Interaction of circling relativistic charges and interference in their radiation
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The radiation emitted by two charges circling at opposite ends of a diameter at arbitrary uniform

speed is considered, with special attention being paid to interference effects. The difference in the
rate of radiation from the system and the sum of the powers emitted separately by each circling
charge is shown to be equal to the work done by the particles on each other through their exact
Liénard—Wiechert fields, in accordance with the Poynting theorem. Some peculiarities of the

radiation at high and low speeds are noted and explained199® American Association of Physics

Teachers.
[. INTRODUCTION particles’ speed: 8=v/c<1. This makes the model suitable
for a display of the overall effect of interference.
The term interference is used when a joint loGalean To provide a uniform circling of charges, an external field

action of two or more waves by their superposition is notEy(x,t) is to be applied to the system, whose radial compo-
additive and depends on the phase difference between thement would furnish centripetal acceleration, while the work
In particular, for similar coherent point sourcésmitting  done on the charges by its tangential component compen-
harmonic waves of the same frequency in phasmstruc- sates for energy loss due to radiation. If the system is com-
tive or destructive interference occurs at a point according t@rised of two similar particles of opposite chargesch of
whether the path difference from it to the source®Nis or  magnitudee), circling under their mutual attractiofa clas-
(N-+1/2)\ (whereN is an integer, and is the wavelength  sical model for the “positronium atony; its stabilization
so that periodic space variations in intensity result. against the “fall to the center’(cf. Problem 1 to Sec. 75 in
Since energy admittedly is neither created nor destroye®ef. 1) can be achieved by means of a rotating electric field,
by the interference process, it comes to just a spatial redissay, due to a circularly polarized electromagnetic wdire.
tribution of energy(which supposedly remains the same inthe general case of arbitrary charges it is not so simple, and
total), such that the average intensity over the interferenc& more sophisticated guiding field may be required.
pattern is the same as for incoherent sources. However, this A proper tuning of the wave’s frequency and amplitude
is clearly not the case when a separation between cohereallows for the compensation of radiative loss with the work
sources is less than a half wavelength, because the path difone on the particles by the field of the wave, which renders
ference of superposing waves for any point then also canndhe particles’ acceleration just centripetal. Incidentally, if the
exceed the valua/2, and interference is nowhere entirely stabilizing wave is standing and plane, and the particles’ or-
destructive (according to the general rule abgveAt the  bit lies in one of the antinodal planes for electric field, the
same time, for equidistant pointen the plane of symmetry magnetic counterpart of the wave’s fields is ineffective, be-
midway between the sourdethe condition for constructive cause the same planes prove to be nodal f(zeie, e.g., Sec.
interference is obviously fulfilledwith N=0), resulting in 7.4 of Ref. 2. In particular, the wave then does not exert
intensity which is twice that due to the same sources if infadiation pressure on the circling particles, since a force per-
terference did not happen. As a result, the total energy flopendicular to the plane of the orhiin a transverse electro-
from a couple of nearby coherent sources exceeds that fépagnetic wave might result from the magnetic field only
incoherent (or distan} ones, and the surplus apparently (Which is zero in the nodal planes _
should be ascribed to the mutual internal work done by the One more observation is appropriate with respect to the
coherent sources on each otliercreasing the rate of their System at hand. Since the Coulomb force between the
exhaustiof charges is purely radial, it cannot be responsible for the work
Although interference is usually treated as one of the basiglone by the circling particles on each other. Therefore, their
subjects in any serious course of optics, the mutual influenciteraction should be defined by the entirenaed—\Wiechert
textbooks(probably because separations and sizes of lumitlvistic.
nous bodies are well above corresponding wavelehgiis According to(6.110 of Ref. 3, the total work done on the
fill the gap and corroborate the expectation based on energarticles per unit time is
conservation by an exact calculation, we consider electro-
magnetic waves emitted by accelerated charges, representing
the simplest point sources of radiation. To simplify the con- v
sideration, we restrict it to the case of two chargegndq,
circling in an orbit of radiusa at opposite ends of its diam- since the uniform circling implies a constant mechanical en-
eter, which rotates with constant angular speedince the  ergyE, ... Here,E, is the appliedguiding) field, andE; is
circling particles are always&apart, the source-to-source the Lienard—Wiechert electric field of thigh charge.
distance in such a system is less tha® (at least for the Inasmuch as the system is stationary, the energy supplied
fundamental frequencyw), because=2wc/w=2mcalv by the external fielcEy to keep the charges’ motion steady
=2mal B>64a, in view of the relativistic restriction on the must be given off by the system at the same rate. In a sense,

