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Abstract

We give a model-independent derivation of general intersecting rules for spacelike

branes (S-branes) in arbitrary dimensions d. This is achieved by directly solving bosonic

field equations for supergravity coupled to a dilaton and antisymmetric tensor fields with

minimal ansätze. We compare the results with those in eleven-dimensional supergravity

and other solutions.

∗e-mail address: ohta@phys.sci.osaka-u.ac.jp



There has been much interest in time-dependent and spacelike brane solutions (S-

branes) of supergravities in eleven and ten dimensions because of its possible connection

with tachyon condensations and dS/CFT correspondence [1, 2]. These theories are the

low-energy limits of the string theories and supposedly unifying M-theory of strings. Time-

dependent solutions are investigated rather recently and not much is known on these

solutions. It is thus important to better understand these classical p-brane solutions.

The single p-brane solutions (Sp-branes) have been discussed in refs. [1, 3, 4, 5] for

low-energy effective supergravities (see also refs. [6, 7] for related solutions). Following

the usual convention, Sp-branes are used for those with (p + 1)-dimensional Euclidean

world-volume. It has then been noted that the more general solutions can be understood

as intersecting ones of these fundamental p-branes [8, 9] and the rules how the branes

intersect with each other are given in analogy to the usual branes [10]–[14]. Although

the “rules” are consistent with most of the known solutions, it is not clear if there are

any other solutions than those given by these rules. The questions we would like to

ask here are how general these rules are and how severely they restrict the solutions for

supergravities in d = 11 and lower dimensions.

A systematic approach to formulating the rules for the way how they can intersect

has been derived for the usual branes in [13, 14]. The purpose of this note is to extend

this work to the S-branes and clarify what ansätze are really necessary. In particular, we

derive the intersection rules from the general approach. We show that the rules are simple

consequences of the field equations, which can be easily integrated and the consistency of

the solutions reduces the problem of solving the field equations to an algebraic one.

The results of our analysis turn out to be consistent with the superposition rules in

ref. [8] for d = 11 supergravity, but our results apply to more general supergravity coupled

to a dilaton and antisymmetric tensors. We show that the requirement that the fields for

the each brane be independent is sufficient to give the solutions and intersection rules.

Let us start with the general action for gravity coupled to a dilaton φ and m different

nA-form field strengths:

I =
1

16πGd

∫

ddx
√
−g

[

R−
1

2
(∂φ)2 −

m
∑

A=1

1

2nA!
eaAφF 2

nA

]

. (1)

This action describes the bosonic part of d = 11 or d = 10 supergravities; we simply drop
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φ and put aA = 0 and nA = 4 for d = 11, whereas we set aA = −1 for the NS-NS 3-form

and aA = 1
2(5 − nA) for forms coming from the R-R sector.1 To describe more general

supergravities in lower dimensions, we should include several scalars, but for simplicity

we disregard this complication in this paper.

From the action (1), one derives the field equations

Rµν =
1

2
∂µφ∂νφ+

∑

A

1

2nA!
eaAφ

[

nA

(

F 2
nA

)

µν
−

nA − 1

d− 2
F 2
nA
gµν

]

,

φ =
∑

A

aA
2nA!

eaAφF 2
nA
,

∂µ1

(√
−geaAφF µ1···µnA

)

= 0,

∂[µFµ1···µnA
] = 0. (2)

The last equations are the Bianchi identities.

We take the following metric for our system:

ds2d = −e2u0dt2 +
p
∑

α=1

e2uαdy2α + e2BdΣ2
k,σ, (3)

where d = p + k + 1, the coordinates yα, (α = 1, . . . , p) parametrize the p-dimensional

world-volume directions and the remaining coordinates of the d-dimensional spacetime

are the time t and coordinates on k-dimensional spherical (σ = +1), flat (σ = 0) or

hyperbolic (σ = −1) spaces, whose line elements are dΣ2
k,σ. Since we are interested in

time-dependent solutions, all the functions appearing in the metrics as well as dilaton φ

are assumed to depend only on the time t. The Ricci tensors for the metric (3) are

R00 = −
p
∑

α=1

[üα + (u̇α)
2 − u̇αu̇0]− k(B̈ + Ḃ2 − Ḃu̇0),

Rαβ = e2(uα−u0)[üα − u̇αu̇0 +
p
∑

γ=1

u̇γu̇α + kḂu̇α]δαβ ,

Rab =
{

e2(B−u0)[B̈ + kḂ2 − Ḃu̇0 +
p
∑

α=1

u̇αḂ] + σ(k − 1)
}

ḡab, (4)

1There may be Chern-Simons terms in the action, but they are irrelevant in our following solutions.
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where ḡab is the metric for the hypersurface Σk,σ. Here and in what follows, a dot denotes

a derivative with respect to t.

