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We explore the dynamics of FLRW cosmologies which consist of dark matter, radiation and
dark energy with a quadratic equation of state. Standard cosmological singularities arise due to
energy conditions which are violated by dark energy, therefore we focus our analysis on non-singular
bouncing and cyclic cosmologies, in particular focusing on the possibility of closed models always
having a bounce for any initial conditions. We analyse the range of dynamical behaviour admitted
by the system, and find a class of closed models that admit a non-singular bounce, with early-
and late-time accelerated expansion connected by a decelerating phase. In all cases, we find the
bouncing models are only relevant when dark matter and radiation appear at a certain energy scale,
and so require a period such as reheating. We then investigate imposing an upper bound on the
dark matter and radiation, such that their energy densities cannot become infinite. We find that
bounces are always the general closed model, and a class of models exist with early- and late-time
acceleration, connected by a decelerating phase. We also consider parameter values for the dark
energy component, such that the discrepancy between the observed value of Λ and the theoretical
estimates of the contributions to the effective cosmological constant expected from quantum field
theory would be explained. However, we find that the class of models left does not allow for an
early- and late-time accelerated expansion, connected by a decelerating period where large-scale
structure could form. Nonetheless, our qualitative analysis serves as a basis for the construction of
more realistic models with realistic quantitative behaviour.

I. INTRODUCTION

The Λ-cold-dark-matter (ΛCDM) model has provided
a successful framework to describe the history of the
Universe, and is consistent with a wealth of observa-
tional data [1, 2]. Despite its robustness, there are
problems which require addressing. The issue of the
inevitability of a singularity as the origin of our Uni-
verse has been debated for many years. Assuming the
strong energy condition holds, singularities appear to
be unavoidable [3–10], however their current interpre-
tation is that they represent points where General Rel-
ativity breaks down [11–14]. Broadly speaking, there
are two ways to tackle this problem: solve the singu-
larity problem by developing a modified theory of grav-
ity to unify General Relativity with this high energy
regime, or avoid the singularity by breaking the stan-
dard energy conditions in an alternative origin story of
the Universe in General Relativity. For the latter, non-
singular bouncing models have been proposed as a way
to evade a singularity [15–27].

Another problem facing ΛCDM is that of Λ itself. Ob-
servations have provided strong evidence for the acceler-
ated expansion of our Universe [28, 29], which requires
a component that violates the strong energy condition
[9], known as dark energy. The cosmological constant
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Λ is the simplest explanation we have for dark energy,
however the observed value of Λ is at odds by up to
120 orders of magnitude with theoretical estimates of
the contributions to the effective cosmological constant
expected from quantum field theory (QFT) [30–32].

Taking into account a dynamic dark energy compo-
nent beyond Λ, it is worth considering whether a bounce
can be produced. A non-interacting vacuum is equiva-
lent to Λ in General Relativity [33], so a simple exten-
sion is to consider a vacuum that interacts with other
components, thereby becoming dynamical [34]. It has
been shown that non-singular bounces can arise for both
a linear and non-linear interaction of a vacuum with a
perfect fluid in Friedmann-Lemâıtre-Robertson-Walker
(FLRW) cosmologies [35].

For non-interacting models, dark energy represented
by a single fluid with a quadratic equation of state
(EoS) in FLRW can admit nonsingular bounces with
the right combination of parameters [36]. In addition, a
quadratic EoS finds motivations from e.g. brane-world
models [37–41], loop quantum cosmology [42, 43] and k-
essence [44, 45] (see also [36, 46] and references therein).
In general, a nonlinear EoS implies the existence of ef-
fective cosmological constants, appearing as asymptotic
states of the dynamical dark energy. Although simple,
analysing a quadratic EoS serves well to illustrate the
general qualitative behaviour of a system that can ad-
mit two effective cosmological constants, a high energy
one acting as a repellor and a low energy one acting as
a future attractor for the expanding models. Therefore,
it is useful to understand the global dynamics as it is
only dependent on the existence of the effective cosmo-
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logical constants and not on the specific model used to
produce them.

In this paper, we analyse a subset of the quadratic
EoS from [36, 46] which admit two effective cosmological
constants and produce a bounce, extending the scenario
to include non-interacting dark matter and radiation in
order to understand the effect these components have
on the bounce. In particular, we would like to investi-
gate whether all closed models will bounce when matter
and radiation are included, thereby providing a scenario
where the bounce is generic, i.e. does not depend on
initial conditions. We would also like to understand
whether such a model could alleviate the cosmological
constant problem, and unite theoretical estimates from
QFT with observational constraints on Λ. We restrict
our analysis such that the dark energy has an effective
EoS parameter satisfying w > −1, so that it decays
during the expansion between the high energy and low
energy cosmological constants, even allowing a decel-
erated phase in general, and do not consider phantom
dark energy (w < −1). The analysis for this paper is
available through GitHub, provided the reader has a
Mathematica license [47].

The paper is organized as follows. In Section II we
present the system of equations we are analysing in
terms of dimensionless variables as well as in compact-
ified form. In Section III we show the sub-manifolds
of the system, where the dimensions of the dynamics is
reduced and we explore the stability of the fixed points.
The sub-manifolds of the system include cases analo-
gous to ΛCDM, and ones in which only dark energy is
present which highlight the dynamics before including
dark matter and radiation. In Section IV we study the
dynamics of the full system, where both dark matter
and radiation are present in standard form, i.e. with
EoS parameters wm = 0 and wr = 1/3. We show that a
class of closed models exist where bounces are obtained
with early- and late-time accelerated expansion phases,
connected by a decelerating phase. The caveat with
this full system is that not all closed models bounce,
and above a certain energy scale matter and radiation
become dominant, and, depending on the initial con-
ditions, a subset of closed models evolve between two
singularities. Therefore, these models require a post-
bounce process such as reheating, when matter and ra-
diation are created. In this spirit, in Section V we re-
consider the equations for dark matter and radiation,
introducing scale-dependent EoS’s that limit their en-
ergy densities to an upper bound, i.e. an energy scale
at which they appear, such that at lower energies we
still have wm → 0 and wr → 1/3. We present the phase
spaces for the new system of equations, showing that
in general all closed models bounce. We find that it is
possible for these models to evolve with early- and late-
time accelerated expansion separated by a deceleration
period, however the cosmological constant problem can-
not be solved simultaneously. We conclude in Section
VI. In this paper, we employ natural units such that

8πG = c = 1.

II. COSMOLOGICAL DYNAMICAL SYSTEM

A. Cosmology with nonlinear EoS dark energy

FLRW models with no cosmological constant term
in Einstein’s field equations evolve according to a dy-
namical system, consisting of the energy conservation
equations for each component and the Raychaudhuri
equation. We consider the dynamics of a universe filled
with dark energy, pressureless dark matter and radia-
tion, which evolve according to

ρ̇x = −3H(ρx + Px) (1)

ρ̇m = −3Hρm (2)

ρ̇r = −4Hρr , (3)

where ρx and Px are the energy density and isotropic
pressure of dark energy, ρm is the energy density of
dark matter and ρr is the energy density of radiation;
overdots are derivatives with respect to time t. H is
the Hubble expansion function, and the Raychaudhuri
equation describing it’s evolution is

Ḣ = −H2 − 1

6
(ρx + 3Px + ρm + 2ρr) . (4)

We assume that the dark energy EoS is barotropic,
Px = Px(ρx), with Px(ρx) ≥ −ρx, such that Eq. (1) has
two fixed points (ρ̇x = 0), corresponding to two effective
cosmological constants:

Px(ρΛ) = −ρΛ, Px(ρ∗) = −ρ∗. (5)

It follows from the assumption Px(ρx) ≥ −ρx that
the dark energy density decreases/increases during a
period of expansion/contraction. Then, during expan-
sion (H > 0), we take ρΛ to represent the attractor at
low energy close to the dark energy density we observe
today, and ρ∗ the repellor at high energy; their roles
are inverted during contraction. We assume ρ∗ is pos-
itive and is an energy scale between the Planck scale
and that typical of inflation, to ensure the evolution
is always classical, but does not interfere with particle
production at lower energies.

In this paper we assume the same quadratic EoS used
in [36, 46], which is the simplest non-linear case to study
and, as we said in the introduction (see also [36, 46]), has
other motivations from various scenarios [37–45]. With
respect to [36, 46], we restrict parameters such that the
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linear term is always positive, α > 0, the quadratic
term is always negative, β = −1/ρ∗, and the constant
pressure term is negative, P0 = −ρΛ. With this choice
of parameters our EoS is

Px = −ρΛ +
ρΛ

ρ∗
ρx −

ρ2
x

ρ∗
. (6)

This secures the two effective cosmological constants
in Eq. (5), as now the energy conservation equation of
the dark energy (1) can be written as

ρ̇x = −3H(ρx − ρΛ)

(
1− ρx

ρ∗

)
. (7)

We note however that the qualitative dynamics that
follows from the the specific EoS (6) is going to be rep-
resentative of the dynamics for any EoS satisfying the
condition Px(ρx) + ρx > 0 for ρΛ < ρx < ρ∗, i.e. be-
tween the two fixed points (5) satisfying Px(ρx) = −ρx,
as these conditions are enough to describe any mono-
tonically decreasing ρx between ρ∗ and ρΛ during ex-
pansion, see e.g. the EoS in [48].

The effective EoS parameter wx = Px/ρx for the dark
energy is as

wx = −ρΛ

ρx
+
ρΛ

ρ∗
− ρx
ρ∗
, (8)

and the EoS parameters for dark matter and radiation
are wm = 0 and wr = 1/3, respectively. This system
admits a first integral, the Friedmann equation, which
is written in terms of each energy density as

H2 =
ρm
3

+
ρr
3

+
ρx
3
− k

a2
, (9)

where k is the curvature and a is the cosmic scale factor,
connected to the Hubble expansion function through the
expression H = ȧ/a. We set a0 = 1 today, therefore k
is an arbitrary constant which is positive, negative or
zero for closed, open and flat models, respectively.

