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The relativistic lengthening of the lifetime of a decaying elementary particle bound in a stationary
state of an exotic atom provides evidence that the particle is actually in motion even though such
motion cannot be visualized classically. This application of special relativity to the particles
within an atom helps illuminate an argument frequently used for the Lorentz invariance of

electric charge.

One of the strongest arguments adduced for the Lorentz
invariance of charge is the exact electrical neutrality of
atoms and molecules. The essence of the argument is as
follows: if the magnitude of the charge of two elementary
particles at rest with respect to a stationary observer is
equal, then, were the Lorentz invariance of charge not val-
id, the observer would measure a charge imbalance of the
bound system within which these elementary particles are
in relative motion. As eloquently expressed by Purcell':

We are so accustomed to taking this for granted that
we seldom pause to think how remarkable and funda-
mental a fact it is....If motion has any effect on the
amount of charge, we could not have exact cancella-
tion of nuclear and electronic charge in both the hy-
drogen molecule and the helium atom.

In the above example, emphasis has been placed on the
vastly different states of motion of two protons bound in a
nucleus by strong forces compared with two protons bound
in a molecule by electron exchange. Since the two systems,
the helium atom and the hydrogen molecule, have been
shown to be neutral to better than one part in 10%, the
evidence for charge invariance seems quite convincing.>?
There is a subtle point in arguments of this kind which is
connected with the concept of motion of bound elementary
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particles in stationary states. An electron orbiting a proton
in a Bohr atom has a well-defined trajectory and velocity.
An electron in a quantum-mechanical atomic bound state
does not. Although it may have a nonvanishing expectation
value of angular momentum or kinetic energy, there is no
sequential connection between neighboring points in the
probability distribution of an electron in a stationary state.
To think of the electron as moving (classically) within its
probability distribution is to encounter a host of well-
known paradoxes. (For example, how does it jump the
nodes?)

Quantum theory has altered substantially the classical
concepts of motion and, notwithstanding semiclassical
heuristic models (e.g., the vector model of the atom) or the
pictorial representation of electron clouds,* has made the
visualization of the motion of bound particles largely im-
possible. While this visualization is by no means necessary
or even relevant to the consistency of quantum mechanics,
it does play a certain important role in special relativity. In
the latter one must be able to imagine the placement of
clocks and rods in different inertial reference frames and
the subsequent performance of physically realistic mea-
surements. The phenomenon of length contraction or time
dilatation follows from the relativity of simultaneity in the
different inertial frames as deduced from the outcome of
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physically meaningful measurement procedures.

If the Lorentz invariance of charge is to be inferred from
the state of motion of bound elementary particles, then (al-
though the equation of motion must necessarily be quan-
tum mechanical) it must still be meaningful to conceive of a
Lorentz transformation relating the rest frame of a particle
to the rest frame of the stationary observer. Given that a
bound elementary particle cannot, in principle, be located
without an alteration of its state of motion, is such a con-
ception meaningful? Expressed somewhat differently, is
there any phenomenon exhibited by a bound elementary
particle that can be interpreted as indicative of motion in
accordance with special relativistic implications of the con-
cept of motion?

Despite the fact that the motion of a bound elementary
particle cannot be pictured or followed, it will be seen that
the above question can be answered affirmatively. The as-
sertion that a particle is in motion relative to a stationary
observer has an observable physical consequence: a clock
moving with the particle must exhibit relativistic time
dilatation.

Were the electron a classical charged particle orbiting a
center of force, this effect would in principle be evident
from the Doppler shift of radiation emitted at different
points in the electron trajectory. As in a binary star system,
there would in fact occur both a blue and a red shift for any
angle of observation other than 90° to the plane of motion.
The electron is, of course, not a classical charged particle.
Radiation occurs only by transition out of a stationary state
and at a frequency generally unequal to the frequency char-
acteristic of the orbital motion. The Doppler shift of atomic
spectral lines derives from the essentially classical motion
of the atomic center of mass, not from the quantum-me-
chanical motion of the electron.

