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Abstract

In this thesis various classical models of charged relativistic particles are de-
scribed and discussed. We derive the Lorentz-Dirac equation for a radiating
point-charge, which follows from the coupling of the Maxwell �eld equation
and the Lorentz-force equation. A discussion of the runaway solution and
the non-causal phenomenon that follows are made. Dirac's extended electron
model and its stability is thereafter investigated. Finally a model describing
a point-charge interacting with dynamical scalar and vector �elds is elabo-
rated. The inconsistencies in the Maxwell-Lorentz theory disappear in this
model, when the requirement of stability is imposed. As a result the total
mass becomes �nitely computable in terms of �eld parameters.
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1
Introduction

The most successful physical theory that describes Nature in agreement with
experiments at the small scale, is the Standard model of electroweak and
strong interactions which is a quantum �eld theory. When obtaining this
model in�nite compensating terms has to be added to make it �nite. These
terms are often attributed to unknown physics at smaller distance scale. Thus,
although we have quite a good descriptive understanding of the fundamental
processes, we do not know the structure of the fundamental objects.

In order to understand the in�nities and its relation to the structure of
the particle we can go back to the realm of classical theory. Even here the
problems of in�nite self-energies exist, but in a di�erent shape. Historically,
one of the most important problems at the classical level has been to �nd a
consistent model for relativistic particles interacting with relativistic �elds, in
particular charged particles in interaction with the electromagnetic �eld.

Even though classical physics is a limited part of a quantum theory, we
can only establish a quantum mechanical theory by quantizing a classical one.
In spite of the occurring in�nities, the quantum electrodynamic theory (QED)
is considered consistent. In the past one has speculated (and this could very
well be true) that one would obtain a better quantum electrodynamic theory
by �nding a classical model that is free from in�nities, and then quantize it.
In this master thesis several di�erent classical models of charged relativistic
particles will be described and discussed. It will be shown how the classical
point-particle description is strongly related to the in�nities, but also how to
overcome the problems.

To do this properly we begin in the ancient Greece. Greek philosophers
had some suspicions that both electric and magnetic phenomenon were re-
lated to other natural phenomenon. For example, they saw that when amber1

was rubbed it attracted light particles, and that certain iron ores a�ected
other small iron particles. However, a connection between these two forces

1The Greek word for amber is electron.

3



4 Chapter 1 Introduction

was not found until more than two thousand years later, even though the
forces seemed quite alike. It was not until 1820 that the Danish experimental
physicist �rsted found that charges in motion give rise to magnetic forces.
This supported the idea that the electric and the magnetic phenomena were
related. Later on Faraday made experimental tests that showed that the re-
lation between these phenomena worked either way. He found that magnetic
forces can induce electrical currents. What was left now was to combine these
observations into a uni�ed theory of electromagnetism. This task was solved
by Faradays student James Clerk Maxwell.

Maxwell published his famous paper about the dynamics of electromag-
netic �elds in 1864. In 1895, Lorentz found the Lorentz-force equation that
gives the equation of motion for a charged particle in the presence of an ex-
ternal �eld. Since we are dealing with classical physics these two concepts,
particle and �eld, will be considered as di�erent throughout this thesis, al-
though we are aware of that they merge at the quantum level.

With the Lorentz-force equation and Maxwell's equations we know how
a �eld exerts a force on a charged particle and how to calculate the �eld
produced by sources of charges and currents. However, to get a satisfactory
electrodynamic theory we must couple these equations. As the charged particle
in an external force �eld is accelerating it radiates and this radiation carries
o� energy which must react back on its own motion. We have a so called
radiation reaction.

In Chapter 2 the Lorentz-force equation and Maxwell's �eld equation are
deduced from an action principle. When solving the coupled equations for a
point-particle, one gets into troubles with �niteness. The chapter also sets the
relativistic notation used throughout the thesis.

To solve the in�nity problems, Dirac suggested in 1938 to split the vector
potential in a �nite and an in�nite part, where the in�nite part can be taken
care of by mass renormalization. In this way one ends up with an equation of
motion for the charged point-like particle interacting with an electromagnetic
�eld. This approach is discussed in Chapter 3.

Unfortunately a complete relativistic description of the radiation reaction
has not yet been found. One gets into trouble with in�nite self-energies if the
particle is supposed to be point-like. These problems of point-like particles
also occurs in the general theory of relativity and other �eld theories as well
as in quantum theory.

The equation of motion, the so called Lorentz-Dirac equation, follows from
the coupled Maxwell and Lorentz-force equation. It is a third order di�eren-
tial equation which causes some fatal di�culties. In Chapter 4 the solutions
to the Lorentz-Dirac equation are studied. To prevent runaway solutions (so-
lutions that grows exponentially with time) one gets non-causal behavior for
the point-charge. The di�culties associated with the coupling of the �eld
equations with the equations of motion for the charged particle touch the
fundamental question of the nature of an elementary particle.

An extended model for the charged particles seems inevitable. The rela-
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tivistic string is one example. The string is a well understood concept and
there is a lot of literature on this theory [1]. Instead I will here consider
relativistic membranes. The �rst suggestion of a relativistic charged sphere
was done by Dirac in 1962. He pictured the charged particle as a bubble in
an external electromagnetic �eld. This quite simple and elegant theory was
later on shown to be unstable at the classical level. The Dirac bubble and its
stability problems are described in Chapter 5.

InChapter 6 we go back to the point-like particle but make a more general
model of classical electrodynamics. When including both vector and scalar
�elds interacting with the charged relativistic point-particle and imposing a
stability condition, we are able to get rid of the in�nities and get a �nite
theory. For instance we �nd a �nite expression for the total mass in terms
of self-�elds of the charged particle. It is also shown that this description of
the interacting relativistic point-charge is connected to what we have in the
Standard model.

A summary and some conclusions are given in Chapter 7.



2
Electromagnetic interaction of a

point-charge

To describe the motion of a charged point-particle in an electromagnetic �eld
we have to consider the interaction between the �eld and the particle. We
know that an external electromagnetic �eld exerts a force on a particle and
that a charged particle generates a �eld. But when a charged particle is
accelerating it radiates and this loss of energy must a�ect its own motion.
Therefore a complete theory of a charged particle have to include the reaction
of the radiation from its own motion. From a mathematical point of view
the Maxwell and Lorentz equations must be solved simultaneously as a set of
coupled equations.

Starting from an action principle we de�ne the Lagrangian and obtain
the equations of motions by using the well-known Euler-Lagrange equation.
Since the only existing �eld is the electromagnetic �eld we know from Maxwell
equations and the Lorentz-force equation when the right choice of action has
been made.

In this chapter we present our notations, the basic equations and their
formal solutions. When solving these equations for a charged particle on the
world line we run into troubles with �niteness which will be investigated fur-
ther on.

2.1 Relativistic notations

Einstein's special theory of relativity 1 is based on two axioms: the velocity of
light is a constant for all observers and the laws of physics are identical in all
inertial frames. Throughout this thesis Lorentz tensors will be used in order to

1In [2] it is claimed that contrary to the general opinion Poincar�e and Lorentz should
have the credit for the special theory of relativity
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2.1 Relativistic notations 7

easily �nd invariant physical equations. Lorentz tensors are formulated with
respect to a four dimensional space-time. For instance, the Maxwell equations
which usually are familiar to us in non-relativistic notation as

r �E = � r� E+
@B

@t
= 0

r �B = 0 r�B� @E

@t
= J; (2.1)

where E, B are the electric and magnetic �eld, c the velocity of light and
�;J are the charge density and current respectively. In the same notation the
Lorentz-force equation for a point-charge q with velocity v and external force
F is

F = q(E + v�B): (2.2)

To write these equations in a relativistic invariant form we use the electro-
magnetic �eld-strength tensor

F�� =

0BB@
0 �E1 �E2 �E3

E1 0 �B3 B2

E2 B3 0 �B1

E3 �B2 B1 0

1CCA (2.3)

and let � and J form a four-vector J� = (c�;J), the Lorentz index � runs from
0 to 3. The standard Lorentz tensor notation used in this thesis is for example
given in [3]). The Maxwell �eld equations are written in Lorentz covariant
form as

@�F
�� =

1

c
J� (2.4)

where @� = @
@z� , z

� = (ct; z). z�(�) is a position-vector as a function of
the invariant proper time � on the world line. The Lorentz-force equation in
covariant form is given by

mu� =
q

c
F��u�; (2.5)

where the four-velocity u� is de�ned by

u�(�) =
dz�(�)

dt
= _z�(�): (2.6)

In the rest of the thesis natural units with c = 1 will be used. The metric ���
is chosen to be the 
at space-like Minkowski metric, de�ned as

��� =

0BB@
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA : (2.7)



8 Chapter 2 Electromagnetic interaction of a point-charge

2.2 The Maxwell �eld equation

It is generally believed that Nature works according to an action principle.
Thus we start by describing the interaction between the charged particle with
mass m, charge q and velocity _z(�) = u(�), and the electromagnetic �eld F��

with the action

S =

Z
(�1

4
F��F

�� + A�j
�)d4x �m

Z
d�; (2.8)

where the current density produced by the point-charge q is

j�(x) = q

Z
d� u� �4(x� z(�)); (2.9)

and where

d� =

�
���� dz

�

d�

dz�
d�

�1=2
d�: (2.10)

� is an arbitrary parameter on the world line and � is the proper time. The
metric ��� is given in (2.7).

The �rst term in equation (2.8) describes the free electromagnetic �eld
(massless vector �eld, from the quantum point of view), the second describes
the interaction between the particle and �eld and the third describes the free
particle. The electromagnetic �eld is an antisymmetric �eld tensor of the form

F�� = @�A� � @�A� (2.11)

where A� is the vector potential.

