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Abstract: The review is devoted to exact solutions with hidden symmetries arising in a
multidimensional gravitational model containing scalar fields and antisymmetric forms. These
solutions are defined on a manifold of the form M = M0 × M1 × . . . × Mn , where all Mi with
i ≥ 1 are fixed Einstein (e.g., Ricci-flat) spaces. We consider a warped product metric on M . Here,
M0 is a base manifold, and all scale factors (of the warped product), scalar fields and potentials for
monomial forms are functions on M0 . The monomial forms (of the electric or magnetic type) appear
in the so-called composite brane ansatz for fields of forms. Under certain restrictions on branes, the
sigma-model approach for the solutions to field equations was derived in earlier publications with
V.N.Melnikov. The sigma model is defined on the manifold M0 of dimension d0 6= 2 . By using the
sigma-model approach, several classes of exact solutions, e.g., solutions with harmonic functions,
S-brane, black brane and fluxbrane solutions, are obtained. For d0 = 1 , the solutions are governed
by moduli functions that obey Toda-like equations. For certain brane intersections related to Lie
algebras of finite rank—non-singular Kac–Moody (KM) algebras—the moduli functions are governed
by Toda equations corresponding to these algebras. For finite-dimensional semi-simple Lie algebras,
the Toda equations are integrable, and for black brane and fluxbrane configurations, they give rise to
polynomial moduli functions. Some examples of solutions, e.g., corresponding to finite dimensional
semi-simple Lie algebras, hyperbolic KM algebras: H2(q, q) , AE3 , HA(1)

2 , E10 and Lorentzian KM
algebra P10 , are presented.

Keywords: brane; Lie algebra

1. Introduction

In this review, we deal with certain aspects of multidimensional models of gravity, which are
rather popular at present time. As is widely known, the history of the multidimensional approach
begins with the well-known papers of Kaluza and Klein on five-dimensional theories, which were
continued then by Jordan in his works. These papers were in some sense a source of inspiration for
Brans and Dicke in their well-known work on a scalar-tensor gravitational theory. After their work,
many investigations were performed in models with fundamental scalar fields, both conformal and
non-conformal; see [1] and the references therein.

A revival of the ideas of many dimensions started in the 1970s and continues now, mainly due to
the development of unified theories. In the 1970s, interest in multidimensional gravitational models
was stimulated mainly by: (i) the ideas of gauge theories leading to a non-Abelian generalization
of the Kaluza–Klein approach and (ii) by supergravitational theories [2,3].

In the 1980s, the supergravitational theories “gave the baton” to the superstring theory [4] and in
the 1990s to the so-called M-theory [5,6].
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Usually, having a multidimensional model, one can obtain a four-dimensional one by a
dimensional reduction based on the decomposition of the manifold:

M = M4 ×Mint, (1)

where M4 is a four-dimensional manifold and Mint is some internal manifold (widely considered to
be compact).

Here, we overview a sigma-model approach and several classes of exact solutions for the
multidimensional gravitational model governed by the Lagrangian:

L = R[g]− 2Λ− hαβgMN∂M ϕα∂N ϕβ −∑
a

1
na!

exp(2λaα ϕα)(Fa)2, (2)

where g is metric, Fa = dAa are forms (of ranks na ), ϕα are scalar fields, λa = (λaα) are certain
vectors and Λ is a cosmological constant (the matrix (hαβ) is invertible). The Lagrangians of such
a type may describe (pure bosonic) solutions in supergravitational models [7], when the so-called
Chern–Simons terms are zero.

We deal with the solutions having a block-diagonal (warped-product) metrics g defined on the
D-dimensional product manifold M , i.e.,

g = e2γg0 +
n

∑
i=1

e2φi
gi, M = M0 ×M1 × . . .×Mn, (3)

where g0 is a metric on M0 and gi are fixed Einstein (or Ricci-flat) metrics on Mi , i > 0 . The moduli
γ, φi and scalar fields ϕα are functions on M0 , and fields of forms are also governed by several scalar
functions on M0 . Any Fa is supposed to be a sum of (linear independent) monoms, corresponding to
electric or magnetic p-branes (p-dimensional analogues of membranes), i.e., the so-called composite
p-brane ansatz is considered.

Here, we are interested in brane solutions, which have intersection rules related to a certain
subclass of Lie algebras, namely non-singular Kac–Moody (KM) algebras. Kac–Moody (KM) Lie
algebras [8–10] play a rather important role in different areas of mathematical physics (see [10–13] and
the references therein).

We recall that KM Lie algebra is a Lie algebra generated by the relations [10]:

[hi, hj] = 0, [ei, f j] = δijhj, (4)

[hi, ej] = Aijej, [hi, f j] = −Aij f j, (5)

(adei)
1−Aij(ej) = 0 (i 6= j), (6)

(ad fi)
1−Aij( f j) = 0 (i 6= j). (7)

Here, A = (Aij) is a generalized Cartan matrix, i, j = 1, . . . , r , and r is the rank of the
KM algebra. This means that all Aii = 2 ; Aij for i 6= j are non-positive integers, and Aij = 0
implies Aji = 0 .

In what follows, the matrix A is restricted to be non-degenerate (i.e., det A 6= 0 ) and
symmetrizable i.e., A = BD , where B is a symmetric matrix and D is an invertible diagonal
matrix (D may be chosen in such way that all of its entries Dii are positive rational numbers [10]).
Here, we do not consider singular KM algebras with det A = 0 , e.g., affine ones. Recall that affine KM
algebras are of much interest for conformal field theories, superstring theories, etc. [4,11].

In the case when A is positive definite (the Euclidean case), we get ordinary finite dimensional
Lie algebras [10,11]. For non-Euclidean signatures of A , all KM algebras are infinite-dimensional.
Among these, the Lorentzian KM algebras with pseudo-Euclidean signatures (−,+, . . . ,+) for the
Cartan matrix A are of current interest, since they contain a subclass of the so-called hyperbolic KM
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algebras widely used in modern mathematical physics. Hyperbolic KM algebras are by definition
Lorentzian Kac–Moody algebras with the property that removing any node from their Dynkin diagram
leaves one with a Dynkin diagram of the affine or finite type. The hyperbolic KM algebras can be
completely classified [14–16] and have rank 2 ≤ r ≤ 10 . For r ≥ 3 , there is a finite number of
hyperbolic algebras. For rank 10, there are four algebras, known as E10 , BE10 , CE10 and DE10 .
Hyperbolic KM algebras appeared in ordinary gravity [17] (F3 = AE3 = H3 ), supergravity: [18,19]
( E10 ), [20] (F3 ), strings [21], etc.

The growth of interest in hyperbolic algebras in theoretical and mathematical physics
appeared in 2001 after the publication of Damour and Henneaux [22] devoted to a description of
chaotic (BKL-type [23]) behavior near the singularity in string-inspired low energy models (e.g.,
supergravitational ones) [24] (see also [25]). It should be noted that these results were based on
a billiard approach in multidimensional cosmology with different matter sources (for D = 4 suggested
by Chitre [26]) elaborated in our papers [27–31] (see also [32–34]).

The description of oscillating behavior near the singularity in D = 11 supergravity [2] (which
is related to M-theory [5,6]) in terms of motion of a point-like particle in a nine-dimensional billiard
(of finite volume) corresponding to the Weyl chamber of the hyperbolic KM algebra E10 inspired
another description of D = 11 supergravity in [35]: a formal “small tension” expansion of D = 11
supergravity near a space-like singularity was shown to be equivalent (at least up to 30th order in
height) to a null geodesic motion in the infinite dimensional coset space E10/K(E10) (here, K(E10) is
the maximal compact subgroup of the hyperbolic Kac–Moody group E10(R) ).

Recall that E10 KM algebra is an over-extension of the finite dimensional Lie algebra E8 , i.e.,
E10 = E++

8 . However, there is another extension of E8 —the so-called very extended Kac–Moody
algebra of the E8 algebra—called E11 = E+++

8 (to get an understanding of very extended algebras
and some of their properties, see [36] and the references therein). It has been proposed by P.West
that the Lorentzian (non-hyperbolic) KM algebra E11 is responsible for a hidden algebraic structure
characterizing 11-dimensional supergravity [37]. The same very extended algebra occurs in I IA [37]
and I IB supergravities [38]. Moreover, it was conjectured that an analogous hidden structure is
realized in the effective action of the bosonic string (with the KM algebra k27 = D+++

24 ) [37] and also
for pure D dimensional gravity (with the KM algebra A+++

D−3 [39]). It has been suggested in [40]
that all of the so-called maximally-oxidized theories (see also [13]) possess the very extension G+++

of the simple Lie algebra G . It was shown in [41] that the BPSsolutions of the oxidized theory of a
simply laced group G form representations of a subgroup of the Weyl transformations of the algebra
G+++ . For other aspects of very-extended Kac–Moody algebras (e.g., E11 ), see also [42–45] and the
references therein.

In this paper, we briefly review another possibility for utilizing non-singular (e.g., hyperbolic)
KM algebras suggested in three of our papers [46–48]. This possibility (implicitly assumed also
in [49–54]) is related to certain classes of exact solutions describing intersecting composite branes in a
multidimensional gravitational model containing scalar fields and antisymmetric forms defined on
(warped) product manifolds M = M0×M1× . . .×Mn , where Mi are Ricci-flat spaces ( i ≥ 1 ). From
a pure mathematical point of view, these solutions may be obtained from sigma-models or Toda chains
corresponding to certain non-singular KM algebras. The information about the (hidden) KM algebra is
encoded in intersection rules, which relate the dimensions of brane intersections with non-diagonal
components of the generalized Cartan matrix A [55]. We deal here with generalized Cartan matrices
of the form:

Ass′ ≡
2(Us, Us′)

(Us′ , Us′)
, (8)

s, s′ ∈ S , with (Us, Us) 6= 0 , for all s ∈ S ( S is a finite set). Here, Us are the so-called brane
(co-)vectors. They are linear functions on RN , where N = n + l , and l is the number of scalar fields.
The indefinite scalar product (., .) [56] is defined on (RN)∗ and has the signature (−1,+1, . . . ,+1)
when all scalar fields have positive kinetic terms, i.e., there are no phantoms (or ghosts). The matrix
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A is symmetrizable. Us-vectors may be put in one-to-one correspondence with simple roots αs of
the generalized KM algebra after a suitable normalizing. For indecomposable A (when the KM
algebra is simple), the matrices ((Us, Us′)) and ((αs|αs′)) are proportional to each other. Here, (.|.)
is a non-degenerate bilinear symmetric form on a root space obeying (αs|αs) > 0 for all simple
roots αs [10].

We note that the minisuperspace bilinear form (., .) coming from the multidimensional
gravitational model [56] should not coincide with the bilinear form (.|.) from [10], and hence, there
exist physical examples where all (Us, Us) are negative. Some examples of this are given below (see
Section 5). For D = 11 supergravity and ten-dimensional I IA , I IB supergravities, all (Us, Us) = 2
[44,55] and corresponding KM algebras are simply laced. It was shown in our papers [29–31] that
the inequality (Us, Us) > 0 is a necessary condition for the formation of the billiard wall (ifone
approaches the singularity) by the s-th matter source (e.g., a fluid component or a brane).

The scalar products for brane vectors Us were found in [56] (for the electric case, see also [57–59]):

(Us, Us′) = dss′ +
dsds′

2− D
+ χsχs′ < λs, λs′ >, (9)

where ds and ds′ are dimensions of the brane world volumes corresponding to branes s and
s′ , respectively, dss′ is the dimension of intersection of the brane world volumes, D is the total
space-time dimension, χs = +1,−1 for electric or magnetic brane, respectively, and < λs, λs′ >

is the non-degenerate scalar product of the l-dimensional dilatonic coupling vectors λs and λs′

corresponding to branes s and s′ .
Relations (8) and (9) define the brane intersection rules [55]:

dss′ = do
ss′ +

1
2

Ks′Ass′ , (10)

s 6= s′ , where Ks = (Us, Us) and:

do
ss′ =

dsds′

D− 2
− χsχs′ < λs, λs′ > (11)

are the dimensions of the so-called orthogonal (or A1 ⊕ . . .⊕ A1 -) intersections of branes following
from the orthogonality conditions [56]:

(Us, Us′) = 0, (12)

s 6= s′ . The orthogonality relations (12) for brane intersections in the non-composite electric case were
suggested in [57,58] and for the composite electric case in [59].

Relations (9) and (11) were derived in [56] for rather general assumptions: the branes were
composite; the number of scalar fields l was arbitrary; as well as the signature of the bilinear form
< ., . > (or equivalently, the signature of the kinetic term for scalar fields), Ricci-flat factor spaces Mi
had arbitrary dimensions di and signatures. The intersection rules (11) appeared earlier (in different
notations) in [60–62] when all di = 1 ( i > 0 ), and < ., . > was positive definite (in [60,61], l = 1 ,
and total space-time had a pseudo-Euclidean signature). The intersection rules (11) were also used
in [55,63–65] in the context of intersecting black brane solutions.

It was proven in [66] that the target space of the sigma model describing composite
electro-magnetic brane configurations on the product of several Ricci-flat spaces is a homogeneous
(coset) space G/H . It is locally symmetric (i.e., the Riemann tensor is covariantly constant:
∇Riem = 0 ) if and only if:

(Us −Us′)(Us, Us′) = 0 (13)

for all s and s′ , i.e., when any two brane vectors Us and Us′ , s 6= s′ , are either coinciding Us = Us′

or orthogonal (Us, Us′) = 0 (for two electric branes and l = 1 , see also [67]).
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Now, relations for brane vectors Us (8) and (9) (with Us being identified with roots αs )
are widely used in the G+++ -approach [13,41]. The orthogonality condition (12) describing the
intersection of branes [56–59] was rediscovered in [44] (for some particular intersecting configurations
of M-theory, it was done in [68]). It was found in the context of G+++ -algebras that the intersection
rules for extremal branes are encoded in orthogonality conditions between the various roots from
which the branes arise, i.e., (αs|αs′) = 0 , s 6= s′ , where αs should be real positive roots (“real” means
that (αs|αs) > 0 ). In [44], another condition on brane, root vectors was found: αs + αs′ should not be
a root, s 6= s′ . The last condition is trivial for M-theory and for I IA and I IB supergravities, but for
low energy effective actions of heterotic strings, it forbids certain intersections that do not take place
due to non-zero contributions of Chern-Simons terms.

It should be noted that the orthogonality relations for brane intersections (12) appeared in
1996–1997. The standard intersection rules (11) gave back the well-known zero binding energy
configurations preserving some supersymmetries. These brane configurations were originally derived
from supersymmetry and duality arguments (see for example [69–71] and the reference therein) or by
using a no-force condition (suggested for M-branes in [72]).

2. The Model

2.1. The Action

We consider the model governed by action:

S =
1

2κ2

∫

M
dDz

√
|g|{R[g]− 2Λ− hαβgMN∂M ϕα∂N ϕβ (14)

− ∑
a∈∆

θa

na!
exp[2λa(ϕ)](Fa)2

g}+ SGH ,

where g = gMNdzM ⊗ dzN is the metric on the manifold M , dim M = D , ϕ = (ϕα) ∈ Rl is a vector
of dilatonic scalar fields, (hαβ) is a non-degenerate symmetric l × l matrix ( l ∈ N ), θa 6= 0 ,

Fa = dAa =
1

na!
Fa

M1 ...Mna
dzM1 ∧ . . . ∧ dzMna

is an na -form ( na ≥ 2 ) on a D -dimensional manifold M , Λ is a cosmological constant and λa

is a one-form on Rl : λa(ϕ) = λaα ϕα , a ∈ ∆ , α = 1, . . . , l . In (14), we denote |g| = |det(gMN)| ,
(Fa)2

g = Fa
M1 ...Mna

Fa
N1 ...Nna

gM1 N1 . . . gMna Nna , a ∈ ∆ , where ∆ is some finite set (for example, of positive
integers), and SGH is the standard Gibbons–Hawking boundary term [73]. In models with one
time, all θa = 1 when the signature of the metric is (−1,+1, . . . ,+1) . κ2 is the multidimensional
gravitational constant.

2.2. Ansatz for Composite Branes

Let us consider the manifold:

M = M0 ×M1 × . . .×Mn, (15)

with the metric:

g = e2γ(x) ĝ0 +
n

∑
i=1

e2φi(x) ĝi, (16)

where g0 = g0
µν(x)dxµ ⊗ dxν is an arbitrary metric with any signature on the manifold M0 and

gi = gi
mini

(yi)dymi
i ⊗ dyni

i is a metric on Mi satisfying the equation:

Rmini [g
i] = ξigi

mini
, (17)
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mi, ni = 1, . . . , di ; ξi = const , i = 1, . . . , n . Here, ĝi = p∗i gi is the pullback of the metric gi

to the manifold M by the canonical projection: pi : M → Mi , i = 0, . . . , n . Thus, (Mi, gi) are
Einstein spaces, i = 1, . . . , n . The functions γ, φi : M0 → R are smooth. We denote dν = dimMν ;
ν = 0, . . . , n ; D = ∑n

ν=0 dν . We put any manifold Mν , ν = 0, . . . , n , to be oriented and connected.
Then, the volume di -form:

τi ≡
√
|gi(yi)| dy1

i ∧ . . . ∧ dydi
i , (18)

and signature parameter:
ε(i) ≡ sign(det(gi

mini
)) = ±1 (19)

are correctly defined for all i = 1, . . . , n .
Let Ω = Ω(n) be a set of all non-empty subsets of {1, . . . , n} . The number of elements in Ω is

|Ω| = 2n − 1 . For any I = {i1, . . . , ik} ∈ Ω , i1 < . . . < ik , we denote:

τ(I) ≡ τ̂i1 ∧ . . . ∧ τ̂ik , (20)

ε(I) ≡ ε(i1) . . . ε(ik), (21)

MI ≡ Mi1 × . . .×Mik , (22)

d(I) ≡∑
i∈I

di. (23)

Here, τ̂i = p∗i τ̂i is the pullback of the form τi to the manifold M by the canonical projection:
pi : M→ Mi , i = 1, . . . , n . We also put τ(∅) = ε(∅) = 1 and d(∅) = 0 .

