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The radiation emitted by two charges circling at opposite ends of a diameter at arbitrary uniform
speed is considered, with special attention being paid to interference effects. The difference in the
rate of radiation from the system and the sum of the powers emitted separately by each circling
charge is shown to be equal to the work done by the particles on each other through their exact
Liénard–Wiechert fields, in accordance with the Poynting theorem. Some peculiarities of the
radiation at high and low speeds are noted and explained. ©1997 American Association of Physics
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I. INTRODUCTION

The term interference is used when a joint local~mean!
action of two or more waves by their superposition is n
additive and depends on the phase difference between t
In particular, for similar coherent point sources~emitting
harmonic waves of the same frequency in phase! construc-
tive or destructive interference occurs at a point accordin
whether the path difference from it to the sources isNl or
(N11/2)l ~whereN is an integer, andl is the wavelength!,
so that periodic space variations in intensity result.

Since energy admittedly is neither created nor destro
by the interference process, it comes to just a spatial re
tribution of energy~which supposedly remains the same
total!, such that the average intensity over the interfere
pattern is the same as for incoherent sources. However,
is clearly not the case when a separation between cohe
sources is less than a half wavelength, because the path
ference of superposing waves for any point then also can
exceed the valuel/2, and interference is nowhere entire
destructive~according to the general rule above!. At the
same time, for equidistant points~on the plane of symmetry
midway between the sources! the condition for constructive
interference is obviously fulfilled~with N50!, resulting in
intensity which is twice that due to the same sources if
terference did not happen. As a result, the total energy fl
from a couple of nearby coherent sources exceeds tha
incoherent ~or distant! ones, and the surplus apparen
should be ascribed to the mutual internal work done by
coherent sources on each other~increasing the rate of thei
exhaustion!.

Although interference is usually treated as one of the ba
subjects in any serious course of optics, the mutual influe
of coherent sources seems not to be attended to proper
textbooks~probably because separations and sizes of lu
nous bodies are well above corresponding wavelengths!. To
fill the gap and corroborate the expectation based on en
conservation by an exact calculation, we consider elec
magnetic waves emitted by accelerated charges, represe
the simplest point sources of radiation. To simplify the co
sideration, we restrict it to the case of two chargesq1 andq2

circling in an orbit of radiusa at opposite ends of its diam
eter, which rotates with constant angular speedv. Since the
circling particles are always 2a apart, the source-to-sourc
distance in such a system is less thanl/2 ~at least for the
fundamental frequencyv!, becausel52pc/v52pca/v
52pa/b.6a, in view of the relativistic restriction on the
1060 Am. J. Phys.65 ~11!, November 1997
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particles’ speedv:b5v/c,1. This makes the model suitabl
for a display of the overall effect of interference.

To provide a uniform circling of charges, an external fie
E0(x,t) is to be applied to the system, whose radial comp
nent would furnish centripetal acceleration, while the wo
done on the charges by its tangential component comp
sates for energy loss due to radiation. If the system is co
prised of two similar particles of opposite charges~each of
magnitudee!, circling under their mutual attraction~a clas-
sical model for the ‘‘positronium atom’’!, its stabilization
against the ‘‘fall to the center’’~cf. Problem 1 to Sec. 75 in
Ref. 1! can be achieved by means of a rotating electric fie
say, due to a circularly polarized electromagnetic wave.~In
the general case of arbitrary charges it is not so simple,
a more sophisticated guiding field may be required.!

A proper tuning of the wave’s frequency and amplitu
allows for the compensation of radiative loss with the wo
done on the particles by the field of the wave, which rend
the particles’ acceleration just centripetal. Incidentally, if t
stabilizing wave is standing and plane, and the particles’
bit lies in one of the antinodal planes for electric field, t
magnetic counterpart of the wave’s fields is ineffective, b
cause the same planes prove to be nodal for it~see, e.g., Sec
7.4 of Ref. 2!. In particular, the wave then does not exe
radiation pressure on the circling particles, since a force p
pendicular to the plane of the orbit~in a transverse electro
magnetic wave! might result from the magnetic field onl
~which is zero in the nodal planes!.