B. Dimensionless Variables

Examining the equations above, a dimensional anal-
ysis suggests that the dynamics really only depends on
a single parameter, the dimensionless ratio of the two
effective cosmological constants, if we use dimensionless
variables. Following [36, 46], we define these variables
as:

x =
ρx
ρ∗

y =
H
√
ρ∗

z =
ρm
ρ∗

r =
ρr
ρ∗
R =

ρΛ

ρ∗
η =
√
ρ∗t.

(10)

The variable R is the ratio of the low energy effective
cosmological constant ρΛ to the high energy effective
cosmological constant ρ∗ and takes values in the range
(0, 1), x is the normalised dark energy density, vary-
ing between the two dimensionless effective cosmologi-
cal constants in the range [R, 1]. The variable y is the
normalised Hubble parameter, z the normalised dark
matter energy density, r the normalised radiation en-
ergy density and η the normalised time variable. We
consider the region of phase space where the energy den-
sities for matter and radiation are always positive, i.e.
z, r > 0. Equations (2), (3) and (7) then become

z′ = −3yz (11)

r′ = −4yr (12)

x′ = −3y(x−R)(1− x) , (13)

where the primes indicate differentiation with respect to
η. The Raychaudhuri equation (4) can now be expressed
as

y′ = −y2 − 1

6
[z + 2r − 3R+ (1 + 3R)x− 3x2] , (14)

and the Friedmann equation (9) becomes

y2 =
x

3
+
z

3
+
r

3
− k

ρ∗a2
. (15)

The effective EoS parameter for the dark energy (8) in
dimensionless variables becomes

wx = −R
x

+R− x, (16)

therefore, the necessary condition for acceleration is

− R
x

+R− x < −1/3. (17)

We can also express the evolution of the cosmic scale
factor a using our dimensionless variables

a′ = ay . (18)

The Friedmann equation (15) can then be rearranged
for a kinetic term a′2/2, a potential U and total energy
E

a′2

2
+ U = E , (19)
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where U is given by

U = −a
2

6
(x+ z + r) (20)

and E by

E = − k

2ρ∗
. (21)

E is zero, positive and negative for flat, open and closed
models, respectively.

From Eq. (18) and Eq.s (11) and (12), we get the
standard behaviour for matter and radiation, z(a) ∼
a−3 and r(a) ∼ a−4, respectively. For x (13), we obtain

x(a) =
a−3(1−R) + caR
a−3(1−R) + ca

, (22)

where the constant of integration is

ca =
1− x0

x0 −R
. (23)

In the following, however, we will express z, r and a as
functions of x.

C. Compactified Variables

In our system, y takes values in the range (−∞,∞),
and z and r in the range [0,∞). x is already limited
to the range [R, 1]. In order to analyse the full dynam-
ics, it is desirable to deal with a compact phase space.
Therefore, we compactify the y, z and r variables in the
following way:

Y =
y√

1 + y2
(24)

Z =
z

1 + z
(25)

R =
r

1 + r
, (26)

so that Y takes values in the range [−1, 1] and R and
Z in the range [0, 1]. Using these variables, Eq. (11) -
(14) become

Z ′ =
−3Y Z(1− Z)√

1− Y 2
(27)

R′ =
−4Y R(1−R)√

1− Y 2
(28)

x′ =
−3Y (x−R)(1− x)√

1− Y 2
(29)

Y ′ = −Y 2
√

1− Y 2 − (1− Y 2)
3
2

6

×
[

Z

1− Z
+

2R

1−R
+ x(1 + 3R)− 3R− 3x2

]
, (30)

and the Friedmann equation (15) can be expressed as

Y 2

1− Y 2
=
x

3
+

Z

3(1− Z)
+

R

3(1−R)
− k

ρ∗a2
. (31)

Now, setting a0 = 1, we find

k

ρ∗
=
x0

3
+

Z0

3(1− Z0)
+

R0

3(1−R0)
− Y 2

0

1− Y 2
0

. (32)

Finally, the potential U (20) in terms of compact vari-
ables is given by

U = −a
2

6

(
x+

Z

1− Z
+

R

1−R

)
. (33)

III. SUB-MANIFOLDS OF THE SYSTEM

To analyse our autonomous dynamical system, we
first need to find the sub-manifolds and the fixed points,
and determine their linear stability character [49–51].
The fixed points u∗j satisfy fi(u

∗
j ) = 0, where fi are

the first-order derivatives of the independent variables
uj with respect to time. We then linearize about each
fixed point, first finding the Jacobian matrix, which has
the form

Mij =
∂fi
∂uj

. (34)

Evaluating this Jacobian matrix at each of the fixed
points and finding the eigenvalues then tells us the sta-
bility of the fixed points. If the eigenvalues have non-
zero real parts, the fixed point is said to be hyperbolic.
If all real parts of the eigenvalues are positive, then the
fixed point is a repellor, and if the eigenvalues have neg-
ative real parts, then the fixed point is an attractor. If
there are positive and negative real parts of the eigen-
values, then the fixed point is a saddle point or a cusp.
Finally, if the eigenvalues are purely imaginary, and the
real parts are therefore zero, then the fixed point is a
centre if the system is linear. For a non-linear system
this requires verification from numerical integration and
plots of the phase space. The case of complex eigenval-
ues is not relevant here.
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Sub-manifold Fixed Points Name Eigenvalues Stability Character

x = 1, Z = 0 Y = ± 1
2 , R = 0 dS1±

∓ 4√
3

∓ 2√
3

 Attractor/Repellor

Y = 0, R = 1
2 E

 2√
3

− 2√
3

 Saddle

Y = ±1, R = 0 dS2± - Saddle

Y = ±1, R = 1 S± - Repellor/Attractor

x = 1, R = 0 Y = ± 1
2 , Z = 0 dS1±

∓
√

3

∓ 2√
3

 Attractor/Repellor

Y = 0, Z = 2
3 E

 1

−1

 Saddle

Y = ±1, Z = 0 dS2± - Saddle

Y = ±1, Z = 1 S± - Repellor/Attractor

x = 1 Y = ± 1
2 , Z = 0, R = 0 dS1±


∓ 4√

3

∓
√

3

∓ 2√
3

 Attractor/Repellor

Y = 0, R = −2+3Z
−4+5Z E


0√

8−9Z
6(1−Z)

−
√

8−9Z
6(1−Z)

 Saddle

Y = ±1, Z = 0, R = 0 dS2± - Saddle

Y = ±1, Z = 1, R = 1 S± - Repellor/Attractor

x = R, Z = 0 Y = ±
√
R

3+R , R = 0 dS1±

∓ 4
√
R√
3

∓ 2
√
R√
3

 Attractor/Repellor

Y = 0, R = R
1+R E

 2
√
R

3

− 2
√
R

3

 Saddle

Y = ±1, R = 0 dS2± - Saddle

Y = ±1, R = 1 S± - Repellor/Attractor

x = R, R = 0 Y = ±
√
R

3+R , Z = 0 dS1±

∓
√

3R

∓ 2
√
R√
3

 Attractor/Repellor

Y = 0, Z = 2R
1+2R E


√
R

−
√
R

 Saddle

Y = ±1, Z = 0 dS2± - Saddle

Y = ±1, Z = 1 S± - Repellor/Attractor

x = R Y = ±
√
R

3+R , Z = 0, R = 0 dS1±


∓ 4
√
R√
3

∓
√

3R

∓ 2
√
R√
3

 Attractor/Repellor

Y = 0, R = Z−2R+2ZR
−2+3Z−2R+2ZR E


0√

8R−Z(1+8R)
6(1−Z)

−
√

8R−Z(1+8R)
6(1−Z)

 Saddle

Y = ±1, R = 0 dS2± - Saddle

Y = ±1, R = 1 S± - Repellor/Attractor
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Sub-manifold Fixed Points Name Eigenvalues Stability Character

Z = 0, R = 0 Y =
√
R

3+R , x = R dS1±

 ∓ 2
√
R√
3

∓
√

3R(1−R)

 Attractor/Repellor

Y = ± 1
2 , x = 1 dS2±

 ∓ 2√
3

±
√

3(1−R)

 Saddle

Y = 0, x = 1
6 (1 + 3R±

√
1− 30R+ 9R2) E


√
−1+30R−9R2∓(1+3R)

√
1−30R+9R2

18

−

√
−1+30R−9R2∓(1+3R)

√
1−30R+9R2

18

 Saddle, Cusp or Centre

Y = ±1, x = R dS3± - Saddle

Y = ±1, x = 1 dS4± - Repellor/Attractor

Z = 0 Y = ±
√
R

3+R , x = R, R = 0 dS1±


∓ 4
√

R√
3

∓ 2
√
R√
3

∓
√

3R(1−R)

 Attractor/Repellor

Y = 0, R = −x+3x2+3R−3xR
2−x+3x2+3R−3xR

E


0√

x(9R2+18R−1)−x2(27R+9)+18x3+9R(1−R)
6

−
√

x(9R2+18R−1)−x2(27R+9)+18x3+9R(1−R)
6

 Saddle

Y = ±1, x = R, R = 0 dS2± - Saddle

Y = ±1, x = 1, R = 1 S± - Repellor/Attractor

R = 0 Y = ±
√
R

3+R , x = R, Z = 0 dS1±


∓
√

3R

∓ 2
√
R√
3

∓
√

3R(1−R)

 Attractor/Repellor

Y = 0, Z = −x+3x2+3R−3xR
1−x+3x2+3R−3xR

E


0√

x(7R+3R2)−x2(9R+4)+6x3+R(2−3R)
2

−
√

x(7R+3R2)−x2(9R+4)+6x3+R(2−3R)
2

 Saddle

Y = ±1, x = R, Z = 0 dS2± - Saddle

Y = ±1, x = 1, Z = 1 S± - Repellor/Attractor

k = 0 Y = ±
√
R

3+R , x = R, R = 0 (Z = 0) dS±


∓ 4
√
R√
3

∓
√

3R

∓
√

3R(1−R)

 Attractor/Repellor

Y = 0, R = 3x2−3Rx+3R
1+3x2−3Rx+3R

E


0√

x(5R+3R2)−x2(2+9R)+6x3+R(4−3R)
2

−
√

x(5R+3R2)−x2(2+9R)+6x3+R(4−3R)
2

 Saddle

Y = ±1, x = R, R = 0 (Z = 1) S1± - Saddle

Y = ±1, x = 1, R = 1 (Z = 0) S2± - Repellor/Attractor

TABLE I: The sub-manifolds of the system with their fixed points, eigenvalues and stability character. E denotes an Einstein universe, dS± an
expanding (+) or contracting (-) de-Sitter universe, and S± a singularity with infinite expansion (+) or contraction (-).

