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1 Introduction

There is now very strong evidence that an eleven dimensional M-theory plays a fun-

damental role in string theory (see [1] for a recent review). The low-energy limit of

M-theory is D=11 supergravity but it is not yet known what the correct underlying

microscopic theory is∗. It is known that D=11 supergravity and hence M-theory con-

tains solitonic membranes, “M2-branes”, and fivebranes, “M5-branes”, which play an

important role in the dynamics of the theory. Both of these solitons preserve 1/2 of the

supersymmetry and hence are BPS states. BPS states are states that preserve some

supersymmetry and are an important class of states as we have some control over their

behaviour as various moduli are allowed to vary. It is an important question to under-

stand the spectrum of BPS states in M-theory and we will see that there is a large class

of states corresponding to intersecting M2-branes and M5-branes.

String theory in D=10 also contains a rich spectrum of BPS branes. In the type

IIA and IIB theories there are branes that carry charges arising from both the Neveu-

Schwarz-Neveu-Schwarz (NSNS) and the Ramond-Ramond (RR) sectors of the world-

sheet theory. The former class consists of the fundamental strings and the solitonic

fivebranes, “NS5-branes”. The second class of branes, the “D-branes”, have a simple

perturbative description as surfaces in flat space where open strings can end, which has

played a central role in recent string theory developments [3]. By dimensionally reducing

the intersecting brane solutions of M-theory we obtain type IIA solutions corresponding

to intersecting NS- and D-branes. Various string dualities then enable one to construct

all of the supergravity solutions corresponding to intersecting branes in both the type

IIA and IIB theories. The properties of these supergravity solutions complement what

we can learn about the various branes using string perturbation theory.

∗It has been proposed that M -theory in the infinite momentum frame is given by the large N limit of

a certain quantum mechanics based on N ×N matrices [2]. This interesting development was discussed

by H. Verlinde in his lectures at the School and we refer the reader to his article for more details.
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Since solitons are a key ingredient in duality studies, a great deal of effort has been

devoted to constructing general soliton solutions of supergravity theories in various di-

mensions. The intersecting brane solutions in D=11 and D=10 provide a unified view-

point since many of the other soliton solutions can be obtained by dimensional reduction

and duality transformations. Understanding the general structure of intersecting brane

solutions is an involved task: a partial list of references is: [4]-[38]. In these lectures

we will only consider BPS intersections, but we note here that non-BPS solutions have

also been studied. BPS intersecting branes fall into two categories which have been

termed “marginal” and “non-marginal” [34]. Roughly speaking the mass and charges

Qi of marginal configurations satisfy M = ΣQi while for the non-marginal cases one

has M2 = ΣQ2
i , corresponding to non-zero binding energy. For the most part we will

be focusing on the marginal intersections. The non-marginal solutions can be obtained

from the marginal solutions by dimensional reduction and/or duality transformations.

They were discussed by J. Russo in his lectures at this school.

Our main focus will be on supergravity solutions with an emphasis on M-theory. It

is worth pointing out in advance that there are a number of important applications of

intersecting brane configurations which we will not be discussing in much detail. Let

us briefly highlight just two here. The first is to provide a microscopic state counting

interpretation of black hole entropy[39]†. One can construct classical solutions corre-

sponding to intersecting D-branes that give rise upon dimensional reduction to black

holes with non-zero Bekenstein-Hawking entropy. By exploiting the perturbative D-

brane point of view one can count the number of open string microstates that give rise

to the same macroscopic quantum numbers that the black hole carries and one finds

perfect agreement. It should be noted that while the perturbative calculation is valid at

weak coupling the supergravity black hole spacetime is valid at strong coupling and one

must invoke supersymmetry to argue that the state counting calculation is unchanged

as one varies the coupling. Although this is an exciting development there is still more

†See S. Das’s contribution to the proceedings for more details and references.
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to be understood on how these two complementary views of black holes are related.

A second application is to use BPS intersecting branes to study the infrared dynamics

of supersymmetric gauge theories [40, 41] (and references therein). One considers differ-

ent types of branes intersecting in an appropriately chosen arrangement. The low-energy

dynamics on the world-volume of one type of brane is associated with a supersymmetric

quantum field theory that one wishes to study. By considering the low-energy dynam-

ics from the point of view of different branes and allowing the branes to move around,

enables one, in certain cases, to determine the low-energy effective dynamics of the field

theory. This has proven to be a very powerful tool to study supersymmetric gauge

theories in three and four spacetime dimensions. It is worth noting that in a recent

development some aspects of the supergravity solutions of branes in M-theory played

an important role [42].

The plan of the rest of the paper is as follows. In section 2 we discuss orthogonal

intersections of branes in M-theory. In section 3 we discuss the intersections of NS-

and D-branes in type IIA and IIB string theory. Section 4 reviews recent solutions on

supersymmetric configurations of branes that intersect non-orthogonally and section 5

concludes.

