On the surface charge density of a moving sphere
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1t is shown that the surface charge density on a spherical conductor (spherical in the lab frame) is

uniform, regardless of its velocity.

1. A FEATURE OF THE ELLIPSOIDAL
ELECTROSTATIC CHARGE DISTRIBUTIONS

We first note a curious property of the charge density on
ellipsoidal conductors. This property is closely related to a
recent observation by Liu’ who proved that the charge
density on ellipsoidal conductors is proportional to the
fourth root of the Gaussian curvature."?

All the ellipsoidal surfaces are related by linear transfor-
mations; that is, any ellipsoid can be obtained from any
other by means of a suitable linear mapping. Specifically,
the ellipsoid S* given by (x*/a*)? + (y*/b*)?

+ (z*/c*)* =1 is obtained from the ellipsoid S given by
(x/a)? + (y/b)* + (z/¢)? = 1, by applying the transfor-
mation

x = (a/a*)x*, y=(b/b*)y*, z= (c/c*)z*, (1)

where a*, b *, c*, and q, b, ¢ are the semiaxes of the ellip-
soids §* and S, respectively. If an ellipsoid is deformed
under such a transformation, the Gaussian curvature of the
points on its surface obviously changes.

As is well known,® the surface element dS of a surface
whose equation is given in parametric form as r = r(u,v)
can be written as dS= (EG— F*)V? dudv, where
E=r,r,,F=r,r,, and G = r,r, (the subscripts denote
differentiation with respect to the indicated coordinate).
Taking as parameters ¥ =x and v =y, the parametric
equations of -the surface are now x=x, y=y, and
z = z(x,y), and the surface element dS can be expressed as

2 27172
dS=[1+(ﬁz~) +(@)] dx dy. 2)
ax dy
In particular, for an ellipsoid
. C2 x2 y2 ZZ 172
The Gaussian curvature for this surface is'
_ x2 y2 ZZ —2
K=ot S+ %)) ®
Using (3) and (4) we obtain
K __¢ dxdy
(abe)'? ab z

Finally, taking into account Eq. (5) and the transforma-

tion rule (1), we obtain the following relation when the

ellipsoid S is deformed into the ellipsoid .S *:
[K*'%/(a*b*c*)'?]1dS* = [K V*/(abc)'*]dS . (6)

This tells us how a patch of surface dSon § transforms into
the corresponding patch dS'* on S * (Fig. 1).

(3)
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Suppose now that the ellipsoid S is given an electric
charge Q. This will distribute itself over the surface with a
density given by Liu’s formula®*:

o= (Q/4m)[K "%/ (abc)'*] . (7)

When this charged ellipsoidal conductor is deformed into
the ellipsoid S*, Egs. (6) and (7) yield the remarkable
conclusion

o*dS*=o0dS. (8)

Corresponding patches on the two ellipsoids carry the
same electric charge. It is just as if the charge remained
fixed on the surface while the deformation takes place.

II. A RELATIVISTIC CONSEQUENCE: ALL
CHARGED CONDUCTING SPHERES EXHIBIT A
UNIFORM DENSITY OF CHARGE

We now derive an interesting relativistic consequence of
Eq. (8). Consider a conductor, moving at constant speed,
that has a spherical shape in the laboratory frame. Due to
Lorentz contraction, the conducting body must have the
shape of a prolate spheroid in its own rest frame. Figure 2
represents this situation for y= (1 —v*/¢?) 2 =2,
The sphere S (in the OXYZ frame) is derived from the
prolate spheroid S* (at rest in frame O*X *Y*Z *); it
moves with velocity v with respect to OXYZ, along OX. We
shall assume that for O = O *, ¢ = ¢t * = (. The relativistic
invariance of electric charge™® requires that the charges be
equal on corresponding patches of the sphere in motion
and the prolate spheroid at rest. But Eq. (8) relates the

Fig. 1. Linear transformation between two ellipsoids and the correspond-
ing patches of surface.
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Fig. 2. Conducting prolate spheroid S * charged with an electric charge Q,
at rest in the O *X *Y *Z * frame, and the same body observed from the
OXYZ frame as a sphere S in uniform motion. O *X *Y *Z * moves with

respect to OXYZ along axis OX with a velocity v such that .

y=(0—v/) " =2,

densities of charge on a sphere and a prolate spheroid both
at rest. Thus

(U* dS * ) spheroid at rest
— ( o¥* d S ** )
= (U dS) sphere in motion

But o** is uniform (obviously), and dS** = dS (since
both derive from dS * by the same linear transformation).
It follows that o is also uniform. We conclude that every
conductor with spherical shape (in the laboratory frame)
exhibits a uniform density of charge, regardless of its veloc-
ity. Incidentally, this argument can obviously be general-
ized: Any charged conducting surface observed in uniform
motion with a relativistic ellipsoidal shape carries the same
distribution of surface charge as a conducting ellipsoid at
rest with the same total charge and the same geometric
shape. For example, the charge density o of a moving con-
ductor that is a sphere in its rest frame (and an oblate
spheroid given by *x? + y* + z* = R ? in the laboratory
frame) is

o= (yQ/47R) (Vx> + y* + 2*) 7%, (9)

[by Eq. (8)]
(by invariance of charge).

sphere at rest

I11. DIRECT CONFIRMATION: ANALYSIS OF
THE ELECTROMAGNETIC FORCES
EQUILIBRIUM

However, in the case of an object in motion, the equilibri-
um of electric and magnetic interactions is more complex
than in the trivial electrostatic case. Let us now see in detail
how this electrodynamic equilibrium confirms our conclu-
sion.