For fields of forms, we consider the following composite electromagnetic ansatz:

Fa = ∑
I∈Ωa,e

F (a,e,I) + ∑
J∈Ωa,m

F (a,m,J) (24)

where:

F (a,e,I) = dΦ(a,e,I) ∧ τ(I), (25)

F (a,m,J) = e−2λa(ϕ) ∗ (dΦ(a,m,J) ∧ τ(J)) (26)

are elementary forms of electric and magnetic types, respectively, a ∈ ∆ , I ∈ Ωa,e , J ∈ Ωa,m and
Ωa,v ⊂ Ω , v = e, m . In (26), ∗ = ∗[g] is the Hodge operator on (M, g) :

(∗ω)M1...MD−k =
|g|1/2

k!
εM1...MD−k N1...Nk ωN1...Nk ,

where rank ω = k .
For scalar functions, we put:

ϕα = ϕα(x), Φs = Φs(x), (27)

s ∈ S . Thus, ϕα and Φs are functions on M0 .
Here and below:

S = Se t Sm, Sv = ta∈∆{a} × {v} ×Ωa,v, (28)

v = e, m . Here and in what follows, t means the union of non-intersecting sets. The set S consists
of elements s = (as, vs, Is) , where as ∈ ∆ is the color index, vs = e, m is the electro-magnetic index
and set Is ∈ Ωas ,vs describes the location of brane.

Due to (25) and (26):

d(I) = na − 1, d(J) = D− na − 1, (29)
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for I ∈ Ωa,e and J ∈ Ωa,m (i.e., in the electric and magnetic case, respectively).

2.3. The Sigma Model

Let d0 6= 2 and:

γ = γ0(φ) ≡
1

2− d0

n

∑
j=1

djφ
j, (30)

i.e., the generalized harmonic gauge (frame) is used.
Here, we put two restrictions on sets of branes that guarantee the block-diagonal form

of the energy-momentum tensor and the existence of the sigma-model representation (without
additional constraints):

(R1) d(I ∩ J) ≤ d(I)− 2, (31)

for any I, J ∈ Ωa,v , a ∈ ∆ , v = e, m (here d(I) = d(J) ) and

(R2) d(I ∩ J) 6= 0 f or d0 = 1, d(I ∩ J) 6= 1 f or d0 = 3. (32)

It was proven in [56] that equations of motion for the model (14) and the Bianchi identities:

dF s = 0, (33)

s ∈ Sm , for fields from (16), (24)–(27), when Restrictions (31) and (32) are imposed, are equivalent to
the equations of motion for the σ -model governed by the action:

Sσ0 =
1

2κ2
0

∫
dd0 x

√
|g0|

{
R[g0]− ĜABg0µν∂µσA∂νσB (34)

−∑
s∈S

εs exp (−2Us
AσA)g0µν∂µΦs∂νΦs − 2V

}
,

where (σA) = (φi, ϕα) , k0 6= 0 , the index set S is defined in (28),

V = V(φ) = Λe2γ0(φ) − 1
2

n

∑
i=1

ξidie−2φi+2γ0(φ) (35)

is the potential,

(ĜAB) =

(
Gij 0
0 hαβ

)
(36)

is the target space metric with:

Gij = diδij +
didj

d0 − 2
(37)

and co-vectors:

Us
A = Us

AσA = ∑
i∈Is

diφ
i − χsλas(ϕ), (Us

A) = (diδiIs ,−χsλasα), (38)

s = (as, vs, Is) . Here, χe = +1 and χm = −1 ;

δiI = ∑
j∈I

δij (39)
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is an indicator of i belonging to I : δiI = 1 for i ∈ I and δiI = 0 otherwise; and:

εs = (−ε[g])(1−χs)/2ε(Is)θas , (40)

s ∈ S , ε[g] ≡ sign det(gMN) . More explicitly, (40) reads:

εs = ε(Is)θas for vs = e; εs = −ε[g]ε(Is)θas , for vs = m. (41)

For finite internal space volumes Vi (e.g., compact Mi ) and electric p-branes (i.e., all Ωa,m = ∅ ),
the action (34) coincides with the action (14) when κ2 = κ2

0 ∏n
i=1 Vi .

3. Solutions Governed by Harmonic Functions

3.1. Solutions with a Block-Orthogonal Set of Us and Ricci-Flat Factor-Spaces

Here, we consider a special class of solutions to equations of motion governed by several harmonic
functions when all factor spaces are Ricci-flat and the cosmological constant is zero, i.e., ξi = Λ = 0 ,
i = 1, . . . , n . In certain situations, these solutions describe extremal black branes charged by fields
of forms.

The solutions crucially depend on scalar products of Us-vectors (Us, Us′) ; s, s′ ∈ S , where:

(U, U′) = ĜABUAU′B, (42)

for U = (UA), U′ = (U′A) ∈ RN , N = n + l and:

(ĜAB) =

(
Gij 0
0 hαβ

)
(43)

is the inverse matrix to the matrix (36). Here, as in [74], we have:

Gij =
δij

di
+

1
2− D

, (44)

i, j = 1, . . . , n .
The scalar products (42) for vectors Us were calculated in [56] and are given by:

(Us, Us′) = d(Is ∩ Is′) +
d(Is)d(Is′)

2− D
+ χsχs′λasαλas′ βhαβ, (45)

where (hαβ) = (hαβ)
−1 , and s = (as, vs, Is) , s′ = (as′ , vs′ , Is′) belong to the index set S defined

in (28). This relation is a very important one since it encodes brane data (e.g., intersections) via the
scalar products of U-vectors.

Let:
S = S1 t · · · t Sk, (46)

Si 6= ∅ , i = 1, . . . , k , and:
(Us, Us′) = 0 (47)

for all s ∈ Si , s′ ∈ Sj , i 6= j ; i, j = 1, . . . , k . Relation (46) means that the set S is a union of k
non-intersecting (non-empty) subsets S1, . . . , Sk . According to (47), the set of vectors (Us, s ∈ S)
has a block-orthogonal structure with respect to the scalar product (42), i.e., it splits into k mutually
orthogonal blocks (Us, s ∈ Si) , i = 1, . . . , k .

Here, we consider exact solutions in the model (14), when vectors (Us, s ∈ S) obey the
block-orthogonal decomposition (46) and (47) with scalar products defined in (45) [46]. These solutions
were obtained from the corresponding solutions to the σ -model equations of motion [46].
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Proposition 1. Let (M0, g0) be Ricci-flat: Rµν[g0] = 0 . Then, the field configuration:

g0, σA = ∑
s∈S

εsUsAν2
s ln Hs, Φs =

νs

Hs
, (48)

s ∈ S , satisfies the field equations corresponding to the action (34) with V = 0 if the real numbers νs obey the
relations:

∑
s′∈S

(Us, Us′)εs′ν
2
s′ = −1 (49)

s ∈ S , the functions Hs > 0 are harmonic, i.e., ∆[g0]Hs = 0 , s ∈ S , and Hs are coinciding inside blocks:
Hs = Hs′ for s, s′ ∈ Si , i = 1, . . . , k .

Using the sigma-model solution from Proposition 1 and the relations for contra-variant
components [56]:

Usi = δiIs −
d(Is)

D− 2
, Usα = −χsλα

as , (50)

s = (as, vs, Is) , we get [46]:

g =

(
∏
s∈S

H2d(Is)εsν2
s

s

)1/(2−D){
ĝ0 +

n

∑
i=1

(
∏
s∈S

H2εsν2
s δiIs

s

)
ĝi

}
, (51)

ϕα = −∑
s∈S

λα
as χsεsν2

s ln Hs, (52)

Fa = ∑
s∈S
F sδa

as , (53)

where i = 1, . . . , n , α = 1, . . . , l , a ∈ ∆ and:

F s = νsdH−1
s ∧ τ(Is), for vs = e, (54)

F s = νs(∗0dHs) ∧ τ( Īs), for vs = m, (55)

Hs are harmonic functions on (M0, g0) , which coincide inside blocks (i.e., Hs = Hs′ for s, s′ ∈
Si , i = 1, . . . , k ), and the relations (49) on the parameters νs are imposed. Here, the matrix ((Us, Us′))

and parameters εs , s ∈ S , are defined in (45) and (40), respectively; λα
a = hαβλaβ , ∗0 = ∗[g0] is the

Hodge operator on (M0, g0) , and:

Ī = {1, . . . , n} \ I (56)

is the dual set (in (55), we redefined the sign of the νs -parameter).

3.2. Solutions Related to Non-Singular KM Algebras

Now, we study the solutions (51)–(55) in more detail and show that some of them may be related
to non-singular KM algebras. We put:

Ks ≡ (Us, Us) 6= 0 (57)

for all s ∈ S and introduce the matrix A = (Ass′) :

Ass′ ≡
2(Us, Us′)

(Us′ , Us′)
, (58)
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s, s′ ∈ S . Here, some ordering in S is assumed.
Using this definition and (45), we obtain the intersection rules [55]:

d(Is ∩ Is′) = ∆(s, s′) +
1
2

Ks′Ass′ , (59)

where s 6= s′ , and:

∆(s, s′) =
d(Is)d(Is′)

D− 2
− χsχs′λasαλas′ βhαβ (60)

defines the so-called “orthogonal” intersection rules [56] (see also [60–62] for di = 1 ).
In D = 11 and D = 10 ( I IA and I IB ) supergravity models, all Ks = 2 , and hence, the

intersection rules (59) in this case have a simpler form [55]:

d(Is ∩ Is′) = ∆(s, s′) + Ass′ , (61)

where s 6= s′ , implying Ass′ = As′s . The corresponding KM algebra is simply-laced in this case.
For det A 6= 0 , Relation (49) may be rewritten in the equivalent form:

−εsν2
s (U

s, Us) = 2 ∑
s′∈S

Ass′ ≡ bs, (62)

where s ∈ S , and (Ass′) = A−1 . Thus, Equation (49) may be resolved in terms of νs for certain
εs = ±1 , s ∈ S . We note that due to (47) , the matrix A has a block-diagonal structure, and hence,
for any i-th block, the set of parameters (νs, s ∈ Si) depends on the matrix inverse to the matrix
(Ass′ ; s, s′ ∈ Si) .

Now, we consider the one-block case when the brane intersections are related to some non-singular
KM algebras.

3.2.1. Finite-Dimensional Lie Algebras [47]

Let A be a Cartan matrix of a simple finite-dimensional Lie algebra. In this case,
Ass′ ∈ {0,−1,−2,−3} , s 6= s′ . The elements of inverse matrix A−1 are positive (see Ch. 7 in [11]),

and hence, we get from (62) the same signature relation as in the orthogonal case [56]:

εs(Us, Us) < 0, (63)

s ∈ S .
When all (Us, Us) > 0 , we get εs < 0 , s ∈ S .
Moreover, all bs are natural numbers:

bs = ns ∈ N, (64)

s ∈ S .
The integers ns coincide with the components of the twice dual Weyl vector in the basis of simple

co-roots (see Ch. 3.1.7 in [11]).

3.2.2. Hyperbolic KM algebras

Let A be a generalized Cartan matrix corresponding to a simple hyperbolic KM algebra.
For the hyperbolic algebras, the following relations are satisfied:

εs(Us, Us) > 0, (65)
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since all bs are negative in the hyperbolic case [36]:

bs < 0, (66)

where s ∈ S .
For (Us, Us) > 0 , we get εs > 0 , s ∈ S . If θas > 0 for all s ∈ S , then:

ε(Is) = 1 for vs = e; ε(Is) = −ε[g] for vs = m. (67)

For a pseudo-Euclidean metric g , all ε(Is) = 1 , and hence, all branes are Euclidean or should
contain an even number of time directions: 2, 4, . . . . For ε[g] = 1 , only magnetic branes may be
pseudo-Euclidean.

Remark 1. The inequalities (66) guarantee the existence of a principal (real) so(1, 2) subalgebra for any
hyperbolic Kac–Moody algebra [36,75]. Similarly, the inequalities (64) imply the existence of a principal so(3)
subalgebra for any finite dimensional (semi-)simple Lie algebra. It was shown in [36] that this property is not
just restricted to hyperbolic algebras, but holds for a wider class of Lorentzian algebras obeying the inequalities
bs ≤ 0 for all s .

Example 1. F3 = AE3 algebra [48].

Now, we consider an example of the solution corresponding to the hyperbolic KM algebra F3

with the Cartan matrix:

A =




2 −2 0
−2 2 −1
0 −1 2


 , (68)

F3 contains A(1)
1 affine subalgebra (it corresponds to the Geroch group) and A2 subalgebra.

There exists an example of the solution with the A-matrix (68) for 11-dimensional model governed by
the action:

S =
∫

d11z
√
|g|
{

R[g]− 1
4!
(F4)2 − 1

4!
(F4∗)2

}
, (69)

where rankF4 = rankF4∗ = 4 . Here, ∆ = {4, 4∗} . We consider a configuration with two magnetic
five-branes corresponding to the form F4 and one electric two-brane corresponding to the form
F4∗ . We denote S = {s1, s2, s3} , as1 = as3 = 4 , as2 = 4∗ and vs1 = vs3 = m , vs2 = e , where
d(Is1) = d(Is3) = 6 and d(Is2) = 3 .

The intersection rules (59) read:

d(Is1 ∩ Is2) = 0, d(Is2 ∩ Is3) = 1, d(Is1 ∩ Is3) = 4. (70)

For the manifold (15), we put n = 5 and d1 = 2 , d2 = 4 , d3 = d4 = 1 , d5 = 2 .
The corresponding brane sets are the following: Is1 = {1, 2} , Is2 = {4, 5} , Is3 = {2, 3, 4} .

The solution reads:

g = H−12
{
−dt⊗ dt + H9 ĝ1 + H13 ĝ2 + H4 ĝ3 + H14 ĝ4 + H10 ĝ5

}
, (71)

F4 =
dH
dt
{νs1 τ̂3 ∧ τ4 ∧ τ̂5 + νs3 τ̂1 ∧ τ̂5} , (72)

F4∗ =
dH
dt

νs2

H2 dt ∧ τ̂4 ∧ τ̂5, (73)
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where ν2
s1
= 9

2 , ν2
s2
= 5 and ν2

s3
= 2 (see (62)).

All metrics gi are Ricci-flat ( i = 1, . . . , 5 ) and have Euclidean signatures (this agrees with
Relations (65) and (40)), and H = ht + h0 > 0 , where h, h0 are constants. The metric (71) may be also
rewritten using the synchronous time variable ts :

g = −dts ⊗ dts + f 3/5 ĝ1 + f−1/5 ĝ2 + f 8/5 ĝ3 + f−2/5 ĝ4 + f 2/5 ĝ5, (74)

where f = 5hts = H−5 > 0 , h > 0 and ts > 0 . The metric describes the power-law “inflation” in
D = 11 . It is singular for ts → +0 .

In the next example, we consider a chain of the so-called BD -models ( D ≥ 11 ) suggested in [55].
For D = 11 , the BD -model coincides with the truncated (i.e., without the Chern–Simons term)
bosonic sector of D = 11 supergravity [2], which is related to M-theory. For D = 12 , it coincides with
the truncated 12-dimensional model from [76], which may be related to F-theory [77].

BD -models: The BD -model has the action [55]:

SD =
∫

dDz
√
|g|
{

R[g] + gMN∂M~ϕ∂N~ϕ−
D−7

∑
a=4

1
a!

exp[2~λa~ϕ](Fa)2
}

, (75)

where ~ϕ = (ϕ1, . . . , ϕl) ∈ Rl , ~λa = (λa1, . . . , λal) ∈ Rl , l = D− 11 , rankFa = a , a = 4, . . . , D− 7 .
Here, vectors ~λa satisfy the relations:

~λa~λb = N(a, b)− (a− 1)(b− 1)
D− 2

= Λab, (76)

N(a, b) = min(a, b)− 3, (77)

a, b = 4, . . . , D− 7 and ~λD−7 = −2~λ4 . For D > 11 , vectors ~λ4, . . . ,~λD−8 are linearly independent
(it may be verified that matrix (Λab) is positive definite, and hence, the set of vectors obeying (76)
does exist).

The model (75) contains l scalar fields with a negative kinetic term (i.e., hαβ = −δαβ in (14))
coupled to several forms (the number of forms is ( l + 1)).

For the brane world volumes, we have the following dimensions (see (29)):

d(I) = 3, . . . , D− 8, I ∈ Ωa,e, (78)

d(I) = D− 5, . . . , 6, I ∈ Ωa,m. (79)

Thus, there are (l + 1) electric and (l + 1) magnetic p-branes, p = d(I)− 1 . In the BD -model,
all Ks = 2 .

Example 2. H2(q1, q2) algebra [46].

Let

A =

(
2 −q1

−q2 2

)
, q1q2 > 4, (80)

q1, q2 ∈ N . This is the Cartan matrix for the hyperbolic KM algebra H2(q1, q2) [10]. From (62), we get:

εsν2
s (U

s, Us)(q1q2 − 4) = 2qs + 4, (81)
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s ∈ {1, 2} = S . An example of the H2(q, q) -solution for the BD -model with two electric
p-branes ( p = d1, d2 ), corresponding to Fa and Fb fields and intersecting on time manifold, is
the following [46]:

g = H−2/(q−2) ĝ0 − H2/(q−2)dt⊗ dt + ĝ1 + ĝ2, (82)

Fa = ν1dH−1 ∧ dt ∧ τ̂1, (83)

Fb = ν2dH−1 ∧ dt ∧ τ̂2, (84)

~ϕ = −(~λa +~λb)(q− 2)−1 ln H (85)

where d0 = 3 , d1 = a− 2 , a = q + 4 , a < b , d2 = b− 2 , D = a + b , and ν2
1 = ν2

2 = (q− 2)−1 .
The signature restrictions are: ε1 = ε2 = − 1. Thus, the space-time (M, g) should contain at least three
time directions. The minimal D is 15. For D = 15 , we get a = 7 , b = 8 , d1 = 5 , d2 = 6 and q = 3.