(J1+J2)‘(Eo+ E1+ Ez)dsxszmech/dt:O, (1)
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the circling charges represent an “antenna,” fed by the guid{ A
ing field. Therefore, the total power radiated is

q HikRy) —iBJ;(mpB sin 6) 0
= — ex[i , =0,
Aym)  Ro %1 3,(mg sin 6)/sin @ me

P=f (31+3,) -Eod®x (7
v whereJ,,, andJ;, are the Bessel functiofof orderm) and its

3 derivative, respectively; see, e.qg., E¢84.6 and (74.7) of

== V[Jl'E1+J2'E2+(Jl'E2+32'E1)]d X. (2)  Ref. 1. The fields of the second charge are given by similar

expressions with opposite sign gf which can be allowed

By Poynting’s theorem the negative work done on eaclfor by use of symmetry properties of the Bessel functions
charge by its self-force, and their derivatives:

In(=X)=(=1D)MIn(x),  Ip(=x)==(=1)MI(x).

PJ:_JVJJEJdSX:_qJV]E](XJ) (3) (8)

(where thes-functional form of the current density; for a Taking into account that
point particle has been usediescribes its individual radia- |k><Am|2=k2(|AX|2+|Ay|2 co< 6), 9)

tion in the absence of the partner. Thus the first two terms on ) ) _ .
the right-hand side of Eq(2) correspond to incoherent ON€ arrives at the following expressions for the time-average

sources; they are mutually independent and expressible viPWer radiated per unit solid angle by a single circling par-
centripetal acceleration by means of the relativistic Larmofticle:

formula, see, e.g(14.26 of Ref. 3. »
There are two main difficulties associated with E). (d p/dQ>1:q22 Pm(mgB,sin 6), (10)
One is an infinite value of the self-field at the site of a point m=1

particle; it can be handled by the mass-renormalizatio
proceduré (see also Ref.)5 The other is the so-called Schott
term (containing the second time-derivative of the particle’s
velocity), which appears irEj(x;) but is absent in the Lar- , < _
mor power formulasee the discussion in the series of papers ~ (dP/dQ),=(a3+a3) 2 Pr(mg,sin 6)
set forth in Ref. §. Fortunately, for a uniform circular mo- m=1

™ind for the radiation from a system of two circling charges
d; anddgp

tion the term becomes ineffective, and thelativistic) radia- *
tive reaction forcgsee, e.g.(4.18 of Ref. 7) simplifies to +2q1q22 (=1)"P,(mgB,sing). (11
m=1
0jEj(x)=F = — 207y’ BI3c?, (4)

Here,P, is the power in themth harmonic for one charge
wherey=(1- %)% of unit strength:

Hence, Eq(2) shows that the difference between the ac- > 5 2112 )
tual powerP, radiated from the system, and the incoherent ~ Pm= (M @*/27c)[ 8°J;7(mp sin 6)

radiated power$, and P,: +cof 632(mg sin )], (12
P—P.—P.=— | (J.-E,+J,-E1)d%x cf. (74.8 in Ref. 1 or Problem 14.8 of Ref. 3.
voe f (Jr-EotJoBy) The Kapteyn series of Bessel functions (ib0) can be

= V1 Ep(Xy) — QaVa-Ex(Xy) 5) sumn:oed up using the following relations:

(which describes the interference effedtsdefined by inter- 212 —h2(p2 _h2\712
action of circling charges. The main objective of this paper is mE:l M~ Jim(Mb) =b7(b"+4)/16(1~b%) ™,

to corroborate Eq(5) by independent direct calculations of . (13
its two sides, through a comparison of the power radiated by 912 ) 95/
the circling charges with their mutual work on each other. mE:l m<Jy(mb)=(3b°+4)/16(1—b%)~%,

which are derivable by averagir(gver the periofl squares
IIl. POWER RADIATED BY THE CHARGES of the Bessel's solution to the classical Kepler's problem or
which can be found in Ref. 8. Incidentally, there is a misprint

Since the uniform circling is a periodic motion, the energyin Eq. (3), Sec. 17.6 on p. 573 of Ref.(@here 1/2 stands for
flow emitted from the system consists of discrete spectrajhe correct value of 7/2 in the bracket's exponent of our first
components whose frequencies are multiples of the angul%rmma), which is often inadvertently reproduced in refer-

velocity w. o ence books: cf. Ref. 9.
The intensity of radiation at the frequenayw (m The summation i(10) yields[cf. (74.4) in Ref. 1]
=1,2,...) peunit solid angle at a distand&, from the cen- 9 oy s
ter of the orbit is <d_P> — (qup)? 4(1+cog 0)_[;2(1:23[3735'”4 0
Al /dQ = (c/2m) |k x A |2R2, ) ae/, 32mc(1=p7 sim 0)

(14

where |k|=mw/c. If the system of coordinates chosen cor-__, . ; : . N .
which, on integration over all possible directions, results in

responds tck,=0, ky=k sin 6, k,=k cos#, the mth Four- g P

ier component of the vector potential for one circling particle _ a2 4 2.2

of chargeq is defined by Py= | (dP/dQ2),d0=2q"y"0"B°/3c, (19
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which is nothing but the relativistic Larmor power formula  On the other hand, for the low harmonics, the expansion in

for a single particle: powers of 8 corresponds to expansion in powers I,
) ] which is just the multipole expansion of electromagnetic
P,=(29%/3c)y%[ B2— (Bx B)?], (16) fields; see Secs. 9.1-9.3 in Ref. 3.

) i . ) ) The lowest order multipole fields notfor w#0) are the

since is orthogonal tg8=dp/dt for a circular motion, and  gjectric dipole and quadrupole, since the magnetic dipole

|B|=w?alc=w}p is just a magnitude of the centripetal ac- moment of circling charges remains constant and is ineffec-

celeration. tive for radiation. The corresponding total powers radiated

Although an analogous summation cannot be performed iare

(12, the expression can be integrated over angles if one uses

Schott’s result, cited a&74.9 in Ref. 1: ck4p|? Q42
Py= . Po=ck> S

3 «p 360

(21)

f PndQ=(g?w?/c)2mp| I, (2mpB)

wherep andQ,; are the Fourier components of the electric
2mp dipole and quadrupole moments, respectively;(8e24 and
—(2,3272)*1[ J2m(§)d§} (17 (9.49 in Ref. 3 0r(67.11 and(71.9 in Ref. 1.
0 For the system at hand,

Thus the total power radiated jointly by both circling

chargeswhich must be supplied, of course, by the stabiliz- 1
ing field) is found to be p=a(q;—q,)Rel i pe ot (22)
0
dpP - -
P=f 1a dQ=P,+P,+20,0, >, (—1) f PndQ
2 m=1 Qu 1 1
2 .
21 42)2 440232 2, Q2 _2a%(q%1t9y) 0 [ it
_ (g3 %; v'o'B +4<q1q2w )BZ ()" o= 2 | 1[*3Req _1(e ,
¢ ¢ m=1 Q33 -2 0
2 21 2mpB (23)
x| J5m(2mB) —(2 - f J dé|, 18 )
on(2MB) — (2677 0 2n(€) 4 (18 while all other components of the quadrupole moment tensor

where(15) has been used in the first term. Qup vanish. 6 . . .
Expression(18) consists of two parts: one, defined by the HOWever, to orde” retained in(20) we must include a

first term, which would be the only one if each particle wereCorrection to the dipole moment, d8.11—(9.12) in Ref. 3.