For the field strengths, we take the most general ones consistent with the field equations

and Bianchi identities. The value for an electrically charged Sq-brane (whose world-

volume is (q + 1)-dimensional) is given by

Ftα1···αq+1 = ϵα1···αq+1Ė, (nA = q + 2), (5)

where α1, · · · ,αq+1 stand for the tangential direction to the Sq-brane. The magnetic case

is given by

F αq+2···αpa1···ak =
1

√
−g

e−aφϵtαq+2···αpa1···ak ˙̃E, (nA = d− q − 2) (6)

where a1, · · · , ak denote the coordinates of the k-dimensional hypersurface Σk,σ. The

functions E and Ẽ are again assumed to depend only on t.

The electric field (5) trivially satisfies the Bianchi identities but the field equations are

nontrivial. On the other hand, the field equations are trivial but the Bianchi identities

are nontrivial for the magnetic field (6).

We will solve the field eqs. (2) with the simplifying ansatz

−u0 +
p
∑

α=1

uα + kB = 0, (7)

which simplifies the field equations (2) considerably. For both cases of electric (5) and

magnetic (6) fields, we find that the field eqs. (2) are cast into

−ü0 + (u̇0)
2 −

p
∑

α=1

(u̇α)
2 − kḂ2 =

1

2
φ̇2 +

∑

A

d− qA − 3

2(d− 2)
SA(ĖA)

2, (8)

üα = −
∑

A

δ(α)A

2(d− 2)
SA(ĖA)

2, (α = 1, · · · , p), (9)

B̈ + σ(k − 1)e2u0−2B =
∑

A

qA + 1

2(d− 2)
SA(ĖA)

2, (10)

φ̈ =
∑

A

ϵAaA
2

SA(ĖA)
2, (11)

(

SAĖA

).

= 0, (12)
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where A denotes the kinds of qA-branes and we have defined

SA ≡ exp

(

ϵAaAφ− 2
∑

α∈qA

uα

)

, (13)

and

δ(α)A =

⎧

⎨

⎩

d− qA − 3

−(qA + 1)
for

⎧

⎨

⎩

yα belonging to qA−brane

otherwise
, (14)

and ϵA = +1(−1) corresponds to electric (magnetic) fields. For magnetic case we have

dropped the tilde from EA. Equations (8), (9) and (10) are the 00,αα and ab components

of the Einstein equation in (2), respectively. The last one is the field equation for the

field strengths of the electric fields and/or Bianchi identity for the magnetic ones. It is

remarkable that both the electric and magnetic cases can be treated simultaneously just

by using the sign ϵA. This is because the original system (1) has the S-duality symmetry

under

gµν → gµν , FnA
→ e−aAφ ∗FnA

, φ → −φ. (15)

From eq. (12) one finds

SAĖA = cA, (16)

where cA is a constant. With the help of eq. (16), we find that eqs. (9) and (11) give

u̇α = −
∑

A

δ(α)A

2(d− 2)
cAEA + cα,

φ̇ =
∑

A

ϵAaA
2

cAEA + cφ, (17)

where cα and cφ are integration constants. Let us next define

g(t) = (u0 − B)/(k − 1). (18)

We find from (7)

B = g −
1

k − 1

p
∑

α=1

uα, u0 = kg −
1

k − 1

p
∑

α=1

uα, (19)
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Using (17), we get

Ḃ = ġ +
∑

A

qA + 1

2(d− 2)
cAEA −

1

k − 1

p
∑

α=1

cα, (20)

u̇0 = kġ +
∑

A

qA + 1

2(d− 2)
cAEA −

1

k − 1

p
∑

α=1

cα, (21)

Substituting (16) and (20) into (10), we obtain

g̈ + σ(k − 1)e2(k−1)g = 0, (22)

which yields

ġ2 + σe2(k−1)g = β2, (23)

where β is an integration constant. The solution to eq. (23) is given by

g(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
k−1 ln

β
cosh[(k−1)β(t−t1)]

: σ = +1,

±β(t− t1) : σ = 0,
1

k−1 ln
β

sinh[(k−1)β(t−t1)]
: σ = −1,

(24)

where t1 is another integration constant.