There is an alternative and peculiarly quantum-me-
chanical clock associated with an elementary particle, viz.
its natural lifetime. Since the electron, so far as one knows,
is a stable elementary particle, its lifetime is infinite and no
motional effect on it is observable. Such an effect is observ-
able with the muon, a particle characterizable as a heavy
electron. Like the electron, the muon has spin 1/2 and is
subject to the Pauli exclusion principle; muons can replace
electrons in the shell structure of an atom although, as a
result of the muon’s greater mass (m, = 207 m, ), the aver-
age muon orbital radius is 207 times smaller than that of an
electron with the same quantum numbers. A major distinc-
tion between the muon and the electron is that the muon
can decay by a weak interaction process to yield an elec-
tron, electron antineutrino, and muon neutrino. The mean
free muon lifetime (reciprocal of the decay rate in the muon
rest frame) 1is currently known to be’
2.197120 + 0.000077 X 10~ sec. Since there is no lighter
charged lepton to which an electron can decay, the electron
remains stable. According to a Bohr model of muonic hy-
drogen, the ground-state muon with orbital speed v,

= Zac (where a@ = ¢?/#ic~ 1/137 is the fine structure con-
stant and Z is the nuclear charge number) can complete
about 10'% X Z ? revolutions before undergoing weak decay.
The muonic atom would therefore seem to be a reasonably
stable system with well-defined ground state.

In addition to weak decay, the muon can disappear by a
nuclear capture reaction in which a proton, interacting
with a negative muon, gives rise to a neutron and muon
neutrino. The probability for this process increases with
nuclear charge. For Z = 11, the rates of weak decay and
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nuclear capture are approximately equal; for heavy nuclei,
the mean lifetime of a bound muon is essentially deter-
mined by the nuclear capture process.® Nevertheless, since
the end products of the two processes are different, one can
experimentally study the bound muon weak decay rate
alone by monitoring the rate of production of decay
electrons.

Over forty years ago, the now classic measurement by
Rossi and Hall’ of the decay rate of free muons as a func-
tion of muon momentum provided a direct and rigorous
confirmation of the time dilatation phenomenon. This in-
vestigation is described in much of the pedagogical litera-
ture relating to special relativity®; a filmed version of the
experiment has even been made.” In contrast, it is not wide-
ly realized that the observed lifetime of a muon (or any
other decaying elementary particle) in a stationary state of
an atom should also be affected by time dilatation.

Historically, the fact that positive and negative muons
stopped in matter decayed at different rates provided the
first evidence of the formation of muonic atoms and of the
effect of binding on the muon decay rate.'® A positive muon
brought to rest in the presence of a positive nucleus cannot
be captured into an atomic bound state; it subsequently
decays at a rate characteristic of the free muon (either posi-
tive or negative). A negative muon in matter, however, is
attracted by the Coulomb field of the nucleus and is gener-
ally captured into a high lying atomic state (Rydberg state);
it then undergoes cascade transitions by Auger electron
emission into deeper lying states, and thereafter preferen-
tially makes radiative transitions until reaching the atomic
ground-state. The time interval between atomic capture
and formation of a ground-state muonic atom is on the
order of 10~ sec in a gas and less than 10~ !? sec in con-
densed matter.!' Fewer than about 10~2 muons decay
from other than the ground state.

Although a detailed calculation employing a specific
weak decay Hamiltonian is required to obtain the exact
numerical value of the muon weak decay rate, the relativis-
tic kinematical effect on this rate by time dilatation is inde-
pendent of the particular structure of the decay Hamilton-
ian; it is deducible by constructing an appropriate operator
¥ whose expectation value in a stationary state gives direct-
ly the classical factor ¥ by which the observed rate is retard-
ed. Classically, the dilatation factoris ¥ = (1 — v*/¢?)~ /2.
The appropriate quantum-mechanical operator, obtained
from the classical relativistic expression for kinetic energy,
T = (E — V)= mc?y, is given by"?

y=(H—V)/mc. (1)
The expectation value of 7 in the 1s, ,» ground state of a
point Coulomb potential ¥ = Ze?/r is