One more observation is appropriate with respect to
system at hand. Since the Coulomb force between
charges is purely radial, it cannot be responsible for the w
done by the circling particles on each other. Therefore, th
interaction should be defined by the entire Lie´nard–Wiechert
electromagnetic fields, and the whole treatment must be r
tivistic.

According to~6.110! of Ref. 3, the total work done on th
particles per unit time is

E
V
~J11J2!–~E01E11E2!d3x5dEmech/dt50, ~1!

since the uniform circling implies a constant mechanical
ergyEmech. Here,E0 is the applied~guiding! field, andEj is
the Liénard–Wiechert electric field of thej th charge.

Inasmuch as the system is stationary, the energy supp
by the external fieldE0 to keep the charges’ motion stead
must be given off by the system at the same rate. In a se
1060© 1997 American Association of Physics Teachers
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the circling charges represent an ‘‘antenna,’’ fed by the gu
ing field. Therefore, the total power radiated is

P5E
V
~J11J2!–E0d3x

52E
V
@J1–E11J2–E21~J1–E21J2–E1!#d3x. ~2!

By Poynting’s theorem the negative work done on ea
charge by its self-force,

Pj52E
V
Jj–Ejd

3x52qjvj–Ej~xj ! ~3!

~where thed-functional form of the current densityJj for a
point particle has been used!, describes its individual radia
tion in the absence of the partner. Thus the first two terms
the right-hand side of Eq.~2! correspond to incoheren
sources; they are mutually independent and expressible
centripetal acceleration by means of the relativistic Larm
formula, see, e.g.,~14.26! of Ref. 3.

There are two main difficulties associated with Eq.~3!.
One is an infinite value of the self-field at the site of a po
particle; it can be handled by the mass-renormalizat
procedure4 ~see also Ref. 5!. The other is the so-called Scho
term ~containing the second time-derivative of the particle
velocity!, which appears inEj (xj ) but is absent in the Lar
mor power formula~see the discussion in the series of pap
set forth in Ref. 6!. Fortunately, for a uniform circular mo
tion the term becomes ineffective, and the~relativistic! radia-
tive reaction force~see, e.g.,~4.18! of Ref. 7! simplifies to

qjEj~xj !5Fr522qj
2g4v2b/3c2, ~4!

whereg5(12b2)21/2.
Hence, Eq.~2! shows that the difference between the a

tual powerP, radiated from the system, and the incoher
radiated powersP1 andP2 :

P2P12P252E ~J1–E21J2–E1!d3x

52q1v1–E2~x1!2q2v2–E1~x2! ~5!

~which describes the interference effects! is defined by inter-
action of circling charges. The main objective of this pape
to corroborate Eq.~5! by independent direct calculations o
its two sides, through a comparison of the power radiated
the circling charges with their mutual work on each othe

II. POWER RADIATED BY THE CHARGES

Since the uniform circling is a periodic motion, the ener
flow emitted from the system consists of discrete spec
components whose frequencies are multiples of the ang
velocity v.

The intensity of radiation at the frequencymv (m
51,2,...) perunit solid angle at a distanceR0 from the cen-
ter of the orbit is

dIm /dV5~c/2p!uk3Amu2R0
2, ~6!

whereuku5mv/c. If the system of coordinates chosen co
responds tokx50, ky5k sinu, kz5k cosu, the mth Four-
ier component of the vector potential for one circling partic
of chargeq is defined by
1061 Am. J. Phys., Vol. 65, No. 11, November 1997
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H Axm

Aym
J 5

q

R0
exp~ ikR0!H 2 ibJm8 ~mb sin u!

Jm~mb sin u!/sin u
J , Amz50,

~7!

whereJm andJm8 are the Bessel function~of orderm! and its
derivative, respectively; see, e.g., Eqs.~74.6! and ~74.7! of
Ref. 1. The fields of the second charge are given by sim
expressions with opposite sign ofb, which can be allowed
for by use of symmetry properties of the Bessel functio
and their derivatives:

Jm~2x!5~21!mJm~x!, Jm8 ~2x!52~21!mJm8 ~x!.
~8!