We also classify the fixed points by the type of uni-
verse model they represent. de Sitter models correspond
to a cosmological constant and constant energy den-
sity of matter and radiation, which in our system corre-
sponds to x′ = Z ′ = R′ = 0. Y can vary for positively
and negatively curved de Sitter models. For flat mod-
els, Y is constant, Y ′ = 0, giving rise to de Sitter fixed
points. These occur at the effective cosmological con-

stants x = R and x = 1, and when Z = R = 0.

An Einstein universe is static, and in our system is
represented by fixed points at Y ′ = Y = 0. Finally,
our system admits singularities, which occur when the
energy densities of matter and radiation become infinite
at Z = R = 1.

In the following subsections we consider the sub-
manifolds of the system, which simplifies the dynamics
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by reducing the dimensions of the system [52]. This
helps us to understand the conditions for the existence
of each fixed point, and understand their nature. A
summary of the fixed points of each sub-manifold, along
with their eigenvalues and stability character, can be
found in Table I. The fixed points labelled E represent
a static Einstein universe and the fixed points labelled
dS± represent spatially flat expanding (+) and contract-
ing (-) de-Sitter models. S± denotes singularities with
infinite expansion (+) or contraction (-) and infinite en-
ergy density. Note we cannot compute the eigenvalues
of any fixed point at Y = ±1, as the Jacobian becomes
singular and we therefore cannot Taylor expand around
them. However, from the Raychaudhuri equation (30),
we find that Y ′ is always negative along the de Sitter
lines x = R and x = 1.

A. ΛCDM Dynamics

We begin with the sub-manifolds with an effective
cosmological constant and so are analogous to ΛCDM,
except here x = 1 and x = R are asymptotic values
rather than true constants. In each of these cases, x′ = 0
(29).

1. x = 1

We begin with the x = 1 sub-manifold. The resulting
dynamics is 3-dimensional (3-D), given by the equations
for dark matter (27), radiation (28), and the Hubble
variable (30), which reduces to

Y ′ = −Y 2
√

1− Y 2 − (1− Y 2)
3
2

6

×
(

Z

1− Z
+

2R

1−R
− 2

)
. (35)

In this case, the Friedmann equation (31) becomes

Y 2

1− Y 2
=

1

3
+

Z

3(1− Z)
+

R

3(1−R)
− k

ρ∗a2
, (36)

and the potential (33) is

U = −a
2

6

(
1 +

Z

1− Z
+

R

1−R

)
. (37)

For the sub-manifolds where x is a constant, we express
a in terms of Z. Integrating a′ (18) with respect to Z
(27), we find

a =

(
1− Z
Z

Z0

1− Z0

) 1
3

. (38)

We can then solve for the fixed points of the system.
There are de Sitter fixed points where Z = R = 0, and
Y = ±1/2 and Y = ±1. The fixed points at Y = ±1
and at Z = R = 0 are coordinate singularities of the
de Sitter spacetime when represented as an FLRW, see
[9]. At Z = R = 1, (27) and (28) have fixed points,
and at Y = ±1 (35) has fixed points. Together, the
asymptotic points at Z = R = 1 and Y = ±1 represent
singularities, with infinite expansion (+) or contraction
(-) and infinite energy density. At the Einstein fixed
point, Y = 0 and the condition Y ′ = 0 reduces Eq. (35)
to a constraint between Z and R:

ZE

1− ZE
+

2RE

1−RE
− 2 = 0 , (39)

where the subscript E refers to the values of variables
at the Einstein point. On the other hand, matter and
radiation do not evolve independently, and from (2) and
(3), they can be related by

ρr =
Ωr

Ω
4/3
m

ρ4/3
m , (40)

where Ωr and Ωm can be fixed using Planck values [2].
This results in (27) and (28) admitting a first integral
crz, which can be used to write a relation between R
and Z

R

1−R
= crz

(
Z

1− Z

) 4
3

, (41)

where crz depends on Ωm, Ωr and ρ∗. Together, (39)
and (41) give the values of Z and R at the Einstein fixed
point for a given value of crz. Once the first integral
crz is fixed, a surface in phase space is defined and the
dynamics is effectively 2-dimensional (2-D). In order to
fix crz, we first have to give a value to ρ∗ = ρΛ/R, where
the future asymptotic value ρΛ is by definition some
fraction of our current observed dark energy density,

ρΛ = αρx,0 , (42)

and 0 < α < 1. For the purpose of our qualitative anal-
ysis, we fix α = 0.5 as currently we are not far from this
asymptotic value as our Universe is already accelerat-
ing. For a reasonable model to solve the cosmological
constant problem, we would fix 10−120 < R < 10−60

so the dark energy evolved between the high estimate
of the contributions to the effective cosmological con-
stant from QFT and the low observed value. However,
the dynamics cannot be depicted in plots of the phase
space for these small values of R. We therefore choose
R = 0.05 in order to illustrate the evolution of our vari-
ables, given that the value of R will not qualitatively
change the dynamics. We therefore find
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crz =
Ωr

(Ωm)
4
3

(
αΩΛ

R

) 1
3

= Ωr

(
ΩΛ

Ω4
m

) 1
3 ( α
R

) 1
3

' 0.0008304 , (43)

where we have used ΩΛ = 0.6889 and Ωm = 0.3111,
and calculated Ωr = 9.1824 × 10−5 using Ωm and the
redshift of matter-radiation equality z = 3387 [2].

The phase space for the x = 1 sub-manifold is shown
in Fig. 1, where the dynamics takes place on the first
integral surface crz, shown in yellow. The green outer
most thick curve is the flat Friedmann separatrix (FFS),
which separates the closed models (in between the green
curves) from the open models. This separatrix on the
2-D surface is a sub-set of the general separatrix hyper-
surface, which has the general form

Y 2

1− Y 2
=
x

3
+

Z

3(1− Z)
+

R

3(1−R)
, (44)

where here x = 1 and R and Z are related by (41).
The inner most curve is the closed Friedmann separatrix
(CFS), which in general is the hypersurface consisting
of the Einstein fixed points present in the phase space,
and trajectories asymptotic to them. This shows the
boundaries between the different types of closed model.
The CFS has the general form

Y 2

1− Y 2
=
x

3
+

Z

3(1− Z)
+

R

3(1−R)

− 1

a2

[
xE
3

+
ZE

3(1− ZE)
+

RE

3(1−RE)

]
, (45)

where again here x = xE = 1 and the relations in Eq.
(38) and Eq. (41) apply.

The 2-D dynamics taking place on the first integral
surface in the 3-D phase space can also be projected onto
the Z-Y plane in order to make the dynamics more vis-
ible, again using (41). The projected sub-manifold can
be seen in Fig. 2. The vertical black lines along Z = 0
and Z = 1 show the de Sitter models in the phase space,
where x′ = Z ′ = R′ = 0. Expanding (contracting) open
and flat models evolve from (to) a singularity to (from)
a flat de Sitter fixed points. Closed models outside the
CFS evolve in the same way. Within the CFS there
are bouncing models, which contract until they reach a
maximum energy density at a minimum a where they
bounce, and then expand again. The bounce occurs
when the dark energy component is dominant over the
matter and radiation, and the magnitude of the curva-
ture term is equal to the sum of all other contributions
to the Friedmann equation (36), giving Y = 0. There
are also turn-around models, which expand until they
reach a minimum energy density at a maximum a before
contracting again, that evolve between the two singular-
ities. The turn-around occurs at Y = 0, when the dark

FIG. 1: The phase space for the x = 1 sub-manifold, with
the dynamics shown on the yellow crz surface, given by (41).
The green curves represent flat models asymptotic to the de
Sitter fixed points at Z = 0 and singularities at Z = 1.
The fixed point at Y = 0 (a saddle) represents the Einstein
model, and the black separatrices asymptotic to it separate
the different types of closed models in the phase space.

matter and radiation are dominant over the dark en-
ergy, and the magnitude of the curvature term becomes
large enough to equal the sum of all other contributions
to the Friedmann equation (36). Note that for all tra-
jectories in the Z-Y plane, the expansion (contraction)
is accelerating (a′′ > 0) to the left of the Einstein point.
Therefore in a ΛCDM cosmology, such as the one we are
illustrating here, bouncing models are always accelerat-
ing, and re-collapsing models are never accelerating.

There are also two other 2-D submanifolds at x = 1;
one for Z = 0 (radiation only) and the other whenR = 0
(matter only). The dynamics of these two sub-cases is
qualitatively the same as in Fig. 2. In the Z = 0 case
the Einstein point occurs at RE = 1/2, and in the R = 0
case it occurs at ZE = 2/3.