<7;>ls,/2 = (W(lsl/Z)h:'W(lsln))
=[1—(ZaP]™'?, (2)

where ¥(ls,,,) is the four-component Dirac 1s,,, wave
function. Equation (2) follows readily from the expressions
for the ground-state energy E (1s,,,) = mc*[1 — (Za)*}"'?
and the expectation value r Y,
= Za(me/H)[1 — (Za)*} ~ '/~ It is interesting to note that
this same dilatation factor is obtained for the ls state in
nonrelativistic quantum theory and for the circular orbits
of the relativistic Bohr atom. From Eq. (2) one may infer
that (Za)? in the Dirac theory is in some sense a measure of
the mean square orbital velocity, as is the case in the nonre-
lativistic treatment of the point Coulomb potential.'?
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From Eq. (2) the relativistically retarded weak decay rate
w of a muon bound to a point Coulomb potential is

w= {1 —(Za)*)"*w, (3)

where w, is the decay rate of a free, stationary muon. How
does this prediction compare with the results of weak inter-
action theory and with experiment? ,

In the early 1960s a number of calculations of the bound-
to-free muon decay rate ratio R = w/w, were made on the
basis of a vector—axial vector (V-A) weak interaction. All
calculations employed first-order perturbation theory in
the weak interaction Hamiltonian {in the Fermi theory all
higher-order terms are divergent) but differed slightly in
the approximations used to evaluate the weak decay matrix
element. Uberall employed a relativistic muon wave func-
tion for a point nucleus and a Born expansion through Z ? of
the electron Coulomb wave function.'* Gilinsky and Math-
ews employed a Sommerfeld-Maue wave function for the
electron and a modified Coulomb wave function for the
muon which took into account the influence of finite nucle-
ar size."> Johnson et al. in studying the influence of the
Coulomb field of a point nucleus, obtained analytical re-
sults to one power higher in Za than the previous calcula-
tions.'® The end result of this theoretical work has been to
show that R = 1 — (Za)?/2 to order (Za)®. This result is
equivalent to a Taylor expansion of Eq. (3) to the same
order.

Actually, the bound muon decay rate is influenced by
dynamical and statistical effects incurred through the
binding as well as by the relativistic time dilation. The two
principal effects, which work oppositely on the decay rate,
are the electron Coulomb field effect and the phase space
effect. In the former, the positively charged nucleus at-
tracts the electron emitted in the muon decay and thereby
produces a greater overlap of the muon and electron wave
functions near the nucleus than would otherwise be the
case for a plane-wave electron; the electron Coulomb field
effect enhances the muon decay rate. In the latter, the vol-
ume of phase space accessible to the decay products of a
bound muon is restricted in comparison to that of a free
muon by the momentum distribution produced by the
binding; the phase space effect reduces the decay rate. The
expression for R shows that in the light and medium ele-
ments (for which the approximations leading to this expres-
sion are valid) there is a fortuitous cancellation of the Cou-
lomb field and phase space effects; in these muonic
elements, therefore, the departure of the bound muon weak
decay rate from that of the free muon is principally a mea-
sure of the effect of time dilatation.

For the heavy muonic elements, the simple analytical
expression for R is no longer necessarily justified. Huff,
employing a general, local nonderivative decay interaction
and relativistic electron and muon wave functions, has
made extensive numerical calculations surveying elements
throughout the periodic table.'” His results are in basic
agreement with the previous analytical estimates in their
range of validity and indicate that the net bound muon
decay rate is a smoothly decreasing function of Z. Direct
comparison with Eq. (3), however, is no longer meaningful
for heavy nuclei since the muon no longer sees a point cou-
lomb potential. Moreover, the contributions of the various
effects to the net decay rate ratio were not specified by
Huff.

At the time of publication of the above-described theo-
retical work experimental results were consistent with the-
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Table I. Experimental and theoretical values of R (Z).

Z R(Z)y R(ZY e,  RAZ).sp.
6C 1.00 1.00 + 0.02¢
13 Al 0.99 0.99 4 0.04¢
20Ca 0.99 1.00 + 0.03¢
23V 0.99 0.98 1.00 4 0.04¢
26 Fe 0.98 0.98 0.97 £ 0.04°
1.00 4+ 0.04¢
27Co 0.98 0.97 0.94 4-0.04¢
28 Ni 0.98 0.97 0.96 1 0.04¢
30Zn 0.98 0.96 0.93 +0.04¢
50 Sn 0.93 0.92 0.87 £ 0.04¢
74 W 0.84 0.85 0.78 4+ 0.04¢
82 Pb 0.80 0.84 0.86 + 0.04¢

*Time dilatation; given by Eq. (3).