Substituting eqs. (17), (22) and (23) into (8) yields

(k − 1)

(

∑

A

qA + 1

2(d− 2)
cAEA −

1

k − 1

p
∑

α=1

cα

)2

+
p
∑

α=1

(

∑

A

δ(α)A

2(d− 2)
cAEA − cα

)2

+
1

2

(

∑

A

ϵAaA
2

cAEA + cφ

)2

+
∑

A

cA
2
ĖA − k(k − 1)β2 = 0. (25)

This equation must be valid for arbitrary functions EA of t. From the EA-independent

part of eq. (25), one finds

1

k − 1

(

p
∑

α=1

cα

)2

+
p
∑

α=1

c2α +
1

2
c2φ = k(k − 1)β2. (26)

We can then rewrite eq. (25) as

∑

A,B

[

MAB
cA
2

− δAB

{(

1

EA

).

+
2c̃A
EA

}]

cB
2
EAEB = 0, (27)
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where

MAB =
p
∑

α=1

δ(α)A δ(α)B

(d− 2)2
+ (k − 1)

(qA + 1)(qB + 1)

(d− 2)2
+

1

2
ϵAaAϵBaB, (28)

c̃A =
∑

α∈qA

cα −
1

2
cφϵAaA. (29)

Since MAB is constant, eq. (27) cannot be satisfied for arbitrary functions EA of t unless

the second term inside the square bracket is a constant. Requiring this to be a constant

tells us that the function EA must satisfy
(

1

EA

).

+
2c̃A
EA

= c̃ANA, (30)

or

EA =
ec̃A(t−tA)

NA cosh c̃A(t− tA)
, (31)

where NA is a normalization factor and tA is an integration constant. In this way, the

problem reduces to the algebraic equation (27) supplemented by (30) without making any

assumption other than (7).

Equation (27) has two implications if we take independent functions for the fields EA.

In this case, first putting A = B in eq. (27), we learn that

cA =
2(d− 2)c̃ANA

∆A
, (32)

where

∆A = (qA + 1)(d− qA − 3) +
1

2
a2A(d− 2). (33)

By use of eqs. (31) and (32), eqs. (17), (20) and (21) can be integrated with the results

u0 = kg(t) +
∑

A

qA + 1

∆A
ln cosh c̃A(t− tA) + c0t + c′0,

uα = −
∑

A

δ(α)A

∆A
ln cosh c̃A(t− tA) + c̃αt+ c′α,

B = g(t) +
∑

A

qA + 1

∆A
ln cosh c̃A(t− tA) + c0t + c′0,

φ =
∑

A

(d− 2)ϵAaA
∆A

ln cosh c̃A(t− tA) + c̃φt+ c′φ, (34)

7



where c′α’s are new integration constants and

c0 =
∑

A

qA + 1

∆A
c̃A −

∑p
α=1 cα
k − 1

, c′0 = −
∑p

α=1 c
′

α

k − 1
, c̃α = cα −

∑

A

δ(α)A

∆A
c̃A,

c̃φ = cφ +
∑

A

(d− 2)ϵAaA
∆A

c̃A. (35)

To fix the normalization NA, we go back to eq. (13). Using (34), we find

SA = [cosh c̃A(t− tA)]
2eϵAaAc′φ−2

∑

α∈qA
c′α, (36)

which, together with (16) and (32), leads to

NA =

√

∆A

2(d− 2)
eϵAaAc′φ/2−

∑

α∈qA
c′α. (37)

Our metric and other fields are thus finally given by

ds2d =
∏

A

[cosh c̃A(t− tA)]
2
qA+1
∆A

[

e2kg(t)+2c0t+2c′0
{

−dt2 + e−2(k−1)g(t)dΣ2
k,σ

}

+
p
∑

α=1

∏

A

[cosh c̃A(t− tA)]
−2

γ
(α)
A
∆A e2c̃αt+2c′αdy2α

]

,

EA =
ec̃A(t−tA)

NA cosh c̃A(t− tA)
, c̃A =

∑

α∈qA

cα −
1

2
cφϵAaA. (38)

where we have defined

γ(α)
A =

⎧

⎨

⎩

d− 2

0
for

⎧

⎨

⎩

yα belonging to qA−brane

otherwise
. (39)