With the Euler-Lagrange equations for �elds the Maxwell's equations can
be derived from the action (2.8). The Euler-Lagrange equations for �elds are
(see for example [4])

@L(z; _z)
@A�(z)

� @�
@L(z; _z)

@(@�A�(z))
= 0: (2.12)

The Lagrangian L may be extracted from the action (2.8) if the latter is split
as follows

S =

Z
Lfieldd4x+

Z
Lpartd� (2.13)

where

Lpart = �m
r
�dz

�

d�

dz�
d�

(2.14)
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and where equation (2.11)

Lfield = �1

4
������(@�A� � @�A�)(@�A� � @�A�) +A�j

�; (2.15)

from equation (2.11). Hence,

L = Lfield +
Z
Lpart�4(x� z(�))d�: (2.16)

Since Lpart is independent of A� we get from (2.12)

@Lfield
@A�

= j�; (2.17)

@�
@Lfield
@(@�A�)

= �1

4
������f������F�� � ����

�
�F��

+����
�
�F�� � ����

�
�F��g

= F�� : (2.18)

Substituting this into the Euler-Lagrange equations (2.12) yield the
Maxwell �eld equations

@�F
�� = j� (2.19)

2.3 The Lorentz-force equation

The equation of motion for the particle can in the same way be computed
from the Euler-Lagrange equation

@L
@z�

� d

d�

@L
@ _z�

= 0: (2.20)

If we write the last two terms in the action (2.8) as

S0 =

Z
L0d� (2.21)

where

L0 = qA�
dz�

d�
�m

r
���� dz

�

d�

dz�

d�
(2.22)

and A� � A�(z
�(�)). It follows that

@L0
@z�

���
�=�

= q _z�
@A�

@z�
= q@�A�

dz�

d�
(2.23)

and

d

d�

@L0
@ _z�

���
�=�

=
d

d�
qA� +

d

d�

�
m _z�

1p� _z� _z�

�
= q@�A� _z

� +m�z�: (2.24)
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In the calculations above we have used that _z�(�) _z
�(�) = �1. This is due to

our choice of metric, because the scalar product of two four-vectors is A�B� =
���A

�B� .
As F�� = @�A� � @�A� and a� = �z�; u� = _z� it follows from (2.20) that

ma� = qF�
�(z)u

�: (2.25)

This is just the well-known Lorentz-force equation.

2.4 Solution of the �eld equation

In equation (2.25), F��(x) should be evaluated at the point x� = z�(�). In
order to see how the electromagnetic �eld behaves on the world line we have
to solve the Maxwell equation (2.19).

To simplify the Maxwell equation without any restrictions we adopt the
Lorentz gauge

@�A
� = 0: (2.26)

This can be done due to the fact that if K is a scalar function, the transfor-
mation

A� ! A
0

� = A� +
@K

@x�
(2.27)

does not a�ect the �eld, since

F
0

�� = @�A� + @�@�K � @�A� � @�@�K = F��: (2.28)

The transformation (2.27) is called a gauge transformation and F�� is gauge
invariant, as well as all other observable quantities. This gauge transformation
helps us to solve Maxwell's equations if we choose A� such that @�A� = 0 (the
Lorentz gauge).

Applying the Lorentz gauge on the Maxwell equations, they reduce to

�A� = �j� (2.29)

where the wave operator is de�ned by

� � ���@�@�: (2.30)

A solution to equation (2.29) is

A�(x) = A�
hom:(x) + A�

inhom:(x) (2.31)

where A�
hom: is the solution to the homogeneous equation �A�

hom: = 0. To
solve the inhomogeneous equation we use Green functions G(x�z), and begin
by solving

�G(x� z) = ��4(x� z): (2.32)
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The vector potential is then

A�(x) = A�
hom(x) +

Z
d4z G(x� z)j�(x): (2.33)

We transform to the wave vector space by Fourier transforms:

G(q) =
1

(2�)4

Z
d4k eG(k)e�ik�q (2.34)

�4(q) =
1

(2�)4

Z
d4k e�ik�q (2.35)

where

q� = x� � z� such that �G(q) = ��4(q): (2.36)

Inserted into equation (2.36) we �nd

eG(q) = 1

k2
(2.37)

and therefore

G(q) =
1

(2�)4

Z
e�ik�q

k2
d4k =

1

(2�)4

Z
e�ik�q d3k

Z 1

�1

eik0q0

�2 � k20
dk0 (2.38)

where k � q = �k0q0 + k � q and � = jkj.
The second integral has simple poles at k0 = �� in the k0-plane. For

q0 > 0, the factor eik0q0 is only limited if we close our contour of integration
in the lower half-plane. Thus we get two di�erent Green functions Gret: and
Gadv: dependent on the choice of q0. If q0 > 0 we have thatI

dk0
eik0q0

�2 � k20
= 2�i �Res

n eik0q0

�2 � k20
;��

o
= �2�

�
sin (�q0): (2.39)

If q0 < 0 this integral with the above chosen contour vanish, due to its lack
of singularities, according to Cauchy's residue theorem. To include this in our
evaluation we have to insert the Heaviside step function

�(q0) =

�
1 i� q0 > 0
0 i� q0 < 0

(2.40)

such that

Gret:(q) = � �(q0)

(2�)3

Z
d3ke�ik�q

sin (�q0)

�
: (2.41)

Let R = jqj = jx� zj,

Gret:(q) = � �(q0)

4�2R

Z
d� sin (�R) sin (�q0)

= � �(q0)

4�2R

Z 1

�1
d�
�
ei�(q0�R) � ei�(qo+R)

�
: (2.42)
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But this integral is just two delta functions, where only one of them contributes
due to our choice: R > 0 and q0 > 0

Gret:(x� z) = ��(q0)
4�R

�(q0 � R) = ��(x0 � z0)

4�R
�(x0 � z0 � R): (2.43)

If we instead had chosen to evaluate q0 < 0 in the upper half-plane we had
found the advanced, anti-causal solution

Gadv:(x� z) = ��(z0 � x0)

4�R
�(x0 � z0 + R): (2.44)

Gadv: is non-vanishing only if (x� z)� is light-like and z� lies on the forward
light-cone. The �eld at x� = z�(�) is therefore determined by a moving charge
at the later time z�(�adv:), �adv: > � .

Thus, the equation (2.29) coupled to equation (2.25) states that as the
charged particle is moving along its world line, it generates an electromagnetic
�eld that propagates either on the future light cone or backwards. For the
causal solution, the electromagnetic �eld at an event x� is due to the moving
charged particle at z�(�ret:) (�ret: < �), and not elsewhere. These �elds we
call retarded, or causal because of its causality; the �elds are determined by
a source at an earlier time. The backward solution is called advanced (non-
causal) if the �eld is produced by a source on the light cone at z�(�adv:), i.e
at a later time (�adv: > �). We have that z0(�ret:) < z0(�) = x0 < z0(�adv:).

To summarize we have two solutions to equation (2.29)

A�(x) = A�
in(x) +

Z
d4kGret:(x� z)j�(z) (2.45)

and

A�(x) = A�
out(x) +

Z
d4kGadv:(x� z)j�(z) (2.46)

where A�
in and A�

out are the homogeneous solutions. Since the Green function
includes a �-function, the vector potential and corresponding �eld F�� evalu-
ated on the world line x� = z�(�) are in�nite. This renders the Lorentz-force
equation (2.25) quite meaningless. So we have found that the motion of the
charged particle gives rise to an electromagnetic �eld which yields a singularity
in this basic theory. We have to make sense of the singularity. One way to do
this is, as we shall see, to extract the radiation reaction part and substitute
this into the Lorentz-force equation.

If we take the limit x0 ! �1 in (2.45), only the term A�
in survives and can

be interpreted as an incoming potential, since the charged particle will emit
radiation when accelerating. In (2.46) we let x0 ! +1 so that A�

out behaves
like an outgoing potential, speci�ed at x0 ! +1.

Thus the radiated �eld can be seen as the di�erence between the incoming
and the outgoing �eld

A�
rad(x) = A�

out(x)�A�
in(x) =

Z
d4z G(x� z)j�(z) (2.47)
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where

G(x� z) = Gret: �Gadv: (2.48)

= � 1

4�R
[�(z0 � x0)�(x0 � z0 + R)� �(x0 � z0)�(x0 � z0 �R)] :



3
Radiation and radiation reaction

We have not yet found an expression for the electromagnetic �eld in the
Lorentz-force equation that is �nite. In this chapter our main task is to �nd
this expression and substitute it into the Lorentz-force equation and obtain
the Lorentz-Dirac equation (LDE), which is

ma� = F�
ext: +

2q2

3c3
( _a� � a�a

�

c2
u�) (3.1)

where a = �z, u = _z. This is an equation of motion for the charged particle
under the in
uence of an external force and its own electromagnetic �eld.

There are two main derivations of the LDE. The one by Dirac himself in his
classical paper in 1938 [5] and the one by Landau and Lifshitz [6]. These two
derivations are also given in [7] and [8]. The derivation that will be considered
here, is the one by Landau and Lifshitz.

Other very helpful books on this matter are the one written by Rohrlich
[9], Jackson [10] and Barut [11].

3.1 The Lienard-Wi�echert potential

To calculate the corresponding �eld we have to evaluate the integral expression
(2.47). If inserting the current density for the radiating �eld

j�(x) = q

Z
d� u�(�)�4(x� z(�)) (3.2)

we obtain

A�(x) = �2q
Z

d� �(x0 � z0(�))�([x� z(�)]2)u�(�): (3.3)

First we choose to evaluate the retarded solution with the light-cone condition

[x� z(�ret:)]
2 = 0 and z0(�ret:) < x0: (3.4)

14



3.2 The Lorentz-Dirac equation 15

Notice that

d

d�
(x� z(�))2

���
�=�ret:

= �2(x� z(�ret:))
�u� (3.5)

and the formula for the delta function:

�[f(�)] =
X
i

�(� � �i)

jf 0(�i)j : (3.6)

When equation (3.3) is evaluated at � = �ret: the retarded solution is

A�
ret:(x) = � qu�(�)

(x � z(�))�u�(�)

���
�=�ret:

: (3.7)

This is the well-known Lienard-Wi�echert potential, in covariant form. In the
same way we �nd that the advanced Lienard-Wi�echert potential is

A�
adv:(x) = � qu�(�)

(x� z(�))�u�(�)

���
�=�adv:

: (3.8)

3.2 The Lorentz-Dirac equation

Physically the �eld should be generated by a causal solution to the Maxwell
equations (2.29). This retarded potential can now be written as

A�
ret: =

1

2
[A�

ret: �A�
adv:] +

1

2
[A�

ret: + A�
adv:]: (3.9)

The radiation �eld in equation (2.47) is given by A�
rad: = [A�

ret: � A�
adv:] and

therefore we have

A�
ret: =

1

2
A�
rad: +

1

2
[A�

ret: + A�
adv:]: (3.10)

Correspondingly we get

F��
ret: =

1

2
F��
rad: +

1

2
[F��

ret: + F��
adv:]: (3.11)

As we shall see the radiation part F��
rad: is �nite and alone responsible for the

radiation reaction; the term [F��
ret:+F��

adv: ] describes the in�nite part occurring
in the Lorentz-force equation, and does not e�ect the motion of the particle.
We ignore this last in�nite term here, but it will be considered in the next
section.

