft = 0. In other words, the factor

of ∂τg∂σh− ∂σg∂τh in B has turned into the commutator [g, h] in the cubic vertex. This

is reminiscent of the Poisson bracket [23] which relates the supermembrane action and

M(atrix) theory.

By expanding to lowest order in the worldsheet variables, evidence will now be pre-

sented that B of (4.2) indeed generates the cubic term in the super-Yang-Mills action of

(4.3). Note that both
∫
d2z B and the cubic super-Yang-Mills vertex are in the BRST

cohomology and are PSU(2, 2|4) invariant, so showing equivalence at the lowest non-trivial

order is strong evidence for equivalence to all orders in the worldsheet variables.

4.2. Expansion of B

To compare with the cubic super-Yang-Mills vertex of (4.3), it will be useful to expand

B to lowest order in the worldsheet variables. Although it might seem surprising that this

expansion makes sense at zero radius, note that the parameter in front of the topological

action is not the AdS radius and can be taken as large as desired. In this limit, the first

term in B is

1

4
ηαβJ

α
1 ∧ Jβ

3 ∼ 1

4
ηαβdθ

α
L ∧ dθβR +

1

4
γaαβxa(dθ

α
L ∧ dθβL − dθαR ∧ dθβR) + ... (4.6)

→ 1

4
γaαβxa({θαL, θβL} − {θαR, θβR}) + ...

where ... denotes terms higher-order in the worldsheet fields, total derivative terms are

ignored, and the anti-commutators come from the discussion of the previous subsection.

Similarly, the second term in B is

(λLηγabλR) + (λLγabηλR)

8(λLλR)
Ja
2 ∧ Jb

2 ∼ (λLηγabλR) + (λLγabηλR)

8(λLλR)
[xa, xb] + ..., (4.7)

10



and the third term in B is

(λLγ
αJ1) ∧ (λLηγaηJ1) + (λRγ

aJ3) ∧ (λRηγaηJ3)

8(λLλR)
∼ (4.8)

(λLγ
α)α(λLηγaη)β
8(λLλR)

{θαL, θβL}+
(λRγ

α)α(λRηγaη)β
8(λLλR)

{θαR, θβR}+ ...

Note that these terms are invariant under constant shifts of θ as expected because of

supersymmetry.

So to lowest order in the worldsheet variables, the closed vertex operator is described

by the sum of (4.6), (4.7) and (4.8), and evidence will now be presented that these terms

generate the cubic super-Yang-Mills vertex of (4.3). The most direct method for showing

this would be to compare these terms with the vertex of (2.15) where E1, E2 and E3 are

chosen to correspond to the three super-Yang-Mills fields in the vertex. But the explicit

form of E has not yet been worked out for the gluinos ψα or for the auxiliary fields Dab.

A more indirect method is to compute the open-closed amplitude defined in Figure 2

where the three open strings describe the super-Yang-Mills states in the cubic vertex and

the closed vertex operator is B. Using the OPE’s from the topological action of these open

string vertex operators with the terms in the closed vertex operator, it should be possible

to compute explicitly this disk amplitude. In the pure spinor formalism, the integrated

vertex operator for the gluon Aa and gluino ψα is

Vopen =

∫
dz[Aa(∂x

a + ...) +
1

4
Fab((wγ

abλ) + ...) + ψα(pα + ...)] (4.9)

where wα is the conjugate momentum for λα and pα is the conjugate momentum for θα.