2. x = R

Next we consider the case where x = R. The remain-
ing 3-dimensional dynamics is given by the equations
for the dark matter (27), radiation (28), and the Hub-
ble function (30), which reduces to

Y ′ = −Y 2
√

1− Y 2 − (1− Y 2)
3
2

6

×
(

Z

1− Z
+

2R

1−R
− 2R

)
. (46)

The Friedmann equation (31) when x = R becomes
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FIG. 2: x = 1 sub-manifold, top panel: the projection on the
Z-Y plane of the 2-D dynamics taking place on the first inte-
gral surface in the 3-D phase space in Fig. 1; the qualitative
behaviour is typical of any ΛCDM model, independently of
the parameter values. Bottom panel: the corresponding po-
tential in Eq. (37), where trajectories of the same colour in
the two panels correspond to each other. Bounded trajecto-
ries are below the maximum of the potential, and unbounded
are above.

Y 2

1− Y 2
=
R
3

+
Z

3(1− Z)
+

R

3(1−R)
− k

ρ∗a2
, (47)

and the potential (33) is

U = −a
2

6

(
R+

Z

1− Z
+

R

1−R

)
. (48)

The dynamics of this system is qualitatively the same
as in Fig. 1. The singularities are present at Z = R = 1
and Y = ±1, and there are de Sitter points at Y =√
R/(3 +R) and Y = ±1 along Z = R = 0. At the

Einstein fixed point, the Hubble expansion variable (46)
reduces to

ZE

1− ZE
+

2RE

1−RE
− 2R = 0 , (49)

which is solved numerically using (41) to find the values
of ZE and RE at this point.

As before, this sub-manifold can be reduced to 2-D
at Z = 0 and at R = 0, which are both qualitatively the
same as in Fig. 2. The de Sitter points and singularities
are as outlined above. The Einstein point in the Z = 0
case occurs at RE = R/(1 +R), and in the R = 0 case
at ZE = 2R/(1 + 2R).

B. Dynamic Dark Energy

We now consider the sub-manifolds with dynamic
dark energy so that x is not fixed, and therefore x′ 6= 0
in Eq. (29).

1. Z = 0 and R = 0

We consider the sub-manifold where matter and ra-
diation are not present, and there is only dark energy.
In this case Z ′ = 0 in Eq. (27) and R′ = 0 in Eq. (28).
The remaining dynamics is 2-D and given by the equa-
tions for the dark energy (29) and the Hubble expansion
variable (30) which becomes

Y ′ = −Y 2
√

1− Y 2 − (1− Y 2)
3
2

6

× [x(1 + 3R)− 3R− 3x2]. (50)

When Z = R = 0, the Friedmann equation (31) be-
comes

Y 2

1− Y 2
=
x

3
− k

ρ∗a2
, (51)

and the potential (33) is

U = −xa
2

6
. (52)

In order to plot the potential and the CFS in the phase
space, we must express the scale factor a in terms of x.
Integrating a′ (18) with respect to x (13), we find

a(x) =

(
ca
x−R
1− x

) −1
3(1−R)

, (53)

i.e. the inverse of Eq. (22), where ca is as in Eq. (23).

There are de Sitter points at Y =
√
R/(3 +R) and
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Y = ±1 along x = R, and at Y = ±1/2 and Y = ±1
along x = 1. The fixed points at Y = ±1 and at x = R
and x = 1 are coordinate singularities of the de Sitter
spacetime when represented as an FLRW, see [9]. At
the Einstein fixed point, Y = 0, Eq. (50) reduces to

xE(1 + 3R)− 3R− 3x2
E = 0. (54)

Rearranging for xE , we find

xE± =
1 + 3R

6
±
√

(1 + 3R)2

36
−R. (55)

Given the condition 0 < R < 1, both roots in Eq. (55)
will be positive, provided that the term under the square
root is greater or equal to zero. Thus, for Einstein points
to exist, we find

R ≤ RM ≡
5

3
− 2
√

6

3
. (56)

Therefore, there are three cases for this sub-manifold:
no Einstein points are admitted when R > RM , two
Einstein points exist when R < RM , and there is a
limiting case in between when R = RM where one
Einstein point is admitted. The open and flat mod-
els evolve in the same way for each case. Expanding
(contracting) open models evolve between two de Sitter
fixed points, from (to) an open geometry to (from) a flat
geometry. Expanding (contracting) flat models evolve
between two de Sitter fixed points along the FFS. In
general, all closed models admit a bounce, however the
qualitative behaviour changes depending on the number
of Einstein points admitted.

The R > RM case is shown in Fig. 3, where the
system admits no Einstein fixed points. The two ver-
tical black lines along x = R and x = 1 highlight the
de Sitter models in the phase space. All closed mod-
els bounce, evolving between two de Sitter fixed points.
The limiting R = RM case is shown in Fig. 4. Here,
the system admits one Einstein point, which is a cusp,
so all closed models bounce, evolving between two de
Sitter fixed points.

Finally, the case where R < RM is shown in Fig. 5.
Two Einstein points are admitted: the fixed point at
xE ' 0.07 is a saddle point, which is part of the CFS
(the black loop in Fig. 5), and the other at xE ' 0.28 is
a centre. Closed models within the CFS either bounce
once, evolving between two de Sitter fixed points, or
are cyclic around the centre fixed point, repeatedly
contracting until they bounce, then expanding until
they turn-around. Closed models outside the CFS also
bounce and evolve between two de Sitter fixed points.
These closed models outside the CFS evolve with an
early- and late-time acceleration, connected by a decel-
erating period for x between the two Einstein points.
This is the only case for this set of sub-manifolds to

FIG. 3: Top panel: the phase space of the Z = 0, R = 0
sub-manifold, with R > RM . Bottom panel: corresponding
potential in Eq. (52), where trajectories of the same colour
in the two panels correspond to each other. In this case,
there are no Einstein points present, and so all closed models
bounce, however there is never a decelerating phase.

have a period of deceleration, as here R is small enough
for the effective EoS to be larger than −1/3 for x val-
ues between the two Einstein points, which violates the
condition for acceleration in Eq. (17).

2. Z = 0, R = 0

A three-dimensional sub-manifold exists where Z =
0, and another when R = 0. Adding only dark matter
to the system has the same effect as adding only ra-
diation; the difference between the two are the values
of the first integral of Z(x) and R(x) needed to obtain
each case. The dynamics is qualitatively the same as the
cases we present of the full system in section IV, where
we include both dark matter and radiation in our anal-
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FIG. 4: Top panel: the phase space of the Z = 0, R = 0
sub-manifold, with R = RM . Bottom panel: corresponding
potential in Eq. (52), where trajectories of the same colour
in the two panels correspond to each other. One Einstein
point (cusp) is present, and all closed models bounce, how-
ever there is never a decelerating period.

ysis, therefore we do not include these sub-manifolds
explicitly here.

3. Spatially flat models: k = 0

Finally, we consider the sub-manifold where the mod-
els are all spatially flat, shown in Fig. 6, where we have
compactified the 4-dimensional (4-D) phase space to 2-
D on the x-Y plane. In order to do this, we express z
and r as functions of x. From Eq. (11) and Eq. (13),
we find

z(x) = cz

(
x−R
1− x

) 1
1−R

, (57)

FIG. 5: Top panel: the phase space of the Z = 0, R = 0
sub-manifold, with R < RM . Bottom panel: corresponding
potential in Eq. (52), where trajectories of the same colour
in the two panels correspond to each other. Two Einstein
points at xE ' 0.07 (a saddle) and xE ' 0.28 (a centre) are
present, therefore all closed models bounce, either once or in
repeated cycles. Deceleration occurs for x between the two
Einstein points. The closed models outside the CFS evolve
with an initial and final acceleration, with a decelerating
period in between.

where the constant of integration is

cz = z0

(
1− x0

x0 −R

) 1
1−R

. (58)

Here, to express cz, we set z0 using the Friedmann equa-
tion (31) when k = 0:

Y 2

1− Y 2
=
x

3
+

Z

3(1− Z)
+

R

3(1−R)
. (59)

We can then express z0 as
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z0 =
Z0

(1− Z0)
=

3Y 2
0

1− Y 2
0

− x0 −
R0

(1−R0)
. (60)

Then to express r in terms of x, from Eq. (12) and
Eq. (13) we find

r(x) = cr

(
x−R
1− x

) 4
3(1−R)

, (61)

where the constant of integration is

cr = r0

(
1− x0

x0 −R

) 4
3(1−R)

. (62)

We set cr in a similar way to crz, using the density
parameters [2], and our definitions of R (10) and ρΛ

(42). Keeping our choice of R = 0.05, we then find

cr =
R
α

Ωr

ΩΛ

(
α−R
R(1− α)

) 4
3(1−R)

' 0.000772 . (63)

The potential is as in Eq. (33). The shape of the
potential in this case changes with the initial conditions,
and as k = 0 the total energy of the system E = 0 (21).
Therefore the behaviour of each trajectory in the phase
space can be seen along U = 0 in the bottom panel of
Fig. 6. Here, the green separatrix represents models
where Z = 0, so there is no dark matter component,
and the innermost black curve is the CFS. There are no
de Sitter lines along x = R or x = 1 as in the flat case, Z
varies for constant x. We do not consider models within
the FFS as Z < 0 in this region. The models outside
this separatrix always have positive dark matter energy
density, Z > 0. Expanding (contracting) models evolve
from (to) an initial (a future) singularity to (from) a
de Sitter fixed point. Since these models do not exhibit
any bouncing behaviour, they are not interesting with
respect to our investigation.