Taking into account that

uk3Amu25k2~ uAxu21uAyu2 cos2 u!, ~9!

one arrives at the following expressions for the time-aver
power radiated per unit solid angle by a single circling p
ticle:

^dP/dV&15q2 (
m51

`

Pm~mb,sin u!, ~10!

and for the radiation from a system of two circling charg
q1 andq2

^dP/dV&25~q1
21q2

2! (
m51

`

Pm~mb,sin u!

12q1q2 (
m51

`

~21!mPm~mb,sin u!. ~11!

Here,Pm is the power in themth harmonic for one charge
of unit strength:

Pm5~m2v2/2pc!@b2Jm8
2~mb sin u!

1cot2 uJm
2 ~mb sin u!#, ~12!

cf. ~74.8! in Ref. 1 or Problem 14.8 of Ref. 3.
The Kapteyn series of Bessel functions in~10! can be

summed up using the following relations:

(
m51

`

m2Jm
2 ~mb!5b2~b214!/16~12b2!7/2,

~13!

(
m51

`

m2Jm8
2~mb!5~3b214!/16~12b2!5/2,

which are derivable by averaging~over the period! squares
of the Bessel’s solution to the classical Kepler’s problem
which can be found in Ref. 8. Incidentally, there is a mispr
in Eq. ~3!, Sec. 17.6 on p. 573 of Ref. 8~where 1/2 stands for
the correct value of 7/2 in the bracket’s exponent of our fi
formula!, which is often inadvertently reproduced in refe
ence books: cf. Ref. 9.

The summation in~10! yields @cf. ~74.4! in Ref. 1#

K dP

dV L
1

5~qvb!2
4~11cos2 u!2b2~113b2!sin4 u

32pc~12b2 sin2 u!7/2 ,

~14!

which, on integration over all possible directions, results

P15E ^dP/dV&1dV52q2g4v2b2/3c, ~15!
1061A. N. Gordeyev
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which is nothing but the relativistic Larmor power formu
for a single particle:

P15~2q2/3c!g6@ḃ22~b3ḃ!2#, ~16!

sinceb is orthogonal toḃ5db/dt for a circular motion, and
uḃu5v2a/c5vb is just a magnitude of the centripetal a
celeration.

Although an analogous summation cannot be performe
~11!, the expression can be integrated over angles if one
Schott’s result, cited as~74.9! in Ref. 1:

E PmdV5~q2v2/c!2mbFJ2m8 ~2mb!

2~2b2g2!21E
0

2mb

J2m~j!djG . ~17!

Thus the total power radiated jointly by both circlin
charges~which must be supplied, of course, by the stabil
ing field! is found to be

P5E K dP

dV L
2

dV5P11P212q1q2 (
m51

`

~21!mE PmdV

5
~q1

21q2
2!2g4v2b2

3c
14S q1q2v2

c Db (
m51

`

m~21!m

3FJ2m8 ~2mb!2~2b2g2!21E
0

2mb

J2m~j!djG , ~18!

where~15! has been used in the first term.
Expression~18! consists of two parts: one, defined by th

first term, which would be the only one if each particle we
circling alone~incoherent sources!, and the second one de
fined by the series, which describes the overall effect of
terference and gives the desired value of the left-hand sid
Eq. ~5!.

III. LIMITING CASES AND MULTIPOLE FIELDS

To see in more detail the behavior of the combined pow
of radiationP relative to the incoherent contributions of th
single-charge powersP11P2 , it is helpful to consider the
low-speed limit of the infinite sum in~18!. In the case of a
nonrelativistic motion of particles,b!1, the series expan
sions of Bessel functions for small values of their argum
yield

(
m51

`

m~21!mFJ2m8 ~2mb!2~2b2g2!21E
0

2mb

J2m~j!djG
'

b

3 S 211
14

5
b21••• D , ~19!

where only the first two terms~with m51,2! survive in the
sum up to orderb3.