circling alone(incoherent sourcgsand the second one de- An exact expression for the radlated power is an incoherent

fined by the series, which describes the overall effect of inSUm of contributions from all multipoles:

terference and gives the desired value of the left-hand side of

Eq. (5). c

P=| 52| 2 [lael,m)|*+[au(l,m)]; (24)

87Tk I,m

lIl. LIMITING CASES AND MULTIPOLE FIELDS see(16.79 in Ref. 3. The “amplitudes”ag anday (in the
absence of intrinsic magnetizatioare expressible in terms

To see in more detail the behavior of the combined powenbf the charge and current densitieéx,t), J(x,t) as
of radiationP relative to the incoherent contributions of the

single-charge powerP,+P,, it is helpful to consider the ) J
low-speed limit of the infinite sum iG18). In the case of a ag| 4wk v P [rji(kr)]
nonrelativistic motion of particles3<<1, the series expan- av) T0+1) Im 0

sions of Bessel functions for small values of their argument

yield ik(r-J)/c
+

]jl(kr) d3x, (25)
V.(rxJ)lc

2mpB
le m(—1)"‘[Jém(2mﬂ)—(2/5‘272)‘1f0 sz(é)dé}
where j,(kr) and Y}.(6,¢) are spherical Bessel functions
(19) and (complex conjugatespherical harmonics, respectively;
' see(16.9) and(16.92 in Ref. 3.
A Fourier series expansion for the charge density is sug-

gested, e.g., in Problem 9t of Ref. 3:

B

3

where only the first two terméwnith m=1,2) survive in the
sum up to ordeps®.

In this approximation the interference term (b8) be-
comes

1+ 1 24
58

P =pot 2, Re2p(x)e™""], (26)
P—P,—P,=(4cq,q,8%*3a%) (—1+14B8%/5+--).
(20 where for our systen(in spherical coordinatgs
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pn(X)=(1/2ra?) 8(r —a) 5(0— w/2)[q,+ (—1)"q,]e"?. tion, because the radiation into the fundamental frequency
(27)  receives contributions from higher multipoles; e.g., the third
moment contributes to frequenciesand 3v», and so on.
Quite another interplay between the incoherent and inter-
ference contributions is observed in the high-speed limit,
r-J=0, V-(rxJ)=-r-(rxJ)=0, (28 \when terms of higher order i8 become important. In the
in the sum(24), all ay, =0, and only electric multipole terms case of ultrarelativistic motion, the effect of interference
survive. As a matter of fact24) provides an expression for relatively lessens, because the first membef16j contains

Since, in this case,

P alternative to(18). the factory®, which becomes increasingly large singesx
To find the necessary correction to the dipole moment, wé@s 8— 1. This is understandable in view of the confinement
need justag(1,1), which is of the fast particle’s radiation to a narrow pencil parallel to
its velocity. Since the velocities of the circling particles are
ag(1,)=2ac(1,D)(3/2)[jo(B)—i1(B)/B] (29) always opposite each other, their radiations at high speeds

take place mainly in mutually opposite directions, so that
where the long wavelength valizg , corresponding t¢22),  their fields just do not overlap; such overlap is necessary for
is given by(16.93 of Ref. 3: interference. Thus, g8—1, the particles radiate effectively
as incoherent sources. This is in accord with another obser-
~ _ 3. o . 3 vation, that for fast particles the higher harmonics become
ag(1,1) = (4mk ‘6/3')J' urp dx (30 important, for which the intersource distance @ay consid-

(the recursion formulas for the spherical Bessel functionserably exceed the wavelengthy, = 2r¢/mw =A/m, whenm