Remark 2 (Affine Lie algebras). We note that affine KM algebras (with det A = 0 ) do not appear in the
solutions (51)–(55). Indeed, any affine Cartan matrix satisfies the relations:

∑
s′∈S

as′As′s = 0 (86)

with as > 0 called Coxeter labels [11], s ∈ S . This relation makes impossible the existence of the solution to
Equation (49), since the latter is incompatible with Equations (48) and (58).

3.2.3. Generalized Majumdar–Papapetrou Solutions

Now, we return to a “multi-block” solution (51)–(55). Let M0 = Rd0 , d0 > 2 , g0 = δµνdxµ⊗ dxν ,
d1 = 1 and g1 = −dt⊗ dt . For:

Hs = 1+ ∑
b∈Xs

qsb

|x− b|d0−2 , (87)

where Xs is the finite non-empty subset Xs ⊂ M0 , s ∈ S , all qsb > 0 , and Xs = Xs′ , qsb = qs′b for
b ∈ Xs = Xs′ , s, s′ ∈ Sj , j = 1, . . . , k . The harmonic functions (87) are defined in domain M0 \X ,
X =

⋃
s∈S Xs , and generate the solutions (51)–(55).

Denote S(b) ≡ {s ∈ S| b ∈ Xs} , b ∈ X (in the one-block case, when k = 1 , all Xs = X and
S(b) = S ). We have a horizon at point b w.r.t. time t , when x→ b ∈ X , if and only if:

ξ1(b) ≡ ∑
s∈S(b)

(−εs)ν
2
s δ1Is −

1
d0− 2

≥ 0. (88)

This relation follows just from the requirement of the infinite propagation time of light to b ∈ X .
Majumdar–Papapetrou solution: Recall that the well-known four-dimensional

Majumdar–Papapetrou (MP) solution [78,79] corresponding to the Lie algebra A1 in our notation reads:

g = H2ĝ0 − H−2dt⊗ dt, (89)

F = νdH−1 ∧ dt, (90)

where ν2 = 2 , g0 = ∑3
i=1 dxi ⊗ dxi and H is a harmonic function. We have one electric zero-brane

(point) “attached” to the time manifold; d(Is) = 1 , εs = −1 and (Us, Us) = 1/2 . In this case (e.g.,
for the extremal Reissner–Nordström black hole), we get ξ1(b) = 1 , b ∈ X . Points b are the points
of (regular) horizon.

For certain examples of finite-dimensional semisimple Lie algebras (e.g., for A1 ⊕ . . . ⊕ A1 ,
A2 , etc.), the poles b in Hs correspond to (regular) horizons, and the solution under consideration
describes a collection of k blocks of extremal charged black branes (in equilibrium) [46].
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Hyperbolic KM algebras: Let us consider a generalized one-block ( k = 1 ) MP solution
corresponding to a hyperbolic KM algebra, such that (Us, Us) > 0 for all s ∈ S . In this case,
all εs > 0 , s ∈ S , and hence, ξ1(b) < 0 . Thus, any point b ∈ X is not a point of the horizon (it may
be checked using the analysis carried out in [46] that any non-exceptional point b is a singular one).
As a consequence, the generalized MP solution corresponding to any hyperbolic KM algebra does not
describe a collection of extremal charged black branes (in equilibrium) when all (Us, Us) > 0 .

Remark 3. Here, we do not consider the solutions in supergravity models (e.g., in D = 11 supergravity) with
partially preserving supersymmetries. For supersymmetric solutions, see [71,80–88] and the references therein.

3.3. Toda-Like Solutions

3.3.1. Toda-Like Lagrangian

Action (34) may be also written in the form:

Sσ0 =
1

2κ2
0

∫
dd0 x

√
|g0|{R[g0]−GÂB̂(X)g0µν∂µXÂ∂νXB̂ − 2V} (91)

where X = (XÂ) = (φi, ϕα, Φs) ∈ RN , and the mini-supermetric
G = GÂB̂(X)dXÂ ⊗ dXB̂ on the minisuperspace M = RN , N = n + l + |S| ( |S| is the number

of elements in S ) is defined by the relation:

(GÂB̂(X)) =




Gij 0 0

0 hαβ 0

0 0 εs exp(−2Us(σ))δss′


 . (92)

Here, we consider exact solutions to field equations corresponding to the action (91):

Rµν[g0] = GÂB̂(X)∂µXÂ∂νXB̂ +
2V

d0 − 2
g0

µν, (93)

1√
|g0|

∂µ[
√
|g0|GĈB̂(X)g0µν∂νXB̂]− 1

2
GÂB̂,Ĉ(X)g0,µν∂µXÂ∂νXB̂ = V,Ĉ, (94)

where s ∈ S . Here, V,Ĉ = ∂V/∂XĈ .
We put:

XÂ(x) = FÂ(H(x)), (95)

where F : (u−, u+) → RN ( u 7→ F(u) ) is a smooth function, H : M0 → R is a harmonic function
on M0 (i.e., ∆[g0]H = 0 ), satisfying u− < H(x) < u+ for all x ∈ M0 . We take all factor spaces as
Ricci-flat, and the cosmological constant is set to zero, i.e., the relations ξi = 0 and Λ = 0 are satisfied.

In this case, the potential is zero: V = 0 . It may be verified that the field Equations (93) and (94)
are satisfied identically if the map F obeys the Lagrange equations for the Lagrangian:

L =
1
2
GÂB̂(F)ḞÂ ḞB̂ (96)

with the zero-energy constraint:

E =
1
2
GÂB̂(F)ḞÂ ḞB̂ = 0. (97)
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Here, ḞÂ = dFÂ

du . This means that F : (u−, u+) → RN is a null-geodesic map for the
minisupermetric G . Thus, we are led to the Lagrange system (96) with the minisupermetric G
defined in (92).

The problem of integrability will be simplified if we integrate the Lagrange equations
corresponding to Φs (i.e., the Maxwell-type equations for s ∈ Se and Bianchi identities for s ∈ Sm ):

d
du
(
exp(−2Us(σ))Φ̇s) = 0⇐⇒ Φ̇s = Qs exp(2Us(σ)), (98)

where Qs are constants and s ∈ S . Here, (FÂ) = (σA, Φs) . We put Qs 6= 0 for all s ∈ S .
For fixed Q = (Qs, s ∈ S) , the Lagrange equations for the Lagrangian (96) corresponding to

(σA) = (φi, ϕα) , when Equation (98) is substituted, are equivalent to the Lagrange equations for the
Lagrangian:

LQ =
1
2

ĜABσ̇Aσ̇B −VQ, (99)

where:
VQ =

1
2 ∑

s∈S
εsQ2

s exp[2Us(σ)], (100)

and the matrix (ĜAB) is defined in (36). The zero-energy constraint (97) reads:

EQ =
1
2

ĜABσ̇Aσ̇B + VQ = 0. (101)

3.3.2. The Solutions

Here, as above, we are interested in exact solutions for a special case when Ks = (Us, Us) 6= 0 , for
all s ∈ S , and the generalized Cartan matrix (58) is non-degenerate. It follows from the non-degeneracy
of the matrix (58) that vectors Us, s ∈ S, are linearly independent. Hence, the number of vectors Us

should not exceed the dimension of Rn+l , i.e., |S| ≤ n + l .
The exact solutions were obtained in [49] and are:

g =

(
∏
s∈S

f 2d(Is)hs/(D−2)
s

){
exp(2c0H + 2c̄0)ĝ0 (102)

+
n

∑
i=1

(
∏
s∈S

f−2hsδiIs
s

)
exp(2ci H + 2c̄i)ĝi

}
,

exp(ϕα) =

(
∏
s∈S

f
hsχsλα

as
s

)
exp(cαH + c̄α), (103)

α = 1, . . . , l and Fa = ∑s∈S F sδa
as with:

F s = Qs

(
∏
s′∈S

f−Ass′
s′

)
dH ∧ τ(Is), s ∈ Se, (104)

F s = Qs(∗0dH) ∧ τ( Īs), s ∈ Sm, (105)

where ∗0 = ∗[g0] is the Hodge operator on (M0, g0) . Here,

fs = fs(H) = exp(−qs(H)), (106)

where qs(u) is a solution to the Toda-like equations:

q̈s = −Bs exp( ∑
s′∈S

Ass′q
s′) (107)
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with:
Bs = KsεsQ2

s . (108)

s ∈ S , and H = H(x) ( x ∈ M0 ) is a harmonic function on (M0, g0) . Vectors c = (cA) and c̄ = (c̄A)

satisfy the linear constraints:

Us(c) = Us
AcA = ∑

i∈Is

dici − χsλasαcα = 0, Us(c̄) = 0, (109)

s ∈ S , and:

c0 =
1

2− d0

n

∑
j=1

djcj, c̄0 =
1

2− d0

n

∑
j=1

dj c̄j. (110)

The zero-energy constraint reads:

2ET + hαβcαcβ +
n

∑
i=1

di(ci)2 +
1

d0 − 2

(
n

∑
i=1

dici

)2

= 0, (111)

where:
ET =

1
4 ∑

s,s′∈S
hs Ass′ q̇s ˙qs′ + ∑

s∈S
As exp( ∑

s′∈S
Ass′q

s′) (112)

is an integration constant (energy) for the solutions from (107) and As =
1
2 εsQ2

s .
We note that Equation (107) correspond to the Lagrangian:

LT =
1
4 ∑

s,s′∈S
hs Ass′ q̇s ˙qs′ −∑

s∈S
As exp( ∑

s′∈S
Ass′q

s′), (113)

where hs = K−1
s .

Thus, the solution is given by Relations (102)–(106) with the functions qs being defined in (107)
and with relations on the parameters of solutions cA , c̄A (A = i, α, 0) , imposed by (109)–(111).

4. Cosmological-Type, e.g., S-Brane, Solutions

Now, we consider the case d0 = 1 , M0 = R , i.e., we are interested in applications to the sector
with dependence on a single variable. We consider the manifold:

M = (u−, u+)×M1 × . . .×Mn (114)

with a metric:

g = we2γ(u)du⊗ du +
n

∑
i=1

e2φi(u) ĝi, (115)

where w = ±1 , u is a distinguished coordinate, which by convention, will be called “time”; (Mi, gi)

are oriented and connected Einstein spaces (see (17)), i = 1, . . . , n . The functions γ, φi : (u−, u+)→ R
are smooth.

Here, we adopt the brane ansatz from Section 2, putting g0 = wdu⊗ du .

4.1. Lagrange Dynamics

It follows from Section 2.3 that the equations of motion and the Bianchi identities for the field
configuration under consideration (with the restrictions from Section 2.3 imposed) are equivalent to
equations of motion for the one-dimensional σ -model with the action:

Sσ =
µ

2

∫
duN

{
Gijφ̇

iφ̇j + hαβ ϕ̇α ϕ̇β + ∑
s∈S

εs exp[−2Us(φ, ϕ)](Φ̇s)2 − 2N−2Vw(φ)

}
, (116)
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where ẋ ≡ dx/du ,

Vw = −wV = −wΛe2γ0(φ) +
w
2

n

∑
i=1

ξidie−2φi+2γ0(φ) (117)

is the potential with γ0(φ) ≡ ∑n
i=1 diφ

i , N = exp(γ0 − γ) > 0 is the lapse function, Us = Us(φ, ϕ)

are defined in (38), εs are defined in (40) for s = (as, vs, Is) ∈ S , Gij = diδij − didj are components of
“pure cosmological” minisupermetric, i, j = 1, . . . , n , and matrix (Gij) has pseudo-Euclidean signature
(−,+, . . . ,+) [74,89].

In the electric case (F (a,m,I) = 0) for finite internal space volumes Vi , the action (116) coincides
with the action (14) if µ = −w/κ2

0 , κ2 = κ2
0V1 . . . Vn .

Action (116) may be also written in the form:

Sσ =
µ

2

∫
duN

{
GÂB̂(X)ẊÂẊB̂ − 2N−2Vw

}
, (118)

where X = (XÂ) = (φi, ϕα, Φs) ∈ RN , N = n + l + |S| , and minisupermetric G is defined in (92).
Scalar products: The minisuperspace metric (92) may be also written in the form

G = Ĝ + ∑s∈S εse−2Us(σ)dΦs ⊗ dΦs , where σ = (σA) = (φi, ϕα) ,

Ĝ = ĜABdσA ⊗ dσB = Gijdφi ⊗ dφj + hαβdϕα ⊗ dϕβ, (119)

is the truncated minisupermetric, and Us(σ) = Us
AσA is defined in (38). The potential (117) now reads:

Vw = (−wΛ)e2UΛ(σ) +
n

∑
j=1

w
2

ξ jdje2U j(σ), (120)

where

U j(σ) = U j
AσA = −φj + γ0(φ), (U j

A) = (−δ
j
i + di, 0), (121)

UΛ(σ) = UΛ
A σA = γ0(φ), (UΛ

A ) = (di, 0). (122)

The integrability of the Lagrange system (118) crucially depends on the scalar products of
co-vectors UΛ , U j , Us (see (42)). These products are defined by (45) and the following relations [56]:

(Ui, U j) =
δij

dj
− 1, (123)

(Ui, UΛ) = −1, (UΛ, UΛ) = −D− 1
D− 2

, (124)

(Us, Ui) = −δiIs , (Us, UΛ) =
d(Is)

2− D
, (125)

where s = (as, vs, Is) ∈ S ; i, j = 1, . . . , n .
Toda-like representation: We put γ = γ0(φ) , i.e., the harmonic time gauge is considered.

Integrating the Lagrange equations corresponding to Φs (see (98)), we are led to the Lagrangian
from (99) and the zero-energy constraint (101) with the modified potential:

VQ = Vw +
1
2 ∑

s∈S
εsQ2

s exp[2Us(σ)], (126)

where Vw is defined in (117).

4.2. Solutions with Λ = 0

Here, we consider solutions with Λ = 0 .
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4.2.1. Solutions with Ricci-Flat Factor-Spaces

Let all spaces be Ricci-flat, i.e., ξ1 = · · · = ξn = 0 .
Since H(u) = u is a harmonic function on (M0, g0) with g0 = wdu⊗ du , we get for the metric

and scalar fields from (102) and (103) [49]:

g =

(
∏
s∈S

f 2d(Is)hs/(D−2)
s

){
exp(2c0u + 2c̄0)wdu⊗ du (127)

+
n

∑
i=1

(
∏
s∈S

f−2hsδiIs
s

)
exp(2ciu + 2c̄i)ĝi

}
,

exp(ϕα) =

(
∏
s∈S

f
hsχsλα

as
s

)
exp(cαu + c̄α), (128)

α = 1, . . . , l , and Fa = ∑s∈S δa
asF s with:

F s = Qs

(
∏
s′∈S

f−Ass′
s′

)
du ∧ τ(Is), s ∈ Se, (129)

F s = Qsτ( Īs), s ∈ Sm (130)

Qs 6= 0 , s ∈ S .
Here, fs = fs(u) = exp(−qs(u)) and qs(u) obey Toda-like Equation (107).
Relations (110) and (111) take the form:

c0 =
n

∑
j=1

djcj, c̄0 =
n

∑
j=1

dj c̄j, (131)

2ET + hαβcαcβ +
n

∑
i=1

di(ci)2 −
(

n

∑
i=1

dici

)2

= 0, (132)

with ET from (112), and all other relations (e.g., Constraints (109)) are unchanged.
This solution in the special case of an Am Toda chain was obtained earlier in [90] (see also [91]).

Some special configurations were considered earlier in [92–94].
Currently, the cosmological solutions with branes are considered often in a context of S-brane

terminology [95]. S-branes were originally space-like analogues of D-branes; see also [53,96–103] and the
references therein.

Remark 4. The solutions of this subsection could be readily extended to the case when the Toda-like potential
for scalar fields is added (into the action) [104,105].

4.2.2. Solutions with One Curved Factor-Space

The cosmological solution with Ricci-flat spaces may be also modified to the following case:
ξ1 6= 0, ξ2 = . . . = ξn = 0 , i.e., one space is curved, the others are Ricci-flat and 1 /∈ Is , s ∈ S , i.e.,
all “brane” submanifolds do not contain M1 .

The potential (100) is modified for ξ1 6= 0 as follows (see (126)):

VQ =
1
2 ∑

s∈S
εsQ2

s exp[2Us(σ)] +
1
2

wξ1d1 exp[2U1(σ)], (133)

where U1(σ) is defined in (121) ( d1 > 1 ).
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For the scalar products, we get from (123) and (125):

(U1, U1) =
1
d1
− 1 < 0, (U1, Us) = 0 (134)

for all s ∈ S .
The solution in the case under consideration may be obtained by a small modification of the

solution from the previous section (using (134), relations U1i = −δi
1/d1 , U1α = 0 ) [49]:

g =

(
∏
s∈S

[ fs(u)]2d(Is)hs/(D−2)
){

[ f1(u)]2d1/(1−d1) exp(2c1u + 2c̄1) (135)

×[wdu⊗ du + f 2
1 (u)ĝ1] +

n

∑
i=2

(
∏
s∈S

[ fs(u)]−2hsδiIs

)
exp(2ciu + 2c̄i)ĝi

}
.

exp(ϕα) =

(
∏
s∈S

f
hsχsλα

as
s

)
exp(cαu + c̄α), (136)

and Fa = ∑s∈S δa
asF s with forms F s defined in (129) and (130).