We begin by calculating the �nite part F��
rad:. The radiation reaction part

of the vector potential is given by

1

2
A�
rad: =

1

2

�
A�
ret: � A�

adv:

�
: (3.12)
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We write the Li�enard-Wiechert potential (3.7) as

A�
ret:(x) = q

u�(�ret:)

rret:(x)
; rret:(x) = �(x� z(�ret:)

�)u�(�ret:): (3.13)

Thus to �nd A�
rad: we have to express the advanced potential

A�
adv:(x) = q

u�(�adv:)

radv:(x)
; radv:(x) = �(x � z(�adv:)

�)u�(�adv:): (3.14)

in terms of retarded coordinates.
The invariant quantity in the Lienard-Wi�echert potential

r(x) = �(x� z(�))�u�; (3.15)

is such that (x � z(�0))
� is a null vector. The point z�(�0) is therefore the

point where the world line cuts the light cone with vertex at x�.
For reasons that will become apparent later we re-scale the null vector by

a factor r�1:

k�(x) =
1

r
(x� z(�))�: (3.16)

According to equation (3.15) and the null geodesic equation:

0 = �(x; �) = (x� z(�))�(x� z(�))� (3.17)

we see that at � = �ret:

k�k
� = 0 and k�u

� = �1: (3.18)

If we make an in�nitesimal displacement from x to a new �eld point (x+�x)
the point where the particle trajectory intersect with the light cone changes to
z(�+��). These points are of course still related by the null geodesic equation
(3.17). Expanding to �rst order and using the above equations we obtain

@�

@x�
= �k�: (3.19)

Since, for a function f(x) = F (x; �) the equation df =
�

@F
@x�

�
dx� +

�
@F
@�

�
d�

with (3.19) takes the form

@f

@x�
=
� @F
@x�

�
�
� k�

�@F
@�

�
x
: (3.20)

Then the derivation of the retarded distance becomes

@r

@x�
=

@

@x�

�
�(x� z(�))�u�

�
= �u� + k�(1 + rk�a�) (3.21)
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where I've used equation (3.15), (3.18) and the relativistic fact that u�u
� =

�1. Later on these expressions will help us calculate the radiation-reaction
�eld from the Li�enard-Wiechert potential.

We are now almost ready to express the advanced potential in terms of the
retarded coordinates. First we make a Taylor expansion of 4� = �adv: � �ret:
and radv: in terms of rret:

z�(�adv:) = z� + u�4� +
1

2
a�4�2 +

1

6
_a�4�3 +

1

24
�a�4�4 +O(4�5): (3.22)

On the right-hand side all the quantities should be evaluated at the retarded
time. Substitute this into the null geodesic equation (3.17) with equation
(3.16), (3.18) and a2 = a�a

�

0 = �(x; �) = (x� z(�adv:))
�(x� z(�adv:))�

=
h
x� � z� + u�4� +

1

2
a�4�2 +

1

6
_a�4�3 +

1

24
�a�4�4 +O(4�5)

i2
= �2r4� +4�2 + 2ra�k

�4�2 +
1

3
r _a�k

�4�3 +
1

12
(r�a�k

� + a2)4�4

+O(4�5): (3.23)

The solution to this is

4� = 2r
h
1� a�k

�r +
�
(a�k

�)2 � 1

3
a2 +

2

3
( _a�k

�)
�
r2 +O(r3)

i
: (3.24)

In a similar way we can expand u�(�adv:):

u�(�adv:) = u� + a�4� +
1

2
_a�4�2 +

1

6
�a�4�3 + O(4�4) (3.25)

and with (3.24) we �nd an expression for

u�(�adv:) = u� + 2a� + 2( _a� � a(a�k
�)a2)r2 + O(r3) (3.26)

and

radv:(x) = r +
2

3
(a2 + _a�k

�)r3 +O(r4): (3.27)

To obtain the advanced potential in terms of the retarded quantities we
substitute (3.26) and (3.27) into (3.13)

A�
adv:(x) = q

u�

r
+ 2qa� + 2q

h
_a� � (a�k

�)a� � 1

3
(a2 + _a�k

�)u�
i
r + O(r2):

(3.28)

Thus the radiation-reaction potential is

1

2
A�
rad: =

1

2
[A�

ret: �A�
adv:]

= �qa� � q
h
_a� � a�k

�a� � 1

3
(a2 + _a�k

�)u�
i
r +O(r2) (3.29)
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The O(r2)-term will not contribute to the radiation-reaction �eld F��
rad:, be-

cause after di�erentiating on the world line this term will vanish.
To calculate F rad:

�� = @�A
rad:
� � @�A

rad:
� we use (3.20) so that:

@�A� =
�@A�

@x�

�
�
� k�

�@A�

@�

�
x
: (3.30)

After some algebra and using equation (3.21) it turns out that

1

2
F rad:
�� = �2

3
q( _a�u� � u� _a�): (3.31)

Notice that this expression is �nite.
Substituting into the Lorentz-force equation (2.25) yields

ma� = q(�2

3
q( _a�u� � u� _a�))u

� =
2

3
q2( _a� � a2u�): (3.32)

Where we have used that u�u� = �1 which di�erentiated twice becomes
_a�u� = �a2.

With the right dimension and a possible external force this becomes the
Lorentz-Dirac equation

ma� = F�
ext: +

2q2

3c3
( _a� � a�a

�

c2
u�): (3.33)

The �rst term on the right-hand side is the Lorentz-force from external elec-
tromagnetic forces only

F�
ext: = qF��

ext:u� : (3.34)

The second one

2q2

3c3
_a� (3.35)

is called the Schott term. This term is, as we will see in the next chapter, re-
sponsible for non-local time dependence in the LDE. The third term is just the
radiation reaction also appearing in the non-relativistic derivation by Lorentz
and Abraham a hundred year ago. It concerns the energy loss due to radiation.

3.3 Mass renormalization

We now turn our attention to the in�nite part of our invariant splitting of the
retarded potential (3.9), namely 1

2(A
�
ret: +A�

adv:), which was excluded above.
If we use equation (3.13) and (3.28), the term q u�

(x�z)� (that vanished in

our calculation of the radiation-reaction (3.29)) will now be present and we
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get a singularity at x = z(�ret:), or x = z(�adv:). The corresponding �eld
1
2 [F

��
ret: + F��

adv:] is therefore in�nite when evaluated on the world line.
In physical terms this represents the Coulomb �eld carried by the particle,

which in quantum mechanics is described as a cloud of photons surround-
ing the particle that at all times are emitted and absorbed. This self-�eld
is always present and is therefore included when the mass is measured in a
laboratory. If we let �m be the Coulomb contribution to the \bare" mass m,
the experimentally measured mass is

mexp: = m+ �m: (3.36)

So if the mass term in the Lorentz-force equation (2.25) is (m + �m), the
Coulomb �eld (i.e the in�nite part of expression (3.9)) is already included. In
order to verify this we study the Lagrangian

L =
q

2

Z
d�u��(x� z(�))(Aret:

� +Aadv:
� ): (3.37)

The delta function is here replaced by a �nite distribution function � to include
the near Coulomb �eld. The potential can, after using equation (3.7) and (3.8),
be written as

1

2
(Aret:

� +Aadv:
� ) = �1

2

h qu�(�)

(x� z(�))�u�(�)

���
�=�ret:

+
qu�(�)

(x� z(�))�u�(�)

���
�=�adv:

i
:

(3.38)

Thus,

L = �q
2

2

Z
d��(x� z(�ret:))

h u�(�ret:)u
�(�ret:)

(x� z(�ret:))�u�(�ret:)

+
u�(�adv:)u�(�adv:)

(x� z(�adv:))�u�(�adv:)

i
: (3.39)

Let � = �ret:+ � (were � is small) and Taylor expand z(�) around �ret:, and in
the same way around �adv: such that

z�(�) = z�(�ret:) + � _z�(�ret:) +
�2

2
�z�(�ret:) + : : : (3.40)

and

u�(�) = _z�(�) = _z�(�ret:) + ��z�(�ret:) +
�2

2

...
z �(�ret:) + : : : (3.41)

If we only keep terms up to �rst order in � and use that _z� _z� = �1, the
Lagrangian is

L = q2
Z

d�
� �(x� z)

_z�(x� z � � _z + :::)�
+ : : :

�
(3.42)
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and for a point-particle (let x! z) this mass term becomes an in�nite constant

�m = q2
Z

d�

�
: (3.43)

The in�nite self-�eld contribution �m may be turned into a �nite term m =
mbare + �m, provided mbare is in�nite as well. This is called mass renormal-
ization.

When Dirac derived the Lorentz-Dirac equation [5] he considered the charg-
ed relativistic particle as a tube in four-dimensional space-time with a small
radius a and calculated the energy-momentum 
ow out from the surface. The
mass renormalization were carried out by putting

mexp: =
q2

2a
� f(a); (3.44)

where f(a) is a function that depends on a. The terms on the right-hand side
are both in�nite for a! 0, such that mexp: is �nite.

The mass renormalization is certainly a little bit odd. On the other hand,
the occurring in�nity is due to the point-particle description which might not
agree with our physical reality (probably it does not). In some sense we have
assigned the occurring in�nity to physics of smaller scale. Thus, the mass
renormalization raises the fundamental question whether or not the charged
particle should actually be an extended object. For example a string or a
sphere instead of a point-particle. Extended charges, especially Dirac's bubble
model of the electron are discussed in chapter 5.

It is interesting to see what happens if we assume the charged particle to
have a purely electromagnetic origin. Let therefore the bare mass be zero, so
that

mexp: = mem: = �m (3.45)

which means that the particle, which initially is massless, get mass contribu-
tion from the electromagnetic �eld when it is moving. The mass is then of
purely electromagnetic origin.

In a rest frame the expression for the mass, in terms of the total energy-
momentum tensor (see section (6.6)) for a particle including the self-�eld is

mem: =

Z
d3xT 00 =

1

2

Z
E2d3x =

q2

8�

Z 1

0

dr

r2
: (3.46)

The electromagnetic mass is therefore in�nite due to its boundary condition.
If we think of this charged particle as a well localized charge distribution, the
occurring in�nity is not so strange when remembering that the electromagnetic
�eld strength grows enormously as two charged particles approach each other.