2 Intersecting M-Branes

2.1 M2-branes and M5-branes

The low-energy effective action of M-theory is D=11 supergravity. The bosonic field

content consists of a metric, gMN , and a three-form potential, AMNP , with four-form
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field strength FMNPQ = 24∇[MANPQ]. The action for the bosonic fields is given by

S =
∫ √
−g

{
R−

1

12
F 2 −

1

432
εM1...M11FM1...M4FM5...M8AM9...M11

}
. (1)

Supersymmetric solutions to the corresponding equations of motion can be constructed

by looking for bosonic backgrounds that admit Killing spinors i.e., backgrounds which

admit spinors such that the supersymmetry variation of the gravitino field ψM vanishes:[
DM +

1

144
(ΓM

NPQR − 8δNMΓPQR)FNPQR

]
ε = 0, (2)

where ε is a 32-component Majorana spinor.

The M2-brane solution [43] takes the form

ds2 = H1/3[H−1
(
−dt2 + dx2

1 + dx2
2

)
+
(
dx2

3 + . . . dx2
10

)
]

Ft12α =
c

2

∂αH

H2
, H = H(x3, . . . , x10), ∇2H = 0, c = ±1. (3)

We have written the metric with an overall conformal factor as this form will be con-

venient when we discuss intersecting M-branes. The solution admits Killing spinors of

the form ε = H−1/6η where η is constant and satisfies

Γ̂012η = cη, (4)

where Γ̂0...p ≡ Γ̂0 . . . Γ̂p is the product of p+1 distinct Gamma matrices in an orthonormal

frame. Using the fact that (Γ̂012)2 = 1 and that TrΓ̂012 = 0 we conclude that the M2-

brane solution has 16 Killing spinors and preserves (breaks) half of the supersymmetry.

The solution is governed by a single harmonic function that depends on the coordinates

~x = {x3, . . . , x10} and we first take it to be of the form

H = 1 +
a

r6
, r = |~x| . (5)

The solution then describes a single membrane with world-volume orientated along the

{0, 1, 2} hyperplane located at r = 0. The M2-brane carries electric four-form charge

Qe which is defined as the integral of the seven-form‡ ∗F around a seven-sphere that

‡To be more precise we should integrate ∗F +A ∧ F , since the field equation is d ∗ F + F ∧ F = 0.
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surrounds the brane and is proportional to ca. If c = 1 we have an M2-brane, while

if c = −1 we have an anti-M2-brane. We will often not distinguish between branes

and antibranes in the following. The ADM mass per unit area or ADM tension T can

be calculated and is proportional to |Qe| as one requires for a BPS state. The metric

appears to be singular at r = 0. However, it has been shown that this surface is in fact

a regular degenerate event horizon [44]. The metric can be continued into an interior

region and it is here that a real curvature singularity is located. By generalising the

harmonic function to have many centres

H = 1 +
k∑
I=1

aI

r4
I

, rI = |~x− ~xI | , (6)

we obtain k parallel M2-branes located at positions ~xI .

The construction of the M5-brane solution [45] runs along similar lines. The solution

is given by

ds2 = H2/3
[
H−1

(
−dt2 + dx2

1 + . . . dx2
5

)
+
(
dx2

6 + . . .+ dx2
10

)]
Fα1...α4 =

c

2
εα1...α5∂α5H, H = Hi(x6, . . . , x10), c = ±1, (7)

where εα1...α5 is the flat D=5 alternating symbol. It again admits 16 Killing spinors

given by ε = H−1/12η where η now satisfies the projection:

Γ̂012345η = cη. (8)

For a single M5-brane we choose the harmonic functions to be

H = 1 +
a

r4
, r = |~x| , (9)

where ~x = {x6, . . . , x10}. The M5-brane carries magnetic four-form charge Qm which

is obtained by integrating F around a four-sphere that surrounds the M5-brane and is

proportional to ca. c = ±1 correspond to an M5- and an anti-M5-brane respectively.

The ADM tension is again proportional to |Qm| in line with unbroken supersymmetry.

The M5-brane is a completely regular solution as was shown in [46]. A configuration of
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parallel multi-M5-branes is obtained by generalising the single center harmonic function

to have many centres.

The dimensional reduction of D=11 supergravity on a circle leads to D=10 type

IIA supergravity. Indeed this is necessary for the type IIA string theory to be dual to

M-theory. There are two distinct ways in which the M-brane solutions can be dimen-

sionally reduced to D=10: they can be “wrapped” or “reduced”, as we now explain

(we will also return to this in section 3). Since both the M2-brane and the M5-brane

are independent of the coordinates tangent to the world-volume of the branes we can

demand that one of them is a periodic spatial coordinate upon which we compactify.