. is large enough. Therefore the same circling particles are to
also have begn gsed to exprq@; be considered, for the fundamental mode as adjacent
An expansion in powers g8 yields sources of the dipole radiation whose mutual work is impor-
tant in the energy balance, but for spectral components of
higher frequenciemw, m>1, they should be treated as dis-
tant oneqwith a negligible inter-influende

cosB sing

2 25 =a(1,D)(1-B%5+...),

(31

aE(l,l) :aE(l,l)

and for powers of radiation, one obtains

IV. A DYNAMICAL APPROACH
2c(0;—-,)°B*
Py~ —————— (1-2B%/5+--+), ;
3a To calculate the work done by the particles on each other
(32 (and thereby justify our main inferenceve should find the
force of their interaction, which is defined by the hagd—

2 06
PA~ Beldit az)°p Wiechert electromagnetic fields:

Q 5a '
Organized as a sum of incoherent and interference term§,; =E,+E,, Bj=n'XE;, E,=q(n'—g")/y*R’'?s’,
they give (34)

—_ 4 2 2 2 2
P (2CB /3a )[(q1+q2)(l+2ﬂ +) Ea:qn/x[(n/_ﬁ/)xﬂ/]/CR/S3, S=1—n’-ﬂ.

2
20102~ 1+ 14655+ )], (33 The prime by a symbol indicates that the corresponding
which is to be compared witt20). function of time is to be taken at a previous momengtt
The following features of expressi¢83) should be noted. _R(t)/c, whereR(t’) is the distance from the previous

(@ If g;=05, there is no dipole radiation, only a quadru- position of the particle generating the fieldg(t’), to an

pole one occurs. The sum of the powers is proportionaPbservation — point, x, ie., R'=R(t")=[R(t")|=|x

to B°. This is also seen in the exact res(t) as the —Xq(t")], ""=R'/R".

absence of power radiated in the fundamental, because Focusing for definiteness on the chamgg we calculate

the terms withm=1 are then canceled out. the fields in its close vicinity due to the second particle.

(b) If g,=—q,, there is only dipole, but no quadrupole Since the observation poirk, and the source.of the_ field,
radiation. To order® inclusive, the power is given, Xq. are both assumed to move in the same circle with equal
due to interference, by 4 timégot twice) the power ~angular velocities, this implies the following time depen-
of a single charge; cf. Problem 1 to Sec. 67 of Ref. 1.dence of their coordinates:

(©) The incoherent term has a correction factor-A3?)
which is just the expansion of the factgf in the first X=-acosot, xg=acoset, (35
term of (18). y=—asinot, yz=asinot, a =

(d)  The interference term is just the ordgf approxima- Here, the counterclockwise rotation in teDY plane is
tion (20) of the exact resulf18). supposed, with the initial condition corresponding to the

It is to be mentioned that one-to-one correspondence besymmetric arrangement of the particles on X axis att
tween multipoles and harmonics extends here only to the=0 (q; being on the left and), on the right of the origin,
fundamental and the first harmonic. Incidentally, the exactvhich is placed at the center of the oibit

expression formg(1,1) is not to be used in our approxima-  For the retarded separation of the particles, we have
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R'=[(—a coswt—a coswt’)?

1 . - oo
_ i S=(L+Bsing) t=1+23 (—1)"J5(2nB),
+(—a sin wt—a sin wt’)“] n=1

=2a cosw(t—_t), (36)

1 ” [ent1p
: scos<p:1_2n§0(_l) fo Jon+1(6)dE, (42

whence the retardation relation definitigin (34) becomes
d(1/s cos ¢) sing B
= 3

t—t'=(2alc)cod w(t—1t")/2], dg " fcof p s
or § ) onﬁ
- =-2 —=1)"2n J dé.
¢=pB cose, (37) 2 (Z1)72n | 5 Jan(£)dé
with p=w(t—1t')/2 (that can also be seen from a simple
geometry or found in Ref. 20 Incidentally, these relations are similar to those in Sec. 17.22