If we assume a spherical extension of the particle with radius a we get the
classical electron radius

mc2 = q2
Z 1

a

dr

r2
(3.47)
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such that

a =
q2

mc2
= 2:8 � 10�15m: (3.48)

3.4 Action-at-a-distance theory

As we have seen, it is the self-�eld of the particle which are causing us prob-
lems. Mass renormalization was necessary to take care of the in�nite self-
energy. One idea to make the self-�eld of the charged particle �nite is to
postulate that the �eld generated by a single particle does not act back on
itself. Hence, the particle can not produce a �eld on its own. This was done
by Wheeler and Feynman [12], inspired by Fokker [13] in the so called action-
at-a-distance theory.

A synthesis of the concepts �elds and particles are made, considering the
interaction of particles without �elds.

The concept of self-�eld is eliminated and only action at a distance is
considered. The relativistic interaction between particles is such that they
simulate a �eld, which does not exist for a free particle. To get agreement
with experiments which do measure radiation from a free particle, one have
to include the detector as an absorber interacting with the particle.

It can be shown [14] that the equation of motion that follows from the
action-at-a-distance theory is similar to the Lorentz-Dirac equation. They
coincide if all radiation in the system is absorbed and thus we have to include
all particles in the universe. This could imply some additional problems, but
it is quite a fancy thought though.



4
Di�culties with the

Lorentz-Dirac equation

We have now found an equation of motion including back radiation in the
Lorentz-Dirac equation. This was done by coupling the Maxwell equations
and the Lorentz-force equation together. However, a solution to the LDE has
not yet been found. In this chapter we present a solution to the LDE and
discuss the validity and the di�culties that follows from it. For a survey of
the associated di�culties, see [15]. LDE solutions to particular problems are
presented in [16].

4.1 Solution of the Lorentz-Dirac equation

To solve the Lorentz-Dirac equation (3.33), where the mass is the renormalized
mass, we use the notation u� = _z�, a� = _u� = �z� and rewrite it as

m�z� = F�
ext: +

2q2

3
(
...
z � � �z� �z

� _z�): (4.1)

Rearranging the terms this becomes

�z� � t0
...
z � =

1

m
F�
ext: � t0�z��z

� _z� (4.2)

where

t0 =
2q2

3m
: (4.3)

Equation (4.2) is a third order di�erential equation which implies that the
motion of the particle is not determined when we know its position and ve-
locity (which usually is the case). As we will see this demands an asymptotic

22
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condition on the acceleration a� = �z�(�)

lim
j� j!1

a�(�) = 0 (4.4)

which turns the di�erential equation into an integro-di�erential equation.
Suppose that the external force is a function of time and use the integrating

factor e�t=t0 and let �z2 = �z� �z� ,

� d

dt
(t0e

�t=t0 �z�) = e�t=t0
�
F�
ext:

m
� t0�z

2 _z�
�

(4.5)

integrate,

t0e
�t=t0 �z(t) = �

Z t

0
dt

0

e�t
0

=t0

"
F�
ext:(t

0

)

m
� t0�z

2(t
0

) _z�(t
0

)

#
+ t0�z

�(0): (4.6)

This integro-di�erential equation of motion involves a constant of integration
which has to be determined on physical grounds. To avoid unphysical solutions
that grows exponentially with time (so called runaway solutions) we have to
let

t0�z
�(0) =

Z 1

0
dt

0

e�t
0

=t0

"
F�
ext:(t

0

)

m
� t0�z

2(t
0

) _z�(t
0

)

#
: (4.7)

With a change of variable we can write the integro-di�erential equation as

�z�(t) =

Z 1

0
ds e�s

�
1

m
F�
ext:(t+ t0s)� t0�z

2(t + t0s) _z
�(t+ t0s)

�
(4.8)

where s = 1
t0
(t

0 � t). Without the asymptotic condition, the velocity of the
charged particle will increase asymptotically to the speed of light, whether or
not there is an applied force.

Now we see that the acceleration at time t depends on the force acting
at times later then t. We have therefore a violation of causality, because the
acceleration starts before the force begins to act. The responsible term in the
LDE for the non-local e�ect in our integro-di�erential equation is the so called
Schott term

2q2

3

...
z �: (4.9)

Thus, instead of the problems of runaway solutions we have encountered the
unphysical e�ect in the preacceleration. The time interval during which this

e�ect occurs is of the order t0 ' q2

mc3 ' 10�24s for an electron. This is
approximately the time it takes for light to travel through the \size" of an
electron, which is impossible to measure by macroscopic experiments. So the
non-causality is not possible for us to observe, but is it a real e�ect?
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When we are dealing with these extremely small time and length scales
(smaller then the Compton wave length) the validity of our classical description
breaks down and are to be exchanged by a more accurate theory. The classical
non-causal e�ect can therefore not be believed to be a real e�ect until quantum
mechanics, which is valid in this region of time and space, is suggesting one.

We should also ask ourselves when this radiation reaction e�ect must be
taken into account. Assume that a charged particle is a�ected by an external
force to have an acceleration of order a during a time interval T . The energy
radiated is given by Larmor's formula

Erad: � 2q2

3
a2T: (4.10)

The relevant energy that this should be compared with is the kinetic energy
of the charged particle, after the same period of time.

E0 � m(aT )2 (4.11)

Thus, the reactive e�ect can be neglected if

2q2

3
a2T � ma2T 2

or

T � 2q2

3m
; (4.12)

which is just the characteristic time t0 in (4.3). Radiative e�ects will therefore
only be important if the external force is applied suddenly so that T � t0.
But when this is the case we have seen that non-causal behavior appear in our
integro-di�erential equation (4.8).

Anyhow, the problems of preacceleration, the need for mass renormaliza-
tion and runaway solutions gives rise to serious doubt of the validity of the
LDE. Other peculiarities of the LDE includes a classical tunneling e�ect [17],
[18] that occurs in the characteristic time interval t0, i.e. in this time interval
a classical particle can, according to the LDE, cross a potential barrier (which
are not to be expected until considering quantum mechanics).

The fundamental problem of our outlined derivation, which ends in the
di�culties of the LDE, is believed to be the idealization of a classical point-
particle. Instead of assuming the particle to be point-like we might try to
characterize it by a small extended charge distribution.

An electromagnetic �eld outside a charge distribution has the leading term
q=r2 followed by higher orders of r. If the distance r is large compared to the
size of the charge distribution the �eld is well approximated by the electric
mono pole term q=r2, and the internal structure can be neglected. In this case
a point-like description is therefore su�cient.

What if the distance is smaller so that we have to include �nite size cor-
rections to the LDE? Maybe an extended particle model better describes the
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interaction between the particle and the �eld. Is this extended model com-
patible with special relativity and does there exist any stable solution of it?
Another quite obvious modi�cation to the model used so far is to change the
�eld equations by adding another �eld, for instance a scalar �eld which is
included in the Standard model. Is a point-like description of the charged
particle satisfactory if we include the possibility that the particle could be the
source of both a vector and a scalar �eld? Will we then have a �nite theory
without unphysical solutions? These are questions that will be discussed in
the following chapters.

4.2 Reduction of order

We will now investigate if it is possible to \rescue" the Lorenz-Dirac equation
if we add �nite size correction terms and see if it is possible to overcome our
earlier di�culties.

In a frame where the particle is momentarily at rest, the LDE reduces to
the non-relativistic Abraham-Lorentz equation:

a =
1

m
Fext: + t0 _a: (4.13)

With �nite-size correction terms (4.13) takes the form [9, 10]

a =
1

m
Fext: + t0 _a+ O(t20=t

2
a); (4.14)

where ta is a characteristic time interval over which the acceleration changes.
For a point-like description we therefore have t0 � ta. In equation (4.14)
the leading term is 1

mFext: followed by t0 _a, where _a � aa=ta and aa is the
characteristic acceleration in the time interval ta.

a =
1

m
Fext: +O(t0=ta) (4.15)

Di�erentiate this equation and insert into (4.14).

a =
1

m
Fext: +

t0
m
_Fext: + O(t20=t

2
a) (4.16)

This equation does not involve third-order derivatives and the runaway solu-
tions and preacceleration problems which comes with it, have therefore disap-
peared. But the equation is still only valid when t0 � ta. We have not gained
any accuracy in this way but we have turned our equation into a second-order
equation free of di�culties.

The technique just used is called \reduction of order" and can of course
be applied to the relativistic LDE (3.33). First we rewrite the LDE as

a� =
1

m
F�
ext: +

2

3
q2(��� + u�u�) _a

�: (4.17)
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The leading term is 1
mF

�
ext:. Di�erentiating yields

1

m

dF�
ext:

d�
=

1

m

dz�

d�
@�F

� (4.18)

so that

ma� = F�
ext: + t0(�

�
� + u�u�)@�F

�u� (4.19)

is the modi�ed second-order LDE.

To solve the unphysical behavior of the LDE, such as preacceleration,
Caldirola [19] introduced a fundamental interval of time, the chronon:

�0 =
2q2

3m
; (4.20)

which is exactly the characteristic time t0 in equation (4.3). Time is considered
as a continunm, in which events can take place only at discrete instants of
time. This implies that when an external force acts on the charged particle
its reaction is not continuous. In fact, continuity is not required by Lorentz
invariance [20]. In macroscopic sense the particle behaves as if it was point-like.
However, the internal motion of the particle is associated with a microscopic
de Sitter space. This theory has also been considered recently by Yaghjian
[21].

Another theory based on the fascinating idea of a quantized space-time,
with relativistic invariant equations of motions for the electromagnetic �eld
in a fully quantized space-time were done by Snyder already in 1947 [22].
The quantized space-time is related to the recent interest in so called non-
commutative �eld theories.
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Extended relativistic objects

As we have seen the point-like description of a charged relativistic particle
interacting with an electromagnetic �eld is not satisfactory. An extended
model has to be considered and the simplest example one may think of is a
relativistic string.

A classical description of the open charged relativistic string was done in
[23], where the interaction between the string and the electromagnetic �eld is
supposed to act only at the endpoints. Thus only the endpoints of the string
are charged.

Classically a more natural extended model when considering the electron
is probably to view it as a sphere. This idea was proposed a long time ago.

In the beginning of the twentieth century Abraham and Lorentz made a
purely electromagnetic model of a spherical symmetric charged sphere [24, 25].
Their model was a non-relativistic (Einstein proposed his special theory of
relativity some years later, in 1905), which governed the infamous 4/3 problem.
That is, the mass of a charged object gets contribution from the mechanical
mass as well as its own electromagnetic �eld. Abraham and Lorentz found
that the electromagnetic rest mass, with U as the self-energy, was 4=3(U=c2).
However, according to the Lorentz transformations on which special relativity
is based on the electromagnetic rest mass is just (U=c2). When considering a
charged conducting sphere there is also a tendency for the sphere to explode
as the charges repel each other.