The result of this wrapping leads to the fundamental string and the D4-brane solutions,

respectively, of type IIA theory. If we denote the compactified direction as x10, we find

that the membrane carries electric two-form Aµν10 charge while the four-brane carries

magnetic three-form Aµνρ charge. The process of reducing along a direction transverse

to the world-volume is slightly more involved. To obtain a solution that is periodic in

such a direction, x10 say, we construct a periodic array of either M2- or M5-branes

i.e., we take a multi M-brane solution with the branes lined up along the x10 direction

and equally spaced by a distance 2πR. The solution obtained by dimensional reduction

along the x10 direction will have non-trivial dependence on the compactified coordinate

or equivalently the D=10 solution will have massive Kaluza-Klein modes excited. If we

average over the compact coordinate, i.e., if we ignore the massive modes, then we obtain

the D2-brane and the NS5-brane solutions, respectively, of type IIA supergravity. The

former carries electric Aµνρ charge and the latter magnetic Aµν10 charge. A more direct

way to get these IIA solutions is simply to take the harmonic functions for the D=11

M2- or the M5-brane to be independent of one of the transverse directions. A brane

solution whose harmonic function is independent of a number of transverse coordinates

is sometimes said to be “delocalised”, “averaged” or “smeared” over those directions.

Delocalised branes will appear when we discuss intersecting brane solutions.
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2.2 Intersecting M-branes

We now turn to solutions corresponding to intersecting M-branes. We begin by present-

ing the generalized supersymmetric solution for two M2-branes orthogonally “overlap-

ping” in a point [5, 7] which we will denote by M2 ⊥M2(0):

ds2 = (H1H2)1/3 [− (H1H2)−1 dt2 +H−1
1

(
dx2

1 + dx2
2

)
+H−1

2

(
dx2

3 + dx2
4

)
+
(
dx2

5 + . . .+ dx2
10

)
],

Ft12α =
c1

2

∂αH1

H2
1

, Ft34α =
c2

2

∂αH2

H2
2

, α = 5, . . . , 10.

Hi = Hi(x5, . . . , x10), ∇2Hi = 0, ci = ±1, i = 1, 2. (10)

There are Killing spinors of the form ε = (H1H2)−1/6η, where η is constant and satisfies

the algebraic constraints

Γ̂012η = c1η

Γ̂034η = c2η. (11)

Since [Γ̂012, Γ̂034] = 0 and Tr(Γ̂012)(Γ̂034) = 0, each condition projects out an independent

half of the spinors and we conclude that there are eight Killing spinors and hence the

solution preserves 1/4 of the supersymmetry.

The functions Hi are harmonic in the coordinates ~x = {x5, . . . , x10} and we first take

them to be of the form

Hi = 1 +
ai

r4
i

, ri = |~x− ~xi| . (12)

The solution then describes a membrane oriented in the {1, 2} plane with position ~x1 and

another oriented in the {3, 4} plane with position ~x2 orthogonally overlapping in a point.

To see this we note that the solution is a kind of superposition of each individual M2-

brane solution. For the directions tangent to the ith membrane the metric appears with

the inverse of the harmonic function i.e., H−1
i , and the directions transverse to the ith

M2-brane are independent ofHi exactly as in (3). Moreover, the overall conformal factor
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is the product of the two harmonic functions to the appropriate power, as one expects for

M2-branes. In the degenerate case that ~x1 = ~x2, an M2-brane with {1, 2} orientation

intersects one with {3, 4} orientation. Note that the special case when H1 = H2 was

first constructed by Güven [45]§.

A more general solution has harmonic functions of the form

Hi = 1 +
ki∑
I=1

ai,I
r4
i,I

, ri,I = |~x− ~xi,I | . (13)

The solution then describes k1 parallel membranes with {1, 2} orientation and positions

~x1,I , and k2 parallel membranes with {3, 4} orientation and positions ~x2,I . Each mem-

brane of one set orthogonally overlaps all of the membranes in the other set in a point.

A membrane with {1, 2} orientation intersects one with {3, 4} orientation in the case

that ~x1,I = ~x2,J , for some combination I, J . Note that in describing the solutions in the

rest of the paper we will implicitly take the harmonic functions to be that of a single

brane as in (12) for ease of exposition.

There is a potentially confusing point with our interpretation of (10). To explain

this lets first introduce some terminology: we refer to common tangent directions as

being tangent directions common to all branes. In the case that the branes intersect

rather than overlap these are the intersection directions. Relative transverse directions

are those tangent to at least one but not all branes and overall transverse directions

are those orthogonal to all branes. The two harmonic functions in (10) are invariant

under the common tangent direction, i.e., the time direction in this case, and also under

translations in all the relative transverse directions x1, . . . , x4. In particular, we note

that H1 does not fall off in the x3, x4 directions, as one would expect for a D=11

membrane spatially oriented in the {1, 2} plane. i.e., the H1 membrane is delocalised

in the directions tangent to the other M2-brane. Similarly the H2 M2-brane in the

§This was described as a “4-brane” solution in [45] because of the SO(4) invariance in the (1, 2, 3, 4)

directions. The problem with this interpretation is the absence of boost invariance that single branes

possess and it is best interpreted as a special case of the M2 ⊥M2(0) solution.
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{3, 4} plane is delocalised in the directions tangent to the M2-brane lying in the {1, 2}

plane. It is natural to conclude that our interpretation of the solutions as describing

intersecting branes is valid but that we have not found the most general fully localised

solutions. In a later subsection we will discuss more general solutions that make some

progress in this direction.