IV. THE FULL SYSTEM

To show the full range of dynamics, we project the full
4-D dynamics to 2-D on the x-Y plane, by expressing
z and r in terms of x as in Eq. (57) and Eq. (61),
respectively. We set cr as in Eq. (63), keeping R = 0.05
in order for the dynamics to be visible, and to be able
to analyse the full range of the dynamics. We do not
fix cz in the full system, but instead investigate how the
dynamics varies for different values of this parameter.
In order to produce plots of the phase space, we must
also express the scale factor a in terms of x, using Eq.
(53). The Friedmann equation (31) can therefore be
written just in terms of x and Y , and the potential (20)

FIG. 6: Top panel: the phase space of the k = 0 sub-
manifold. Bottom panel: corresponding potential in Eq.
(33), where trajectories of the same colour in the two panels
correspond to each other. Models within the green Z = 0
separatrix always have negative dark matter energy density
Z < 0. The shape of the potential changes with the initial
conditions, and as these are all flat models k = 0 the total
energy of the system E = 0 (21). Therefore, the behaviour of
each trajectory can be seen along U = 0 for each potential.

can be written in terms of x only. The fixed points for
the full system are given in Table II.

As before, E represents a static Einstein universe,
dS± represents spatially flat expanding (+) and con-
tracting (-) de-Sitter models, and S± represents singu-
larities with infinite expansion (+) or contraction (-)
and infinite energy density. Note that the dS2± fixed
points are coordinate singularities of the de Sitter space-
time when represented as an FLRW, see [9].

Table III shows the eigenvalues of the fixed points
for this system, and the linear stability classification for
each point is given in Table IV. Again, we cannot in-
clude the eigenvalues of the fixed points at Y = ±1 in
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Table III, as the Jacobian becomes singular. Therefore,
we find that the singularity at Y = +1 is a repellor and
the singularity at Y = −1 is an attractor, and the de
Sitter points at Y = ±1 are saddle points, with trajec-
tories moving away from the Y = +1 point and towards
the Y = −1 point along x = R. Note that the lin-

ear stability analysis of the Einstein points needs to be
done for each individual case, as these can be a centre,
a cusp or a saddle point, whereas the linear stability of
the de-Sitter points and singularities are general for all
cases considered here.

Name x Y Z R

E x 0 Z −3x2(1−Z)+Z(1+3R)−3R+x(1−Z)(1+3R)

−2−3x2(1−Z)−3R+3Z(1+R)+x(1−Z)(1+3R)

dS1± R ±
√

R
3+R 0 0

dS2± R ±1 0 0

S± 1 ±1 1 1

TABLE II: The fixed points of the full system. E denotes an Einstein universe, dS± an expanding (+) or contracting (-)
de-Sitter universe, and S± a singularity with infinite expansion (+) or contraction (-).

Name λ1 λ2 λ3 λ4

E 0 0

√
18x3(Z−1)−9x2(Z−1)(3R+1)+x(Z−1)(9R2+18R−1)+Z(−9R2+9R+1)+9(R−1)R

√
6
√
Z−1

−λ3

dS1± ∓4
√
R
3
∓
√

3R ∓2
√
R
3

∓
√

3R(1−R)

TABLE III: The eigenvalues for the fixed points of the full system given in Table II.

At an Einstein point, the remaining expression left in
the Hubble expansion variable (30), which we call f(x),
is

f(x) = z(x) + 2r(x) + x(1 + 3R)− 3R− 3x2 , (64)

which we need to solve numerically. An Einstein point
exists whenever this expression is equal to zero. Taking
the limit of f(x) when x→ R we find f(x)→ −2R, and
taking the limit of f(x) when x→ 1 we find f(x)→∞.
Therefore, between x = R and x = 1, f(x) is always
equal to zero at least once, and so at least one Einstein
point always exists. The possible number of Einstein
points admitted by the system can be seen in Fig. 7.
For each curve in the plot, which have a specific value of
cz, an Einstein point occurs when the curve meets the
x-axis at f(x) = 0. Between the smallest and largest
values of cz, we find the maximum number of Einstein
points the system may admit is three.

The cases where two Einstein points are admitted are
limiting cases, where two roots coincide, and where the
maximum or minimum of the f(x) curve touches but
does not cross f(x) = 0. To find the values of cz in
these limiting cases, we first need to find the derivative
of f(x) (64) with respect to x, which is

Name Stability Character

E Centre, Saddle or Cusp

dS1+ Attractor

dS1− Repellor

dS2± Saddle

S+ Repellor

S− Attractor

TABLE IV: The linear stability character for the fixed
points of the full system given in Table II.

df(x)

dx
=

1

3(1− x)(x−R)
[18x3 − 3x2(7 + 9R)

+ 3x(1 + 10R+ 3R2)− 3R(1 + 3R) + 3z + 8r] . (65)

Setting this equal to zero and rearranging for cz, we find
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FIG. 7: A plot of f(x) (64) with varying values of cz to
show the possible number of Einstein points admitted by the
system. Starting from the top we have cz > 0.38 (orange),
cz ' 0.38 (green), 0.20 < cz < 0.38 (magenta), cz ' 0.20
(blue) and cz < 0.20 (purple). The system always admits at
least one Einstein point, and a maximum of three can exist.

cz =
1

3z
[−18x3 + 3x2(7 + 9R)

− 3x(1 + 10R+ 3R2) + 3R(1 + 3R)− 8r] , (66)

which we substitute into f(x) = 0 (64). Solving this
equation for x, we find x ' 0.25 and x ' 0.60, which
from (66) correspond to cz ' 0.20 and cz ' 0.38. These
values are shown in Fig. 7 by the blue and green curves,
respectively.

In the general case where there are three Einstein
points, there is a limiting case. In general, there are
two separate CFS curves when three Einstein points
are present; one through the lower and one through the
upper Einstein point. In the limiting case, the two CFS
curves coincide and the maxima of the potential are
equal. To find where this occurs, we choose an initial
value for cz, then equate the potential U (20) at the
upper and lower Einstein points. We iterate until we
converge on a value of cz, which occurs at cz ' 0.32.

Therefore, we find seven different dynamical cases for
this system. The open and flat models in each case all
evolve in the same way. Expanding (contracting) mod-
els evolve from (to) an initial (a future) singularity to
(from) a flat de-Sitter spacetime. Closed models within
the FFS but outside the CFS also evolve in this way in

each case, as the curvature is never large enough for a
bounce or turn-around to occur. The behaviour of mod-
els within the CFS changes depending on the value of
cz as this affects the number and character of the Ein-
stein points present. We present these sub-cases in the
following subsections, starting with the smallest range
of cz and increasing the value with each case.

A. 1 Einstein Point

The phase space for the range cz < 0.20 is given in
Fig 8. One Einstein point exists at xE ' 0.97 which is
a saddle point, and corresponds to the maximum of the
potential. Most of the phase space within the CFS to
the left of the Einstein point consists of bouncing models
driven by the dark energy, while matter and radiation
are subdominant, which evolve between two de Sitter
fixed points. For the models which are dominated by
matter and radiation, to the right of the Einstein point,
the evolution is between two singularities with a turn-
around. For all trajectories, the expansion (contraction)
is always accelerating (a′′ > 0) to the left of the Einstein
point. Therefore, for this case, the bouncing models
are always accelerating, and the turn-around models are
never accelerating.

B. 2 Einstein Points

The phase space for the first limiting case with two
Einstein points where cz ' 0.20 is shown in Fig. 9. The
Einstein point at xE ' 0.87 is a saddle point, which
corresponds to the maximum of the potential and is
part of the outer CFS. Within this CFS, dark matter
and radiation dominate for x > 0.87 where turn-around
models evolve between two singularities. For x < 0.87,
dark energy is dominant and we obtain bouncing models
which evolve between two de Sitter points. The Einstein
point at xE ' 0.25 is a cusp (corresponding to the two
de Sitter points coinciding), which corresponds to the
horizontal point of inflection in the potential, and is part
of the innermost CFS. Within this CFS, the bouncing
models also evolve between the two de Sitter points. To
the left of the Einstein point at xE ' 0.87, trajectories
are always accelerating, therefore the bouncing models
are always accelerating, and the re-collapsing models
are always decelerating.

C. 3 Einstein Points

1. Extra bouncing region

The first case where three Einstein points exist is
shown in Fig. 10. The Einstein point at xE ' 0.19 is a
saddle point, which corresponds to a local maximum of
the potential, and is part of the innermost CFS. Within
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FIG. 8: cz < 0.20 case, top panel: the projection of the full
4-D dynamics on the 2-D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (57) and r by Eq. (61), and trajectories of
the same colour in the two panels correspond to each other.
One Einstein fixed point xE ' 0.97 (a saddle) exists, which
corresponds to the maximum of the potential, therefore we
obtain bouncing trajectories for x < 0.97 within the CFS,
however they are always accelerating.

this CFS, bouncing models evolve between two de Sitter
points. Cyclic models are present around the Einstein
fixed point at xE ' 0.34, which is a centre, correspond-
ing to a local minimum of the potential. These models
contract until they bounce, and expand until they reach
a turn-around. The Einstein point at xE ' 0.83 is an-
other saddle point, corresponding to the maximum of
the potential, and is part of the outermost CFS. Within
this CFS, turn-around models which evolve between two
singularities are present for x > 0.83, where dark mat-
ter and radiation are dominant over the dark energy.
For x < 0.83, dark energy is the dominant component,
and bouncing models are present between the two CFS

FIG. 9: The first limiting case where cz ' 0.20, top panel:
the projection of the full 4-D dynamics on the 2-D x-Y plane.
Bottom panel: the corresponding potential as in Eq. (20),
where a is given by Eq. (53), z by Eq. (57) and r by
Eq. (61), and trajectories of the same colour in the two
panels correspond to each other. Two Einstein fixed points
occur. The fixed point xE ' 0.25 (a cusp) corresponds to the
horizontal point of inflection in the potential, and the fixed
point at xE ' 0.87 (a saddle) corresponds to the maximum
of the potential. We obtain bouncing trajectories for x <
0.87 within the CFS, however these are always accelerating.

curves which evolve between two de Sitter points. These
bounces evolve with an early- and late-time accelera-
tion, connected by a period of deceleration. These are
the physically important models, which we discuss in
section IV F.