So using the naive free field OPE’s from flat space of this open string vertex operator

with the closed vertex operator of B, one sees that the first term (4.6) in B can generate

the cubic vertex γaαβAa{ψα, ψβ} and the second term (4.7) in B can generate the cubic

vertex F ab[Aa, Ab]. The third term (4.8) in B does not seem to contribute at this order to

the cubic super-Yang-Mills vertex, but is needed for BRST invariance of the closed vertex

operator. So evidence has been presented here using naive free field OPE’s that the cubic

super-Yang-Mills vertex is indeed generated by B, and it should be possible to confirm

this in the near future by explicit computations using the topological action.
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5. Summary

In this paper, the pure spinor worldsheet action for the AdS5×S5 superstring at small

radius was expanded around the topological action of (3.1). At zero radius, it was argued by

analyzing the structure of the pure spinor vertex operators that the string worldsheet splits

into regions near the AdS boundary which describe the Feynman propagators connecting

the free super-Yang-Mills states, and regions near the AdS horizon which describe the

holes of the Feynman diagrams. And at small radius, evidence was presented that the

deformation of the topological action described by an antisymmetric B term reproduces the

cubic super-Yang-Mills vertex of the Feynman diagrams, thereby proving the Maldacena

conjecture at small ‘t Hooft coupling.

To convert these sketchy arguments into a rigorous proof of the conjecture, one would

need to further study this topological action and develop methods for performing explicit

computations. Although it appears to be consistent to allow inverse powers of the ghost

combination (λLλR) in order to define this topological action and compute topological

amplitudes, it would be important to better understand the BRST cohomology associated

to this enlarged Hilbert space and to show how to perform computations in the presence

of these inverse powers of bosonic ghosts. It would also be interesting to relate these

topological string computations with the usual string computations involving integrated

vertex operators. A useful clue in determining the relation between the topological and

usual string amplitude computations may come from the fact that (λLλR) and
∫
d2zB are

respectively the unintegrated vertex operator and integrated vertex operator for the radius

modulus.

Acknowledgements: I would like to thank Andrei Mikhailov, Lubos Motl, Leonardo

Rastelli, Warren Siegel, Cumrun Vafa, Herman Verlinde, Edward Witten and especially

Juan Maldacena and Pedro Vieira for useful discussions, and CNPq grant 300256/94-9 and

FAPESP grants 2016/01343-7 and 2014/18634-9 for partial financial support.

6. Appendix: Review of Topological AdS5 × S5 Action

In this appendix, the construction of [18] of the topological AdS5 × S5 action will be

reviewed and a minor error will be corrected concerning a term in B. Comments will then

be made on the relation to a recent paper of Mikhailov [24] on a similar topological action.
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For the AdS5 × S5 background, the worldsheet action is

S =

∫
d2z[

1

2
ηabJ

a
2 J

b

2 − ηαβ(
3

4
Jα
3 J

β

1 +
1

4
J
α

3J
β
1 ) (6.1)

−wLα∇λL + wRα∇λR − 1

8
η[ab][cd](wLγ

abλL)(wRγ
cdλR) + ηαβw∗

Lαw
∗
Rβ ]

where η[ab][cd] = +ηa[cηd]b if (a, b, c, d) are in AdS5, η[ab][cd] = −ηa[cηd]b if (a, b, c, d) are in

S5, and w∗
Lα and w∗

Rα are fermionic antifields which are constrained to satisfy

w∗
Lαγ

αβ
a ηβγλ

γ
R = 0, w∗

Rαγ
αβ
a ηβγλ

γ
L = 0 (6.2)

and are introduced so that the BRST transformations are nilpotent offshell.

The nilpotent BRST transformations which leave (6.1) invariant are

QJa
2 = (λLγ

aJ1) + (λRγ
aJ3), QJα

1 = ∇λαL − (λRγaη)
αJa

2 , QJα
3 = ∇λαR + (λLγaη)

αJa
2 ,

(6.3)

QwLα = ηαβJ
β
3 + w∗

Lα, QwRα = ηαβJ
β

1 + w∗
Rα,

Qw∗
Lα = −ηαβ

∂L

∂wRβ

, Qw∗
Rα = ηαβ

∂L

∂wLβ

.