Here, fs = fs(u) = exp(−qs(u)) , where qs(u) obey Toda-like Equation (107) and:

f1(u) = R sinh(
√

C1(u− u1)), C1 > 0, ξ1w > 0; (137)

R sin(
√
|C1|(u− u1)), C1 < 0, ξ1w > 0; (138)

R cosh(
√

C1(u− u1)), C1 > 0, ξ1w < 0; (139)

|ξ1(d1 − 1)|1/2 , C1 = 0, ξ1w > 0, (140)

u1, C1 are constants, and R = |ξ1(d1 − 1)/C1|1/2 .
The vectors c = (cA) and c̄ = (c̄A) satisfy the linear constraints:

Ur(c) = Ur(c̄) = 0, r = s, 1, (141)

(for r = s , see (109)) and the zero-energy constraint:

C1
d1

d1 − 1
= 2ET + hαβcαcβ +

n

∑
i=2

di(ci)2 +
1

d1 − 1

(
n

∑
i=2

dici

)2

. (142)

4.2.3. Special Solutions for Block-Orthogonal Set of Vectors Us

Let us consider block-orthogonal case: (46) and (47). In this case, we get:

fs = ( f̄s)
bs (143)

where bs = 2 ∑s′∈S Ass′ , (Ass′) = (Ass′)
−1 and:

f̄s(u) = Rs sinh(
√

Cs(u− us)), Cs > 0, ηsεs < 0; (144)

Rs sin(
√
|Cs|(u− us)), Cs < 0, ηsεs < 0; (145)

Rs cosh(
√

Cs(u− us)), Cs > 0, ηsεs > 0; (146)
|Qs|
|νs|

(u− us), Cs = 0, ηsεs < 0, (147)

where Rs = |Qs|/(|νs||Cs|1/2) ,
ηsν2

s = bshs, (148)
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ηs = ±1 , Cs , us are constants, s ∈ S . The constants Cs , us are coinciding inside the blocks:
us = us′ , Cs = Cs′ , s, s′ ∈ Si , i = 1, . . . , k . The ratios εsQ2

s /(bshs) also coincide inside the blocks,
or equivalently,

εsQ2
s

bshs
=

εs′Q2
s′

bs′hs′
, (149)

s, s′ ∈ Si , i = 1, . . . , k .
For the energy integration constant (112), we get:

ET =
1
2 ∑

s∈S
Csbshs. (150)

The solution (135)–(130) with a block-orthogonal set of Us -vectors was obtained in [106,107] (for
the non-composite case, see also [108]). The generalized KM algebra corresponding to the generalized
Cartan matrix A in this case is semisimple. In the special orthogonal (or A1 ⊕ ...⊕ A1 ) case when:
|S1| = . . . = |Sk| = 1 , the solution was obtained in [55].

Thus, here, we presented a large class of exact solutions for invertible generalized Cartan matrices
(e.g., corresponding to hyperbolic KM algebras). These solutions are governed by Toda-type equations.
They are integrable in quadratures for finite-dimensional semisimple Lie algebras ([109–113]) in
agreement with the Adler–van Moerbeke criterion [113] (see also [114]).

The problem of integrability of Toda-chains related to Lorentzian (e.g., hyperbolic) KM algebras
is much more complicated than in the Euclidean case. This is supported by the result from [115]
(based on calculation of the Kovalevskaya exponents) where it was shown that the known cases
of algebraic integrability for Euclidean Toda chains have no direct analogues in the case of spaces
with pseudo-Euclidean metrics because the full-parameter expansions of the general solution contain
complex powers of the independent variable. A similar result, using the Painleve property, was
obtained earlier for two-dimensional Toda chains related to hyperbolic KM algebras [116].

4.3. Examples of S-Brane Solutions

Example 3. S-brane solution governed by the E10 Toda chain.

Let us consider the B16 -model in 16-dimensional pseudo-Euclidean space of signature
(−,+, ...,+) with six forms F4, ..., F9 and five scalar fields ϕ1, ..., ϕ5 ; see (75). Recall that for two
branes corresponding to the Fa and Fb forms, the orthogonal (or (A1 + A1) -) intersection rules
read [54,55]:

(a− 1)e ∩o (b− 1)e = N(a, b) = min(a, b)− 3, (151)

(a− 1)e ∩o (D− b− 1)m = a− 1− N(a, b) (152)

where dv ∩o d′v′ denotes the dimension of orthogonal intersection for two branes with the dimensions
of their world volumes being d and d′ . dv ∩o d′v′ coincides with the symbol ∆(s, s′) from (60) (Here,
as in [54], our notations differ from those adopted in string theory. For example, for the intersection of
M2- and M5-branes, we write 3∩o 6 = 2 instead of 2∩ 5 = 1.). The subscripts v, v′ = e, m here indicate
whether the brane is an electric ( e ) or a magnetic ( m ) one. In what follows, we will be interested in
the following orthogonal intersections: 4e ∩o 4e = 2 , 4e ∩o 5e = 2 , 4e ∩o 11m = 3 , 5e ∩o 11m = 4 .

Here, we deal with 10 (S-)branes: eight electric branes s1, s2, s3, s4, s5, s6, s8, s9 corresponding
to five-form F5 , one electric brane s7 corresponding to six-form F6 and one magnetic brane s10

corresponding to four-form F4 . The brane sets are as follows: I1 = {3, 4, 10, 12} , I2 = {1, 6, 7, 12} ,
I3 = {8, 9, 10, 12} , I4 = {1, 2, 3, 12} , I5 = {5, 6, 10, 12} , I6 = {1, 4, 8, 12} , I7 = {2, 7, 10, 12, 13} ,
I8 = {3, 6, 8, 12} , I9 = {1, 10, 11, 12} , I10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .
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It may be verified that these sets do obey E10 intersection rules following from the relations (61)
(with Isi = Ii ) and the Dynkin diagram from Figure 1.

where dv ∩o d′v′ denotes the dimension of orthogonal intersection for two branes with the dimensions
of their worldvolumes being d and d′ . dv ∩o d′v′ coincides with the symbol ∆(s, s′) from (3.19). 1

The subscripts v, v′ = e,m here indicate whether the brane is electric ( e ) or magnetic (m ) one. In
what follows we will be interested in the following orthogonal intersections: 4e ∩o 4e = 2 , 4e ∩o 5e = 2 ,
4e ∩o 11m = 3 , 5e ∩o 11m = 4 .

Here we deal with 10 ( S -)branes: eight electric branes s1, s2, s3, s4, s5, s6, s8, s9 corresponding to 5-
form F 5 , one electric brane s7 corresponding to 6-form F 6 and one magnetic brane s10 corresponding
to 4-form F 4 . The brane sets are as follows: I1 = {3, 4, 10, 12} , I2 = {1, 6, 7, 12} , I3 = {8, 9, 10, 12} ,
I4 = {1, 2, 3, 12} , I5 = {5, 6, 10, 12} , I6 = {1, 4, 8, 12} , I7 = {2, 7, 10, 12, 13} , I8 = {3, 6, 8, 12} ,
I9 = {1, 10, 11, 12} , I10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .

It may be verified that these sets do obey E10 intersection rules following from the relations (3.20)
(with Isi = Ii ) and the Dynkin diagram from Fig. 1.
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r
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10

Fig. 1. Dynkin diagram for E10 hyperbolic KM algebra

Now we present a cosmological S -brane solution from subsection 4.2.1 for the configuration of ten
branes under consideration. In what follows the relations εs = +1 and hs = 1/2 , s ∈ S , are used.

The metric (4.14) reads:

g =

[
(
∏

s6=7,10

fs)
4f5

7 f
11
10

]1/14{
−e2c0t+2c̄0dt⊗ dt+ (f2f4f6f9f10)−1e2c1t+2c̄1dx1 ⊗ dx1 (4.40)

+(f4f7f10)−1e2c2t+2c̄2dx2 ⊗ dx2 + (f1f4f8f10)−1e2c3t+2c̄3dx3 ⊗ dx3

+(f1f6f10)−1e2c4t+2c̄4dx4 ⊗ dx4 + (f5f10)−1e2c5t+2c̄5dx5 ⊗ dx5

+(f2f5f8f10)−1e2c6t+2c̄6dx6 ⊗ dx6 + (f2f7f10)−1e2c7t+2c̄7dx7 ⊗ dx7

+(f3f6f8f10)−1e2c8t+2c̄8dx8 ⊗ dx8 + (f3f10)−1e2c9t+2c̄9dx9 ⊗ dx9

+(f1f3f5f7f9f10)−1e2c10t+2c̄10

dx10 ⊗ dx10 + (f9f10)−1e2c11t+2c̄11

dx11 ⊗ dx11

+(
9∏

s=1

fs)
−1e2c12t+2c̄12

dx12 ⊗ dx12 + f−1
7 e2c13t+2c̄13

dx13 ⊗ dx13

+e2c14t+2c̄14

dx14 ⊗ dx14 + e2c15t+2c̄15

dx15 ⊗ dx15

}
.

For scalar fields (4.15) we get

ϕα =
1

2
[−λ5α(

∑

s6=7,10

ln fs)− λ6α ln f7 + λ4α ln f10] + cαϕt+ c̄αϕ, (4.41)

α = 1, . . . , 5 . (Here we used the relations λαa = −λaα ).
The form fields (see (4.16) and (4.17)) are as follows

F 4 = Q10dx
12 ∧ dx13 ∧ dx14 ∧ dx15, (4.42)

F 5 = Q1f
−2
1 f2dt ∧ dx3 ∧ dx4 ∧ dx10 ∧ dx12 +Q2f1f

−2
2 f3dt ∧ dx1 ∧ dx6 ∧ dx7 ∧ dx12 (4.43)

+Q3f2f
−2
3 f4dt ∧ dx8 ∧ dx9 ∧ dx10 ∧ dx12 +Q4f3f

−2
4 f5dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx12

1Here as in [55] our notations differ from those adopted in string theory. For example for intersection of M2- and M5-
branes we write 3 ∩o 6 = 2 instead of 2 ∩ 5 = 1.

20

Figure 1. Dynkin diagram for E10 hyperbolic Kac–Moody (KM) algebra.

Now, we present a cosmological S-brane solution from Section 4.2.1 for the configuration of ten
branes under consideration. In what follows, the relations εs = +1 and hs = 1/2 , s ∈ S , are used.

The metric (127) reads:

g =

[
( ∏

s 6=7,10
fs)

4 f 5
7 f 11

10

]1/14{
−e2c0t+2c̄0

dt⊗ dt + ( f2 f4 f6 f9 f10)
−1e2c1t+2c̄1

dx1 ⊗ dx1 (153)

+( f4 f7 f10)
−1e2c2t+2c̄2

dx2 ⊗ dx2 + ( f1 f4 f8 f10)
−1e2c3t+2c̄3

dx3 ⊗ dx3

+( f1 f6 f10)
−1e2c4t+2c̄4

dx4 ⊗ dx4 + ( f5 f10)
−1e2c5t+2c̄5

dx5 ⊗ dx5

+( f2 f5 f8 f10)
−1e2c6t+2c̄6

dx6 ⊗ dx6 + ( f2 f7 f10)
−1e2c7t+2c̄7

dx7 ⊗ dx7

+( f3 f6 f8 f10)
−1e2c8t+2c̄8

dx8 ⊗ dx8 + ( f3 f10)
−1e2c9t+2c̄9

dx9 ⊗ dx9

+( f1 f3 f5 f7 f9 f10)
−1e2c10t+2c̄10

dx10 ⊗ dx10 + ( f9 f10)
−1e2c11t+2c̄11

dx11 ⊗ dx11

+(
9

∏
s=1

fs)
−1e2c12t+2c̄12

dx12 ⊗ dx12 + f−1
7 e2c13t+2c̄13

dx13 ⊗ dx13

+e2c14t+2c̄14
dx14 ⊗ dx14 + e2c15t+2c̄15

dx15 ⊗ dx15
}

.

For scalar fields (128), we get:

ϕα =
1
2
[−λ5α( ∑

s 6=7,10
ln fs)− λ6α ln f7 + λ4α ln f10] + cα

ϕt + c̄α
ϕ, (154)

α = 1, . . . , 5 (here, we used the relations λα
a = −λaα ).

The form fields (see (129) and (130)) are as follows:

F4 = Q10dx12 ∧ dx13 ∧ dx14 ∧ dx15, (155)

F5 = Q1 f−2
1 f2dt ∧ dx3 ∧ dx4 ∧ dx10 ∧ dx12 + Q2 f1 f−2

2 f3dt ∧ dx1 ∧ dx6 ∧ dx7 ∧ dx12 (156)

+Q3 f2 f−2
3 f4dt ∧ dx8 ∧ dx9 ∧ dx10 ∧ dx12 + Q4 f3 f−2

4 f5dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx12

+Q5 f4 f−2
5 f6dt ∧ dx5 ∧ dx6 ∧ dx10 ∧ dx12 + Q6 f5 f−2

6 f7dt ∧ dx1 ∧ dx4 ∧ dx8 ∧ dx12

+Q8 f7 f−2
8 f9dt ∧ dx3 ∧ dx6 ∧ dx8 ∧ dx12 + Q9 f8 f−2

9 dt ∧ dx1 ∧ dx10 ∧ dx11 ∧ dx12,

F6 = Q7 f6 f−2
7 f8 f10dt ∧ dx2 ∧ dx7 ∧ dx10 ∧ dx12 ∧ dx13, (157)

where Qs 6= 0 , s = 1, ..., 10 . Here:

c0 =
15

∑
j=1

cj, c̄0 =
15

∑
j=1

c̄j, (158)
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fs = exp(−qs(t)) and qs(t) obey Toda-type equations:

q̈s = −2Q2
s exp(

10

∑
s′=1

Ass′q
s′), (159)

s = 1, ..., 10 , where (Ass′) is the Cartan matrix for the KM algebra E10 (with the Dynkin diagram
from Figure 1), and the energy integration constant:

ET =
1
8

10

∑
s,s′=1

Ass′ q̇s ˙qs′ +
1
2

10

∑
s=1

Q2
s exp(

10

∑
s′=1

Ass′q
s′), (160)

obeys the constraint:

2ET −
5

∑
α=1

(cα
ϕ)

2 +
15

∑
i=1

(ci)2 −
(

15

∑
i=1

ci

)2

= 0. (161)

The brane constraints (109) are in our case:

U1(c) = c3 + c4 + c10 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U1(c̄) = 0, (162)

U2(c) = c1 + c6 + c7 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U2(c̄) = 0,

U3(c) = c8 + c9 + c10 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U3(c̄) = 0,

U4(c) = c1 + c2 + c3 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U4(c̄) = 0,

U5(c) = c5 + c6 + c10 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U5(c̄) = 0,

U6(c) = c1 + c4 + c8 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U6(c̄) = 0,

U7(c) = c2 + c7 + c10 + c12 + c13 −
5

∑
α=1

λ6αcα
ϕ = 0, U7(c̄) = 0,

U8(c) = c3 + c6 + c8 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U8(c̄) = 0,

U9(c) = c1 + c10 + c11 + c12 −
5

∑
α=1

λ5αcα
ϕ = 0, U9(c̄) = 0,

U10(c) =
11

∑
i=1

ci +
5

∑
α=1

λ4αcα
ϕ = 0, U10(c̄) = 0.

Remark 5. For a special choice of integration constants ci = 0 and cα
ϕ = 0 , we get a solution governed by

the E10 Toda chain with the energy constraint ET = 0 . According to the result from [30], we obtain a never
ending asymptotical oscillating behavior of scale factors, which is described by the motion of a point-like particle
in a billiard B ⊂ H9 . This billiard has a finite volume since E10 is hyperbolic.

Special one-block solution: Now, we consider a special one-block solution (see Section 4.2.3).
This solution is valid when a special set of charges is considered (see (149)):

Q2
s = Q2|bs|, (163)
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where Q 6= 0 and [47]:

bs = 2
10

∑
s′=1

Ass′ = −60,−122,−186,−252,−320,−390,−462,−306,−152,−230, (164)

s = 1, ..., 10 . Recall that (Ass′) = (Ass′)
−1 .

In this case, fs = ( f̄ )bs , where:

f̄ (t) = |Q|
√

2/C sinh(
√

C(t− t0)), C > 0, (165)

|Q|
√

2/|C| sin(
√
|C|(t− t0)), C < 0,

|Q|
√

2(t− t0), C = 0

and t0 is a constant.
From (150), we get:

ET = −620C, (166)

where relation ∑10
s=1 bs = −2480 was used.

For the special solution under consideration, the electric monomials in (156) and (157) have
a simpler form:

F s = Qs f̄−2dt ∧ τ(Is), (167)

where s = 1, 2, ..., 9 .
Solution with one harmonic function: Let C = 0 and all ci = c̄i = 0 , cα

ϕ = c̄α
ϕ = 0 . In this

case, H = f̄ (t) = |Q|
√

2(t − t0) > 0 is a harmonic function on the one-dimensional manifold
((t0,+∞),−dt⊗ dt) , and our solution coincides with the one-block solution (51)–(55) (if signνs =

−signQs for all s ).

Example 4. S-brane solution governed by HA(1)
2 Toda chain.

Now, we consider the B11 -model in the 11-dimensional pseudo-Euclidean space of signature
(−,+, ...,+) with four-form F4 .