To solve the 4/3 problem and to prevent the tendency of the charged sphere
to explode, Poincar�e [26] (or [27], with a more modern notation) introduced
non-electromagnetic forces that prevented the spherical shell of charge to di-
verge by an inward pressure, though he was not at that time familiar with such
forces. Together with a relativistic formulation the 4/3 problem was solved.
The Poincar�e stresses P�� adds to the electromagnetic stress-energy tensor
��� , so that the total stress-energy tensor is

S�� = ��� + P�� : (5.1)

27
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For a thorough discussion of the Abraham-Lorentz model including
Poincar�e stresses see [21].

The charged particle's total energy-momentum is then, according to equa-
tion (6.38)

P� =

Z
d3xS�0(x) (5.2)

which in the the rest frame becomes the total mass

M =

Z
d3xS00(x): (5.3)

If the right hand side of equation (5.2) also transforms as a four vector, then
we have in the rest frame Z

d3xSij = 0 (5.4)

for i; j = 1; 2; 3. According to condition (5.4) the total stress-energy tensor
vanish in the rest frame i.e. the sphere does not diverge acting on itself. This
is just the stability condition.

One example of Poincar�e stresses that we know about today is the gluon
�eld that holds the three quarks in the proton together. The electromagnetic
stress-energy tensor must be combined with a Poincar�e stress-energy tensor
i.e. the gluon �eld, to provide a stable entity of the three quarks.

5.1 Dirac's \bubble"

In 1962 Dirac published his article \An extensible model of the electron" [28]
where the electron is seen as a charged bubble in the electromagnetic �eld.
This was one of the �rst articles where the concept of relativistic branes were
introduced and also one of the �rst relativistic theories including Poincar�e
stresses. For other models concerning extended charged objects, see [21, 29].

The model has also some resemblances to bag models of the hadrons [30,
31].

Consider the electron as having a charged conducted surface with some ten-
sion on it preventing it from diverging, i.e. some kind of non-electromagnetic
Poincar�e forces holding the bubble stable. The bubble is considered to be a
perfect conductor such that there exists no �eld inside it. When stable oscil-
lations about the equilibrium are made, Dirac suggests that the lowest exited
state might be the muon.

In a relativistic four-dimensional picture the electron can be seen as a tube
with a three-dimensional hyper surface. In curvilinear coordinates, the surface
can be expressed by the equation x1 = 0. Outside the bubble (x1 > 0) we
have Maxwell's equation in Minkowski space. Spin is not considered in this
model.
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To derive the equations of motions we start with a total action given by

S = S0 + SS (5.5)

where the action for the Maxwell �eld and the surface of the electron is

S0 = �1

4

Z
x1>0

Jg��g��F��F��d
4x

SS = ��
Z
x1=0

Mdx0dx2dx3; (5.6)

where g�� is the metric tensor and

J =
q
�det(g��) and M =

p
det(gab): (5.7)

The constant � determines the mass and size of the electron at equilibrium
and thus the strength of the surface tension. As boundary condition on the
surface, Dirac demands

A�(x) = 0 at x1 = 0 (5.8)

which lead to a condition on the �eld F�� = @�A� � @�A�,

Fab(x) = 0 at x1 = 0 (5.9)

where a,b take only the values 0,2,3.
Introduce an orthogonal and rectilinear coordinate system yA(x), with

A = 0; 1; 2; 3, so that the metric tensor can be written as

g�� = @�y
A@�y

B�AB: (5.10)

Hamilton's principle tells us that a small variation in the action is zero,
�S = 0. Applying this to our action by varying yA(x) and A�(x) we obtain

�S0 = �1

2

Z
f1
2
�Jg��g��F��F�� + Jg���g��F��F�� + Jg���g��F���F��g:

(5.11)

By means of

�J =
1

2
Jg���g

��

�g�� = �g���g��g�� (5.12)

together with the chain rule, equation (5.10) and the boundary condition
�A� = 0 equation (5.11) becomes

�S0 =

Z
f�@�(JF ��)�A� + J(F �

� F�� � 1

4
F��F

��g��)@�yA@��y
Agd4x

= �
Z
f@�(JF ��)�A� + @� [J(F

�
� F�� � 1

4
F��F

��g��)@�yA]�y
�gd4x

+

Z
J(F �

� F�1 � 1

4
F��F

��g�1)@�yA�y
Adx0dx2dx3: (5.13)
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The three-dimensional integral is over the surface x1 = 0 and the four-
dimensional integral is over x1 > 0. In addition we have that

�SS = ��
Z

Mcab@ay
A@b�y

Adx0dx2dx3

= �

Z
@b(Mcab@ay

A)�yAdx0dx2dx3: (5.14)

M is de�ned by equation (5.7) and cab is the reciprocal matrix to gab, i.e.

gabc
bc = � c

a : (5.15)

As �S = 0, each coe�cient of �A� and �y
A must be zero. For �A� in (5.13)

we then arrive at the following Maxwellian equations in the region x1 > 0

@�(JF
��) = 0: (5.16)

For the coe�cients of �yA on the surface x1 = 0 we have from (5.13) and
(5.14)

J(F �
� F�1 � 1

4
F��F

��g�1)@�yA + �@b(Mcab@ay
A) = 0: (5.17)

If we multiply with @�y
A and use equation (5.10) and

@�M = @�gabMcab; (5.18)

we arrive at

J(F��F
�1 � 1

4
F��F

��g1� + �@b(Mcabga�) = �@�M: (5.19)

We only get contributions for � = 1 due to our boundary values (5.9). Since
ga�g

�1 = � 1
a = 0 and by means of the de�nition (5.15), we are able to write

the reciprocal matrix as

cab = gab � g1ag1b

g11
: (5.20)

We can now write down the equations of motion for the surface of the bubble
in the electromagnetic �eld:

1

2
Fa1F

a1 =
�

J
@�

�Mg1�

g11

�
: (5.21)

5.1.1 A spherical symmetric solution

To see if it is possible that the muon can be an exited state of the electron
Dirac makes some rough estimations in the calculation of the oscillations.
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We start with ordinary spherical coordinates

y0 = t

y1 = r sin � cos'

y2 = r sin � sin'

y3 = r cos � (5.22)

with � as the radius of the electron and x1 = r � � so that x1 = 0 at the
boundary as demanded. Since the invariant proper time interval

d�2 = �g��dy�dy� (5.23)

we di�erentiate and obtain the metric

d�2 = (1� _�2)dt2 � 2 _�dtdx1 � (dx1)2 � (x1 + �)2d�2 � (x1 + �)2 sin2 �d'2

(5.24)

such that

g�� =

0BB@
�(1� �2) _� 0 0

_� 1 0 0
0 0 (x1 + �)2 0
0 0 0 (x1 + �)2 sin2 �

1CCA : (5.25)

Using the formula for the inverse matrix�
A�1

�
ij
=

1

detAij
Aji (5.26)

we also �nd that

g�� =

0BB@
�1 _� 0 0
_� (1� _�2) 0 0
0 0 (x1 + �)�2 0
0 0 0 (x1 + �)�2 sin�2 �

1CCA : (5.27)

The right-hand side of the equation of motion (5.21) is then, on the surface
(x1 = 0)

1

J
@�

�
Mg1�

g11

�
=

d

dt

_�

(1� _�2)1=2
+

2

�(1� _�2)1=2
: (5.28)

Just outside the surface of the electron there exist a Coulomb �eld with
Fa1F

a1 = e2=�4, where e is the charge of the electron. From (5.21) and
(5.28) we obtain the equation of motion

d

dt

_�

(1� _�2)1=2
=

�2
�(1� _�2)1=2

+
e2

2��4
: (5.29)
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If we set _� = 0 and let a be the equilibrium radius we have that

a3 =
e2

4�
: (5.30)

If the total energy gets contribution from the Coulomb �eld (e2=2�) and from
the Poincar�e stresses, e.g. (A�2) we can write it as

E = e2=2�+A�2: (5.31)

After di�erentiating to get a minimum of the energy at � = a we see that

a3 =
e2

4A
: (5.32)

Therefore we must have that the constant A = �.

As the total energy E = mc2 (c=1), the radius can be expressed in terms
of the mass and the charge

a =
3e2

4m
: (5.33)

For small oscillations with _� = 0 we can write equation (5.28) as

�� =
2a3

�4
� 2

�
=

2

a

�
(1 +

�� a

a
)�4 � (1 +

�� a

a
)�1
�
: (5.34)

Using that

(1 + z)�1 = 1� z + z2 � z3 + : : : (5.35)

and only taking linear terms, this expression can be written as

��+
6

a2
� =

6

a
: (5.36)

We see that the frequency is

! =

p
6

a
: (5.37)

Thus the energy for this frequency of the electron is

~! =
4
p
6

3

m~

e2
� 448m: (5.38)

which at least is of right order for the energy of the muon in this quite naive
picture.
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5.1.2 Problems with stability

Although Dirac's extended model seems to be a consistent relativistic model
it has be shown by Gnadig et al. [33] that the bubble is not stable against
non-spherical deformations. Any small perturbation turns the spherical elec-
tron into an in�nitely long cigar-like object or an in�nite string (with some
thickness). Here we quote the essence of their analysis.

The equation of motion (5.29) can be interpreted as the Euler-Lagrange
equation obtained from a Lagrangian of the form

L = �4���2(1� _�2)1=2� e2

8��
: (5.39)

Since L has no explicit time dependence, the total energy is a conserved quan-
tity. It is

E = _�
@L
@ _�

� L = �
4��2

(1� _�2)1=2
+

e

8��
: (5.40)

The �rst term is the surface energy including a relativistic factor (1 � _�2)1=2

and the second is the Coulomb energy.
Now, consider the static energy of an oblate and prolate spherical surface.

E = �S +
e

8�C
(5.41)

If we denote the major and minor axes for the prolate spheroid as 2b and 2a,
with b > a, the surface energy becomes

S = 2�

�
a2 +

ab2

(b2 � a2)1=2
cos�1(a=b)

�
(5.42)

and the capacity of the bubble is

C =
(b2 � a2)1=2

cosh�1(b=a)
: (5.43)

If we let 
 = b=a, the minimum value of E(
) as a function of a, for every
�xed 
, turns out to be �nite as 
 ! 0 (the spheroid becomes a disc). For

 !1 it goes to zero as

E � (log 
)2=3


1=3
! 0: (5.44)

Since the energy function is positive semi-de�nite, the absolute minimum is
for 
 ! 1. The so called zero-energy con�guration therefore corresponds to
an in�nitely long cigar-like object. As 
 !1 the surface charge density goes
faster to zero than the capacity per unit length. The Dirac bubble is unstable.