®Numerical results; taken from Refs. 17 and 21.
“Reference 18.

“Reference 21.

“Reference 20, cited in Ref. 21.

ory for elements with Z < 20, but in the region 20 < Z < 30
agreement was very poor.'® In fact, for elements around
iron the measured bound muon decay rate was even consid-
erably greater than that of the free muon rate in complete
disagreement with the trend predicted by Huff’s numerical
results. Except for the unlikely possibility that the basic
structure of the weak decay interaction itself was in error,
no theoretical explanation was found which could account
for the anomalous results. An alternative possibility was
that the anomalous decay rate enhancement around iron
represented a contamination of the signal by low energy
gamma rays associated with muon capture.'® Fortunately,
subsequent experimental work failed to reproduce the
anomalous enhancement.?>?! The experimental measure-
ments reported in Ref. 21 of muonic elements ranging from
vanadium (Z = 23) to lead (Z = 82) were in good accord
with Huff’s theory and provided evidence to support the
belief that all important contributions to the bound muon
decay process were reasonably well accounted for. A com-
parison of experimental results with the numerical calcula-
tions of Huff and with the expression for time dilation, Eq.
(3), is given in Table I. A more comprehensive comparison
of experiment and theory may be found in Fig. 1 of Ref. 20.

In conclusion, the experimental and theoretical evidence
of the retardation of the bound muon decay rate—particu-
larly for the light and medium elements (Z < 30) where this
retardation can be clearly attributed to relativistic time di-
lation—may be taken as evidence that even within the inte-
rior of an atom where classical mechanics generally fails
entirely to provide a quantitative or qualitative description
of the motion of the constituent particles, the special rela-
tivistic consequences of motion still occur.?? This is inter-
esting and significant since, after all, special relativity is
itself a classical theory predicated on measurement proce-
dures that cannot be implemented in the interior of atoms.
Although the Lorentz invariance of electic charge is a firm-
ly established principle independent of the present demon-
stration, the recognition that a bound elementary particle
manifests its motion in ways that one can appreciate classi-
cally helps illuminate the opening argument which is
founded on the conviction that a particle in a stationary
atomic state is in some sense moving.
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The gyrotron or electron cyclotron resonance maser is a high-power microwave source in which
the microwave fields gain energy from a beam of relativistic electrons. In this article, an
elementary account of the gain mechanism based on a linear, small-signal analysis is presented.

I. INTRODUCTION

The gyrotron or electron cyclotron resonance maser is a
new high-power microwave source operating from centi-
meter to submillimeter wavelengths. At the present time,
its development is being stimulated by the demand for
high-power microwave radiation to heat tokamak plasmas
towards fusion temperatures and by new radar
applications.

The heart of the device is a resonant cavity in a steady
magnetic field (Fig. 1). A hollow cylindrical beam of elec-
trons gyrating about the magnetic field direction with rela-
tivistic energies enters the cavity and interacts with the mi-
crowave fields there. The microwave fields gain energy
from the electrons and a fraction of this energy leaves the
cavity via the output waveguide.

The possibility that, under some conditions, wave ampli-
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fication can occur when radiation traverses a magnetized,
astrophysical plasma was first pointed out by Twiss' in
1958. Then, in 1959, two distinct accounts of a gain mecha-
nism for relativistic monoenergetic electrons in a magnetic
field were published. Schneider® used quantum mechanics
while Gaponov® used classical physics. The first experi-
ment that definitely confirmed the existence of the mecha-
nism was reported by Hirshfield and Wachtel in 1964.

Since then, gyrotrons have been buiit that deliver kilo-
watts of continuous power over a broad range of wave-
lengths (Table I). The initial development of these devices
took place in the Soviet Union although now the work is
quite widespread. The subject has recently been reviewed
by Hirshfield.®

The purpose of this article is to present what may be
called an elementary theory of the gyrotron. An expression
is derived that shows how much energy is transferred from
the electrons to the microwave fields.
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