Here, we deal with four electric branes ( SM2 -branes) s1, s2, s3, s4 corresponding to the four-form
F4 . The brane sets are the following ones: I1 = {1, 2, 3} , I2 = {4, 5, 6, } , I3 = {7, 8, 9} , I4 =

{1, 4, 10} .
It may be verified that these sets obey the intersection rules corresponding to the hyperbolic KM

algebra HA(1)
2 with the following Cartan matrix:

A =




2 −1 −1 0
−1 2 −1 0
−1 −1 2 −1
0 0 −1 2


 , (168)

(see (61) with Isi = Ii ).
Now, we give a cosmological S-brane solution from Section 4.2.1 for the configuration of four

branes under consideration. In what follows, the relations εs = +1 and hs = 1/2 , s ∈ S , are used.
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The metric (127) reads [117]:

g = ( f1 f2 f3 f4)
1/3
{
−e2c0t+2c̄0

dt⊗ dt + ( f1 f4)
−1e2c1t+2c̄1

dx1 ⊗ dx1 (169)

+ f−1
1 e2c2t+2c̄2

dx2 ⊗ dx2 + f−1
1 e2c3t+2c̄3

dx3 ⊗ dx3

+( f2 f4)
−1e2c4t+2c̄4

dx4 ⊗ dx4 + f−1
2 e2c5t+2c̄5

dx5 ⊗ dx5

+ f−1
2 e2c6t+2c̄6

dx6 ⊗ dx6 + f−1
3 e2c7t+2c̄7

dx7 ⊗ dx7

+ f−1
3 e2c8t+2c̄8

dx8 ⊗ dx8 + f−1
3 e2c9t+2c̄9

dx9 ⊗ dx9

+ f−1
4 e2c10t+2c̄10

dx10 ⊗ dx10
}

.

The form field (see (129)) is as follows:

F4 = Q1 f−2
1 f2 f3dt ∧ dx1 ∧ dx2 ∧ dx3 + Q2 f1 f−2

2 f3dt ∧ dx4 ∧ dx5 ∧ dx6 (170)

+Q3 f1 f2 f−2
3 dt ∧ dx7 ∧ dx8 ∧ dx9 + Q4 f3 f−2

4 dt ∧ dx1 ∧ dx4 ∧ dx10,

where Qs 6= 0 , s = 1, ..., 4 . Here:

c0 =
10

∑
j=1

cj, c̄0 =
10

∑
j=1

c̄j, (171)

fs = exp(−qs(t)) and qs(t) obey the Toda-type equations:

q̈s = −2Q2
s exp(

4

∑
s′=1

Ass′q
s′), (172)

s = 1, ..., 4 , where (Ass′) is the Cartan matrix (168) for the KM algebra HA(1)
2 , and the energy

integration constant:

ET =
1
8

4

∑
s,s′=1

Ass′ q̇s ˙qs′ +
1
2

4

∑
s=1

Q2
s exp(

4

∑
s′=1

Ass′q
s′), (173)

obeys the constraint:

2ET +
10

∑
i=1

(ci)2 −
(

10

∑
i=1

ci

)2

= 0. (174)

The brane constraints (109) read in this case as follows:

U1(c) = c1 + c2 + c3 = 0, U1(c̄) = 0, (175)

U2(c) = c4 + c5 + c6 = 0, U2(c̄) = 0,

U3(c) = c7 + c8 + c9 = 0, U3(c̄) = 0,

U4(c) = c1 + c4 + c10 = 0, U4(c̄) = 0,

Since F4 ∧ F4 = 0 , this solution also obeys the equations of motion of 11-dimensional
supergravity.

Special one-block solution. Now, we consider a special one-block solution (see Section 4.2.3).
This solution is valid when a special set of charges is considered (see (149)):

Q2
s = Q2|bs|, (176)
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where Q 6= 0 and:

bs = 2
4

∑
s′=1

Ass′ = −12,−12,−14,−6. (177)

In this case, fs = ( f̄ )bs , where f̄ is the same as in (165).
For the energy integration constant, we have:

ET = −11C, (178)

(see (150)).

Example 5. S-brane solution governed by P10 Toda chain with ET = 0 .

Now, we consider the B11 -model in the 11-dimensional pseudo-Euclidean space of signature
(−,+, ...,+) with four-form F4 .

Here, we deal with ten electric branes ( SM2 -branes) s1, ..., s10 corresponding to the four-form F4 .
The brane sets are taken from [13,118] as: I1 = {1, 4, 7} , I2 = {8, 9, 10} , I3 = {2, 5, 7} , I4 = {4, 6, 10} ,
I5 = {2, 3, 9} , I6 = {1, 2, 8} , I7 = {1, 3, 10} , I8 = {4, 5, 8} , I9 = {3, 6, 7} , I10 = {5, 6, 9} .

These sets obey the intersection rules corresponding to the Lorentzian KM algebra P10 (we call it
Petersen algebra) with the following Cartan matrix:

A =




2 −1 0 0 −1 0 0 0 0 −1
−1 2 −1 0 0 0 0 0 −1 0
0 −1 2 −1 0 0 −1 0 0 0
0 0 −1 2 −1 −1 0 0 0 0
−1 0 0 −1 2 0 0 −1 0 0
0 0 0 −1 0 2 0 0 −1 −1
0 0 −1 0 0 0 2 −1 0 −1
0 0 0 0 −1 0 −1 2 −1 0
0 −1 0 0 0 −1 0 −1 2 0
−1 0 0 0 0 −1 −1 0 0 2.




, (179)

The Dynkin diagram for this Cartan matrix could be represented by the Petersen graph (“a star
inside a pentagon”). P10 is the Lorentzian KM algebra. It is a subalgebra of E10 [13,118].

Let us present an S -brane solution for the configuration of 10 electric branes under consideration.
The metric (127) reads [117]:

g =

(
10

∏
s=1

fs

)1/3 {
−dt⊗ dt + ( f1 f6 f7)

−1dx1 ⊗ dx1 (180)

+( f3 f5 f6)
−1dx2 ⊗ dx2 + ( f5 f7 f9)

−1dx3 ⊗ dx3

+( f1 f4 f8)
−1dx4 ⊗ dx4 + ( f3 f8 f10)

−1dx5 ⊗ dx5

+( f4 f9 f10)
−1dx6 ⊗ dx6 + ( f1 f3 f9)

−1dx7 ⊗ dx7

+( f2 f6 f8)
−1dx8 ⊗ dx8 + ( f2 f5 f10)

−1dx9 ⊗ dx9

+( f2 f4 f7)
−1dx10 ⊗ dx10

}
.
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The form field (see (129)) is the following:

F4 = Q1 f−2
1 f2 f5 f10dt ∧ dx1 ∧ dx4 ∧ dx7 + Q2 f1 f−2

2 f3 f9dt ∧ dx8 ∧ dx9 ∧ dx10 (181)

+Q3 f2 f−2
3 f4 f7dt ∧ dx2 ∧ dx5 ∧ dx7 + Q4 f3 f−2

4 f5 f6dt ∧ dx4 ∧ dx6 ∧ dx10,

Q5 f1 f4 f−2
5 f8dt ∧ dx2 ∧ dx3 ∧ dx9 + Q6 f4 f−2

6 f9 f10dt ∧ dx1 ∧ dx2 ∧ dx8

+Q7 f3 f−2
7 f8 f10dt ∧ dx1 ∧ dx3 ∧ dx10 + Q8 f5 f7 f−2

8 f9dt ∧ dx4 ∧ dx5 ∧ dx8

Q9 f2 f6 f8 f−2
9 dt ∧ dx3 ∧ dx6 ∧ dx7 + Q10 f1 f6 f7 f−2

10 dt ∧ dx5 ∧ dx6 ∧ dx9,

where Qs 6= 0 , s = 1, ..., 10 . Here, fs = exp(−qs(t)) and qs(t) obey the Toda-type equations:

q̈s = −2Q2
s exp(

10

∑
s′=1

Ass′q
s′) (182)

where (Ass′) is the Cartan matrix (179) for the KM algebra P10 , and the energy constraint:

ET =
1
8

4

∑
s,s′=1

Ass′ q̇s ˙qs′ +
1
2

10

∑
s=1

Q2
s exp(

10

∑
s′=1

Ass′q
s′) = 0 (183)

is obeyed. Here, we used the fact that the two sets of linear equations— Us(c) = 0 , Us(c̄) = 0 ,
s = 1, ..., 10 —have trivial solutions: c = 0 , c̄ = 0 , due to the linear independence of vectors Us .

Since F4 ∧ F4 = 0 , this solution also obeys the equations of motion of 11-dimensional supergravity.

Remark 6. As pointed out in [118], we do not obtain a never ending asymptotic oscillating behavior of the
scale factors in this case, since the Lorentzian KM algebra P10 is not hyperbolic, and the corresponding billiard
B ⊂ H9 has an infinite volume.

Special one-block solution. Now, we consider a special one-block solution. The calculations give
us the following relations:

bs = 2
10

∑
s′=1

Ass′ = −2, (184)

s = 1, ..., 10 and hence, the special solution is valid (see (149)), when all charges are equal:

Q2
s = Q2, (185)

where Q 6= 0 . In this case, all fs = f̄−2 , where:

f̄ (t) = |Q|(t− t0), (186)

and t0 is constant. The metric (180) may be rewritten using the synchronous time variable ts :

g = −dts ⊗ dts + At2/7
s

10

∑
i=1

dxi ⊗ dxi, (187)

where A > 0 and ts > 0 . This metric coincides with the power-law, inflationary solution in the model
with a one-component perfect fluid when the following equation of state is adopted: p = 2

5 ρ , where p
is pressure and ρ is the density of fluid [119,120].
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5. Black Brane Solutions

In this section, we consider the spherically-symmetric case of the metric (135), i.e., we put w = 1 ,
M1 = Sd1 , g1 = dΩ2

d1
, where dΩ2

d1
is the canonical metric on a unit sphere Sd1 , d1 ≥ 2 . In this case,

ξ1 = d1 − 1 . We put M2 = R , g2 = −dt⊗ dt , i.e., M2 is a time manifold.
Let C1 ≥ 0 . We consider solutions defined on some interval [u0,+∞) with a horizon at u = +∞ .
When the matrix (hαβ) is positive definite and:

2 ∈ Is, ∀s ∈ S, (188)

i.e., all branes have a common time direction t , the horizon condition singles out the unique solution
with C1 > 0 and linear asymptotics at infinity:

qs = −βsu + β̄s + o(1), (189)

u→ +∞ , where βs, β̄s are constants, s ∈ S [51,52].
In this case:

cA/µ̄ = −δA
2 + h1U1A + ∑

s∈S
hsbsUsA, (190)

βs/µ̄ = 2 ∑
s′∈S

Ass′ ≡ bs, (191)

where s ∈ S , A = (i, α) , µ̄ =
√

C1 , the matrix (Ass′) is inverse of the generalized Cartan matrix
(Ass′) and h1 = (U1, U1)−1 = d1/(1− d1) .

Let us introduce a new radial variable R = R(u) through the relations:

exp(−2µ̄u) = 1− 2µ

Rd̄
, µ = µ̄/d̄ > 0, (192)

where u > 0 , Rd̄ > 2µ , d̄ = d1 − 1 . We put c̄A = 0 and qs(0) = 0 , A = (i, α) , s ∈ S . These
relations guarantee the asymptotic flatness (for R → +∞ ) of the (2 + d1) -dimensional section of
the metric.

Let us denote Hs = fse−βsu , s ∈ S . Then, Solutions (135)–(130) may be written as
follows [50–52]:

g =
(
∏
s∈S

H2hsd(Is)/(D−2)
s

){(
1− 2µ

Rd̄

)−1
dR⊗ dR + R2dΩ2

d1
(193)

−
(
∏
s∈S

H−2hs
s

)(
1− 2µ

Rd̄

)
dt⊗ dt +

n

∑
i=3

(
∏
s∈S

H−2hsδiIs
s

)
ĝi
}

,

exp(ϕα) = ∏
s∈S

H
hsχsλα

as
s , (194)

where Fa = ∑s∈S δa
asF s , and:

F s = − Qs

Rd1

(
∏
s′∈S

H−Ass′
s′

)
dR ∧ τ(Is), (195)

s ∈ Se ,
F s = Qsτ( Īs), (196)

s ∈ Sm .
Here, Qs 6= 0 , hs = K−1

s , s ∈ S , and the generalized Cartan matrix (Ass′) is non-degenerate.
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Functions Hs > 0 obey the equations:

d
dz

(
(1− 2µz)

Hs

d
dz

Hs

)
= B̄s ∏

s′∈S
H−Ass′

s′ , (197)

Hs((2µ)−1 − 0) = Hs0 ∈ (0,+∞), (198)

Hs(+0) = 1, (199)

s ∈ S , where Hs(z) > 0 , µ > 0 , z = R−d̄ ∈ (0, (2µ)−1) and B̄s = εsKsQ2
s /d̄2 6= 0 .

There exist solutions to Equations (197)–(198) of the polynomial type. The simplest example
occurs in the orthogonal case [55,65] (for di = 1 , see also [63,64]): (Us, Us′) = 0 , for s 6= s′ , s, s′ ∈ S .
In this case, (Ass′) = diag(2, . . . , 2) is a Cartan matrix for the semisimple Lie algebra A1 ⊕ . . .⊕A1

and:
Hs(z) = 1 + Psz (200)

with Ps 6= 0 , satisfying:
Ps(Ps + 2µ) = −B̄s, (201)

s ∈ S .
In [107,108,121], this solution was generalized to a block-orthogonal case (46) and (47). In this

case (200), is modified as follows:
Hs(z) = (1 + Psz)bs , (202)

where bs are defined in (191) and parameters Ps coincide inside blocks, i.e., Ps = Ps′ for s, s′ ∈ Si ,
i = 1, . . . , k . The parameters Ps 6= 0 satisfy the relations [54,107,121]:

Ps(Ps + 2µ) = −B̄s/bs, (203)

s ∈ S , and the parameters B̄s/bs coincide inside blocks, i.e., B̄s/bs = B̄s′/bs′ for s, s′ ∈ Si ,
i = 1, . . . , k .

For earlier supergravity solutions, see [122,123] and the references therein.

Finite-dimensional Lie algebras:

Let (Ass′) be a Cartan matrix for a finite-dimensional semisimple Lie algebra G . In this case,
all powers in (191) are natural numbers, which coincide with the components of twice the dual Weyl
vector in the basis of simple co-roots [11], and hence, all functions Hs are polynomials, s ∈ S .

Conjecture 1. Let (Ass′) be a Cartan matrix for a semisimple finite-dimensional Lie algebra G . Then,
the solutions to Equations (197)–(199) (if they exist) have a polynomial structure:

Hs(z) = 1 +
ns

∑
k=1

P(k)
s zk, (204)

where P(k)
s are constants, k = 1, . . . , ns ; ns = bs = 2 ∑s′∈S Ass′ ∈ N and P(ns)

s 6= 0 , s ∈ S .

In the extremal case ( µ = +0 ), an analogue of this conjecture was suggested previously in [94].
Conjecture 1 was verified for the Am and Cm+1 Lie algebras in [51,52]. Explicit expressions for
polynomials corresponding to Lie algebras C2 and A3 were obtained in [124,125], respectively.

Remark 7. In various notations, the A1 -solution with H = 1 + P
R appeared earlier for dilatonic black hole

solutions in [126] and [127,128] ( D = 4 ) and was extended to the multidimensional case in [127–130] (the
results of [128] seem to be correct ones up to a typo in the first Formula (2.1) for the action in [128], which
should be eliminated: the kinetic term for the scalar field should be multiplied by extra factor 1/2 ). A special
case with λ2 = 1/2 ( λ is dilatonic coupling) was considered earlier in [131,132].
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Example 6. Solution for A2 .

Here, we consider solutions related to the Lie algebra A2 = sl(3) with the Cartan matrix

(Ass′) =

(
2 −1
−1 2

)
. (205)

According to the results of previous section, we seek the solutions to Equations (197)–(199) in the
following form (see (204); here, n1 = n2 = 2 ):

Hs = 1 + Psz + P(2)
s z2, (206)

where Ps = P(1)
s and P(2)

s 6= 0 are constants, s = 1, 2 .
From (197) we get for P1 + P2 + 4µ 6= 0 [50]:

P(2)
s =

PsPs+1(Ps + 2µ)

2(P1 + P2 + 4µ)
, B̄s = −

Ps(Ps + 2µ)(Ps + 4µ)

P1 + P2 + 4µ
, (207)

s = 1, 2 . Here, we denote s + 1 = 2, 1 for s = 1, 2 , respectively. For P1 + P2 + 4µ = 0 , we get a
special (exceptional) solution with P1 = P2 = −2µ , 2P(2)

s = B̄s > 0 and B̄1 + B̄2 = 4µ2 .
Thus, in the A2 -case, the non-exceptional solution is described by Relations (193)–(196) with

S = {s1, s2} (identified with {1, 2}) , intersection rules:

d(Is1 ∩ Is2) = ∆(s1, s2)− K, (208)

where symbol ∆(s1, s2) is defined in (60) and K = Ksi = (Usi , Usi) 6= 0 ; functions Hsi = Hi are
defined by Relations (212) and (207) with z = R−d̄ , i = 1, 2 .

The 4d dilatonic dyon solution corresponding to the Lie algebra A2 [51] (with λ2 = 3/2 , where
λ is dilatonic coupling) after Kaluza–Klein uplift to D = 5 gives us the well-known Gibbons–Wiltshire
solution [133], which is in an agreement with the general spherically-symmetric dyon solution (related
to A2 Toda chain) from [134].