These solutions contain 2p+2 integration constants cα, c′α(α = 1, · · · , p), cφ, c′φ, and t1 and

tA with β determined by eq. (26). Among these, c′α can be removed by rescaling the coordi-

nates, and t1 by a shift of the time. Without any preference of the choice of other pareme-

ters, we leave these as free parameters. Thus the general solutions can be constructed by

the following rules: (1) All the directions are multiplied by [cosh c̃A(t− tA)]
2
qA+1
∆A , and in

addition, (2) the overall transverse direction (time and k-dimensional space) has the form

e2c0t[−e2kg(t)dt2 + e2g(t)dΣ2
k,σ] up to the rescaling of the coordinates, (3) the coordinates

belonging to the brane are multiplied by [cosh c̃A(t− tA)]
−2 d−2

∆A . When these are specified
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to d = 11 supergravity and the integration constants are chosen appropriately, these give

the superposition rules discussed in ref. [8].

The solution given in ref. [3] is reproduced if we restrict these to a single S-brane and

choose the integration constants as

cγ = α−
a

χ
c1, (γ = 1, · · · , p); cγ = −

p

q − 1

(

α−
a

χ
c1
)

, (γ = p+ 1, · · · , p+ q − k);

cφ =
d− 2

q − 1
aα +

2p

χ
c1; c′γ =

1

χ

(

ln
(d− 2)χα2

(q − 1)b2
− ac2

)

, (γ = 1, · · · , p);

c′0 = c′b = c′γ = −
p

χ(q − 1)

(

ln
(d− 2)χα2

(q − 1)b2
− ac2

)

, (γ = p+ 1, · · · , p+ q − k), (40)

with q → p − 1, p → p + q − k, ϵ = −1 and χ = 2p + (d − 2)a2/(q − 1).2 Equation (26)

reduces to

pc21
χ

+
(d− 2)χα2

2(q − 1)
− k(k − 1)β2 = 0, (41)

and the normalization is determined to be

NA =
(q − 1)b

2(d− 2)α
, (42)

in complete agreement with ref. [3].

The second condition following from eqs. (27) is MAB = 0 for A ̸= B. This leads to

the intersection rules for two branes: If qA-brane and qB-brane intersect over q̄(≤ qA, qB)

dimensions, this gives

q̄ =
(qA + 1)(qB + 1)

d− 2
− 1−

1

2
ϵAaAϵBaB. (43)

Remember that the world-volume of q-branes lies in (q + 1)-dimensional space and not

in time. For eleven-dimensional supergravity, we have electric S2-branes, magnetic S5-

branes and no dilaton aA = 0. The rule (43) tells us that S2-brane can intersect with

S2-brane over a ‘0-brane’ (q̄ = 0) (which actually lives in 1-dimensional space) and with

S5-brane over a ‘string’ (q̄ = 1) (2-dimensional space), and S5-brane can intersect with

S5-brane over ‘3-brane’ (q̄ = 3) (4-dimensional space), again in agreement with refs. [8].

In particular, our results show that there is no other intersecting solution as long as we
2Here c1 and c2 on the rhs are those used in ref. [3] and should not be confused with our cγ , (γ = 1, 2).
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treat the functions EA with different index A as independent. If this condition is relaxed,

there may be other solutions.

For all the spacelike Dq-brane solutions in type II superstrings, we find

ϵa =
3− q

2
, (44)

which tells us that the intersection rule is

q̄ =
qA + qB

2
− 2. (45)

These solutions do not preserve any supersymmetry. In fact, they are supposed to

correspond to branes with Dirichlet boundary conditions in the time direction, and hence

describe configurations which exist only for a fixed time. These also contain singularity

somewhere in time. Closer examination of their properties would be quite interesting.

We note that our derivation is a simple generalization of the general method developed

in ref. [14]. It is quite satisfying to see that this is so useful method. There are also an

important class of time-dependent solutions called null-branes [15, 16], which preserve

supersymmetry. It would be also interesting to apply our method to these solutions.

To summarize, we have given quite a general model-independent derivation of the

superposition rules in arbitrary dimensions. The intersection rules simply follow from the

field equations if we require that the functions EA with different index A be independent.

In all cases, the algebraic eq. (27) (together with (30)) must be satisfied, and this equation

should be most useful to examine possible solutions. We hope to discuss various properties

of these solutions using the hints from dualities implied by underlying string dynamics

elsewhere.
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