Chapter 2 Manifolds

FIGURE 2.10 Types of maps.

FIGURE 2.11 A map and its inverse.

FIGURE 2.10 Types of maps.

FIGURE 2.11 A map and its inverse.

The set M is known as the **domain** of the map ϕ , and the set of points in N that M gets mapped into is called the **image** of ϕ . For any subset $U \subset N$, the set of elements of M that get mapped to U is called the **preimage** of U under ϕ , or $\phi^{-1}(U)$. A map that is both one-to-one and onto is known as **invertible** (or bijective). In this case we can define the **inverse map** $\phi^{-1}: N \to M$ by $(\phi^{-1} \circ \phi)(a) = a$, as in Figure 2.11. Note that the same symbol ϕ^{-1} is used for both the preimage and the inverse map, even though the former is always defined and the latter is only defined in some special cases.

The notion of **continuity** of a map is actually a very subtle one, the precise formulation of which we won't need. Instead we will assume you understand the concepts of continuity and differentiability as applied to ordinary functions, maps $\phi: \mathbf{R} \to \mathbf{R}$. It will then be useful to extend these notions to maps between more general Euclidean spaces, $\phi: \mathbf{R}^m \to \mathbf{R}^n$. A map from \mathbf{R}^m to \mathbf{R}^n takes an m-tuple (x^1, x^2, \ldots, x^m) to an n-tuple (y^1, y^2, \ldots, y^n) , and can therefore be thought of as a collection of n functions ϕ^i of m variables:

$$y^{1} = \phi^{1}(x^{1}, x^{2}, ..., x^{m})$$

$$y^{2} = \phi^{2}(x^{1}, x^{2}, ..., x^{m})$$

$$\vdots$$

$$y^{n} = \phi^{n}(x^{1}, x^{2}, ..., x^{m}).$$
(2.8)

We will refer to any one of these functions as C^p if its pth derivative exists and is continuous, and refer to the entire map $\phi: \mathbf{R}^m \to \mathbf{R}^n$ as C^p if each of its component functions are at least C^p . Thus a C^0 map is continuous but not necessarily differentiable, while a C^∞ map is continuous and can be differentiated as many times as you like. Consider for example the function of one variable $\phi(x) = |x^3|$. This function is infinitely differentiable everywhere except at x = 0, where it is differentiable twice but not three times; we therefore say that it is C^2 . C^∞ maps are sometimes called **smooth**.