Our strategy will be to calculate the electrostatic field
(for points just outside the surface) in the rest frame of the
spheroid, use the relativistic transformations to deduce the
fields in the frame of the moving sphere, and, from these,
obtain the surface charge density on the sphere, as well as
the electromagnetic force on the surface charge.

The surface density of charge o* on the prolate conduct-
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ing spheroid S * with charge Q, from Egs. (7) and (4), is
given by

Q <x*2 y*z Z*Z) - 12
o =—=% (212 4+ = s 10
dmab®\ o* b* bt (o
or, in terms of the angle @ (Fig. 2),
o* = (Q/4wb?)(cos® 0 +yzsin26)‘”2, (11)

where y = (1 — v*/c*) ~ V2 = a/b. Now, the electric field
E* at an external point arbitrarily close to P* is
E* =0%*/¢€,, and it points perpendicular to the surface.
The angle ¢ (Fig. 2) between the normal to the spheroid rn*
and the O *X * axisis easily calculated: tan ¢ = ¥ tan 6. Us-
ing the Lorentz transformation rules for electric and mag-
netic fields,” we obtain the components of the electromag-
netic field at a point arbitrarily close to P;

E. = E*x* = (Q/4me,b?)
X [cos 8/(cos* 8 + ¥*sin® 0)], (12)
E, = yE*y* = (Q/4me,b?)
X [¥?sin 6/(cos> @ + 2 sin* 9) ],
(13)
B, = (v/c?)yE*y* = (v/)E, . (14)

Evidently, the angle @ between E and the OX axis is given
by

tanw =E,/E, =y’ tan 0. (15)

The normal component of the electric field at a point arbi-
trarily close to the surface of the sphere S is, therefore,

E,=(E%+E})"*(cos wcos § + sin wsin 6)

= Q/4mesb? . (16)
It follows that the charge density on the sphere is
o=¢€E, =Q/4mb? (17)

independent of 6, confirming that the charge density on the
moving sphere is uniform.

Now, with Egs. (12)-(14), we can calculate the Lorentz
force® on an element of surface charge ¢:

F.=(9/2)(E+vXB), = (¢/2)E, ;
F, = (q/2)(E+VvXB), =qE, /2y .

Thus the electromagnetic force acting on the surface
charge of the relativistic sphere .S has a direction that is
normal to the surface:

F,/F,=E,/yE, =tan§. (19)

Evidently the uniform charge density is sustained by a
lucky conspiracy of electric and magnetic forces.

(18)
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An intermediate-level experiment examines Fraunhofer diffraction and its implications for the
image formation of a coherently illuminated object. A commercially available software package is
used to provide an environment that allows interactive data acquisition and subsequent numerical

and graphical analysis.

1. INTRODUCTION

The subject of Fraunhofer diffraction is a standard com-
ponent of both introductory and upper-level undergradu-
ate courses devoted in part or entirely to the discussion of
physical optics. Several authors have reported on experi-
ments designed to investigate diffraction patterns resulting
from the illumination of various apertures'''; in this ex-
periment we extend these considerations to include the for-
mation of an image of the diffracting aperture by an objec-
tive lens. By limiting our attention to Fraunhofer (plane
wave) illumination, we simplify the analysis, and the re-
sulting formalism serves as an excellent introduction to
Fourier analysis. A textbook treatment of Fourier optics is
not a prerequisite for this experiment; as we shall see, the
same Huygens—Fresnel approach that is used to develop
diffraction at the introductory level may be usefully em-
ployed here as well. Utilizing a single-slit aperture gives an
optical representation of analytical techniques that will be
very important in the student’s subsequent study of sub-
jects such as quantum mechanics and circuit theory. In
addition, the implications of this experiment relating to the
ultimate resolution of a microscope provide a fascinating
and important topic of discussion.

How best to integrate microcomputers into the under-
graduate experimental curriculum has been a topic of con-
siderable debate; we believe that this experiment satisfies
several important criteria in this respect.'”> While this
would be a very good experiment if analog strip-chart
traces were simply compared to theoretical plots, our use of
the computer in this case provides an enhancement to the
students’ understanding of the phenomena being studied in
addition to providing an introduction to some common
tasks performed by microcomputers in the laboratory. In
particular, digitizing the data allows for a least-squares fit
to a nonlinear theoretical expression. Since these expres-
sions are in the form of Fourier transform integrals, nu-
merical integration must precede the fitting procedure.
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Subsequent graphical display of the fitted data confirms
experimental technique and analytical treatment. Imple-
mentation of each of these important computing tasks re-
quires differing levels of familiarity with the computing
system at the hardware and software level. To prevent
practical details from overwhelming the desired physical
insights, it is appropriate to provide the student with some
level of software support; our use of a commercially avail-
able software product for this purpose will be discussed
below.

II. THEORY

Figure 1 illustrates the case where a single-slit aperture is
illuminated with plane-parallel, coherent radiation. Ac-
cording to the Huygens—~Fresnel principle,'* we may think
of each point on the diffracting aperture as contributing a
secondary forward-traveling spherical wavelet. As long as
we are either far away from the aperture or at the focal
plane of an objective lens (Fraunhofer plane), the coherent
superposition of these elemental wavelets at the Fraun-
hofer plane results in an optical disturbance that can be
characterized by a Fourier transform integrai'?:

“+

Uv) = Cf gy dy (1)

where g is the aperture function, C is a constant, y' mea-
sures a point on the aperture, v measures a point on the
Fraunhofer plane, f= focal length of the objective lens,
k =2n/A, A = illumination wavelength, and where we
have assumed that 6 =+v/f is small enough so that
tan(8) ~sin(8) ~6. To complete the Fourier transform
analogy, one may define the “spatial frequency”’u = kv/f,
giving

+ w0
Up) = Cf g(y)e dy' . 2)
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