A2 -dyon in D = 11 supergravity: Let us consider dyonic black-hole solutions with electric
two-brane and magnetic five-brane defined on the manifold:

M = (2µ,+∞)× (M1 = S2)× (M2 = R)×M3 ×M4, (209)

where dimM3 = 2 and dimM4 = 5 . The solution reads,

g = H1/3
1 H2/3

2

{
dR⊗ dR

1− 2µ/R
+ R2dΩ2

2 (210)

−H−1
1 H−1

2

(
1− 2µ

R

)
dt⊗ dt + H−1

1 ĝ3 + H−1
2 ĝ4

}
,

F = −Q1

R2 H−2
1 H2dR ∧ dt ∧ τ̂3 + Q2τ̂1 ∧ τ̂3, (211)

where metrics g2 and g3 are Ricci-flat metrics of Euclidean signature, and Hs are defined by (212),
where z = R−1 and parameters Ps , P(2)

s , B̄s = Bs = −2Q2
s , s = 1, 2 , satisfy (207).

The solution describes the A2 -dyon consisting of electric two-brane with world volume
isomorphic to (M2 = R)×M3 and magnetic five-brane with world volume isomorphic to (M2 =

R)×M4 . The “branes” are intersecting on the time manifold M2 = R . Here, Ks = (Us, Us) = 2 ,
εs = −1 for all s ∈ S . In our notations, the A2 intersection rule reads: 3∩ 6 = 1 .
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The field configurations (210) and (211) also satisfies to equations of motion for D = 11
supergravity (in this case, F ∧ F = 0 ). This solution in a special case H1 = H2 = H2 ( P1 = P2 ,
Q2

1 = Q2
2 ) was considered in [121]. The four-dimensional section of the metric (210) in this special case

coincides with the Reissner–Nordström metric. In the extremal case, µ→ +0 , the multi-black-hole
generalization was considered in [46].

It should be noted that black hole solutions corresponding to Lie algebras An = sl(n + 1) were
considered in [135].

Hyperbolic KM algebras: Let (Ass′) be a Cartan matrix for an infinite-dimensional hyperbolic
KM algebra G . In this case, all powers in (191) are negative numbers, and hence, we have no chance
to get a polynomial structure for Hs . Here, we are led to an open problem of seeking solutions to the
set of “master” Equations (197)–(198). These solutions define special solutions to Toda-chain equations
corresponding to the hyperbolic KM algebra G .

Example 7. Black hole solutions for A1 ⊕ A1 , A2 and H2(q, q) KM algebras.

Let us consider the four-dimensional model governed by the action:

S =
∫

M
d4z
√
|g|{R[g]− εgMN∂M ϕ∂N ϕ− 1

2
e2λϕ(F1)2 − 1

2
e−2λϕ(F2)2}. (212)

Here, F1 and F2 are two-forms, ϕ the scalar field, and ε = ±1 .
We consider a black brane solution defined on R∗ × S2 ×R with two electric branes s1 and s2

corresponding to forms F1 and F2 , respectively, with the sets I1 = I2 = {2} . Here, R∗ is the subset
of R , M1 = S2 , g1 = dΩ2

2 , the canonical metric on S2 , M2 = R , g2 = −dt⊗ dt and ε1 = ε2 = −1 .
The scalar products of U -vectors are (we identify Ui = Usi ):

(U1, U1) = (U2, U2) =
1
2
+ ελ2 6= 0, (U1, U2) =

1
2
− ελ2. (213)

The matrix A from (58) is a generalized non-degenerate Cartan matrix if and only if:

2(U1, U2)

(U2, U2)
= −q, (214)

or equivalently,

ελ2 =
2 + q

2(2− q)
, (215)

where q = 0, 1, 3, 4, ... . This takes place when:

ε = +1, q = 0, 1, (216)

ε = −1, q = 3, 4, 5, ... (217)

and:
λ2 =

2 + q
2|2− q| . (218)

The first branch ( ε = +1 ) corresponds to finite dimensional Lie algebras A1 ⊕ A1 ( q = 0 ),
A2 ( q = 1 ), and the second one ( ε = −1 ) corresponds to hyperbolic KM algebras H2(q, q) ,
q = 3, 4, ... . In the hyperbolic case, the scalar field ϕ is a phantom (ghost).
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The black brane solution reads (see (193)–(195)):

g = (H1H2)
h
{(

1− 2µ

R

)−1
dR⊗ dR + R2dΩ2

2 (219)

−(H1H2)
−2h

(
1− 2µ

R

)
dt⊗ dt

}
,

exp(ϕ) = (H1/H2)
ελh, (220)

Fs =
Qs

R2 H−2
s (Hs̄)

qdt ∧ dR, (221)

s = 1, 2 . Here, h = (2− q)/2 and s̄ = 2, 1 for s = 1, 2 , respectively.
The moduli functions Hs > 0 obey the Equations (see (197)):

d
dz

(
(1− 2µz)

Hs

d
dz

Hs

)
=

2Q2
s

q− 2
H−2

s (Hs̄)
q, (222)

with the boundary conditions Hs((2µ)−1 − 0) = Hs0 ∈ (0,+∞) , Hs(+0) = 1 , s = 1, 2 , imposed.
Here, µ > 0 , z = 1/R ∈ (0, (2µ)−1) . For q = 0, 1 , the solutions to Equations (222) with the boundary
conditions imposed were given in [50–52]. They are polynomials of degrees one and two for q = 0
and q = 1 , respectively. For q = 3, 4, . . . , the exact solutions to Equation (222) are not known yet.

Special solution with Q2
1 = Q2

2 :

Now, we consider the special one-block solution from (202) and (201). Since bs = 2/(2− q) and
B̄s = 2Q2

s /(q− 2) , it takes place when Q2
1 = Q2

2 = Q2 > 0 . The moduli functions read:

Hs = H2/(2−q), H = 1 + Pz, (223)

where z = 1/R and q 6= 2 . These functions obey Hs(z) > 0 for z ∈ [0, (2µ)−1] if P > −2µ ( µ > 0 ).
Due to this inequality and the relation P(P + 2µ) = Q2 (following from (203)), we get:

P = −µ +
√

µ2 + Q2 > 0. (224)

In this special case, the solution (219)–(221) has the following form:

g = H2
{(

1− 2µ

R

)−1
dR⊗ dR + R2dΩ2

2 (225)

−H−4
(

1− 2µ

R

)
dt⊗ dt

}
,

ϕ = 0, (226)

Fs =
Qs

H2R2 dt ∧ dR, (227)

s = 1, 2 . Remarkably, this special solution does not depend on q . The metric (225) coincides with the
metric of the Reissner–Nordström solution (when the Maxwell two-form is F =

√
2Q(HR)−2dt ∧ dR ).

In the extremal case µ → +0 , we are led to the special case of a
Majumdar–Papapetrou-type solution:

g = H2 ĝ0 − H−2dt⊗ dt, (228)

ϕ = 0, (229)

Fs = νsdH−1 ∧ dt, (230)
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where g0 = ∑3
i=1 dxi ⊗ dxi , H is a harmonic function on M0 = R3 and ν2

s = 1 , s = 1, 2 . Here, νs =

−Qs/Q .

Example 8. Black brane solution corresponding to the KM algebra HA(1)
2 = A++

2 .

Now, we consider the B15 -model in 15-dimensional pseudo-Euclidean space of signature
(−,+, ...,+) with the forms F4 ,..., F8 .

Here, we deal with four electric branes s1, s2, s3, s4 corresponding to the six-form F6 . The brane
sets are: I1 = {1, 2, 3, 11, 12} , I2 = {4, 5, 6, 11, 12} , I3 = {7, 8, 9, 11, 12} , I4 = {1, 4, 10, 11, 12} .

It may be verified that these sets obey the intersection rules corresponding to the hyperbolic KM
algebra HA(1)

2 with the Cartan matrix (168) (see (61) with Isi = Ii ).
Now, we give a black brane solution for the configuration of four branes under consideration.
In what follows, the relations εs = +1 and hs = 1/2 , s ∈ S , are used.
The metric (193) reads [136]:

g = (H1H2H3H4)
5/13

{(
1− 2µ

R

)−1
dR⊗ dR + R2dΩ2

2 (231)

−(H1H2H3H4)
−1
[(

1− 2µ

R

)
dt1 ⊗ dt1 + dt2 ⊗ dt2

]

+(H1H4)
−1dx1 ⊗ dx1 + H−1

1 [dx2 ⊗ dx2 + dx3 ⊗ dx3]

+(H2H4)
−1dx4 ⊗ dx4 + H−1

2 [dx5 ⊗ dx5 + dx6 ⊗ dx6]

+H−1
3 [dx7 ⊗ dx7 + dx8 ⊗ dx8 + dx9 ⊗ dx9]

+H−1
4 dx10 ⊗ dx10

}
.

Here, t1 = x11 and t2 = x12 are time-like variables. In this case, the 2× 2 gravitational mass
matrix (Mij) [137,138] is a degenerate one.

The non-zero form field is:

F6 = −Q1R−2H−2
1 H2H3dR ∧ dt1 ∧ dt2 ∧ dx1 ∧ dx2 ∧ dx3 (232)

−Q2R−2H1H−2
2 H3dR ∧ dt1 ∧ dt2 ∧ dx4 ∧ dx5 ∧ dx6

−Q3R−2H1H2H−2
3 H4dR ∧ dt1 ∧ dt2 ∧ dx7 ∧ dx8 ∧ dx9

−Q4R−2H3H−2
4 dR ∧ dt1 ∧ dt2 ∧ dx1 ∧ dx4 ∧ dx10,

where Qs 6= 0 , s = 1, 2, 3, 4 .
The scalar fields read:

ϕα = −1
2

λ6α ln(H1H2H3H4), (233)

α = 1, 2, 3, 4 . Here, Hs > 0 obey the equations:

d
dz

(
(1− 2µz)

Hs

d
dz

Hs

)
= 2Q2

s

4

∏
s′=1

H−Ass′
s′ , (234)

with the boundary conditions Hs((2µ)−1 − 0) = Hs0 ∈ (0,+∞) and Hs(+0) = 1 , s = 1, ..., 4 .
Here, µ > 0 , z = R−1 ∈ (0, (2µ)−1) and (Ass′) is the Cartan matrix (168) for the KM algebra HA(1)

2 .
Special one-block solution: This solution is valid when a special set of charges is considered:

Q2
s = Q2|bs|, (235)
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where Q 6= 0 and:

bs = 2
4

∑
s′=1

Ass′ = −12,−12,−14,−6, (236)

for s = 1, 2, 3, 4 , respectively. In this case, the moduli functions read:

Hs = Hbs , H = 1 + P/R, (237)

where P(P + 2µ) = 2Q2 . These functions obey H > 0 for R ∈ [2µ,+∞) if P > −2µ ( µ > 0 ).
Due to this inequality and the relation P(P + 2µ) = Q2 , we get:

P = −µ +
√

µ2 + 2Q2 > 0. (238)

The Hawking temperature in this case is [54] TH = (1 + P/2µ)22/(8πµ) . It diverges as µ→ +0 .
This is in agreement with the fact that the metric (231) has a singularity at R = +0 if µ = +0 .

Example 9. Black brane solution corresponding to the Lorentzian KM algebra P10 .

Now, we consider another solution for the B15 -model in 15-dimensional pseudo-Euclidean space
of signature (−,+, ...,+) with the non-zero six-form F6 .

Here, we deal with ten electric branes s1, ..., s10 corresponding to the four-form F4 . The
brane sets are: I1 = {1, 4, 7, 11, 12} , I2 = {8, 9, 10, 11, 12} , I3 = {2, 5, 7, 11, 12} , I4 =

{4, 6, 10, 11, 12} , I5 = {2, 3, 9, 11, 12} , I6 = {1, 2, 8, 11, 12} , I7 = {1, 3, 10, 11, 12} , I8 =

{4, 5, 8, 11, 12} , I9 = {3, 6, 7, 11, 12} , I10 = {5, 6, 9, 11, 12} .
These sets obey the intersection rules corresponding to the Lorentzian KM algebra P10 (Petersen

algebra) with the Cartan matrix (179).
Let us present a black brane solution for the configuration of 10 electric branes under

consideration. The metric (193) reads [136]:

g =

(
10

∏
s=1

Hs

)5/13 {(
1− 2µ

R

)−1
dR⊗ dR + R2dΩ2

2 (239)

−
(

10

∏
s=1

Hs

)−1 [(
1− 2µ

R

)
dt1 ⊗ dt1 + dt2 ⊗ dt2

]

+(H1H6H7)
−1dx1 ⊗ dx1

+(H3H5H6)
−1dx2 ⊗ dx2 + (H5H7H9)

−1dx3 ⊗ dx3

+(H1H4H8)
−1dx4 ⊗ dx4 + (H3H8H10)

−1dx5 ⊗ dx5

+(H4H9H10)
−1dx6 ⊗ dx6 + (H1H3H9)

−1dx7 ⊗ dx7

+(H2H6H8)
−1dx8 ⊗ dx8 + (H2H5H10)

−1dx9 ⊗ dx9

+(H2H4H7)
−1dx10 ⊗ dx10

}
.
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The form field is:

F6 = −Q1R−2H−2
1 H2H5H10dR ∧ dt1 ∧ dt2 ∧ dx1 ∧ dx4 ∧ dx7 (240)

−Q2R−2H1H−2
2 H3H9dR ∧ dt1 ∧ dt2 ∧ dx8 ∧ dx9 ∧ dx10

−Q3R−2H2H−2
3 H4H7dR ∧ dt1 ∧ dt2 ∧ dx2 ∧ dx5 ∧ dx7

−Q4R−2H3H−2
4 H5H6dR ∧ dt1 ∧ dt2 ∧ dx4 ∧ dx6 ∧ dx10

−Q5R−2H1H4H−2
5 H8dR ∧ dt1 ∧ dt2 ∧ dx2 ∧ dx3 ∧ dx9

−Q6R−2H4H−2
6 H9H10dR ∧ dt1 ∧ dt2 ∧ dx1 ∧ dx2 ∧ dx8

−Q7R−2H3H−2
7 H8H10dR ∧ dt1 ∧ dt2 ∧ dx1 ∧ dx3 ∧ dx10

−Q8R−2H5H7H−2
8 H9dR ∧ dt1 ∧ dt2 ∧ dx4 ∧ dx5 ∧ dx8

−Q9R−2H2H6H8H−2
9 dR ∧ dt1 ∧ dt2 ∧ dx3 ∧ dx6 ∧ dx7

−Q10R−2H1H6H7H−2
10 dR ∧ dt1 ∧ dt2 ∧ dx5 ∧ dx6 ∧ dx9,

where Qs 6= 0 , s = 1, . . . , 10 .
The scalar fields read:

ϕα = −1
2

λ6α ln

(
10

∏
s=1

Hs

)
, (241)

α = 1, 2, 3, 4 . Here, Hs > 0 obey the equations:

d
dz

(
(1− 2µz)

Hs

d
dz

Hs

)
= 2Q2

s

10

∏
s′=1

H−Ass′
s′ , (242)

with the boundary conditions Hs((2µ)−1 − 0) = Hs0 ∈ (0,+∞) , and Hs(+0) = 1 , s = 1, ..., 10 .
Here, µ > 0 , z = R−1 ∈ (0, (2µ)−1) , and (Ass′) is the Cartan matrix (179) for the KM algebra P10 .

Special one-block solution. Now, we consider a special one-block solution. This solution is valid
if a special set of charges is considered: Q2

s = 2Q2 ( Q 6= 0 ) in agreement with (235) and:

bs = 2
10

∑
s′=1

Ass′ = −2, (243)

for s = 1, ..., 10 . In this case, the functions Hs are:

Hs = H−2, H = 1 + P/R, (244)

where P(P + 2µ) = 2Q2 . As in the previous case, we get a well-defined solution for
P = −µ +

√
µ2 + 2Q2 > 0 and µ > 0 .

The Hawking temperature in this case has the following form: TH = (1 + P/2µ)10/(8πµ) . It is
smaller than that in the previous example, but it also diverges as µ→ +0 . It is in agreement with the
singularity of the metric (239) at R = +0 for µ = +0 .

6. Fluxbrane Solutions

6.1. Preliminary Notes

In past decades, there were many papers devoted to multidimensional generalizations
of the well-known Melvin solution [139]; for exact solutions and their applications,
see [67,126,128,133,140–165] and the references therein.

We remind that the original Melvin solution describes the gravitational field of a magnetic flux
tube. In the works of Gibbons and Wiltshire [133] and Gibbons and Maeda [128], the Melvin solution
was generalized to arbitrary dimensions (in [128] with the inclusion of dilaton), and hence, the simplest
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fluxbranes appeared (the term fluxbrane was suggested in [145]; the Melvin solution is currently
denoted as F1 ).

In papers [142–145], devoted to the Kaluza–Klein–Melvin solution (e.g., non-perturbative
instability and pair production of magnetically charged black holes), it was shown that F1-fluxbrane
supported by the potential one-form has a nice interpretation as a modding of flat space in one
dimension higher. This “modding” technique is widely used in the construction of new solutions
in supergravitational models and also for various physical applications in string and M-theory:
construction of exact string backgrounds [141], duality between 0A and I IA string theories [147], the
dielectric effect [150,151,153], construction of supersymmetric configurations [155,156], etc.

The “modding” technique may be also used for Fp-fluxbranes supported by forms of higher
ranks (constructed by the use of one-forms). Another approach suggested in [67,146], which works
for Fp-fluxbranes, is based on generating techniques for certain duality groups. An important result
here is a construction by Chen, Gal’tsov and Sharakin [146] of intersecting F6 and F3 fluxbranes
corresponding to M-branes in D = 11 supergravity.