Since the M2-branes are delocalised in the directions tangent to the other brane, we

can immediately consider the solution (10) in a dimensionally reduced context with all

relative transverse directions periodically identified. This implies, e.g., that the mem-

brane with spatial orientation in the {1, 2} plane has been reduced in the {3, 4} directions

to give a membrane in D=9 and then wrapped in the {1, 2} directions to give a point ob-

ject in D=7 that carries electric charge of the D=7 gauge field Aµ12. Similarly the other

M2-brane is a point object in D=7 carrying electric charge with respect to the gauge

field Aµ34. Thus, the dimensionally reduced solution may be regarded as two charged

D=7 black holes, each carrying an electric charge with respect to different U(1)’s. In the

intersecting case with ~x1 = ~x2 the two black holes are coincident and we could interpret

it as a single black hole that carries two charges. These BPS black holes solutions are

extremal and in fact have naked singularities. Later we will describe how extremal black

holes with non-zero horizon area can be constructed from intersecting branes.

The solutions (10) are generically singular on the surfaces ~x − ~xi = 0, with the

scalar curvature diverging. This behavior is different from that of a single M2-brane

where, as we have noted, these surfaces are regular event horizons. The singularity in

the present case arises because the M2-branes are delocalised in the relative transverse

dimensions. It is possible that more general localised solutions will exhibit a similar

singularity structure to that of a single M2-brane.

Lets now turn to configurations involving M5-branes. We will present a solution

describing an M2-brane intersecting a M5-brane in a onebrane, M2 ⊥ M5(1), and

another describing an M5-brane intersecting another M5-brane in a threebrane, M5 ⊥
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M5(3). Both solutions are constructed as a kind of superposition of their constituents.

There is another solution involving M5 ⊥ M5(1) which is qualitatively different and

will be discussed in a later subsection. The M2 ⊥M5(1) solution is given by [5, 7]

ds2 = H
2/3
1 H

1/3
2 [H−1

1 H−1
2 (−dt2 + dx2

1) +H−1
1

(
dx2

2 + dx2
3 + dx2

4 + dx2
5

)
+H−1

2

(
dx2

6

)
+
(
dx2

7 + dx2
8 + dx2

9 + dx2
10

)
],

F6αβγ =
c1

2
εαβγδ∂δH1, Ft16α =

c2

2

∂αH2

H2
2

, Hi = Hi(x7, . . . , x10), (14)

where εαβγδ is the D=4 flat space alternating symbol. The eight Killing spinors have

the form ε = H
−1/12
1 H

−1/6
2 η with the constant spinor η satisfying

Γ̂016η = c1η

Γ̂012345η = c2η. (15)

and we have used the fact that Γ̂10 = Γ̂0Γ̂1 . . . Γ̂9. If we choose the harmonic functions to

have single coincident centres then the solution describes a M5-brane in the {1, 2, 3, 4, 5}

direction and an M2-brane in the {1, 6}, intersecting in a string in the {1} direction.

The solution corresponding to M5 ⊥M5(3) is given by [4, 5, 7]

ds2 = (H1H2)2/3 [(H1H2)−1 (−dt2 + dx2
1 + dx2

2 + dx2
3) +H−1

1

(
dx2

4 + dx2
5

)
+H−1

2

(
dx2

6 + dx2
7

)
+
(
dx2

8 + dx2
9 + dx2

10

)
],

F67αβ =
c1

2
εαβγ∂γH1, F45αβ =

c2

2
εαβγ∂γH2, Hi = Hi(x8, x9, x10), (16)

where εαβγ is the D=3 flat space alternating symbol. The solution preserves 1/4 of the

supersymmetry and the Killing spinors are given by ε = (H1H2)−1/12η with the constant

spinor η satisfying the constraints

Γ̂012345η = c1η

Γ̂012367η = c2η. (17)

If we choose the harmonic functions to have single coincident centres then the solution

describes an M5-brane in the {1, 2, 3, 4, 5} direction intersecting an M5-brane in the

{3, 4, 5, 6, 7} direction.
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Note that in both solutions (14), (16) the harmonic functions again just depend on

the overall transverse directions. Thus, just as in the M2 ⊥M2(0) solution above, each

of the branes are delocalised along the directions tangent to the other. We will see later

how the solutions (14) and (16) can be obtained from (10) after dimensional reduction,

duality transformations and then uplifting back to D=11.

2.3 Multi-Intersections and Black Holes

In the last section we presented three basic intersections of two M-branes, each preserv-

ing 1/2 of the supersymmetry. We can construct solutions of n orthogonally intersecting

M-branes by simply ensuring that the branes are aligned along hyperplanes in such a

way that the pairwise intersections are amongst the allowed set. The solutions are then

constructed by superposing the solutions in a way that we have already seen: there is a

harmonic function H for each constituent brane that depends on the overall transverse

coordinates. It appears in the metric only as H−1 multiplying the directions tangent to

that brane and in the overall conformal factor with the appropriate power depending

on whether it is an M2- or an M5-brane. The four-form field strength has non-zero

components corresponding to those of each of the M-branes. This procedure [5, 7] has

been called the “harmonic function rule”.