Consider a bubble that a pulse hits on one side. If the whole bubble
starts to move at the same time, some sort of super luminal information are
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transported to the other side of the bubble. If it does not, some kind of
deformation of the sphere must occur which demands internal motion. The
bubble can not be a rigid body, it has to be dynamical. However, the question
what its fundamental relativistic formulation, that allows stable bound states,
remains.

Dirac, unaware of the instability of the bubble, even thought that he was
on his way to �nd a theory for a �nite size charged particle interacting with
electromagnetic and gravitational �elds [34].

Dirac's simple extended relativistic model have to be modi�ed. Gnadig et
al. proposes that an additional term to the action (5.5) involving a scalar �eld
should make the bubble stable. According to J. Kuti there is indeed a stable
solution with a scalar �eld inside the bubble. The incorporation of a scalar
�eld for extended sources in classical physics raises the idea of doing the same
for a point-charge.



6
Point-charge interacting with

both vector and scalar �elds

We have seen in the Maxwell-Lorentz theory that the interaction between the
charged point-particle and its generated electromagnetic �eld yields an in�nite
self-force. When trying to overcome this divergence by splitting the vector
potential and renormalizing the mass, we ended up with the Lorentz-Dirac
equation. But the LDE turned out to include many di�culties and we can
not be satis�ed with this incomplete description of a moving charged particle
in an electromagnetic �eld (massless vector �eld).

If the particle is supposed to only interact with a scalar �eld instead of a
massless vector �eld, an equation of motion of the form of the Lorentz-Dirac
equation with all its di�culties follows [35].

In this chapter we let the charged point-particle interact with an arbitrary
number of vector and scalar �elds which both can be massive 1 or not, as was
done by van Holten [36]. This assumption is not so strange as one may believe.
According to the Standard model, in which classical physics is a part of, there
exist one scalar �eld, the Higgs �eld which are supposed to endow all particles
with mass. By including the static Coulomb- and Yukawa �elds coupled to
the particle, one �nds the rest energy. These �elds are in�nite, thus to �nd
a �nite mass one has to add in�nite compensating terms. These terms are
supposed to come from physics at smaller distance scales.

Extended models such as bag models [31, 32], used in nuclear and parti-
cle physics, often include scalar �elds that holds the charged sphere together
(because like charges generated by scalar �elds are attractive), and massive
vector �elds to prevent it from collapse. It has also been suggestions that the
Dirac bubble could be stabilized by a scalar �eld [33].

The interaction between the particle and �elds, with the condition that the

1Massive �elds is only a valid concept in quantum physics, one might therefore consider
the model as semi-classical.

35
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charged particle is stable (the particle can not exert a force on its own) remove
all inconsistencies in the Maxwell-Lorentz theory and gives rise to constraints
that have connection to the uni�ed electroweak standard model. Later on
we calculate an expression for the point-particle mass that becomes �nitely
computable in terms of �eld parameters.

A similar mass calculation from the energy-momentum tensor (including
scalar �elds) were made by St�uckelberg already in 1941 [37] and an attempt
to do the same in quantum �eld theory were done by Pais in 1947 [38]. Until
now there has not been any classical analogy for this model. The research
has instead mostly been focused on solving the divergences in quantum �eld
theory, mainly quantum gravity. However, if we �nd a classical theory without
the in�nite self-energies and then quantize it, a self-consistent �nite quantum
theory could be in reach. On the other hand, a classical theory is an approxi-
mation to a quantum theory, thus to �nd a �nite classical theory one should
start with a quantum theory and then investigate the classical limit and not
the other way around. As far as I know one can not start from scratch in a
quantum theory, you have to go from some sort of classical theory. It should
be mentioned that string theory is at present the general approach for solving
these problems.

6.1 The �eld equations

Following van Holten [36], we consider a charged point-particle coupled to a
system of Nv vector �elds and Ns scalar �elds. The �eld part of the total
action is

Sfield =

Z
d4x

(
�

NsX
i=1

h1
2
(@�'i)

2 +
�i

2

2
('i � fi)

2 + �i'i

i

�
NvX
�=1

h1
4
(F�

��)
2 +

�2�
2
(A�

�)
2 � A�

�j
�
�

i)
: (6.1)

Here �i, �� represents the masses of the scalar ('i) and vector �elds (F�
��), i.e.

some ranges of the �elds li;�=��1i;�. Even though we are operating in classical
physics we incorporate a concept used in quantum �eld theory, namely the
possibility that the scalar �eld have a vacuum expectation value h'ii = fi.
The �rst three terms describe the massive scalar �elds and the last three the
massive vector �elds, also known as the Proca Lagrangian. The scalar charge
density �i and the current density j

�
� are given by

�i(x) = gi

Z
d�

r
�
�dz�
d�

�2
�4(x� z(�)) = gi�

3
�x� z(t)p

1� v2

�
(6.2)

j��(x) = q�

Z
d�

dz�

d�
�4(x� z(�)) = q�u

��3
�x� z(t)p

1� v2

�
: (6.3)
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The free particle is, as before, described by the action

Spart = �m
Z

d�

r
�
�dz�
d�

�2
: (6.4)

To get the equations of motion for the �elds, one for the scalar and one for
the vector part, we use the Euler-Lagrange equation (2.12). Our Lagrangian
for the �eld, taken from (6.1), is

Lfield = �
NsX
i=1

h1
2
(@�'i)

2 +
�2i
2
('i � fi)

2 + �i'i

i

�
NvX
�=1

h1
4
(F�

��)
2 +

�2�
2
(A�

�)
2 �A�

�j
�
�

i
: (6.5)

6.1.1 The scalar �eld equation

To obtain the �eld equation for the scalar �elds we vary 'i so that

@Lfield
@'i

= ��2i ('i � fi)� �i

@Lfield
@(@�'i)

= �@�'i: (6.6)

When this is inserted into the Euler-Lagrange equation for �elds (2.12) we get
the scalar �eld equation

(��+ �2i )('i � fi) = ��i(x): (6.7)

6.1.2 The vector �eld equation

By varying A�
� we get the equation of motion for the vector �elds (see equation

(2.17), (2.18))

@Lfield
@A�

�

= ��2����A�
� + j��

@Lfield
@(@�A�

�)
= @�A�� � @�A�� (6.8)

and the vector �eld equation is

[(��+ �2�)�
�� + @�@� ]A�

� = j��: (6.9)

6.2 Solution of �eld equations

For a particle moving with constant velocity we can completely solve the �eld
equations.
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The scalar �eld equation (6.7) can be written as

(�r2 +
@2

@t2
+ �2i )('i � fi) = ��i(x): (6.10)

The source term is independent of time, so we solve the inhomogenius equation

(r2 � �2i )	(x) = �(x) = gi�
3(Rret:) (6.11)

where 	(x) = ('i � fi) . The homogeneous solution will correspond to the

free waves and is here just denoted 'free
i . The retarded distance parameter,

for a particle in it's rest frame moving with velocity v in the z-direction of the
lab. system, is

Rret: =
�
x; y;

z � vtp
1� v2

�
: (6.12)

To solve the scalar �eld equation we Fourier transform

	i(r) =
1

(2�)(3=2)

Z e	i(k)e
�ik�rd3k (6.13)

�3(r) =
1

(2�)3

Z
e�ik�rd3k: (6.14)

Insert into (6.11):

(�k2 � �2i )e	i(k) =
gi

(2�)3=2
(6.15)

and substitute into (6.13),

	i(r) =
�gi
(2�)3

Z
e�ik�r

(k2 + �2i )
d3k: (6.16)

As d3k = k2sin� dk d� d' and k � r = kRcos� we can go on calculating the
scalar �eld.

	i(r) =
�gi
(2�)3

Z 1
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Z 2�

0

Z �
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�gi
4�2iR
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n keikR
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; +i�i

o
=

�gi
4�2 � iR � 2�i(i�i)e

��iR

2i�i
=
�gi
4�

e��iRret:

Rret:
(6.17)

So the retarded solution of the scalar �eld equation is

'i = 'free
i + fi � gi

4�

e��iRret:

Rret:
: (6.18)
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In the same way we can obtain the retarded solution to the vector �eld equation
(6.9) by using Lorentz gauge @�A�

� = 0 such that

(r2 � �2i )A
�
� = �j��: (6.19)

With some Fourier transforms and a little calculus of residue the solution
becomes

A�
� = A�free

� +
q�u

�

4�

e��iRret:

Rret:
: (6.20)

The term A�free
� represents the free electromagnetic waves.

We notice that in equation (6.18) and (6.20) both the Yukawa and the
Coulomb self-�eld are in�nite at R = 0. The Yukawa and Coulomb self-�elds
always accompany the particle and are therefore contributing to its mass.

6.3 Equation of motion for the charged particle

The motion for the particle, dressed with it's Coulomb- and Yukawa �eld
can be derived from the Euler-Lagrange equation, (previously mentioned in
equation (2.20))

@L
@z�

� @L
@ _z�

= 0: (6.21)

From equation (6.1) and (6.4) we can evaluate the di�erent terms of the Euler-
Lagrange equation.
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dz�
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(6.22)

When these are inserted into (6.21) we obtain the equation of motion for the
charged point-particle in interaction with dynamical scalar and vector �elds:

d

d�

h
(m+

X
i

gi'i(z))
dz�

d�

i
= �

X
i

gi@
�'i(z) +

X
�

q�F
�
� �(z)

dz�

d�
: (6.23)

Notice that this equation reduces to the familiar Lorentz-force equation (2.25)
if the scalar �eld vanishes, 'i = 0.

6.4 Imposing stability condition

The equation of motion should be evaluated on the world line of the particle.
When we in the �rst chapter were dealing with only interaction between a
particle and an electromagnetic �eld we saw that the �eld were singular on
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the world line. This is still the case, as can be seen in equation (6.18) and
(6.20) when R = 0. However, now when a scalar �eld also is present this
might be interesting to investigate further. As in the Maxwell-Lorentz theory
we also here have �eld equations and an equation of motion for the particle
that have to be solved as a set of coupled equations. This is done by inserting
the solution of the �eld equations (6.18), (6.20) into (6.23).