2. Limiting case

A limiting case exists for the general case with three
Einstein points, when the two maxima of the potential
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FIG. 10: 0.20 < cz < 0.32 case, top panel: the projection
of the full 4-D dynamics on the 2-D x-Y plane. Bottom
panel: the corresponding potential as in Eq. (20), where a
is given by Eq. (53), z by Eq. (57) and r by Eq. (61), and
trajectories of the same colour in the two panels correspond
to each other. The Einstein fixed points xE ' 0.19 and xE '
0.83 (saddle) correspond to the maxima of the potential, and
xE ' 0.34 (centre) to a local minimum. Bouncing behaviour
is obtained for x < 0.83 within the outer CFS, and cyclic
behaviour is obtained for x > 0.19 within the inner CFS. The
cyclic models evolve with early acceleration and late-time
deceleration, and the bouncing models evolve with early- and
late-time acceleration connected by a decelerating period.

have the same value. This case is shown in Fig. 11.
Here, the two saddle Einstein fixed points at xE ' 0.17
and xE ' 0.76 correspond to the two maxima of the po-
tential, and the two CFS curves corresponding to each
of the fixed points merge and coincide. Within the CFS,
turn-around models which evolve between two singular-
ities are present in the x > 0.76 region of the phase
space, where dark matter and radiation are dominant.
Bouncing models which evolve between two de Sitter
points are present when x < 0.17. Cyclic models are

FIG. 11: The limiting case cz ' 0.32, where the two CFS
curves coincide. Top panel: the projection of the full 4-D
dynamics on the 2-D x-Y plane. Bottom panel: the corre-
sponding potential as in Eq. (20), where a is given by Eq.
(53), z by Eq. (57) and r by Eq. (61), and trajectories of
the same colour in the two panels correspond to each other.
The fixed points xE ' 0.17 and xE ' 0.76 (saddle) corre-
spond to the maxima of the potential which have the same
value of the potential, and xE ' 0.43 (centre) to a local
minimum. Cyclic behaviour is obtained for 0.17 < x < 0.76
and bouncing behaviour for x < 0.17, both within the CFS.

present around the Einstein point at xE ' 0.43 (a cen-
tre) which corresponds to the local minimum value of
the potential. These models contract until they bounce,
and expand until they reach a turn-around. In this case,
the cyclic models evolve with an early acceleration and
late-time deceleration, the bouncing models always ac-
celerate, and the re-collapsing models never accelerate.
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3. Extra turn-around region

The final case with three Einstein points is given in
Fig. 12. The Einstein point at xE ' 0.72 is a saddle
point, which corresponds to the local maximum value of
the potential, and is part of the innermost CFS. Within
this CFS, turn-around models which evolve between
two singularities are present for the x > 0.72 region
of the phase space. These models never accelerate, and
dark matter and radiation are dominant. For x < 0.72,
dark energy is the dominant component. Cyclic models
are present around the centre Einstein fixed point at
xE ' 0.48, which has a local minimum value of the po-
tential. These models contract until they bounce, then
expand until they turn-around. and evolve with early
acceleration and late-time deceleration. The Einstein
fixed point at xE ' 0.16 is another saddle point which
is part of the outermost CFS, and occurs at the maxi-
mum of the potential. Bouncing models evolve between
two de Sitter points for x < 0.16, which always acceler-
ate. For the x > 0.16 region of the phase space between
the two CFS curves, turn-around models are present
which evolve between two singularities. In these mod-
els, radiation and dark matter are initially dominant,
but decrease more rapidly than the dark energy, which
becomes dominant as the trajectory passes the fixed
point at xE ' 0.72. After the turn-around, the radia-
tion and matter increase more rapidly than the dark en-
ergy, and become dominant again when x > 0.72, where
the models approach a singularity. These re-collapsing
models evolve with an early and late-time deceleration
connected by an accelerating period.

D. 2 Einstein Points

The phase space for the system for cz ' 0.38 is shown
in Fig. 13, which is the second limiting case with two
Einstein points. The Einstein point at xE ' 0.60 is a
cusp (corresponding to the two de Sitter points coincid-
ing), which corresponds to the horizontal point of inflec-
tion in the potential, and is part of the innermost CFS.
Within this CFS, turn-around models evolve between
two singularities, where the dark matter and radiation
are the dominant components, and so never accelerate.
The Einstein point at xE ' 0.16 is a saddle which is
part of the outermost CFS, and corresponds to the max-
imum value of the potential. For the x < 0.16 region of
the phase space, bouncing models evolve between two
de Sitter points. In these models, the dark energy al-
ways dominates, and they always accelerate. Between
the two CFS curves, turn-around models are present
which evolve between two singularities, and never ac-
celerate. Dark matter and radiation are dominant for
x > 0.60, and dark energy is dominant for the x < 0.60
region of the phase space. After the turn-around, the
radiation and dark matter components increase more
quickly than the dark energy throughout the collapse,

FIG. 12: 0.32 < cz < 0.38 case, top panel: the projection of
the full 4-D dynamics on the 2-D x-Y plane. Bottom panel:
the corresponding potential as in Eq. (20), where a is given
by Eq. (53), z by Eq. (57) and r by Eq. (61), and trajecto-
ries of the same colour in the two panels correspond to each
other. The fixed points xE ' 0.16 and xE ' 0.72 (saddle)
correspond to the maxima of the potential, and xE ' 0.48
(centre) to a local minimum. Cyclic behaviour is obtained
for x < 0.72 within the inner CFS and bouncing behaviour
for x < 0.16 within the outer CFS. Cyclic models evolve
with early acceleration and late-time deceleration, and the
bouncing models always accelerate.

and become dominant on approach to the singularity.

E. 1 Einstein Point

The final case for this system is given in Fig. 14.
Qualitatively, the behaviour here is the same as in Fig.
8, except that the Einstein point in this case is much
closer to x = R at xE ' 0.14. This is a saddle point
that corresponds to the maximum value of the poten-
tial for the system, and is part of the CFS. Within the
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FIG. 13: cz ' 0.38 case, top panel: the projection of the
full 4-D dynamics on the 2-D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (57) and r by Eq. (61), and trajectories
of the same colour in the two panels correspond to each
other. The fixed point xE ' 0.16 (saddle) corresponds to
the maximum of the potential, and xE ' 0.60 (cusp) to
the horizontal point of inflection in the potential. Bouncing
behaviour is obtained within the CFS for x < 0.16, however
these models always accelerate.

CFS, bouncing models are present for the x < 0.14 re-
gion of the phase space, in which dark energy is always
dominant. For the x > 0.14 region, turn-around mod-
els which evolve between two singularities exist. These
models are initially dominated by matter and radiation,
and then by dark energy. After the turn-around, the
dark matter and radiation increase more quickly than
the dark energy, and become dominant again as the
singularity is approached. For all trajectories, the ex-
pansion (contraction) is always accelerating to the left
of the Einstein point, therefore the bouncing models al-
ways accelerate, and the re-collapse models always de-

FIG. 14: cz > 0.38 case, top panel: the projection of the
full 4-D dynamics on the 2-D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (57) and r by Eq. (61), and trajectories
of the same colour in the two panels correspond to each
other. The fixed point xE ' 0.14 (saddle) corresponds to the
maximum of the potential. Bouncing models are obtained
within the CFS for x < 0.14, which always accelerate.

celerate.

F. Acceleration regions

In order to determine which of the cases are viable,
we can consider the acceleration regions in each phase
space. For our models to be feasible, they must have an
early and late time acceleration, connected by a decel-
erating phase where large-scale structure can form. The
acceleration equation for this system is given by

a′′

a
= z + 2r − 3R+ (1 + 3R)x− 3x2 . (67)
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FIG. 15: The phase space (top panel) and corresponding
potential (bottom panel) for 0.20 < cz < 0.32 as in Fig. 10,
with the boundaries between accelerating and decelerating
regions in red. The 0 < x < 0.19 and 0.34 < x < 0.83 regions
are accelerating, and the 0.19 < x < 0.34 and 0.83 < x < 1
regions are decelerating.

We can find the boundaries between accelerating and
decelerating regions by setting the acceleration equation
(67) to zero. We find that the boundaries where ac-
celeration is zero go through each Einstein fixed point
parallel the the Y -axis. Therefore, one case remains
where a bouncing model exhibits early and late time
acceleration, which is the 0.20 < cz < 0.32 case. This
case is shown again in Fig. 15, where we have in-
cluded the red a′′ = 0 boundaries. The 0 < x < 0.19
and 0.34 < x < 0.83 regions are accelerating, and the
0.19 < x < 0.34 and 0.83 < x < 1 regions are deceler-
ating. Therefore, the bouncing models present between
the two CFS curves evolve with an early- and late-time
accelerated phase, and are therefore the models of in-
terest.

However, we find that for all of the cases we have

presented, the bouncing behaviour is spoiled when
dark matter and radiation become dominant, and turn-
around models occur for trajectories in the phase space
near x = 1. Therefore, these bouncing models are only
relevant when matter and radiation appear after the
bounce, and would need a mechanism such as infla-
tion with a subsequent period of reheating in order to
be feasible. These models also only occur when they
have sufficient curvature. Although we cannot make a
quantitative statement from our qualitative analysis, in
principle, these models would be in tension with obser-
vations [2].