Generically a configuration of n intersecting branes will preserve 2−n of the super-

symmetry [4, 5, 7]. This is because the Killing spinors are projected out by products of

Gamma matrices with indices tangent to each brane, and generically these projections

are independent. There are important exceptions to this rule which we will return to

in a moment [6, 7]. Let us illustrate this by discussing the cases for three intersecting

M-branes which all preserve 1/8 of the supersymmetry. There is a unique configuration

corresponding to three M2-branes. If the M2-branes are orientated along the {1, 2},
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{3, 4} and {5, 6} hyperplanes the metric is given by [5, 7]:

ds2 = (H1H2H3)1/3[−(H1H2H3)−1
dt2 +H−1

1

(
dx2

1 + dx2
2

)
+H−1

3

(
dx2

3 + dx2
4

)
+H−1

3

(
dx2

5 + dx2
6

)
+
(
dx2

7 + . . . dx2
10

)
], (18)

with the harmonic functions Hi = Hi(x7, x8, x9, x10).

There is also a unique configuration corresponding to two M2-branes and one M5-

brane and we can take the orientations of the branes to be in the {1, 2, 3, 4, 5}, {1, 6} and

{2, 7} hyperplanes. This solution provides us with the first special triple intersection.

To see this note that the product of the three Gamma matrix projections gives another

projection corresponding to an M5-brane in the {3, 4, 5, 6, 7} direction. This means that

we can obtain an M2 ⊥M2 ⊥M5 ⊥M5 configuration that breaks 1/8 supersymmetry

(and not 1/16 as one might naively expect) as long as we choose the polarisation of

the fourth M5-brane (i.e., whether it is a brane or anti-brane) to be determined by the

polarisations of the first three. The metric for this solution is given by [6]

ds2 = (H1H2)1/3(H3H4)2/3[−(H1H2H3H4)−1dt2 + (H1H3)−1
(
dx2

1

)
+ (H2H3)−1

(
dx2

2

)
+(H3H4)−1

(
dx2

3 + dx2
4 + dx2

5

)
+ (H1H4)−1

(
dx2

6

)
+ (H2H4)−1

(
dx2

7

)
+
(
dx2

8 + . . . dx2
10

)
], (19)

with the harmonic functions Hi = Hi(x
2
8 + . . . x10).

There are two ways in which two M5-branes and one M2-brane can intersect. The

first way is when they are oriented along the {1, 2, 3, 4, 5}, {3, 4, 5, 6, 7} and {1, 6} planes.

Note that this is again a special intersection and we can add an M2-brane in the {2, 7}

plane to return to the solution (19). The other intersection has the M2-brane lying in

the {3, 8} plane and the three branes intersect in a common string. For this solution

there are only two overall transverse directions and so the three harmonic functions have

logarithmic divergences.

Finally there are three ways in which three M5-branes can intersect. Take the first
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two to lie in the {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7} planes. The third M5-brane can be

placed in the {1, 2, 3, 6, 7} direction in which case there is an overall string intersection.

We shall return to this configuration in a moment. If third M5-brane is placed in the

{1, 3, 4, 6, 8} plane there is a common 2-brane intersection and we obtain a third special

triple intersection since we can add a fourth M5-brane in the {2, 3, 4, 7, 8} plane and

still preserve 1/8 supersymmetry. Note that this configuration has only two overall

transverse dimensions. The third case has the M5-brane lying in the {3, 4, 5, 8, 9} plane

and now there is only one overall transverse dimension.

Although conceptually clear it is slightly involved to list all of the supersymmetric

intersecting M-brane configurations and determine the amount of supersymmetry pre-

served taking into account the three special triple intersections. This was undertaken in

[25].

We now turn to intersecting brane configurations corresponding to BPS black holes

in D=4,5 that have non-zero horizon area. To obtain such a D=5 black hole we can

dimensionally reduce the M2 ⊥M2 ⊥M2 solution (18) along the six relative transverse

directions x1, . . . , x6. If we take the harmonic functions Hi to have a single coincident

centre we are led [4, 5, 7] to a black hole solution in D=5 that carries three electric

charges corresponding to three U(1)’s coming from the three-form components Aµ12,

Aµ34 and Aµ56. One can show that the BPS black hole is extremal and has non-zero

horizon area. There is another way to obtain such a D=5 black hole. One considers

the M2 ⊥ M5(1) solution (14) and adds momentum along the string direction. The

procedure for doing this is well known and the solution one gets is [5]

ds2 = H
2/3
1 H

1/3
2 [H−1

1 H−1
2 (dudv +Kdu2) +H−1

1

(
dx2

2 + dx2
3 + dx2

4 + dx2
5

)
+H−1

2

(
dx2

6

)
+
(
dx2

7 + dx2
8 + dx2

9 + dx2
10

)
], (20)

where u, v = x1±t and the function K is harmonic in the overall transverse coordinates:

in the simplest case of a single centre it corresponds to a “pp-wave” carrying momentum

in the string direction. It again preserves 1/8 susy. Reducing this to D=5 along the
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relative transverse directions and the string intersection, we obtain a black hole that

carries electric Aµ16 charge, magnetic Aµν6 charge (note that in D=5 this is dual to

a vector field) and electric Kaluza-Klein gµ1 charge corresponding to the momentum

running along the string.