The interaction field$34) are expressible in terms of the on p. 556 of the book by WatsdiRef. 8.
same anglep. Since the circling is supposed to be uniform, it To find the corresponding expressions for thé niae—
suffices to consider it at an arbitrary moment of time, say, folWiechert fields, it is enough now to transform the right-hand
t=0 when ¢=—wt'/2. Then the corresponding retarded sides of(39) to combinations of the left-hand sides @?).
vectors in(34) have the following components: Fortunately, this can be accomplished after some manipula-
tions, and the results have the following form:

R'={—a(1+cos 2),a sin 2o}, B’ = B{sin 2p,cos 2},
g d(B/scosop)

n'=R'/R'={—cos g,sin ¢}, B’ =(cB?a){cos 2,sin 2o}, EiX:_H—dﬁ :
(38)
whence n’-B'=—pBsing, so that s=1+psing e 9 (1- B2 d(1/s cos ¢) oy d(1/s) 43
(B=awl/c). Substituting these expressions 8 yields V" 482 dg dg |’
Eix=0(B% cos ¢—s%)/4a’s® cos ¢, B a8 d(1/Bs cos ¢)
E q B+sing 28 (39)
V=422 | 2B cof o 2/’
Y 4a® |ys’cos ¢ s Thus the Lorentz force of interactioRi=q(E;+ B8xB;)
_ experienced byg, is found to have the following compo-
Bi,= —(Eix sin ¢+ E;y cos¢), nents:
while all the other components of the fields vanish.
The expression$39), though useful, suffer from a short- L) d ¥’B
coming because they contain an as yet unknown function X" 4a%y* dB \s cosp)’
o(B), implicitly defined by the retardation relatio{87). It (44)
can be found explicitly as Lagrange’s expansion in terms of
Bessel's functiongcf. No. 829 in Ref. 11 S EL (1-p?) d(1/s cos ¢) +2p2 d(1%s)
Y 4a? dp dg |’

¢(B)=2 ZO (=)™ Jznal(2n+1)BJ}(2n+1). (40 where (8xB;),=0 sinceB,=0 att=0. Notice that both the
" components in(44) are just proportional to the Coulomb
Some details of derivation can be found in the Appendix, asorce q,q,/4a2.
well as the results of a numerical solution(8%), illustrating At the moment under consideratiar= 0, g, finds itself at
the convergence of the series. Another useful series fop Sin the point{ —a,0} on theO X axis with its velocity vector just
can be also obtained in a similar wéyr found in Sec. 17.21 opposite to thedY direction, 8,={0,— B} (counterclock-

of Ref. 8 wise circling. Therefore, thex component of the forcé44)
corresponds to the radial direction, thus being respon§ible
sin e=pB12—22, (—1)"[I;n(2nB)]/2n, (41)  conjunction with thex component of the guiding fielé,)
n=1 for the centripetal acceleration. It controls the size of the
where the prime again denotes a derivative of the correerbit a, but being orthogonal to trajectory it does not con-
sponding Bessel function®ot retardation tribute to the work done on the particles, which is determined
Differentiating these uniformly convergent series with re-by the tangentialat t=0) component of the forc&, . It is
spect toB, using the relatiorle/d 8= (cos¢)/simmediately  worthy to note that the first term in the square brackets of the
obtainable from(37), and substituting finally ford)(vB) second expressiofd4) comes fromg, in (34), while the
from Bessel's differential equation, one can derive a familysecond one represents the acceleration &gldf g,, so that
of expansions for several useful functions of the “angular(44) incorporates the whole electromagnetic interaction of
retardation” ¢: the particles including their radiation field. To provide a uni-

]
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form circling, they component of the stabilizing fiel&,
should compensate, of (44) as well as for radiation damp-
ing.

Multiplying F of (44) by v=cpB, we get an expression
for the work done(per unit timg on each particle by the
interaction force. Substituting there fors™! and
d(s cog ¢) YdB from (42) (and doubling the result to incor-
porate the contributions from both particlehows that it is
identical to the series if18). On the other hand, the first

their individual radiations due to interferenc@s another
extreme example of the overall effect of interference, the fact
that there is no emission of radiation from a steady current in
a loop can be mentioned, notwithstanding centripetal accel-
eration of the charges constituting the current, see Problems
14.12-14.13 in Ref.)3 This means that interference is not
always to be treated as just a redistribution of energy in
space around coherent sources, contrary to the widespread
assertion in courses of optics.