The third and the most direct method is based on solving of Einstein equations [148,149,154]. Here,
we overview this approach using the p-brane solutions from [49] (for a review of p-brane solutions,
see [7,54]). We remind that in [49], a family of p-brane “cosmological-type” solutions with nearly
arbitrary (up to some restrictions) intersection rules were obtained (see Section 2). These solutions are
defined up to solutions to Toda-type equations and contain as a special case a subclass of solutions with
cylindrical symmetry. Here, we single out a subclass of generalized fluxbrane configurations related
to Toda-type equations with certain asymptotical conditions imposed (Section 3). These fluxbrane
solutions are governed by functions Hs(z) > 0 defined on the interval (0, z0) and obeying a set
of second order non-linear differential equations:

d
dz

(
z

Hs

d
dz

Hs

)
= B̂s ∏

s′∈S
H−Ass′

s′ , (245)

with the following boundary conditions imposed: Hs(+0) = 1 , s ∈ S ( S is a non-empty set). In (245),
all B̂s 6= 0 are constants, and (Ass′) is a “quasi-Cartan” matrix ( Ass = 2 ) coinciding with the Cartan
one when intersections are related to Lie algebras. In most interesting examples, z0 = +∞ , and
all B̂s > 0 .

We remind that different equations occur for black brane solutions from [50–52] (see Section 5):

d
dz

(
(1− 2µz)

Hs

d
dz

Hs

)
= B̄s ∏

s′∈S
H−Ass′

s′ , (246)

where µ > 0 is the extremality parameter, z ∈ (0, (2µ)−1) and all B̄s 6= 0 , (in most interesting cases,
B̄s < 0 ). For black brane solutions, the finite limits (on a horizon) Hs((2µ)−1 − 0) = Hs0 > 0 exist.

We note that fluxbrane “master equations” (245) may be obtained from the black brane ones (246)
in the limit µ→ ∞ . In [166], it was shown that black brane moduli functions may be obtained from
fluxbrane ones at least for small enough charge densities. For different aspects of p-brane/fluxbrane
correspondence, see [152,158].

6.2. The Choice of Parameters

In what follows, we put:
w = 1, d1 = 1, (247)

i.e., the manifold M1 is one-dimensional one and:

1 ∈ Is, ∀s ∈ S, (248)
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i.e., all branes contain the M1 -submanifold. We note that the restriction (R2) (32) is satisfied
automatically due to (248).

Here, we restrict ourselves to solutions with linear asymptotics at infinity:

qs = −βsu + β̄s + o(1), (249)

u→ +∞ , where βs, β̄s are constants, s ∈ S . This relation gives us an asymptotical solution to Toda
type Equation (107) if:

∑
s′∈S

Ass′β
s′ > 0, (250)

for all s ∈ S . In this case, the energy (112) reads:

ET =
1
4 ∑

s,s′∈S
hs Ass′β

sβs′ . (251)

We put:
c̄A = 0, β̄s = 0. (252)

A = (i, α) , s ∈ S (these relations guarantee the asymptotical flatness for u → +∞ of the
two-dimensional section of the metric for M1 = S1 and g1 = dφ⊗ dφ ).

We also put:

cA = −δA
1 + ∑

s∈S
hsβsUsA, (253)

βs = 2 ∑
s′∈S

Ass′ , (254)

where s ∈ S , A = (i, α) , and the matrix (Ass′) is inverse to the matrix (Ass′) = (2(Us, Us′)/(Us′ , Us′)) .
It may be verified that the constraints (109) and (132) are satisfied identically, due to the conditions (247)
and (248).

Relations (253) and (254) look similar to analogous relations for black branes [51,52,54]; see
Equations (190) and (191), which appear from the horizon condition.

6.3. The Main Solution

We introduce a new radial variable:

exp(−u) = ρ (255)

and denote:
Hs = fse−βsu = e−qs−βsu, (256)

s ∈ S . Then, the solutions (10)–(12) may be written as follows [159]:

g =
(
∏
s∈S

H2hsd(Is)/(D−2)
s

){
dρ⊗ dρ (257)

+
(
∏
s∈S

H−2hs
s

)
ρ2 ĝ1 +

n

∑
i=2

(
∏
s∈S

H−2hsδiIs
s

)
ĝi
}

,

exp(ϕα) = ∏
s∈S

H
hsχsλα

as
s , (258)

Fa = ∑
s∈S

δa
asF s, (259)
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where:

F s = −Qs

(
∏
s′∈S

H−Ass′
s′

)
ρdρ ∧ τ(Is), (260)

s ∈ Se ,
F s = Qsτ( Īs), (261)

s ∈ Sm .
Here, Qs 6= 0 , hs = K−1

s ; parameters Ks 6= 0 and the non-degenerate matrix (Ass′) are defined
by the relations:

(Ass′) = (2Bss′/Bs′s′) , (262)

where:

Bss′ ≡ d(Is ∩ Is′) +
d(Is)d(Is′)

2−D
+ χsχs′λαas λβas′ h

αβ, (263)

s, s′ ∈ S , with (hαβ) = (hαβ)
−1 .

Here, we assume that:
(i) Bss 6= 0, (264)

for all s ∈ S , and:
(ii) det(Bss′) 6= 0, (265)

i.e., the matrix (Bss′) is a non-degenerate one.
Functions Hs > 0 obey the equations:

d
ρdρ

(
ρ

Hs

dHs

dρ

)
= Bs ∏

s′∈S
H−Ass′

s′ , (266)

s ∈ S , where Bs 6= 0 are defined in (108). These equations follow from Toda-type Equation (107) and
the definitions (255) and (256).

It follows from (249), (252) and (256) that there exist finite limits:

Hs → 1, (267)

s ∈ S , for ρ→ 0 .
For the cylindrically-symmetric case:

M1 = S1, g1 = dφ⊗ dφ, (268)

0 < φ < 2π , we get a family of composite fluxbrane solutions. They are defined up to solutions to
radial Equation (266) with the boundary conditions (267) imposed. We note that the conic singularity
for ρ = +0 is absent due to (267), and the metric is smooth if all moduli functions are positive.

In the next subsections, we consider several exact solutions to Equations (266) and (267).
Another possibility:

M1 = R, g1 = −dt⊗ dt, (269)

−∞ < t < +∞ ( t is a time variable), will lead us to the generalized Milne-type solution.

6.4. Fluxbrane Intersection Rules

The fluxbrane submanifold (world volume) is isomorphic to M( Īs) and has the following
dimension:

d( Īs) = D− 1− d(Is), (270)
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s ∈ S ; see (20)–(23). The fluxbrane intersection rules read:

d( Īs ∩ Īs′) = D− 1− d(Is)− d(Is′) + d(Is ∩ Is′), (271)

s 6= s′ , with p -brane intersections defined in (262). This relation follows from the identity:

Īs ∩ Īs′ = I0 \ (Is ∪ Is′), (272)

see (56).
We note that here we use p-brane notations for the description of flux p-branes or Fp -branes.

An electric (magnetic) p-brane corresponds to a magnetic (electric) F(D− 3− p) fluxbrane.

6.5. Polynomial Structure of Hs for Finite-Dimensional Semi-Simple Lie Algebras

Now, we deal with solutions to second order non-linear differential Equation (266) that may be
rewritten as follows:

d
dz

(
z

Hs

d
dz

Hs

)
=

1
4

Bs ∏
s′∈S

H−Ass′
s′ , (273)

where Hs(z) > 0 , s ∈ S , z = ρ2 . Equation (267) reads:

Hs(z = +0) = 1, (274)

s ∈ S .
In general, one may try to seek solutions of (273) in a class of functions analytical in some

disc |z| < L :

Hs(z) = 1 +
∞

∑
k=1

P(k)
s zk, (275)

where P(k)
s are constants, s ∈ S . Substitution of (275) into (273) gives us an infinite chain of relations

on parameters P(k)
s and Bs . The first relation in this chain:

Ps ≡ P(1)
s =

1
4

Bs, (276)

s ∈ S , corresponds to the z0 -term in the decomposition of (273). For analytical function Hs(z) (275)
( z = ρ2 ), the metric (257) is regular at ρ = 0 .

Orthogonal case: Meanwhile, there exist solutions to Equations (273)–(274) of the polynomial
type. The simplest example occurs in the orthogonal case, when:

(Us, Us′) = Bss′ = 0, (277)

for s 6= s′ , s, s′ ∈ S . In this case, (Ass′) = diag(2, . . . , 2) is a Cartan matrix for a semisimple Lie
algebra A1 ⊕ . . .⊕ A1 and:

Hs(z) = 1 + Psz, (278)

with Ps 6= 0 satisfying (276) (for the A1 -case, see [154]).
Block-orthogonal case: The solution (278) may be generalized to so-called “block-orthogonal”

(BO) case:
S = S1 t · · · t Sk, (279)

Si 6= ∅ , i.e., the set S is a union of k non-intersecting (non-empty) subsets S1, . . . , Sk , and:

(Us, Us′) = 0 (280)
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for all s ∈ Si , s′ ∈ Sj , i 6= j ; i, j = 1, . . . , k . For “block-orthogonal” black branes, see [108,121]. In this
case, (278) is modified as follows:

Hs(z) = (1 + P̄sz)βs
, (281)

where βs are defined in (254) and parameters P̄s are coinciding inside blocks, i.e., P̄s = P̄s′ for
s, s′ ∈ Si , i = 1, . . . , k , and satisfy the following relations:

P̄s = Bs/(4βs), (282)

for βs 6= 0 , s ∈ S . In this case, Hs are analytical in |z| < L , where L = min(|P̄s|−1, s ∈ S ).
Let (Ass′) be a Cartan matrix for a finite-dimensional semisimple Lie algebra G . In this case, all

powers in (254) are natural numbers:

βs = 2 ∑
s′∈S

Ass′ = ns ∈ N, (283)

and hence, all functions Hs are polynomials, s ∈ S . Integers ns coincide with the components of the
twice dual Weyl vector in the basis of simple co-roots [11], which appeared earlier in Section 6.

Conjecture 2. Let (Ass′) be a Cartan matrix for a semisimple finite-dimensional Lie algebra G . Then,
the solution to Equations (273) and (274) (if exists) is a polynomial:

Hs(z) = 1 +
ns

∑
k=1

P(k)
s zk, (284)

where P(k)
s are constants, k = 1, . . . , ns , and integers ns are defined in (283) and P(ns)

s 6= 0 , s ∈ S .

This conjecture may be verified for Lie algebras Am , Cm+1 repeating all arguments from [51,52]
for the black brane case with the replacement of F(z) = 1− 2µz by F(z) = z .

6.6. Solutions for Lie Algebra A2

Let us consider the Lie algebra A2 = sl(3) with the Cartan matrix (205).
According to Conjecture 2, we seek the solutions to Equations (273)–(274) in the following form

( n1 = n2 = 2 ):
Hs = 1 + Psz + P(2)

s z2, (285)

where Ps and P(2)
s 6= 0 are constants, s = 1, 2 .

The substitution of (285) into Equation (273) and decomposition in powers of z lead us to relations
(276) and:

P(2)
s =

1
4

P1P2. (286)

Thus, in the A2 -case, the solution is described by relations (257)–(261) with S = {s1, s2} , p-brane
intersection rules (262) or, equivalently,

d(Is1 ∩ Is2) =
d(Is1)d(Is2)

D− 2
− χs1 χs2 λas1

· λas2
− 1

2
K, (287)

d(Isi)−
(d(Isi))

2

D− 2
+ λasi

· λasi
= K, (288)

where K = Ksi 6= 0 , and functions Hsi = Hi are defined by Relations (276), (285) and (286) with
z = ρ2 , i = 1, 2 .
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6.7. Examples of Fluxbrane Solutions

Here, we present certain examples of fluxbrane solutions with M1 = S1 and g1 = dφ⊗ dφ .
In all examples below, the total metric g has the signature (−,+, ...,+) , and all (p-brane) signature
parameters are positive: εs = ε(Is) = +1 (here, all θa = 1 ). In what follows, 0 < ρ < +∞ . In all
examples, the metrics are regular at ρ = 0 .

6.7.1. Solutions for Algebra A1

We start with single fluxbrane solutions ( S = {s} ).
Melvin solution ( F1 fluxbrane): Let D = 4 , n = 3 , M2 = R with g2 = −dt⊗ dt and M3 = R

with g3 = dη⊗ dη , and Is = {1} . The solution reads [139]:

g = H2
{

dρ⊗ dρ + H−4ρ2dφ⊗ dφ− dt⊗ dt + dη⊗ dη

}
. (289)

F = −QH−2ρdρ ∧ dφ, (290)

where H = 1 + 1
8 Q2ρ2 . Here, −Q is proportional to magnetic field in the core.

F6 fluxbrane (corresponding to M2 -brane): Consider D = 11 supergravity with the metric g
and four-form F in the bosonic sector [2]. Let n = 3 , M3 be a seven-dimensional (Ricci-flat) manifold
with the metric g3 = g3

µνdxµ ⊗ dxν of signature (−,+, . . . ,+) and M2 be a two-dimensional (flat)
manifold of signature (+,+) with the metric g2 = g2

mndym ⊗ dyn and Is = {1, 2} . The solution
reads:

g = H1/3
{

dρ⊗ dρ + H−1(ρ2dφ⊗ dφ + ĝ2) + ĝ3
}

, (291)

F = −QH−2ρdρ ∧ dφ ∧ τ̂2, (292)

where H = 1 + 1
2 Q2ρ2 . For flat g3 , this solution was obtained earlier in [146].

F3 fluxbrane (corresponding to M5 -brane): Now, we consider the solution dual to F6 .
Let n = 3 , M3 be the four-dimensional (Ricci-flat) manifold with the metric g3 = g3

µνdxµ ⊗ dxν of
signature (−,+,+,+) , and M2 be the five-dimensional (Ricci-flat) manifold of signature (+, . . . ,+)

with the metric g2 = g2
mndym ⊗ dyn and Is = {1, 2} . The solution reads:

g = H2/3
{

dρ⊗ dρ + H−1(ρ2dφ⊗ dφ + ĝ2) + ĝ3
}

, (293)

F = Qτ̂3, (294)

where H = 1 + 1
2 Q2ρ2 . For flat g2 and g3 , see [146].

F7, F6, F5 and F1, F2, F3 fluxbranes in I IA supergravity: The bosonic part of action for D = 10
I IA supergravity reads:

S =
∫

d10z
√
|g|
{

R[g]− (∂ϕ)2 −
4

∑
a=2

e2λa ϕ(Fa)2
}
− 1

2

∫
F4 ∧ F4 ∧ A2, (295)

where Fa = dAa−1 + δa
4 A1 ∧ F3 is an a-form, a = 2, 3, 4 , and:

λ2 = 3λ4, λ3 = −2λ4, λ2
4 = 1/8. (296)

The dimensions of p-brane world volumes are:

d = d(a, χ) =

{
1, 2, 3 in electric case, χ = +1,
7, 6, 5 in magnetic case, χ = −1,

(297)
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for a = 2, 3, 4 , respectively.
The fluxbrane solutions read:

g = Hd/8
{

dρ⊗ dρ + H−1ρ2dφ⊗ dφ + H−1 ĝ2 + ĝ3
}

, (298)

exp(2ϕ) = Hχλa , (299)

and:
Fa = −QH−2ρdρ ∧ τ̂2, for χ = +1, (300)

or
Fa = Qτ̂3, for χ = −1, (301)

with H = 1 + 1
2 Q2ρ2 , a = 2, 3, 4 .

For χ = +1 , we get a F(9− a) fluxbrane with d2 = a − 2 , d3 = 10− a , and for χ = −1 ,
we obtain a (dual) F(a− 1) fluxbrane with d2 = 8− a , d3 = a , ( a = 2, 3, 4 ) (here, the presence of
Chern–Simons terms does not modify the solutions from Section 6.3).

6.7.2. Solution for Algebra A1 ⊕ A1

F6 ∩ F3 fluxbranes. We put n = 5 , d2 = 1 , g2 = dy2 ⊗ dy2 , d3 = 1 , g3 = dy3 ⊗ dy3 ,
d4 = 4 ; g4 has the Euclidean signature, d5 = 3 ; g5 has the signature (−,+,+) ; Ise = {1, 2, 3} and
Ism = {1, 2, 4} . The solution has the following form:

g = H1/3
e H2/3

m

{
dρ⊗ dρ + H−1

e H−1
m (ρ2dφ⊗ dφ + ĝ2) + H−1

e ĝ3 + H−1
m ĝ4 + ĝ5

}
, (302)

F = −QeH−2
e ρdρ ∧ dφ ∧ dy2 ∧ dy3 + Qmdy3 ∧ τ̂5, (303)

where Hs = 1 + 1
2 Q2

s ρ2 , s = e, m . For flat gi , see [146].

6.7.3. Solutions for Algebra A2

F6 ∩ F3 fluxbranes with A2 -intersection: Now, we consider a new F6 ∩ F3 fluxbrane
configuration with (a non-standard) A2 intersection rules defined on the manifold:

M = (0,+∞)×M1 ×M2 ×M3 ×M4, (304)

where d2 = 2 , d3 = 5 , d4 = 2 . The solution is as follows:

g = H1/3
e H2/3

m

{
dρ⊗ dρ + H−1

e H−1
m ρ2dφ⊗ dφ + H−1

e ĝ2 + H−1
m ĝ3 + ĝ4

}
, (305)

F = −QeH−2
e Hmρdρ ∧ dφ ∧ τ̂2 + Qmτ̂2 ∧ τ̂4, (306)

where metrics g2 and g3 are (Ricci-flat) metrics of Euclidean signature, g4 is the (flat) metric of the
signature (−,+) and:

Hs = 1 + Psρ2 +
1
4

P1P2ρ4, (307)

where Ps =
1
2 Q2

s , s = e, m .
Dyonic flux tube in Kaluza-Klein model: Let us consider the four-dimensional model:

S =
∫

M
d4z
√
|g|
{

R[g]− gµν∂µ ϕ∂ν ϕ− 1
2!

exp[2λϕ]F2
}

(308)
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with scalar field ϕ , two-form F = dA and λ = −
√

3/2 . This model originates after Kaluza–Klein
reduction of five-dimensional gravity. The five-dimensional metric in this case reads:

g(5) = Φgµνdxµ ⊗ dxν + Φ−2(dy +A)⊗ (dy +A), (309)

where:
A =

√
2A =

√
2Aµdxµ, Φ = exp(2ϕ/

√
6). (310)

We consider the “dyonic” flux-tube solution defined on the manifold:

M = (0,+∞)× (M1 = S1)×M2, (311)

where M2 = R2 and g2 = −dt⊗ dt + dη ⊗ dη . This solution reads:

g = (He Hm)
1/2
{

dρ⊗ dρ− H−1
e H−1

m ρ2dφ⊗ dφ− dt⊗ dt + dη ⊗ dη

}
, (312)

exp ϕ = Hλ/2
e H−λ/2

m , (313)

F = dA = −Qe H−2
e Hmρdρ ∧ dφ + Qmdt ∧ dη, (314)

where functions Hs are defined by Relations (307),
For the five-metric, we obtain from (309)–(313):

g(5) = Hm{dρ⊗ dρ + H−1
e H−1

m ρ2dφ⊗ dφ− dt⊗ dt + dη ⊗ dη} (315)

+HeH−1
m (dy +A)⊗ (dy +A),

dA =
√

2F . For Qm → 0 , we get the solution from [128], and for Qe → 0 , we are led to its dual
version (see [146]).