As discussed in [18], one can define a topological AdS5 × S5 action as

Stop =

∫
d2zQ(Ψ) (6.4)

=

∫
d2z[

(λLηγaγbλR) + (λLγaγbηλR)

4(λLλR)
Ja
2 J

b

2 − J3ηJ1

−wLα∇λαL + wRα∇λαR − 1

8
η[ab][cd](wLγ

abλL)(wRγ
cdλR) + ηαβw∗

Lαw
∗
Rβ

+
(λLηγ

aηJ1)(λLγaJ1)

4(λLλR)
− (λRηγ

aηJ3)(λRγaJ3)

4(λLλR)
]

where2

Ψ =
1

4(λLλR)
(λRηγa)

α(
1

2
J
a

2ηJ3 + wLα(λLγ
aJ1))−

1

2
wLαJ

α

1 (6.5)

− 1

4(λLλR)
(λLηγa)

α(
1

2
Ja
2 ηJ1 − wRα(λRγ

aJ3)) +
1

2
wRαJ

α
3

+
1

2
ηαβ(wLαw

∗
Rβ − w∗

LαwRβ).

2 The last line of (6.4) and B were mistakenly omitted in [18].
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Comparing (6.1) with (6.4), one finds that the pure spinor worldsheet action in an

AdS5 × S5 background can be expressed as S =
∫
d2z[Q(Ψ) +B] where

B =
1

4
(J3ηJ1 − J3ηJ1)−

(λLηγabλR) + (λLγabηλR)

4(λLλR)
Ja
2 J

b

2 (6.6)

−(λLηγ
aηJ1)(λLγaJ1)

4(λLλR)
+

(λRηγ
aηJ3)(λRγaJ3)

4(λLλR)

is antisymmetric under the exchange of z and z. Note that in the flat space limit, B of

(6.6) reduces up to total derivatives to the BRST-closed expression

Bflat = LWZ − (λLηγabλR) + (λLγabηλR)

4(λLλR)
ΠaΠ

b
(6.7)

+
(λLηγ

adR)(λLγa∂θL)

4(λLλR)
+

(λRηγ
adL)(λRγa∂θR)

4(λLλR)

where Πa and dα are the usual supersymmetric bosonic and fermionic momenta in flat

space and LWZ is the antisymmetric Wess-Zumino term in the Green-Schwarz flat space

action.

In a recent paper [24], Mikhailov considered a slightly different construction of the

AdS5 × S5 topological action S =
∫
d2z[Q(Ψ̃) + B̃] where

Ψ̃ = Ψ +
1

8(λLλR)
(λRηγaη)αJ

a
2 ∧ Jα

3 +
1

8(λLλR)
(λLηγaη)αJ

a
2 ∧ Jα

1 , (6.8)

B̃ = B − (λLγ
aJ1) ∧ (λRηγaηJ3)

4(λLλR)
+

(λLηγabλR) + (λLγabηλR)

8(λLλR)
Ja
2 ∧ Jb

2 (6.9)

−(λLηγ
aηJ1) ∧ (λLγaJ1)

8(λLλR)
− (λRηγ

aηJ3) ∧ (λRγaJ3)

8(λLλR)

=
1

4
ηαβJ

α
3 ∧ Jβ

1 − (λLγ
aJ1) ∧ (λRηγaηJ3)

4(λLλR)
(6.10)

and Ψ and B are defined in (6.5) and (6.6). Although the expression of B̃ in (6.10) is

simpler than the expression for B in (6.6), the topological construction of [24] has the

disadvantage that it cannot be obtained by deforming the flat space worldsheet action. In

other words, B̃ of (6.10) has no flat space limit analogous to (6.7) which is BRST-closed

and contains the usual Green-Schwarz Wess-Zumino term LWZ .
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Fig. 1: 3-point amplitude on sphere where orange circles are closed string vertex

operators, blue strips are thickened propagators near the AdS boundary, white

regions are D3-brane holes near the AdS horizon, black dots are picture-raising

operators, and red dots are beads E on the closed strings

Fig. 2: Open-closed amplitude on disk where purple lines are open string vertex

operators
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