Let us now see how D=4 black holes can be constructed from intersecting M-branes.

One way is to dimensionally reduce the M2 ⊥M2 ⊥M5 ⊥M5 solution (19) along the

relative transverse directions. In this way one obtains a black hole carrying two electric

and two magnetic charges. Another way is to consider three M5-branes all overlapping

in a common string, with momentum running along the common string direction [6]:

ds2 = (H1H2H3)2/3[(H1H2H3)−1
(
dudv +Kdu2

)
+ (H1H2)−1

(
dx2

2 + dx2
3

)
+ (H1H3)−1

(
dx2

4 + dx2
5

)
+ (H2H3)−1

(
dx2

6 + dx2
7

)
+
(
dx2

8 + . . . dx2
10

)
]. (21)

It should become clear in the next section that the different configurations of M-

branes giving black holes in either D=4 or D=5 can be related to each other by di-

mensional reduction and duality. There we will also discuss ways in which intersecting

D-branes give rise to black holes. The perturbative D-brane point view has been very

successfully exploited in giving a microscopic interpretation to black hole entropy. As

less is understood about M-brane dynamics it is harder to do this in M-theory. How-

ever, one can turn this around and see what we can learn about M-theory dynamics if

we demand that it is consistent with black hole entropy. This has been pursued in [6].

2.4 Dynamics of Intersections

As we have noted all of the solutions we have considered so far are delocalised along the

relative transverse directions i.e., in the directions tangent to all of the branes. As such,

the properties and dynamics of the intersection are somewhat occluded. Addressing this

directly at the level of finding more general solutions is an interesting open question but
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we can also obtain a great deal of insight using more general arguments [47, 48].

Lets begin by considering the possibility of an M2-brane ending on an M5-brane in

a string. One immediately faces a potential problem with charge conservation: consider

a seven-sphere surrounding the M2-brane. The integral of ∗F , along this seven sphere

gives the M2-brane charge Qe, where F is the four-form field strength. It might seem

that we could smoothly deform the sphere to a point by slipping it off the end past the

M5-brane and hence conclude that Qe must vanish. However, this argument ignores

what happens when the sphere is passed through the M5-brane. The argument can fail

if the charge can somehow be carried by the string boundary inside the M5-brane.

One way to study this is to include the world-volume dynamics of the M5-brane in

the supergravity equations of motion. The low-energy dynamics of an M5-brane and its

coupling to the spacetime supergravity fields can be described by a low-energy effective

action on the world-volume of the brane. This can be constructed from first principles

by determining the zero modes in the small fluctuations around a classical solution. The

dynamics for the M5-brane is governed by a D=6 (0, 2) supermultiplet multiplet whose

bosonic fields consist of 5 scalars and a two-form V2 that has self dual field strength [51].

The world-volume action contains the coupling |dV2 − A|2 where A is the supergravity

three-form pulled back to the world-volume: Aijk=Aµνρ∂iX
µ∂jX

ν∂kX
ρ, where Xµ are

the world-volume scalar coordinates. This modifies the A equation of motion to include

a world-volume source term. After integrating over an asymptotic seven sphere we

deduce that Qe =
∫
S3 ∗dV2 where the integral is a world-volume integral and ∗ is the

world-volume Hodge-dual. In the world-volume theory this integral is non-zero if there

is a self-dual string inside the six-dimensional world-volume. Thus we conclude that it

is possible for an M2-brane to end in a string on an M5-brane if the M2-brane charge is

carried by a self-dual string inside the world-volume theory. Note that it is also possible

reach an identical conclusion without having to introduce world-volume dynamics if one

takes into account the contribution of Chern-Simons couplings in the supergravity [48].
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This conclusion means that the M5-brane is a natural generalisation of a D-brane

in string theory to M-theory. It also suggests that we can think of the M2 ⊥ M5(1)

solution (14) as being associated with these configurations. It is possible that more

general supergravity solutions exist that have localised M2-branes ending on M5-branes.

They would be very interesting as they would illuminate the geometry of the boundary

of the M2-brane and the dynamics of the self-dual string. In general these solutions will

not be static and consequently will probably be highly non-trivial to construct. Perhaps

progress can be made by looking for localised solutions with an M2-brane ending on the

M5-brane from either side.

Similar arguments can be developed for self intersections of M-branes. The following

argument in fact works for all p-branes [4]. If we assume that we can consider a q-brane

intersection within a given p-brane as a dynamical object in the p+1-dimensional world-

volume field theory, then the condition that the p-brane can support a dynamical q-brane

intersection would be that its world volume contains a (q + 1)-form potential to which

the q-intersection can couple. The effective action of all p-branes contain scalar fields

which are the Goldstone modes arising from the fact that the classical p-brane solution

breaks translation invariance. These scalar fields have one-form field strengths which

can be dualised in the world-volume to give (p−1)-form dual potentials which can couple

to a q = (p− 2)-dimensional intersection. Hence we conclude that a p-brane can have a

dynamical self intersection in (p− 2) dimensions. The M2 ⊥ M2(0) and M5 ⊥ M5(3)

solutions (10), (16) are both consistent with this rule.