Physics requires that if we do not have any external forces on the particle,
it has to be stable and not exert a force acting on itself. This condition requires

d2z�

d�2
= 0: (6.24)

With this criterion of stability substituted into our equation of motion (6.23)
we get
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If we use that

d
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which turns the above equation into the formX
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In the particle's rest frame, where all �elds are static this equation reduces,
after summation over the indices � and �, to

0 = �
X
i

gir'i(z) +
X
�

q�F
j
�0(z); (6.28)

where the index j = 1; 2; 3. The electromagnetic �eld tensor is given by

F�
� =

0BB@
0 E1 E2 E3

0 B3 �B2

0 B1

0

1CCA : (6.29)

This implies

�
X
i

gir'i(z) +
X
�

q�E�(z) = 0: (6.30)

According to the solutions of the �eld equations (6.18), (6.20) both of the
terms in (6.30) are by themselves singular as Rret:! 0. Now we let the free

radiation �eld be equal to zero and use that E� � r'� � r q�
4�

e���R

R .
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To examine the singularity we insert the solutions to the �eld equations
and take the limit R! 0 (from here on the subscript ret: is left out).

lim
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#
= 0 (6.31)

If we insert the power expansion of exponentials, i.e.

ex =
1X
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n!
; (6.32)

which has in�nite radius of convergence, then we �nd
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Then we di�erentiate, so that
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As we now let R ! 0, the residue terms 1=R2 and the constant terms only
vanish if the scalar and vector components cancel. For the in�nite 1=R2-terms,
we �nd the condition:

NsX
i

g2i =
NvX
�

q2� (6.35)

which also was found by St�uckelberg [37]. The vanishing of the constant terms
requires:

NsX
i

g2i �
2
i =

NvX
�

q2��
2
�: (6.36)

Due to the stability condition (6.24) we have two constraints on the scalar and
vector charges gi, q� and the scalar and vector masses �i, ��.

From these constraints it follows that if any scalar �eld is present, there
must at least be one vector �eld present. If all vector �elds are massless, all
scalar �elds are massless. If one scalar �eld has mass, the particle must couple
to at least one massive vector �eld.
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6.5 Comparison with the Standard model

Dealing with classical electrodynamics we ought to know that this theory is
a part of a greater uni�ed description of electromagnetic, strong and weak
interaction based on the fundamental particles, quarks and leptons. This
description is given by the Standard model. The Standard model is a quantum
�eld theoretical model based on symmetrical properties of the particles and
gauge invariance of the forces. The gauge group is SU(3) 
 SU(2) 
 U(1).
We have several force carriers corresponding to the di�erent interactions. The
electromagnetic interaction with the photon, 
, as massless force carrier, the
weak interaction with three massive vector bosons Z0;W� and the strong
interaction with eight gluons as massless force carrier. All of these particles are
bosons and have spin one and are therefore described by vector �eld equations.

The Higgs particle, which behaves more as a regulator is supposed to endow
the gauge bosons with mass. This is a consequence of spontaneous symmetry
breaking, which turns the massless force carriers into massive bosons Z0;W�

and the eight gluons, but leaves the photon massless. The Higgs particle has
spin zero and is represented by a scalar �eld operator. The Higgs scalar is
yet to be observed, but analysis of experimental data and the Standard model
suggests that it is a massive particle. At the moment much e�ort are made
to �nd it. In fact, when this thesis was just about �nished there were rumors
that the Higgs scalar had been found at CERN, with a mass of 114 GeV.

In our model described in this chapter we do not consider self-interaction
of the �elds. Thus our vector �elds are of abelian type and does not fully
apply to the Standard model. More precisely, our model can only be applied
to a version of the electroweak standard model based on gauge group U(1)

U(1)
U(1)
U(1) where our charged scalar particle only couples to photons
and Z0, and the massive, charged vector bosons W�.

When considering the electroweak standard model it follows from the con-
straints (6.35) and (6.36) that the Higgs �eld must have mass. Because if
the neutrino couples to the massive vector boson Z0, then it couples to some
massive scalar �eld, and as the only scalar �eld in the Standard model is the
Higgs �eld it must have mass.

6.6 Finite mass of a charged point-particle

One of Einstein's cornerstones in his general theory of relativity is the equiv-
alence principle. It is based on the fact that the kinematic mass (entering
in Newton's second law, F = mka) is the the same as the gravitational one
(F = mgg). This equality was in fact already suggested by Newton and later
observed by E�otv�os in 1889. In order to calculate the mass of a charged point-
particle fully interacting with dynamical scalar and vector �elds we can use
this equivalence. We �rst set up the masshell condition for the kinematic mass

p2� +m2 = �E2 + p +m2 = 0: (6.37)
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The gravitational mass of the charged particle is de�ned by its energy-moment-
um tensor. In 
at Minkowski space the conserved four-momentum of equation
(6.37) over the space-like 3-dimensional hyper surface

P
is

p� =

Z
P
d3xT�0: (6.38)

In the rest frame (p = 0) this expression reduces to

m =

Z
P
d3xT 00: (6.39)

6.6.1 The stress-energy tensor

To calculate the total mass we have to �nd an expression for the total stress-
energy tensor. We begin by splitting the stress-energy tensor of the particle
and �eld into di�erent parts.

T�� = T part:
�� + T scalar

�� + T vector
�� +���� (6.40)

where the last term is an arbitrary cosmological constant. The stress-energy
tensor is a real and symmetric matrix and can be written in terms of eigen-
vectors n(�); � = 0; 1; 2; 3 and eigenvalues �(�).

T�
� n

�
(�) = �(�)n

�
(�) so that ���n

�
(�)n

�
(�0)

= n��0 (6.41)

For a particle moving in the z-direction, with velocity v, the following eigen-
vectors can be chosen:

n�
(0)

=
� 1p

1� v2
; 0; 0;
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1� v2

�
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R
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R
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R
p
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�
n
�
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��px2 + y2

R
p
1� v2

v;
xp

x2 + y2
(z � vt)

R
p
1� v2

;

;
yp

x2 + y2
(z � vt)

R
p
1� v2

;
�
p
x2 + y2

R
p
1� v2

�
n�(3) =

�
0;

�yp
x2 + y2

;
xp

x2 + y2
; 0
�
: (6.42)

Notice that the time-like eigenvector is the four-velocity

n�(0) = u�: (6.43)

For the retarded distance parameter we have

R = Rret: =

s
x2 + y2 +

(z � vt)2

(1� v2)
: (6.44)



44 Chapter 6 Point-charge interacting with both vector and scalar �elds

With spherical coordinates and the particle taken to be in it's rest frame, these
eigenvectors simpli�es to

n(0) = (1; 0; 0; 0)

n(1) = (0; sin � cos�; sin � sin�; cos �)

n(2) = (0; cos� cos�; cos � sin�;� sin �)

n(3) = (0;� sin �; cos�; 0): (6.45)

In terms of the just named basis, the stress-energy tensor is

T�� =
X
�

�(�)n(�)�n(�)� : (6.46)

and �(�) is Lorentz invariant. From Noether's theorem for �elds we �nd that
the conserved canonical stress-energy tensor is

eT��(x) =
@L(x)

@(@��s(x))
@��s(x)� ���L(x): (6.47)

With the relation between the canonical and the non-canonical stress-energy
tensor:

T�� = eT�� � @�f
��� : (6.48)

The term @�f
��� comes from the transformation properties of the underlying

�elds and is zero for scalar �elds.

For the �rst part of the total stress-energy tensor (6.40) we have that

T part:
�� =

Z
d�
�
m+

X
gi'i(z)

�dz�
d�

dz�
d�

�4(x� z(�))

=
�
m+

X
gi'i(z)

�
�
�x� z(t)p

1� v2

�
n(0)�n(0)� : (6.49)

With the scalar �eld solution (6.18) and 'free
i = 0 and (6.46) we get the

eigenvalue

�part:(0) =
�
m+

X
i

gi'i(z)
�
�3(R) =

�
m+

X
i

gifi �
X
i

g2i
e��iR

4�R

�
�3(R):

(6.50)

To compute the scalar �eld contribution we �rst express our scalar La-
grangian we started with (6.1).

Lscalar = �
NsX
i=1

h1
2
(@�'i)

2 +
�i

2

2
('i � fi)

2 + �i'i

i
(6.51)
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and notice from (6.47) that

@L(x)
@(@�'i)

@�'i = (@�'i)(@�'i): (6.52)

We have now obtained the scalar part of the stress-energy tensor.

T scalar
�� = eT scalar

�� =
X
i

(@�'i)(@�'i)� 1

2
���

h
(@�'i)

2 +
�2i
2
('i � fi)

2
i

(6.53)

If we substitute the solution (6.18) and let 'free
i = 0 and use equation (6.41)

we get

T scalar
�� =

X
i

g2i
32�2

e�2�iR

R4

n
2 + 2�2iR

2 + 4�iR

����0n(�)�n(�)� [1 + 2�2iR+ 2�iR]
o
: (6.54)

Here �sc:(0) = ��sc:(2) = ��sc:(3) so that

T scalar
�� = �sc:(0)(n(0)�n(0)� � n(2)�n(2)� � n(3)�n(3)�) + �sc:(1)n(1)�n(1)� (6.55)

and 8>><>>:
�sc:(0) =
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32�2

e�2�iR
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1 + 2�2iR

2 + 2�iR
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�sc:(1) =
P

i
g2i
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i (6.56)

For the vector part we have from (6.1)

Lvector = �
NvX
�=1

h1
4
(F�

��)
2 +

�2�
2
(A�

�)
2 �A�

�j
�
�

i
: (6.57)

We also notice that

@Lvector
@(@�A�)

= F�� (6.58)

so that

eT vector
�� = �

X
�

F�
��@�A

� � ���L: (6.59)

In this case

f��� = F��A� =) @�f��� = @�A�F��: (6.60)
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Using the solution (6.20) with A�
� = 0 and (6.47), (6.48) we �nd

T vector
�� =

X
�

g2i
32�2

e�2�iR

R4

n
� (2 + 2�2�R

2 + 4��R)

����0n(�)�n(�0)� [1 + 2�2�R
2 + 2��R]

o
: (6.61)

In eigenfunctions with �vec:(0) = �vec:(2) = �vec:(3) this expression simpli�es to

T vector
�� = �vect:(0) (n(0)�n(0)� � n(2)�n(2)� � n(3)�n(3)�) + �vect:(1) n(1)�n(1)� (6.62)

where 8>><>>:
�(0) = �P�

q2�
32�2

e�2��R

R4

h
1 + 2�2�R

2 + 2��R
i

�(1) = �P�
q2�
32�2

e�2��R

R4

h
1 + 2��R

i (6.63)

Since we will integrate the stress-energy tensor over the whole space to get the
total mass in the rest frame, the contribution of the cosmological constant ����
in expression (6.40) will be in�nite. To get some kind of useful information
from this calculation we therefore put it to zero. However, the cosmological
constant is nowaday assumed to be di�erent from zero. To �nd a term that
could compensate for this is another interesting task.