In this approximation the interference term in~18! be-
comes

P2P12P25~4cq1q2b4/3a2!~21114b2/51••• !.
~20!
1062 Am. J. Phys., Vol. 65, No. 11, November 1997
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On the other hand, for the low harmonics, the expansion
powers of b corresponds to expansion in powers ofka,
which is just the multipole expansion of electromagne
fields; see Secs. 9.1–9.3 in Ref. 3.

The lowest order multipole fields now~for vÞ0! are the
electric dipole and quadrupole, since the magnetic dip
moment of circling charges remains constant and is ineff
tive for radiation. The corresponding total powers radia
are

Pd5
ck4upu2

3
, PQ5ck6(

a,b

uQabu2

360
, ~21!

wherep andQab are the Fourier components of the elect
dipole and quadrupole moments, respectively; see~9.24! and
~9.49! in Ref. 3 or~67.11! and ~71.5! in Ref. 1.

For the system at hand,

p5a~q12q2!ReH 1
i
0
J e2 ivt, ~22!

H Q11

Q12

Q22

Q33

J 5
a2~q11q2!

2 F H 1
0
1

22
J 13 ReH 1

i
21
0
J e22ivtG ,

~23!

while all other components of the quadrupole moment ten
Qab vanish.

However, to orderb6 retained in~20! we must include a
correction to the dipole moment, cf.~9.11!–~9.12! in Ref. 3.
An exact expression for the radiated power is an incohe
sum of contributions from all multipoles:

P5S c

8pk2D(
l ,m

@ uaE~ l ,m!u21uaM~ l ,m!u2#; ~24!

see~16.79! in Ref. 3. The ‘‘amplitudes’’aE andaM ~in the
absence of intrinsic magnetization! are expressible in term
of the charge and current densitiesr(x,t), J(x,t) as

H aE

aM
J 5

4pk2

iAl ~ l 11!
E Ylm* F H r

]

]r
@r j l~kr !#

0
J

1H ik~r–J!/c

“–~r3J!/c
J j l~kr !Gd3x, ~25!

where j l(kr) and Ylm* (u,f) are spherical Bessel function
and ~complex conjugate! spherical harmonics, respectively
see~16.91! and ~16.92! in Ref. 3.

A Fourier series expansion for the charge density is s
gested, e.g., in Problem 9.1~b! of Ref. 3:

r~x,t !5r01 (
n51

`

Re@2rn~x!e2 invt#, ~26!

where for our system~in spherical coordinates!
1062A. N. Gordeyev
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rn~x!5~1/2pa2!d~r 2a!d~u2p/2!@q11~21!nq2#einf.
~27!

Since, in this case,

r–J50, “–~r3J!52r–~r3J!50, ~28!

in the sum~24!, all aM50, and only electric multipole term
survive. As a matter of fact,~24! provides an expression fo
P alternative to~18!.

To find the necessary correction to the dipole moment,
need justaE(1,1), which is

aE~1,1!5ãE~1,1!~3/2!@ j 0~b!2 j 1~b!/b#, ~29!

where the long wavelength valueãE , corresponding to~22!,
is given by~16.93! of Ref. 3:

ãE~1,1!5~4pk3
&/3i !E Y11* rr d3x ~30!

~the recursion formulas for the spherical Bessel functio
also have been used to expressj 18!.

An expansion in powers ofb yields

aE~1,1!5ãE~1,1!Fcosb

b2 2
sin b

g2b3G5ã~1,1!~12b2/51...!,

~31!

and for powers of radiation, one obtains

Pd'
2c~q12q2!2b4

3a2 ~122b2/51••• !,
~32!

PQ'
8c~q11q2!2b6

5a2 .

Organized as a sum of incoherent and interference te
they give

P5~2cb4/3a2!@~q1
21q2

2!~112b21...!

12q1q2~21114b2/51...!#, ~33!

which is to be compared with~20!.
The following features of expression~33! should be noted.

~a! If q15q2 , there is no dipole radiation, only a quadr
pole one occurs. The sum of the powers is proportio
to b6. This is also seen in the exact result~11! as the
absence of power radiated in the fundamental, beca
the terms withm51 are then canceled out.

~b! If q152q2 , there is only dipole, but no quadrupo
radiation. To orderb6 inclusive, the power is given
due to interference, by 4 times~not twice!! the power
of a single charge; cf. Problem 1 to Sec. 67 of Ref.