2.5 M5 ⊥M5(1)

There is another solution corresponding to two M5 branes overlapping in a string [7]:

ds2 = (H1H2)2/3 [(H1H2)−1(−dt2 + dx2
1) +H−1

2 (dx2
2 + dx2

3 + dx2
4 + dx2

5)

+H−1
1 (dx2

6 + dx2
7 + dx2

8 + dx2
9) + dx2

10]
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Fmnp10 = −
c1

2
εmnpq∂qH1, Fµνλ10 = −

c2

2
εµνλρ∂ρH2,

H1 = H1(x1
m), H2 = H2(x2

µ), ∇2Hi = 0, (22)

where x1
m = (x2, x3, x4, x5) and x2

µ = (x6, x7, x8, x9). For single center harmonic functions

this corresponds to an M5-brane with orientation {1, 2, 3, 4, 5} overlapping another with

orientation {1, 6, 7, 8, 9}. There are 16 Killing spinors of the form ε = (H1H2)−1/12η with

the constant spinor η satisfying

Γ̂016789η = c1η

Γ̂012345η = c2η, (23)

It satisfies the harmonic function rule but with a key difference: the harmonic func-

tions are now independent of the single overall transverse direction and only depend on

the relative transverse directions. That is, the M5-branes are now localised inside the

directions tangent to the other M5-brane but are delocalised in the overall transverse

direction that separates them.

Another interesting feature of this solution is that it does not satisfy the (p − 2)

dimensional self-intersection rule for p-branes that we discussed in the last subsection.

The resolution of this puzzle is quite interesting. A consequence of the Gamma-matrix

projections (23) is that Γ̂0110η = c1c2η. This suggests that we can add an M2-brane in

the {1, 10} plane without breaking further supersymmetry. Note that such a membrane

overlaps each of the M5-branes in a string which is allowed. The solution is given by

[34, 49]

ds2 = (H1H2)2/3H
1/3
3 [(H1H2H3)−1(−dt2 + dx2

1) +H−1
2 (dx2

2 + dx2
3 + dx2

4 + dx2
5)

+H−1
1 (dx2

6 + dx2
7 + dx2

8 + dx2
9) +H−1

3 dx2
10]

Fmnp10 = −
c1

2
εmnpq∂qH1, Fµνλ10 = −

c2

2
εµνλρ∂ρH2 Ft110I =

c1c2

2

∂IH3

H2
3

, (24)

where xI = (x1
m, x

2
µ) and the functionH3(x1

m, x
2
µ) corresponding to the M2-brane satisfies

the equation [
H−1

1 (x1)∂2
(x1) +H−1

2 (x2)∂2
(x2)

]
H3 = 0. (25)
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Functions of the form

H3(x1, x2) = h1(x1) + h2(x2), (26)

solve this equation if the hi are harmonic on E4, but point singularities of h1 or h2 would

represent membranes that are delocalized in four more directions. We expect that there

exist solutions of (25) representing localized membranes although explicit solutions may

be difficult to find. In the same way the solution M2 ⊥ M5(1) can be thought of as

being related to an M2-brane ending on an M5-brane we can think of the solution

(24) as corresponding to an M2-brane being stretched between two M5-branes. This

interpretation and the fact that we can add the extra M2-brane without breaking any

more supersymmetry also provides a resolution of the fact that the solution (22) violates

the (p− 2) self-intersection rule: when two M5-branes are brought together to intersect

on a string, one should think of the intersection as being a collapsed M2-brane.

This observation suggests the following nomenclature: the solutions M2 ⊥ M2(0),

M2 ⊥ M5(1) and M5 ⊥ M5(3) can be called intersecting brane solutions, since when

they do intersect (as opposed to overlap) they describe dynamical intersections. On the

otherhand the M5 ⊥ M5(1) solution should be described as an overlap since it is not

until we add an extra M2-brane that we get a dynamical intersection.

It is worth noting that if we remove one of the M5-branes in (24) we obtain a more

general solution than the previous M2 ⊥ M5(1) solution (14) in that the equation for

the M2-brane coming from (25) is more general than just a harmonic function in the

overall transverse coordinates. Again we do not know of any interesting solutions in

closed form. There are also generalisations of the M2 ⊥ M2(0) and M5 ⊥ M5(3)

solutions where one of the M-branes satisfies a more general equation. These can be

obtained by dimensional reduction and duality using the results of the next section.