(2) In the low speed limit, the expression obtained reduces

term in (18) is also obtainable as the work due to the radia—(in the case of opposite charge® the known result for

tive reaction forcg4).

dipole radiation, whose power is four times that for a single

Thus we have accomplished a proof that the work done bytharge. On the other hand, with enhancement of speed the
the tangential component of the interaction force betweenyierference contribution becomes of relatively little conse-
two circling charges is equal to the interference contributiony ence since superposition of fast particles’ fielaich is

to the total power radiated from the system. This enables ongecessary for interferenris rendered insignificant due to a
to treat the component as a dynamical effect of interferenc@arow cone concentration of radiation in the direction of

analogous to the radiation damping force. The result is cerg,qjr velocities(mutually opposite for the circling particles

tainly a corollary of energy conservatidb), but our rather

(3) A calculation of the interaction force using the entire

involved calculation seems to fill a gap between a mere ing janard—wiechert field{with no approximations whatso-

ference and a rigorous treatmentf. Ref. 6 to see that going

evel discloses that the excess of radiation due to interfer-

from energy conservation to dynamics might not be trivial gnce s just attributable to the work done by the opposite
To conclude the section, it is worthwhile to consider the harges on each other. This reveals a general mechanism of

low-speed approximation fof44). An iterative solution of
(37) throughe,,, 1= B cosg, (with ¢4=0) to fifth power in
B yields

cos o~1— B%/2+13B%24— (54188/720)+ - - - ,
sin p=1-coS o~pB(1-2B%3+4B%5—---), (45)
s=1+p sin p~1+ B%—2%3.
Substituting into the second expression(4#)), one gets
for the tangential force due to “velocity interaction field,

in (34

010,5°
3a?

0192

d(1/s cos ¢)
4,}/2a2 -~

dg

. (46)

22
_S%h2
1 5,8

while the action of the “acceleration fieldE, is defined by
d(1/s
EN —(91028%@°)(1—108%/3).

(01028%12a%) a8
(47

mutual influence of the coherent sourd@s close proxim-

ity), stimulating their excessive radiation. On the other hand,
for the case of charges of the same sign, the tangential com-
ponent of the interaction force changes its direction to oppo-
site, so that the mutual work becomes negative and sup-
presses the radiation from the systdthe situation then
corresponds to coherent sources with a phase difference
of ).

(4) The preceding conclusion is so natural that the results
obtained appear to be rather modest to repay for the tedious
manipulation of Bessel functions, but this is not quite so. The
point is that, strictly speaking, in E¢p) (based on the Poyn-
ting theorem a term is missing, which is to descrilien
general the rate of change of the total energy inside the
boundary surface. This is justified () is averaged over the
period of motion. In our calculation of the radiated power
(18) we have considered indeed its average value; however,
treating the right-hand side @6) in Sec. IV, we never em-
ploy any averaging procedure. To justify) by a direct cal-
culation of instantaneous power of radiation in its left-hand
side (bypassing the Fourier expansjowould be a rather
difficult problem.

(5) By the way, a misprint in the comprehensive book
by Watsofi in a sum of Kapteyn series of Bessel functions

The results are also obtainable by use of series expansiohéS been noticed.

for Bessel functions irf42).

A sum of these two expressions, multiplied by the par-rACKNOWLEDGMENTS

ticles’ speed 8 and doubledbecause the same work is done
on the other charge coincides with the corresponding ex-
pressions for the electric dipole—quadrupole radiated poweéf'i
(20) and(33) in Sec. lll. Noteworthy are the opposite signs

of the expression46) and (47) showing the competitive

contributions from the velocity and acceleration interaction

fields of (34).