6.6.2 Mass

In analogy with our previously mentioned equation (6.38) we have that the
total conserved energy-momentum is

P� =

Z
d3xT 0�(x) =

X
�

Z
d3x�(�)n

0
(�)n

�
(�) (6.64)

and in the rest frame

P� = (M; 0; 0; 0) (6.65)

this becomes, when using (6.45)

M =

Z
d3x�(0): (6.66)

M thus denotes the total mass of the particle, including contributions from the
vector and scalar �elds. As we see the components �(j), j = 1; 2; 3 must cancel
each other. This happens if and only if

P
i g

2
i =

P
� q

2
�, which is exactly the

condition (6.35) we found earlier.
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We can now compute the mass:

M =

Z
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Use integration by part so thatZ
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Substituting into (6.67) yields
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When this is evaluated we get the �nite total mass of the point-particle

M = m+
X
i

gifi +
1

8�

 X
i

g2i �i �
X
�

q2���

!
: (6.70)

Thus we have found that the mass is �nite and determined by some bare mass
m, the scalar vacuum expectation value and the coupling to the scalar and
vector �eld, which is the Yukawa and Coulomb self-energy. The attractive
nature of the scalar force between the particle and its own scalar �eld seems
to cancel the in�nities in the Yukawa and Coulomb �elds.

It is believed (among �eld theoretician) that the �eld masses are built
up by the coupling to the scalar vacuum expectation value fi. In a linear
approximation we can therefore wright the self-energies as

�i =
X
j

Aij(g)fj �� =
X
j

B�j(q)fj : (6.71)

Now all terms that determines the physical mass M are proportional to the
vacuum expectation value of the scalar �elds.

To obtain the familiar classical mass we take the lowest-order terms and
get the condition X

i

g2i �i =
X
�

q2���: (6.72)
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Combined with our earlier relations (6.35) and (6.36) these can be reduced to
one, namely X

i

g2i =
X
�

q2� (6.73)

i� for all i and �

�i = ��: (6.74)

It suggests that the scalar and vector �elds are parts of a multiplet perhaps
indicating an underlying supersymmetric theory, if the particles are replaced
by fermions.

Supersymmetry is a symmetry between fermions (quarks and leptons) and
bosons (exchange particles). In 
at Minkowski space-time the proper frame-
work into which a supersymmetric model should be applied is quantum �eld
theory. From this it follows that for unbroken supersymmetry, all states in
a multiplet have the same mass. This means that every elementary particle
has a superpartner. However, experiments do not show any evidence of these
superpartners, thus it is believe that supersymmetry only occurs in broken
form, if occurring at all.

6.7 Non-linear �eld theories

Can Nature really be described by linear �eld theories? Is Nature that simple
so that linear approximations are valid in the macroscopic domain as well as
in the microscopic? Probably not, non-linear e�ects have to be taken into
account. One example of non-linear �eld theories is the general theory of
relativity.

The Maxwell equations are linear in the E and B �elds, which agree sat-
isfactory with experiments for macroscopic objects. But what is the case in
the subatomic domain? If we think of the electron as a sphere with localized
charge distribution and then shrink it to a point, the energy grows enormously.
Therefore it is not to drastic too believe that there will be some kind of satu-
ration for the �eld strength, as non-linear e�ects could dominate.

6.7.1 Born-Infeld dynamics

One example of non-linear models is the Born-Infeld electrodynamics [39]. A
new Lagrangian

L = b2
�r

1� 1

2b2
F��F�� � 1

�
(6.75)

is applied instead of the usual electromagnetic one L = �1
4F��F

�� . In this
new �eld theory the point-charge, as source of the �eld, is seen as a singularity
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of the electromagnetic �eld. The new Lagrangian (6.75) turns approximately
into the usual one if the constant b�1 is small.

A serious drawback of the Born-Infeld theory is its non-linearity which
causes mathematical problems and makes it hard to split the �eld of the charge
and the external �eld. This was an important ingredient in our derivation of
the LDE. The square root also makes it almost impossible to quantize the
theory.

It should be pointed out that the Born-Infeld action builds up the D-branes
in string theory [40].

6.7.2 Non-linear Dirac electrodynamics

Dirac noticed the problems of the in�nite self-energy in his point-particle
model [5]. Quantum mechanics did not seem to overcome these problems
without mass renormalization. To get a satisfactory �nite quantum theory for
point-particles Dirac tried to improve his old model before quantization.

In [41], Dirac imposes a non-linear gauge on the vector potential for a free
electromagnetic �eld.

A�A
� = k2 (6.76)

where k = m=q is a universal constant. This break of gauge transformation
introduce a beam of charges into the theory. Nothing speci�c can be said
about the individual charges. From the theory it follows that for a velocity v�

k�1A� = v�: (6.77)

The physical meaning of this model is that the current 
ows with velocity
v�. If no charge is present, v� is the velocity that it would have if it where
added. The velocity seems to �ll up all space-time and Dirac regards it to
be the velocity of an aether [42]. The aether was a popular topic before
the special theory of relativity ruled it out [2]. Dirac introduced it again
on basis of his new relativistic invariant theory and quantum mechanics. It
should be pointed out that nowadays the aether is not considered to be a real
physical thing, however the re-introduction by Dirac is quite interesting from
a historical point of view. The discussion nowadays is, in analogy with the
aether, about the vacuum which is the \starting point" for a quantum �eld
theory.

Another nonlinear �eld theory is the one by Finkelstein, Mie, Rosen [43],
after the ideas of Pauli and Heisenberg, in which the particle are considered
as being the charge and energy of a �eld, concentrated in a small volume. The
equation of motion for the particle follows from the �eld equations which are
nonlinear such that the particles could in
uence each other. A spectrum of
masses follows as soon as the charge of the particle is �xed. More references on
non-linear and linear �eld theories of the �rst decades in the twentieth century
may be found in the book by Schweber [44].



7
Conclusions and Summary

In the beginning of this thesis we studied the interaction between a charged
relativistic particle and an electromagnetic �eld. From an action principle
we ended up with the Maxwell �eld equations coupled to the Lorentz-force
equation.

When trying to solve these equations for the charged particle on its world
line, we ended up with serious troubles with �niteness. By splitting the �eld
potential into a �nite and an in�nite part, for which we made a mass renormal-
ization and turned it into a �nite one, we found the Lorentz-Dirac equation
of motion. This equation turned out to be a third order di�erential equation
to which the initial position and velocity are insu�cient to determine the mo-
tion of the particle. (These conditions are su�cient to determine ordinary
equations of motions, since they are of second order.) When applying an as-
ymptotic condition to the acceleration we excluded the runaway solutions and
made the LDE solvable.

The solution was unfortunately not without problems. It seemed that the
acceleration could begin shortly before an external force was applied. This
preacceleration occurred in a time region which is supposed not to be in the
classical domain of viability. However, it is only in this region of time that
radiation reaction e�ects are considered to be important. If we believe that
Nature does not allow non-causal behavior, our conclusion must be that the
Lorentz-Dirac equation is not satisfactory.

The di�culties associated with the Maxwell-Lorentz theory were believed
to be associated with the point-like particle description of the charges. An
extended model seemed to be a natural way out. We studied the relativis-
tic invariant bubble of Dirac including Poincar�e stresses, which unfortunately
turned out to be unstable. Dirac's simple and beautiful bubble was the �rst
example of a relativistic brane which are of interest in string theory. The so
called p-branes (where p stands for the space dimension) as higher dimension-
ally extended objects, p � 3, are even more fragile then the Dirac bubble,
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but a compacti�cation of some of its spatial dimensions are supposed to give
stabilizing forces [45]. The interaction would e�ectively involve several �elds
which should stabilize them. Branes are ingredients of string theory in the
search for a uni�ed theory of everything, the \mysterious" M-theory.

As discussed in chapter 5, the extended object must have some dynamics,
but in the case of the Dirac bubble no stable bound states were found. The
charged relativistic sphere seemed to lack a fundamental relativistic formula-
tion. However, if a scalar �eld is included inside the bubble there might exist
one. This idea have to be investigated further, but that is beyond the scope
of this thesis.

After considering the Dirac bubble we turned to a more general model
for point-charges, in which the particle interact with both scalar and vector
�eld of arbitrary masses. Also here we started from an action principle and
deduced the equations of motion for the �elds and the particle. When applying
the stability condition and inserting the solutions of the �eld equation to the
equation of motion for the charged particle, we still found that the �elds
where singular on the world line. However, now these singularities cancelled
each other out, leaving us with two conditions on the coupling constants and
masses, i.e. ranges of the �elds (6.35), (6.36). Comparing these conditions
with the uni�ed electroweak theory we found that the Higgs �eld is massive
as is generally believed. In fact, when this thesis was just about �nished there
were rumors that the Higgs scalar had been found at CERN, with a mass of
114 GeV.

In contrast to the usual Maxwell-Lorentz theory, it turned out that the
total mass of a charged particle became �nitely computable in terms of the
�eld parameters, as was shown in (6.70). This was done without renormalizing
the mass. When obtaining the familiar classical mass, the constraints reduces
to one if the masses are equal for all scalar and vector �elds. This suggests
that we should have a multiplet of �elds, perhaps indicating a supersymmetric
theory. Multiplets appear naturally in string theory. Now, the considered
model does not take into account the possible self-interactions of the scalar
and vector �elds (this was done in order to �nd analytical solutions), neither
does it consider charged particles with spin. By adding spin to the particle it
would certainly improve the model. There are of course still more about this
model that has to be investigated further. For example, there is no description
of the radiation reaction, when an external force �eld is present. We must
also incorporate quantum mechanics since a point-like description in classical
physics is kind of awkward because it does not apply to physics of short length
scales. A classical point-like model is therefore a kind of oxymoron, in itself.
Instead we regard the classical approach as an approximation where quantum
correction terms are supposed to be added. A possible many-body theory or
possible incorporations of gravity remains to be investigated.

Hopefully the physical and computational problems discussed in this thesis
have been interesting to the reader, because they surely have to me.
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