V. UPPER BOUNDS ON z AND r

In light of the results thus far, we introduce an up-
per bound on the dark matter and radiation, such that
their energy densities cannot reach infinity. The idea
is that matter and radiation are not always present in
standard cosmology, but that they are created in a pe-
riod of reheating. It is beyond the scope of our paper
to introduce a reheating phase, perhaps through an in-
teraction between radiation, dark matter and the dark
energy component, so we simply assume that matter
and radiation have an upper bound. In the following,
we focus on investigating whether bouncing models can
be the general closed model when matter and radiation
appear after the bounce has occurred, even for models
that are close to being spatially flat.

In order to implement an upper bound on matter and
radiation, we assume that their EoS’s are modified by
a non-linear term at high energies in a similar way to
the high energy bound for the dark energy component.
Physically, these EoS’s are not particularly meaning-
ful, however this is a simple way of imposing an energy
scale at which matter and radiation appear such that
the bounce is not spoiled. As far as our qualitative
analysis is concerned, the specific physical mechanism
for having an upper bound for matter and radiation is
not that relevant. We therefore re-write Eq. (11) and
Eq. (12) as

z′ = −
3Y z(1− z

z∗
)

√
1− Y 2

(68)

r′ = −
4Y r(1− r

r∗
)

√
1− Y 2

, (69)

where z∗ and r∗ are the characteristic energy scales
of dark matter and radiation, respectively. Should we
model a proper inflationary era, we could set z∗ and
r∗ at the energy scale of reheating. Here, we will sim-
ply assume that the upper bounds imposed on matter
and radiation are at the highest possible energy scale,
coinciding with the high energy cosmological constant
of the dark energy, somewhere between the Planck scale
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Name x Y z r

E x 0 z 1
4

(
1−

√
1 + 4(x+ z) + 12(xR−R− x2 − z2)

)
dS1± R ±

√
R

3+R 0 0

dS2± R ±1 0 0

dS3± 1 ± 1√
2

1 1

dS4± 1 ±1 1 1

TABLE V: The fixed points of the system when z and r have an upper bound

and that of inflation. This assumption does not qualita-
tively change the dynamics, and is the most robust way
of investigating the survival of the bounce, therefore we
set z∗ = r∗ = 1.

The effective EoS’s for dark matter and radiation can
be found by equating z′ (68) and r′ (69) to the conti-
nuity equation. We find

wz = −z (70)

wr =
1

3
− 4

3
r . (71)

For z > 1/3 and r > 1/2, we find their respective ef-
fective EoS’s are less than -1/3, and so the dark matter
and radiation can contribute to acceleration in these
regions of the phase space. We find that the Raychaud-
huri equation for Y , the compact variable representing
the Hubble expansion scalar, now becomes

Y ′ = −Y 2(1− Y 2)
1
2 − (1− Y 2)

3
2

6
[z(1− 3z)

+ 2r(1− 2r)− 3R+ x(1 + 3R)− 3x2] , (72)

and x′ is still as in Eq. (29). As previously, we project
the 4-D dynamics onto the x-Y plane. Integrating z
(68) with respect to x (29), we find

z(x) =
cz

(
x−R
1−x

) 1
1−R

1 + cz

(
x−R
1−x

) 1
1−R

, (73)

and integrating r (69) with respect to x (29), we obtain

r(x) =
cr

(
x−R
1−x

) 4
3(1−R)

1 + cr

(
x−R
1−x

) 4
3(1−R)

. (74)

We can then calculate the first integral cr in same way
as before. Using the Planck 2018 density parameters [2],
along with our definition of R (10) and the low energy
cosmological constant ρΛ (42), we find

cr =
RΩr

αΩΛ −RΩr

(
α−R
R(1− α)

) 4
3(1−R)

' 0.00077 (75)

for a value of R = 0.05.

The fixed points for this system are given in Table V.
In this system, there are no physical singularities, but
the fixed points dS2± and dS4± are coordinate singular-
ities of the de Sitter spacetime when represented as an
FLRW, see [9].

The eigenvalues of the fixed points for this system are
shown in Table VI, and the linear stability classification
for each point is given in Table VII. As previously, we
cannot include the eigenvalues of the fixed points at
Y = ±1, however from the Raychaudhuri equation (72),
we find that Y ′ is always negative along the de Sitter
lines x = R and x = 1. Similarly to before, the stability
character of the Einstein fixed points depends on the
value of the first integral cz for a fixed R and cr.

In this case, in order to find the Einstein points from
the Raychaudhuri equation (72), we need to find the
zeros of the following function

f(x) = z(x)[1− 3z(x)] + 2r(x)[1− 2r(x)]

− 3R+ x(1 + 3R)− 3x2 . (76)
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Name λ1 λ2 λ3 λ4

E 0 0
1√
6
{−1 + 18x3 − z + 9z2(2z − 1) + 27R− 9x2(1 + 3R)− x

+[1 + 2z(3z − 1) + 2x(3x− 1)]
√

1 + 4z(1− 3z)− 12R+ 4x(1− 3x+ 3R)}
1
2

−λ3

dS1± ∓4
√
R
3
∓
√

3R ∓2
√
R
3

∓
√

3R(1−R)

dS3± ±4 ±3 ∓2 ±3(1−R)

TABLE VI: The eigenvalues for the fixed points of the system when z and r have an upper bound

Name Stability Character

E Centre, Saddle or Cusp

dS1+ Attractor

dS1− Repellor

dS2± Saddle

dS3± Saddle

dS4+ Repellor

dS4− Attractor

TABLE VII: The linear stability character for the fixed
points of the system when z and r have an upper bound

We need to solve numerically for the values xE , such
that f(xE) = 0. Taking the limit of f(x) when x→ R,
we find f(x)→ −2R, and when x→ 1, we find f(x)→
−6. Therefore, this system does not necessarily admit
any Einstein points between x = R and x = 1 as both
limits are negative. Fig. 16 shows the range of Einstein
points which can be admitted by the system for different
values of cz.

In total, we find three different cases for the dynamics,
except here more than one range of cz can give the same
qualitative dynamics. Increasing cz increases the contri-
bution of the z(1− 3z) term to f(x) (76) until z = 1/3.
Once this point is reached, increasing cz then increases
a negative contribution from the z(1− 3z) term. There
are two limiting cases where one Einstein point is ad-
mitted which have the same qualitative dynamics that
are shown by the green and blue curves in Fig. 16. As
before, to find the values of cz in the limiting cases, we
take the first derivative of f(x) and solve for cz when
df(x)/dx = f(x) = 0, and find cz ' 0.25 and cz ' 11.0.
Both cz < 0.25 and cz > 11.0 admit the same qualita-
tive dynamics, where no Einstein points are admitted.
In the range 0.25 < cz < 11.0 two Einstein points are
admitted.

The open and flat models evolve in the same way
for each case. Expanding (contracting) open models
evolve between two de Sitter fixed points, from (to) an

FIG. 16: f(x) with varying values of cz to show the different
number of Einstein points which can be admitted by the
system. Starting from the left we have cz > 11.0 (orange),
cz ' 11.0 (green), 0.25 < cz < 11.0 (magenta), cz ' 0.25
(blue) and cz < 0.25 (purple). When cz < 0.25 or cz >
11.0 no Einstein points are admitted. One Einstein point is
admitted in the limiting cases when cz ' 0.25 and cz ' 11.0,
and two Einstein points are admitted when 0.25 < cz < 11.0.

open geometry to (from) a flat geometry. Expanding
(contracting) flat models evolve between two de Sitter
fixed points along the FFS. The dynamical behaviour
of the closed models changes depending on the value of
cz. In each case, we find that the closed models avoid
a singularity as U → 0 as x → 1, forming a potential
barrier. Therefore, there are no turn-around models
that evolve between singularities, and all closed models
admit a bounce. We present these cases in the following
subsections, and note that qualitatively the dynamics is
the same as the sub-manifolds in Section III when only
dark energy is present.
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A. No Einstein points

The phase space for the system when cz < 0.25 is
shown in Fig. 17, which is qualitatively the same as
when cz > 11.0. As before, the green outermost thick
curve is the flat Friedmann Separatrix (FFS), which
here has the general form

Y 2

1− Y 2
=
x

3
+
z

3
+
r

3
. (77)

The inner most curve is the closed Friedmann Separatrix
(CFS), which has the general form

Y 2

1− Y 2
=
x

3
+
z

3
+
r

3
− 1

a2

(xE
3

+
zE
3

+
rE
3

)
. (78)

z and r are given by Eq. (73) and Eq. (74), respectively,
and a is given by Eq. (53). As previously, the horizontal
lines along x = R and x = 1 are the de Sitter lines where
x′ = z′ = r′ = 0.

In this case, no Einstein points are admitted, and
all closed models bounce, evolving between two de Sit-
ter points. Therefore, when matter and radiation have
an upper bound, the bounce is no longer spoiled and
a singularity is avoided. When cz < 0.25, dark en-
ergy is the dominant component for most of the phase
space, until x = 1 is approached where dark matter
and radiation become comparable to the dark energy.
When cz > 11.0, dark matter is the dominant com-
ponent for most of the phase space, except sufficiently
close to x = 1 where all three components are compa-
rable, and close to x = R where dark energy becomes
dominant. All trajectories are always accelerating in
this case.

B. One Einstein point

The limiting case where cz ' 0.25 and one Einstein
point is admitted is shown in Fig. 18. The qualita-
tive dynamics in this case is the same when cz ' 11.0.
One Einstein point is admitted at xE ' 0.23 (cusp)
which is part of the CFS, and corresponds to the hor-
izontal point of inflection in the potential. All closed
models bounce, evolving between two de Sitter fixed
points. When cz ' 0.25, dark energy is dominant for
most of the phase space, and when cz ' 11, dark mat-
ter is mostly dominant, except close to x = R where
dark energy is dominant. All three components become
comparable near x = 1. Here, all trajectories are always
accelerating.