~c! The incoherent term has a correction factor (112b2)
which is just the expansion of the factorg4 in the first
term of ~18!.

~d! The interference term is just the orderb6 approxima-
tion ~20! of the exact result~18!.

It is to be mentioned that one-to-one correspondence
tween multipoles and harmonics extends here only to
fundamental and the first harmonic. Incidentally, the ex
expression foraE(1,1) is not to be used in our approxima
1063 Am. J. Phys., Vol. 65, No. 11, November 1997
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tion, because the radiation into the fundamental freque
receives contributions from higher multipoles; e.g., the th
moment contributes to frequenciesv and 3v, and so on.

Quite another interplay between the incoherent and in
ference contributions is observed in the high-speed lim
when terms of higher order inb become important. In the
case of ultrarelativistic motion, the effect of interferen
relatively lessens, because the first member of~18! contains
the factorg4, which becomes increasingly large sinceg→`
asb→1. This is understandable in view of the confineme
of the fast particle’s radiation to a narrow pencil parallel
its velocity. Since the velocities of the circling particles a
always opposite each other, their radiations at high spe
take place mainly in mutually opposite directions, so th
their fields just do not overlap; such overlap is necessary
interference. Thus, asb→1, the particles radiate effectivel
as incoherent sources. This is in accord with another ob
vation, that for fast particles the higher harmonics beco
important, for which the intersource distance 2a may consid-
erably exceed the wavelengthlm52pc/mv5l/m, whenm
is large enough. Therefore the same circling particles ar
be considered, for the fundamental modev, as adjacent
sources of the dipole radiation whose mutual work is imp
tant in the energy balance, but for spectral components
higher frequenciesmv, m@1, they should be treated as di
tant ones~with a negligible inter-influence!.

IV. A DYNAMICAL APPROACH

To calculate the work done by the particles on each ot
~and thereby justify our main inference!, we should find the
force of their interaction, which is defined by the Lie´nard–
Wiechert electromagnetic fields:

Ei5Ev1Ea , Bi5n83Ei , Ev5q~n82b8!/g2R82s3,

~34!

Ea5qn83@~n82b8!3b8#/cR8s3, s512n8–b.

The prime by a symbol indicates that the correspond
function of time is to be taken at a previous momentt85t
2R(t8)/c, where R(t8) is the distance from the previou
position of the particle generating the fields,xq(t8), to an
observation point, x, i.e., R85R(t8)5uR(t8)u5ux
2xq(t8)u, n85R8/R8.

Focusing for definiteness on the chargeq1 , we calculate
the fields in its close vicinity due to the second partic
Since the observation point,x, and the source of the field
xq , are both assumed to move in the same circle with eq
angular velocities, this implies the following time depe
dence of their coordinates:

x52a cosvt,
y52a sin vt,

xq5a cosvt,
yq5a sin vt, z5zq50. ~35!

Here, the counterclockwise rotation in theXOY plane is
supposed, with the initial condition corresponding to t
symmetric arrangement of the particles on theOX axis att
50 ~q1 being on the left andq2 on the right of the origin,
which is placed at the center of the orbit!.

For the retarded separation of the particles, we have
1063A. N. Gordeyev
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R85@~2a cosvt2a cosvt8!2

1~2a sin vt2a sin vt8!2#1/2

52a cos
v~ t2t8!

2
, ~36!

whence the retardation relation definingt8 in ~34! becomes

t2t85~2a/c!cos@v~ t2t8!/2#,

or

w5b cosw, ~37!

with w5v(t2t8)/2 ~that can also be seen from a simp
geometry or found in Ref. 10!.

The interaction fields~34! are expressible in terms of th
same anglew. Since the circling is supposed to be uniform,
suffices to consider it at an arbitrary moment of time, say,
t50 when w52vt8/2. Then the corresponding retarde
vectors in~34! have the following components:

R85$2a~11cos 2w!,a sin 2w%, b85b$sin 2w,cos 2w%,

n85R8/R85$2cosw,sin w%, ḃ85~cb2/a!$cos 2w,sin 2w%,

~38!

whence n8•b852b sinw, so that s511b sinw
(b5av/c). Substituting these expressions into~34! yields

Eix5q~b2 cos2 w2s2!/4a2s3 cosw,

Eiy5
q

4a2 S b1sin w

g2s3 cos2 w
2

2b

s2 D , ~39!