V. CONCLUDING REMARKS

The results of this study may be summed up as follows.

| would like to express my sincere gratitude to Professor J.
D. Jackson, whose valuable suggestions were extremely ben-
cial for an improvement of the papéin particular, the
major part of Sec. Il belongs to himl am also thankful to
Daniel Gebretatios, my former M.Sc. student at Addis Ababa
University, Ethiopia, who checked some calculatiofw$
Sec. V) on my request to avoid possible mistakes.

APPENDIX

To find explicit expressions fop(B) from (37) and for

(1) The total power radiated from a system of nearby co-some functions of this angle, we can use the following
herent sources, exemplified by two circling charges, isLagrange’s resul{see, e.g., p. 133 of the course by Whit-

shown(by a rigorous calculationto differ from the sum of
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If f(z) andg(z) are analytic on and inside a contoQr
surrounding a poing, and if w is such thatjwg(z)|<|z
—a| at all points onC, thenz=a+wg(z) has one root in
the interior ofC, and

n n-1

f(z)=f(a>+nZ —— {f'(a)lg(a)]".

-1 n_l da
Using this expansion with Eq(37) for a=0, f(z)=z
=@, W=p, g(¢)=cose, we obtain

< B"[d"tcod ¢
e(B)=> = WLO

A=1 N! A1)
The derivatives ifAl) can be found if one writes casas

a sum of two exponentials and employs the binomial expan-g

sion:
di
dg

n

=27

k=0

1 d’

cos' ¢
Kl(n—K)! d& ©

—i(n—2K)¢
n! )

Splitting the sum fom=2m+1 into two parts, Bcsk=m
and m+1<k=2m+1 (for n=2m the splitting can be 0
<ks=m and m=k=2m, since the term wittk=m is zero
because oh—2k=2m- 2k in the exponentig| it is easy to
see that the odd derivatives witk=2i +1 vanish, while the
even ones are

1 [ d? (-1) (n—2k)%
nt [d&7 < szo 7T 2 oK)
Substitution of these intAl) yields

(2m+1—2k)2m
kl(2m+1—k)!

j E(n/2)

B2m+1 m

>

k=0

22m (AZ)

=2 (—1)"
m=0
Although the series in(A2) converges only for &g
<0.66 (see, e.g., Ref. J1an analytic continuation is pos-
sible in the following way(if to change the order of summa-
tions):

o= >
m,k=0

=2>

m=0

(_ 1)m+k32m+1+2k(2m+ 1)2m+2k
2°MT2kK1(2m+1+Kk)!

(—1)"Ioms1[(2m+1) 8]
2m+1 '

(A3)

This Kapteyn series converges even g+ 1 (see p. 553 of
Watson’s booR).

The expansior{A3) coincides with the Bessel's solution
to the classical Kepler's probleng;— e sin =17 It is readily

seen that forr=m/2, e= B, this is nothing but(37) if ¢
=—ml2. Using the Lagrange’s expansion with otH¢r)
andg(z), or drawing the corresponding formulas from Chap.
XVII of Ref. 8 and differentiating them with respect 8,
one can derive all necessary expressions. For example, from

©

d
—{'/,=(1—e cosy) =142, J,(ne)cosnr,
dr n=1

the first of the relation$42) follows at once.

Finally, to estimate the convergence of the series, it is
worthwhile to compare the results of calculations by means
of (A3) using, say, the first four terms,<Om=3, with a
numerical solution of37):

y=B COSYy (A3) B ¢=8 COS¢p (A3)
0.1 0.099 505 0.0995 0.6 0.520 533 0.5190
0.2 0.196 164 0.1962 0.7 0.583 989 0.5796
0.3 0.287 672 0.2877 0.8 0.641 134 0.6314
: 0.372 559 0.3725 0.9 0.692 619 0.6749
05 0.450 183 0.4498 1.0 0.739 085 0.7118
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VOUS VS TU

After | passed théheorminimumLandau told me that | could now use the singulf@miliar)
form of the second-person pronoun with him. It was like a medieval ritual: When the apprentice
passes some threshold, the master craftsman permits the familiar mode of discourse.
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