6.8. Generalized Melvin Solution with Several Two-Forms

Now, we consider a generalization of the Melvin solution, which was presented earlier in [162].
It appears in the model that contains the metric, n Abelian two-forms and l ≥ n scalar fields.
The action reads:

S =
∫

dDx
√
|g|
{

R[g]− hαβgMN∂M ϕα∂N ϕβ − 1
2

n

∑
s=1

exp[2λs(ϕ)](Fs)2
}

, (316)

where g = gMN(x)dxM ⊗ dxN is a metric, ϕα are scalar fields, α = 1, . . . , l ; (hαβ) is symmetric
non-degenerate l× l matrix, Fs = dAs = 1

2 Fs
MNdzM ∧ dzN are two-forms and λs are linear functions:

λs(ϕ) = λsα ϕα , s = 1, ..., n .
This solution is governed by a certain non-degenerate (quasi-Cartan) matrix (Ass′) ,

s, s′ = 1, . . . , n . It is a special case of the so-called generalized fluxbrane solutions from [159];
see Relations (257)–(259).

Here, we assume that (Ass′) is a Cartan matrix for some simple finite-dimensional Lie algebra G
of rank n ( Ass = 2 for all s ). According to Conjecture 2 [159], the solutions to master Equation (245)
with the boundary conditions imposed ( Hs(+0) = 1 ) are polynomials:

Hs(z) = 1 +
ns

∑
k=1

P(k)
s zk, (317)
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where P(k)
s are constants. Here, P(ns)

s 6= 0 and:

ns = 2
n

∑
s′=1

Ass′ , (318)

where we denote (Ass′) = (Ass′)
−1 . Integers ns are components of a twice dual Weyl vector in the

basis of simple (co-)roots [11].
We consider a family of exact solutions to field equations corresponding to the action (316) and

depending on one variable ρ . The solutions are defined on the manifold:

M = (0,+∞)×M1 ×M2, (319)

where M1 is a one-dimensional manifold (say S1 or R ) and M2 is a (D-2)-dimensional Ricci-flat
manifold. The solution reads [162]:

g =
( n

∏
s=1

H2hs/(D−2)
s

){
wdρ⊗ dρ +

( n

∏
s=1

H−2hs
s

)
ρ2dφ⊗ dφ + ĝ2

}
, (320)

exp(ϕα) =
n

∏
s=1

Hhsλα
s

s , (321)

Fs = qs

(
n

∏
s′=1

H−Ass′
s′

)
ρdρ ∧ dφ, (322)

s = 1, . . . , n ; α = 1, . . . , l , where w = ±1 , g1 = dφ ⊗ dφ is a metric on M1 and g2 is a
Ricci-flat metric on M2 . Here, qs 6= 0 are integration constants, qs = −Qs in the notations of
[162], s = 1, . . . , n .

The functions Hs(z) > 0 , z = ρ2 , obey the master equations:

d
dz

(
z

Hs

d
dz

Hs

)
= Ps

n

∏
s′=1

H−Ass′
s′ , (323)

with the following boundary conditions:

Hs(+0) = 1, (324)

where:
Ps =

1
4

Ksq2
s , (325)

s = 1, . . . , n .
The parameters hs satisfy the relations:

hs = K−1
s , Ks = Bss > 0, (326)

where:
Bss′ ≡ 1 +

1
2− D

+ λsαλs′βhαβ, (327)

s, s′ = 1, ..., n , with (hαβ) = (hαβ)
−1 . In the relations above, we denote λα

s = hαβλsβ and:

(Ass′) = (2Bss′/Bs′s′) . (328)

It may be shown that if the matrix (hαβ) has a Euclidean signature, l ≥ n , and (Ass′) is a Cartan
matrix for a simple Lie algebra G of rank n , there exists a set of co-vectors λ1, . . . , λn obeying (328).
Thus, the solution is valid at least when l ≥ n , and the matrix (hαβ) is positive-definite.
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The solution under consideration is a special case of the fluxbrane (for w = +1 , M1 = S1 ) and
S-brane ( w = −1 ) solutions from [159,161], respectively.

If w = +1 and the (Ricci-flat) metric g2 has a pseudo-Euclidean signature, we get a
multidimensional generalization of Melvin’s solution [139].

In our notations, Melvin’s solution (without the scalar field) corresponds to D = 4 , n = 1 , l = 0 ,
M1 = S1 ( 0 < φ < 2π ), M2 = R2 , g2 = −dt⊗ dt + dx⊗ dx and G = A1 .

For w = −1 and g2 of the Euclidean signature, we obtain a cosmological solution with a horizon
(as ρ = +0 ) if M1 = R (−∞ < φ < +∞ ).

Flux integrals for simple finite-dimensional Lie algebras: Here, we deal with the solution that
corresponds to a simple finite-dimensional Lie algebra G , i.e., the matrix A = (Ass′) coincides with
the Cartan matrix of this Lie algebra. We put also n = l , w = +1 and M1 = S1 , hαβ = δαβ and
denote (λsa) = (λa

s ) = ~λs , s = 1, . . . , n .
Due to (326)–(328), we get:

Ks =
D− 3
D− 2

+~λ2
s , (329)

hs = K−1
s , and

~λs~λl =
1
2

Kl Asl −
D− 3
D− 2

, (330)

s, l = 1, . . . , n . ((329) is a special case of (330)).
Now, let us consider the oriented two-dimensional manifold M∗ = (0,+∞) × S1 . The flux

integrals:

Φs =
∫

M∗
Fs = 2π

∫ +∞

0
dρρBs, (331)

where:

Bs = qs

n

∏
l=1

H−Asl
l , (332)

are convergent for all s , if the conjecture for the Lie algebra G (on polynomial structure of moduli
functions Hs ) is obeyed for the Lie algebra G under consideration.

Indeed, due to polynomial assumption (317), we have:

Hs ∼ Csρ2ns , Cs = P(ns)
s , (333)

as ρ→ +∞ ; s = 1, . . . , n . From (332) and (333) and the equality ∑n
1 Aslnl = 2 , following from (323),

we get:

Bs ∼ qsCsρ−4, Cs =
n

∏
l=1

C−Asl
l , (334)

and hence, the integral (331) is convergent for any s = 1, . . . , n .
By using master Equation (323), we obtain:

∫ +∞

0
dρρBs = qsP−1

s
1
2

∫ +∞

0
dz

d
dz

(
z

Hs

d
dz

Hs

)
(335)

=
1
2

qsP−1
s lim

z→+∞

(
z

Hs

d
dz

Hs

)
=

1
2

nsqsP−1
s ,

which implies (see (325)) [165]:
Φs = 4πnsq−1

s hs, (336)

s = 1, . . . , n .
Thus, any flux Φs depends on one integration constant qs 6= 0 , while the integrand form Fs

depends on all constants: q1, . . . , qn .
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We note that for D = 4 and g2 = −dt⊗ dt + dx ⊗ dx , qs is coinciding with the value of the
x-component of the magnetic field on the axis of symmetry.

Here, we present fluxbrane polynomials corresponding to Lie algebras A1 , A2 , A3 , C2 , G2

and related fluxes. Here, as in [166], we use other parameters ps instead of Ps :

ps = Ps/ns, (337)

s = 1, ..., n .
A1 -case: The simplest example occurs in the case of the Lie algebra A1 = sl(2) . Here, n1 = 1 .

We get [159]:
H1 = 1 + p1z (338)

and:
Φ1 = 4πq−1

1 h1, (339)

which is also valid for Melvin’s solution with D = 4 and h1 = 2 .
A2 -case: For the Lie algebra A2 = sl(3) with the Cartan matrix:

(Ass′) =

(
2 −1
−1 2

)
(340)

we have [159,161,166] n1 = n2 = 2 and:

H1 = 1 + 2p1z + p1 p2z2, (341)

H2 = 1 + 2p2z + p1 p2z2. (342)

We get in this case:
(Φ1, Φ2) = 8πh(q−1

1 , q−1
2 ), (343)

where h1 = h2 = h .
A3 -case: The polynomials for the A3 -case read as follows [166,167]:

H1 = 1 + 3p1z + 3p1 p2z2 + p1 p2 p3z3, (344)

H2 = 1 + 4p2z + 3
(

p1 p2 + p2 p3

)
z2 + 4p1 p2 p3z3 + p1 p2

2 p3z4, (345)

H3 = 1 + 3p3z + 3p2 p3z2 + p1 p2 p3z3. (346)

Here, we have (n1, n2, n3) = (3, 4, 3) and:

(Φ1, Φ2, Φ3) = 4πh(3q−1
1 , 4q−1

2 , 3q−1
3 ) (347)

with h1 = h2 = h2 = h .
C2 -case: For the Lie algebra C2 = so(5) with the Cartan matrix:

(Ass′) =

(
2 −1
−2 2

)
(348)

we get n1 = 3 and n2 = 4 . For C2 -polynomials, we obtain [161,166]:

H1 = 1 + 3p1z + 3p1 p2z2 + p2
1 p2z3, (349)

H2 = 1 + 4p2z + 6p1 p2z2 + 4p2
1 p2z3 + p2

1 p2
2z4. (350)

In this case, we find:
(Φ1, Φ2) = 4π(3h1q−1

1 , 4h2q−1
2 ) (351)
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where h1 = 2h2 .
G2 -case: For the Lie algebra G2 with the Cartan matrix:

(Ass′) =

(
2 −1
−3 2

)
(352)

we get n1 = 6 and n2 = 10 . In this case, the fluxbrane polynomials read [161,166]:

H1 = 1 + 6p1z + 15p1 p2z2 + 20p2
1 p2z3 + (353)

15p3
1 p2z4 + 6p3

1 p2
2z5 + p4

1 p2
2z6,

H2 = 1 + 10p2z + 45p1 p2z2 + 120p2
1 p2z3 + p2

1 p2(135p1 + 75p2)z4 (354)

+252p3
1 p2

2z5 + p3
1 p2

2

(
75p1 + 135p2

)
z6 + 120p4

1 p3
2z7

+45p5
1 p3

2z8 + 10p6
1 p3

2z9 + p6
1 p4

2z10.

We are led to relations:
(Φ1, Φ2) = 4π(6h1q−1

1 , 10h2q−1
2 ) (355)

where h1 = 3h2 .
Fluxbrane polynomials and fluxes, corresponding to the Lie algebra E6 , were calculated recently

in [168].

Remark 8. The relation for flux integrals (336) is also valid when the matrix (Ass′) is a Cartan matrix of a
finite-dimensional semi-simple Lie algebra G = G1 ⊕ · · · ⊕ Gk , where G1, . . . ,Gk are simple Lie (sub)algebras.
In this case, the Cartan matrix (Aij) has a block-diagonal form, i.e., (Aij) = diag((A(1)

i1 j1
), · · · , (A(k)

ik jk
)) ,

where (A(a)
ia ja) is the Cartan matrix of the Lie algebra Ga , a = 1, . . . , k . The set of polynomials in this case

splits in the direct union of sets of polynomials corresponding to Lie algebras G1, . . . ,Gk .

An open problem here is to study the convergence of flux integrals for non-polynomial solutions
for moduli functions corresponding to non-Cartan matrices (Ass′) , e.g., for the model with two
two-forms from [169], see also [170–173] and the references therein.

7. Conclusions

Here, we reviewed several families of exact solutions in multidimensional gravity with a set of
scalar fields and fields of forms related to non-singular (e.g., hyperbolic) KM algebras.

The solutions describe composite electromagnetic branes defined on warped products of Ricci-flat,
or sometimes Einstein, spaces of arbitrary dimensions and signatures. The metrics are block-diagonal,
and all scale factors, scalar fields and fields of forms depend on the points of some manifold M0 .
The solutions include those depending on harmonic functions, S-branes and spherically-symmetric
solutions (e.g., black-branes). Our approach is based on the sigma-model representation obtained
in [56] under the rather general assumption of intersections of composite branes (when the stress-energy
tensor has a diagonal structure).

We were dealing with rather general intersection rules [55] governed by the invertible
generalized Cartan matrix corresponding to the certain generalized KM Lie algebra G . For
G = A1 ⊕ · · · ⊕A1 ( r terms), we get the well-known standard (e.g., supersymmetry preserving)
intersection rules [56,60–62].

We have also considered a class of special “block-orthogonal” solutions corresponding to
semisimple KM algebras and governed by several harmonic functions. Certain examples of one-block
solutions (e.g., corresponding to KM algebras H2(q, q) , AE3 ) were considered.
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In the one-block case, a generalization of the solutions to those governed by several functions of
one harmonic function H and obeying Toda-type equations was presented.

For finite-dimensional (semi-simple) Lie algebras, we are led to integrable Lagrange systems,
while the Toda chains corresponding to infinite-dimensional (non-singular) KM algebras are not
well studied yet. Some examples of S-brane solutions corresponding to Lorentzian KM algebras
HA(1)

2 = A++
2 , E10 and P10 were presented.

We have also considered general classes of cosmological-type solutions (e.g., S-brane
and spherically-symmetric solutions) governed by Toda-type equations, containing black brane
configurations as a special case. The “master” equations for moduli functions have polynomial
solutions in the finite-dimensional case (according to our conjecture [50–52]), while in the
infinite-dimensional case, we have only a special family of the so-called block-orthogonal solutions
corresponding to semi-simple non-singular KM algebras. Examples of four-dimensional dilatonic
black hole solutions corresponding to KM algebras A1 ⊕ A1 , A2 and H2(q, q) ( q > 2 ) were given.

We note that the problem of integrability of Toda chain equations corresponding to (non-singular)
KM algebras arises also in the context of fluxbrane solutions [159] that have also a polynomial structure
of moduli functions for finite-dimensional Lie algebras (see also [162]). (For similar S-brane solutions
governed by polynomial functions and their applications in connection with cosmological problems,
see [161,174,175].)

Here, we were dealing only with the case of non-degenerate matrix A . It is an open problem
to find general classes of solutions with branes for the degenerate case when det A = 0 (e.g.,
corresponding to affine KM algebras). Some special solutions of such a type with the maximal
set of composite electric S-branes (e.g., when A is not obviously a generalized Cartan matrix) were
found in [176,177] and generalized in [178,179] for the arbitrary (anti-)self-dual parallel charge density
form of dimension 2m defined on the Ricci-flat Riemannian sum-manifold of dimension 4m . In
these examples, the restrictions on brane intersections were replaced by more general condition on the
stress-energy tensor: TM

N = 0 , M 6= N .
Here, we have also presented a short review of a family of fluxbrane solutions with general

intersection rules. The metrics of solutions contain n Ricci-flat metrics. The solutions are defined
up to a set of “moduli” functions Hs obeying a set of equations with the boundary conditions
imposed. These solutions are new and generalize many special fluxbrane solutions considered earlier
in the literature.

Here, we suggested a conjecture on polynomial structure of Hs for intersections related to
semisimple Lie algebras. This conjecture is valid for Lie algebras Am and Cm+1 , m ≥ 1 , as may be
verified with a little modification of the proof for the black brane case.

We have presented explicit formulas for A1 ⊕ . . .⊕ A1 (orthogonal), block-orthogonal and A2

solutions. These formulas are illustrated by certain examples of solutions in D = 10, 11 supergravities
(e.g., with A2 intersection rules) and the Kaluza–Klein dyonic A2 flux tube.

We have also considered the generalized Melvin solution for an arbitrary simple finite-dimensional
Lie algebra G . The solution contains metric, n Abelian two-forms and n scalar fields, where n is
the rank of G . It is governed by a set of n moduli functions Hs(z) obeying n ordinary differential
equations with certain boundary conditions imposed. As was conjectured earlier, these functions
should be polynomials, the so-called fluxbrane polynomials, which depend on integration constants
qs , s = 1, . . . , n . In the case when the conjecture on the polynomial structure for the Lie algebra
G is satisfied, it is proven that two-form flux integrals Φs over a proper 2d submanifold are finite
and obey relations qsΦs = 4πnshs , where hs > 0 are certain constants (related to dilatonic coupling
vectors) and ns are powers of the polynomials, which are components of a twice dual Weyl vector in
the basis of simple (co-)roots, s = 1, . . . , n . Examples of polynomials and fluxes for Lie algebras A1 ,
A2 , A3 , C2 , G2 are presented.

An open problem is to study the fluxes for the solutions related to infinite-dimensional Lorentzian
Kac–Moody algebras, e.g., hyperbolic ones. In this case, one should deal with phantom scalar fields
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in the model and non-polynomial solutions to master equations for moduli functions. The methods
considered in this paper may be used in the study of the mathematical aspects of the higher dimensional
version of the modified gravity model [180–182] with several scalar fields and fields of forms.
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