Biz52~Eix sin w1Eiy cosw!,

while all the other components of the fields vanish.
The expressions~39!, though useful, suffer from a shor

coming because they contain an as yet unknown func
w~b!, implicitly defined by the retardation relation~37!. It
can be found explicitly as Lagrange’s expansion in terms
Bessel’s functions~cf. No. 829 in Ref. 11!:

w~b!52(
n50

`

~21!n$J2n11@~2n11!b#%/~2n11!. ~40!

Some details of derivation can be found in the Appendix,
well as the results of a numerical solution of~37!, illustrating
the convergence of the series. Another useful series for sw
can be also obtained in a similar way~or found in Sec. 17.21
of Ref. 8!:

sin w5b/222(
n51

`

~21!n@J2n8 ~2nb!#/2n, ~41!

where the prime again denotes a derivative of the co
sponding Bessel functions~not retardation!.

Differentiating these uniformly convergent series with r
spect tob, using the relationdw/db5(cosw)/s immediately
obtainable from~37!, and substituting finally forJn9(nb)
from Bessel’s differential equation, one can derive a fam
of expansions for several useful functions of the ‘‘angu
retardation’’w:
1064 Am. J. Phys., Vol. 65, No. 11, November 1997
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s
5~11b sin w!215112(

n51

`

~21!nJ2n~2nb!,

1

s cosw
5122(

n50

`

~21!nE
0

~2n11!b
J2n11~j!dj, ~42!

d~1/s cos2 w!

db
5

sin w

s2 cos2 w
2

b

s3

522(
n51

`

~21!n2nE
0

2nb

J2n~j!dj.

Incidentally, these relations are similar to those in Sec. 17
on p. 556 of the book by Watson~Ref. 8!.

To find the corresponding expressions for the Lie´nard–
Wiechert fields, it is enough now to transform the right-ha
sides of~39! to combinations of the left-hand sides of~42!.
Fortunately, this can be accomplished after some manip
tions, and the results have the following form:

Eix52
q

4a2

d~b/s cosw!

db
,

Eiy5
q

4a2 F ~12b2!
d~1/s cos2 w!

db
12b2

d~1/s!

db G , ~43!

Biz52
qb3

4a2

d~1/bs cosw!

db
.

Thus the Lorentz force of interactionF5q(Ei1b3Bi)
experienced byq1 is found to have the following compo
nents:

Fx5
q1q2

4a2g4

d

db S g2b

s cosw D ,
~44!

Fy5
q1q2

4a2 F ~12b2!
d~1/s cos2 w!

db
12b2

d~1/s!

db G ,
where (b3Bi)y50 sincebx50 at t50. Notice that both the
components in~44! are just proportional to the Coulom
force q1q2/4a2.

At the moment under consideration,t50, q1 finds itself at
the point$2a,0% on theOX axis with its velocity vector just
opposite to theOY direction, b15$0,2b% ~counterclock-
wise circling!. Therefore, thex component of the force~44!
corresponds to the radial direction, thus being responsible~in
conjunction with thex component of the guiding fieldE0!
for the centripetal acceleration. It controls the size of t
orbit a, but being orthogonal to trajectory it does not co
tribute to the work done on the particles, which is determin
by the tangential~at t50! component of the forceFy . It is
worthy to note that the first term in the square brackets of
second expression~44! comes fromEv in ~34!, while the
second one represents the acceleration fieldEa of q2 , so that
~44! incorporates the whole electromagnetic interaction
the particles including their radiation field. To provide a un
1064A. N. Gordeyev
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form circling, the y component of the stabilizing fieldE0

should compensateFy of ~44! as well as for radiation damp
ing.