C. Two Einstein points

The case where two Einstein points are admitted is
shown in Fig. 19. The Einstein point at xE ' 0.15

FIG. 17: cz < 0.25 case, which is qualitatively the same as
the cz > 11.0 case. Top panel: the projection of the full 4-D
dynamics on the 2-D x-Y plane. Bottom panel: the corre-
sponding potential as in Eq. (20), where a is given by Eq.
(53), z by Eq. (73) and r by Eq. (74). Trajectories of the
same colour in the two panels correspond to each other. No
Einstein points are admitted, and all closed models bounce,
which always accelerate.

(saddle) corresponds to a local maximum of the poten-
tial, and is part of the CFS. There are bouncing models
which evolve between two de Sitter points within the
CFS, and cyclic models around the Einstein point at
xE ' 0.31 (centre), which corresponds to a local min-
imum of the potential. These bouncing models always
accelerate, and the cyclic models evolve with an early-
time acceleration and a late-time deceleration. Outside
of the CFS, all closed models bounce, evolving between
two de Sitter points. These models evolve with an early-
and late-time accelerated expansion, connected by a de-
celerating period. If the value of cz is closer to 0.25,
most of the phase space will be dark energy dominated,
however if its value is closer to 11.0, then dark matter



23

FIG. 18: cz ' 0.25 case, which is qualitatively the same as
the cz ' 11.0 case. Top panel: the projection of the full
4-D dynamics on the 2-D x-Y plane. Bottom panel: the
corresponding potential as in Eq. (20), where a is given by
Eq. (53), z by Eq. (73) and r by Eq. (74). Trajectories of
the same colour in the two panels correspond to each other.
One Einstein point exists at xE ' 0.23 (cusp) corresponding
to the horizontal point of inflection in the potential. All
closed models bounce, and these are always accelerating.

will be mostly dominant.

D. Acceleration

As before, we calculate where the acceleration is zero
to find the boundaries between accelerating and decel-
erating regions of the phase space. In this system, the
acceleration equation is given by

a′′

a
= z(1−3z)+2r(1−2r)−3R+(1+3R)x−3x2 . (79)

The case of interest in this new system is 0.25 < cz <
11.0, in which two Einstein points are admitted. This

FIG. 19: 0.25 < cz < 11.0 case, top panel: the projection of
the full 4-D dynamics on the 2-D x-Y plane. Bottom panel:
the corresponding potential as in Eq. (20), where a is given
by Eq. (53), z by Eq. (73) and r by Eq. (74). Trajectories
of the same colour in the two panels correspond to each
other. Two Einstein points exist at xE ' 0.15 (saddle),
which corresponds to a local maximum of the potential, and
at xE ' 0.31 (centre) corresponding to a local minimum
of the potential. Trajectories around the xE ' 0.31 fixed
point within the CFS are cyclic, and all other closed models
bounce. Bouncing models outside the CFS evolve with an
early- and late-time acceleration, connected by a period of
deceleration.

case with the boundaries between accelerating and de-
celerating regions of the phase space can be seen in Fig.
20. The two curves through the Einstein fixed points
parallel to the Y -axis denote where acceleration is zero.
The 0.15 < x < 0.31 region of the phase space is de-
celerating, and the x < 0.15 and x > 0.31 regions are
accelerating. Therefore, bouncing models outside the
CFS evolve with early- and late-time acceleration, with
a decelerating phase in between, and are therefore the
models of interest.
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FIG. 20: The phase space (top panel) and corresponding
potential (bottom panel) for 0.25 < cz < 11.0 as in Fig. 19,
with the boundaries between accelerating and decelerating
regions in red. The 0.15 < x < 0.31 region of the phase
space is decelerating, and the x < 0.15 and x > 0.31 regions
are accelerating.

Finally, using a′ = ay and a′′/a = y′+ y2 in Eq. (79)
(where each variable now is a function of a), in Fig. 21
we illustrate this model with the phase space for the
scale factor a (normalised to ao = 1 today) and non-
compactified Hubble expansion scalar y. Again, we see
in this plot that at high energies, i.e. small a, all models
have an accelerated phase, followed by a decelerated one
and a final accelerated one at recent times, i.e. when
a→ 1.

E. A note on R

As we mentioned previously, in order to alleviate
the old cosmological constant problem we would set
10−120 < R < 10−60, however purely for the purpose

FIG. 21: The phase space (top panel) and correspond-
ing potential (bottom panel, where now U = U(a)) for
0.25 < cz < 11.0 in terms of the scale factor a and non-
compactified Hubble expansion scalar y. This plot is equiv-
alent to Fig. 20, with the boundaries separating the accel-
erating and decelerating regions shown in red. The region
in between the two Einstein fixed points is decelerating, and
the regions outside are accelerating.

of illustrating the full range of dynamics in readable
phase plots, we have set R = 0.05. If we had set
10−120 < R < 10−60, only one case for the dynamics
would remain in each system. For both systems we have
considered, we find from Eq. (63) and Eq. (75) that for
10−120 < R < 10−60, we obtain 1016 < cr < 1036. The
effect of increasing radiation has qualitatively the same
effect as increasing matter.

For the first system of equations (27) - (30) where z
and r are unbounded, we find the only dynamical case
left, regardless of the value of cz, is as in Fig. 14. The
Einstein point would be pushed further towards x = R
and the closed models are mostly turn-around models
which always decelerate. The bouncing models in this
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case are always accelerating, which is not the evolution
we require for a realistic model.

For the second system of equations (29), (68), (69)
and (72) where z and r have an upper bound, we find
that the only dynamical case is as in Fig. 17. All closed
models bounce, however they are always accelerating,
which again is not the evolution we require.

As a final remark, we note that in order for a bouncing
model to be theoretically robust and realistic, the value
of R would need to satisfy the bounds 10−120 < R <
10−60, producing a bounce with an early acceleration,
followed by a decelerated era, and finally a late-time
acceleration as in Fig. 20. The decelerated era should
be a standard matter and radiation dominated phase,
in order to satisfy observational constraints, but a con-
tribution from the homogeneous dark energy remains a
possibility.

VI. CONCLUSIONS

In this paper, we have studied the dynamics of FLRW
models containing dark matter, radiation and dark en-
ergy with a quadratic EoS. This is an extension of [36],
who studied a more general quadratic EoS in the high,
low and full energy regimes without the inclusion of
matter and radiation, and found bouncing and cyclic
models were possible with certain combinations of pa-
rameters. A quadratic EoS is the simplest nonlinear
EoS and the qualitative analysis of the dynamics that it
generates serves as guidance for more complicated non-
linear models; its study find motivations in brane mod-
els, k-essence and loop quantum cosmology [37–45] (see
also [36, 46] and references therein). We have restricted
the EoS here so that the dark energy evolves between a
high energy effective cosmological constant, which could
be of order of the Planck energy, and a low energy ef-
fective cosmological constant close to the observed dark
energy density today. Our aim was to investigate the ef-
fect of matter and radiation on the bouncing and cyclic
models, to find whether these were still possible in this
more realistic scenario. In particular, our focus was on
all closed models avoiding singularities, instead having
a bounce or cycles. Because the EoS we consider is
barotropic, naturally the evolution of the system is adi-
abatic, so that in phase space the expansion is a mirror
image of the contraction, as in [35, 36, 46].

In Section II, we have presented the system of equa-
tions for compactified variables, with the energy densi-
ties of dark matter and radiation satisfying the standard
energy conservation equations, and as such are in prin-
ciple unbounded and able to become infinite. In Section
III, we present the sub-manifolds of the system. In Sec-
tion IV, we found one case of interest, shown in Fig.
15, where closed bouncing models can evolve with early
and late time acceleration. However, we found that this
bouncing behaviour is spoiled when matter and radia-
tion become dominant for certain values of the initial

conditions, and instead the system evolves with a turn-
around between two singularities. In comparison to Fig.
5 (with the same parameters but no matter and radia-
tion), in which all closed models bounce, we concluded
that these closed models could only be viable, i.e. always
have a bounce independently of the initial conditions, if
matter and radiation are only present at energies below
the energy scale of the bounce. This would require a
process such as reheating during the expansion phase
after the bounce.

In light of this, we introduced upper bounds on dark
matter and radiation in Section V, in order to avoid any
models becoming singular. We set this upper energy
scale in line with the high energy effective cosmological
constant of the dark energy component. In general, all
closed models in this system have a bounce. The case of
interest, shown in Fig. 20, admits bouncing models that
evolve with early- and late-time acceleration which are
not spoiled by the inclusion of matter and radiation, as
they only appear at the same energy scale as the dark
energy.

However, we noted that for the specific case of a
quadratic EoS, this case of interest is not possible with
a model that can alleviate the old cosmological constant
problem [30–32]. For a model where the two cosmologi-
cal constants differ by 60 to 120 orders of magnitude, we
found that the only case for the dynamics of the system
is as in Fig. 17. All closed models bounce, however they
always accelerate and so the evolution is undesirable.

Overall, our qualitative analysis shows that a model
with nonlinear dark energy and radiation and matter
can be a realistic scenario like the one shown in Fig.
20 and 21, with an early- and a late-time accelera-
tion, where all closed models have a bounce, assuming
that matter and radiation appear only after the bounce
through a process such as reheating. However, while
the simple specific model for dark energy considered
here helps our understanding of precisely what the qual-
itative realistic scenario should be, it does not give the
right quantitative behaviour. Learning from the present
analysis, in future work we will consider models for dark
energy, or for an interacting vacuum [35], giving the
qualitative behaviour of Fig. 20 and 21, but with a
realistic quantitative behaviour that will be worth con-
straining with data. Another interesting possibility that
we leave for a future analysis will be to include a reheat-
ing phase through an interaction term between the dark
energy and radiation components, with a possible role
of dark matter.
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