Multiplying Fy of ~44! by v5cb, we get an expression
for the work done~per unit time! on each particle by the
interaction force. Substituting there fors21 and
d(s cos2 w)21/db from ~42! ~and doubling the result to incor
porate the contributions from both particles! shows that it is
identical to the series in~18!. On the other hand, the firs
term in ~18! is also obtainable as the work due to the rad
tive reaction force~4!.

Thus we have accomplished a proof that the work done
the tangential component of the interaction force betw
two circling charges is equal to the interference contribut
to the total power radiated from the system. This enables
to treat the component as a dynamical effect of interfere
analogous to the radiation damping force. The result is c
tainly a corollary of energy conservation~5!, but our rather
involved calculation seems to fill a gap between a mere
ference and a rigorous treatment~cf. Ref. 6 to see that going
from energy conservation to dynamics might not be trivia!.

To conclude the section, it is worthwhile to consider t
low-speed approximation for~44!. An iterative solution of
~37! throughwn115b coswn ~with w050! to fifth power in
b yields

cosw'12b2/2113b4/242~541b6/720!1••• ,

sin w5A12cos2 w'b~122b2/314b4/52••• !, ~45!

s511b sin w'11b222b4/3.

Substituting into the second expression of~44!, one gets
for the tangential force due to ‘‘velocity interaction field’’Ev
in ~34!

S q1q2

4g2a2D d~1/s cos2 w!

db
'S q1q2b3

3a2 D S 12
22

5
b2D , ~46!

while the action of the ‘‘acceleration field’’Ea is defined by

~q1q2b2/2a2!
d~1/s!

db
'2~q1q2b3/a2!~1210b2/3!.

~47!

The results are also obtainable by use of series expans
for Bessel functions in~42!.

A sum of these two expressions, multiplied by the p
ticles’ speedcb and doubled~because the same work is don
on the other charge!, coincides with the corresponding ex
pressions for the electric dipole–quadrupole radiated po
~20! and ~33! in Sec. III. Noteworthy are the opposite sign
of the expressions~46! and ~47! showing the competitive
contributions from the velocity and acceleration interact
fields of ~34!.

V. CONCLUDING REMARKS

The results of this study may be summed up as follow
~1! The total power radiated from a system of nearby

herent sources, exemplified by two circling charges,
shown~by a rigorous calculation! to differ from the sum of
1065 Am. J. Phys., Vol. 65, No. 11, November 1997
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their individual radiations due to interference.~As another
extreme example of the overall effect of interference, the f
that there is no emission of radiation from a steady curren
a loop can be mentioned, notwithstanding centripetal ac
eration of the charges constituting the current, see Probl
14.12–14.13 in Ref. 3!. This means that interference is n
always to be treated as just a redistribution of energy
space around coherent sources, contrary to the widesp
assertion in courses of optics.

~2! In the low speed limit, the expression obtained redu
~in the case of opposite charges! to the known result for
dipole radiation, whose power is four times that for a sing
charge. On the other hand, with enhancement of speed
interference contribution becomes of relatively little cons
quence since superposition of fast particles’ fields~which is
necessary for interference! is rendered insignificant due to
narrow cone concentration of radiation in the direction
their velocities~mutually opposite for the circling particles!.

~3! A calculation of the interaction force using the enti
Liénard–Wiechert fields~with no approximations whatso
ever! discloses that the excess of radiation due to inter
ence is just attributable to the work done by the oppos
charges on each other. This reveals a general mechanis
mutual influence of the coherent sources~in close proxim-
ity!, stimulating their excessive radiation. On the other ha
for the case of charges of the same sign, the tangential c
ponent of the interaction force changes its direction to op
site, so that the mutual work becomes negative and s
presses the radiation from the system~the situation then
corresponds to coherent sources with a phase differe
of p!.

~4! The preceding conclusion is so natural that the res
obtained appear to be rather modest to repay for the ted
manipulation of Bessel functions, but this is not quite so. T
point is that, strictly speaking, in Eq.~5! ~based on the Poyn
ting theorem! a term is missing, which is to describe~in
general! the rate of change of the total energy inside t
boundary surface. This is justified if~5! is averaged over the
period of motion. In our calculation of the radiated pow
~18! we have considered indeed its average value; howe
treating the right-hand side of~5! in Sec. IV, we never em-
ploy any averaging procedure. To justify~5! by a direct cal-
culation of instantaneous power of radiation in its left-ha
side ~bypassing the Fourier expansion! would be a rather
difficult problem.

~5! By the way, a misprint in the comprehensive bo
by Watson8 in a sum of Kapteyn series of Bessel functio
has been noticed.
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APPENDIX

To find explicit expressions forw~b! from ~37! and for
some functions of this angle, we can use the followi
Lagrange’s result~see, e.g., p. 133 of the course by Wh
taker and Watson12!.
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If f (z) and g(z) are analytic on and inside a contourC
surrounding a pointa, and if w is such thatuwg(z)u,uz
2au at all points onC, thenz5a1wg(z) has one root in
the interior ofC, and

f ~z!5 f ~a!1 (
n51

`
wn

n!

dn21

dan21 $ f 8~a!@g~a!#n%.

Using this expansion with Eq.~37! for a50, f (z)5z
5w, w5b, g(w)5cosw, we obtain

w~b!5 (
n51

`
bn

n! Fdn21 cosn j

djn21 G
j50

~A1!

The derivatives in~A1! can be found if one writes cosw as
a sum of two exponentials and employs the binomial exp
sion:

dj

dj j Fcosn j

n! G522n(
k50

n
1

k! ~n2k!!

dj

dj j e2 i ~n22k!j.

Splitting the sum forn52m11 into two parts, 0<k<m
and m11<k<2m11 ~for n52m the splitting can be 0
<k<m and m<k<2m, since the term withk5m is zero
because ofn22k52m22k in the exponential!, it is easy to
see that the odd derivatives withj 52i 11 vanish, while the
even ones are

1

n! F d2 j

dj2 j cosn jG
j50

5
~21! j

2n21 (
k50

E~n/2!
~n22k!2 j

k! ~n2k!!
.

Substitution of these into~A1! yields

w5 (
m50

`

~21!m
b2m11

22m (
k50

m
~2m1122k!2m

k! ~2m112k!!
. ~A2!

Although the series in~A2! converges only for 0,b
,0.66 ~see, e.g., Ref. 11!, an analytic continuation is pos
sible in the following way~if to change the order of summa
tions!:

w5 (
m,k50

`
~21!m1kb2m1112k~2m11!2m12k

22m12kk! ~2m111k!!

52 (
m50

`
~21!mJ2m11@~2m11!b#

2m11
. ~A3!

This Kapteyn series converges even forb51 ~see p. 553 of
Watson’s book8!.

The expansion~A3! coincides with the Bessel’s solutio
to the classical Kepler’s problem,c2e sinc5t. It is readily
1066 Am. J. Phys., Vol. 65, No. 11, November 1997
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seen that fort5p/2, e5b, this is nothing but~37! if w
5c2p/2. Using the Lagrange’s expansion with otherf (z)
andg(z), or drawing the corresponding formulas from Cha
XVII of Ref. 8 and differentiating them with respect tob,
one can derive all necessary expressions. For example,

dc

dt
5~12e cosc!215112(

n51

`

Jn~ne!cosnt,

the first of the relations~42! follows at once.
Finally, to estimate the convergence of the series, it

worthwhile to compare the results of calculations by mea
of ~A3! using, say, the first four terms, 0<m<3, with a
numerical solution of~37!:

b g5b cosg ~A3! b w5b cosw ~A3!

0.1 0.099 505 0.0995 0.6 0.520 533 0.519
0.2 0.196 164 0.1962 0.7 0.583 989 0.579
0.3 0.287 672 0.2877 0.8 0.641 134 0.631
0.4 0.372 559 0.3725 0.9 0.692 619 0.674
0.5 0.450 183 0.4498 1.0 0.739 085 0.711
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VOUS VS TU

After I passed thetheorminimum,Landau told me that I could now use the singular~familiar!
form of the second-person pronoun with him. It was like a medieval ritual: When the apprentice
passes some threshold, the master craftsman permits the familiar mode of discourse.
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