Finally we note that more general configurations of multi-intersecting M-branes can be

obtained by combing these types of intersections with the previous ones. See [25] for

some results in this direction.
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3 Intersecting Branes in Type II String Theory

3.1 NS and D-branes

The chiral D=10 type IIA supergravity action can be obtained from dimensional reduc-

tion on a circle of D=11 supergravity. The Kaluza-Klein ansatz for the bosonic fields

leading to the string-frame 10-metric is

ds2
(11) = e−

2
3
φ(x)dxµdxνgµν(x) + e

4
3
φ(x)(dy + dxµCµ(x))2

A(11) = A(x) +B(x) ∧ dy , (27)

where A(11) is the D=11 3-form potential and xµ are the D=10 spacetime coordinates.

We read off from the right hand side the bosonic fields of D=10 IIA supergravity; these

are the NSNS fields (φ, gµν , Bµν) and the RR fields (Cµ, Aµνρ). The bosonic fields of the

D=10 type IIB supergravity coming from the NSNS sector are identical to that of the

type IIA theory, (φ, gµν , B
(1)
µν ). From the RR sector of the IIB theory there is an axion,

another two form and a four-form that has a self-dual field strength (l, B(1)
µν , A

+
µ1µ2µ3µ4

).

The rank of the various form potentials immediately suggests what the spectrum

of BPS branes is. A potential of rank r has a field strength of rank (r + 1) that can

be integrated along an (r + 1)-sphere which in D spacetime dimensions surrounds a

(D − 3 − r)-brane. The value of the integral gives the magnetic r-form charge carried

by the the (D − 3 − r)-brane. Similarly, the field strength of rank (D − 1 − r) that is

Poincare dual to the (r + 1)-form field strength can be integrated along a (D − 1 − r)

sphere that surrounds an (r−1)-brane. Now the integral gives the electric r-form charge

carried by the (r−1)-brane. Of course one still needs to check that such solutions to the

non-linear field equations exist and moreover to check if they admit any Killing spinors.

This has been carried out and we record here the metric and dilaton behaviour of the

various BPS solutions.
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The IIA and IIB NS-strings are electrically charged with respect to the NS two-form.

For both the type IIA and IIB theory the solution is:

ds2 = H−1
(
−dt2 + dx2

1

)
+ dx2

2 + . . .+ dx2
9

e2φ = H−1, H = H(x2, . . . , x9), ∇2H = 0. (28)

The IIA and IIB NS5-branes carry magnetic NS two-form charge and their solution is:

ds2 = −dt2 + dx2
1 . . . dx

2
5 +H

(
dx2

6 + . . .+ dx2
9

)
e2φ = H1, H = H(x6, . . . , x9), ∇2H = 0. (29)

Finally, the Dp-branes carry either electric or magnetic charge with respect to the RR

fields and are given by:

ds2 = H−1/2
(
−dt2 + dx2

1 . . .+ dx2
p

)
+H1/2

(
dxp+1 + . . . dx2

9

)
,

e2φ = H−
(p−3)

2 , H = H(xp+1, . . . , x9), ∇2H = 0. (30)

Given the rank of the RR-forms that we mentioned above, we see that the type IIA

theory has Dp-branes with p = 0, 2, 4, 6. There is an additional D8-brane which is

related to massive type IIA supergravity and we refer the reader to [50] for more details.

For the IIB theory we have p = −1, 1, 3, 5, 7. p = −1 corresponds to an instanton [57]

and we won’t include it in our discussions of intersecting branes. Note that we have

written all of the above solutions in the sigma-model string metric which is related to

the Einstein metric via gE = e−φ/2gσ.

All of these type II branes preserve 1/2 of the supersymmetry. The type II theories

have two spacetime supersymmetries parameters given by Majorana-Weyl spinors εL, εR.

In the type IIA theory they have opposite chirality and we choose Γ10εL = εL and

Γ10εR = −εR. In the chiral type IIB theory they have the same chirality and we choose

Γ10εL, εR = εL, εR. The solutions have 16 Killing spinors which satisfy the following

projections:

IIA/IIB NS−strings : εL = Γ̂01εL εR = −Γ̂01εR
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IIA NS5−branes : εL = Γ̂012345εL εR = Γ̂012345εR

IIB NS5−branes : εL = Γ̂012345εL εR = −Γ̂012345εR

IIA/IIB Dp−branes : εL = Γ̂01...pεR. (31)

Let us first make a few brief comments on these different branes. The NS-string

solutions that exist for each theory are simply identified with the fundamental string

of each theory [53, 54, 55, 56]. The IIA and IIB NS5-branes of each theory are like

solitons in quantum field theory in the sense that their tension T is related to the string

coupling g and magnetic 3-form charge Q via T ∼ Q/g2. These solitons have an elegant

(4, 4) superconformal field theory description which is illuminating, but incomplete [52].

Although the IIA and IIB NS5-branes have the same supergravity solution the world-

volume theories that govern the low-energy dynamics of these solitons are quite different

[51]. The IIA NS5-brane has (0, 2) supersymmetry on the six-dimensional world-volume

just as the M5-brane. The bosonic fields consist of five real scalars and a two-form

with self dual field strength. The world-volume theory of the IIB NS5-brane has (1, 1)

supersymmetry whose bosonic field content is four scalars and a vector field.

The branes that carry charge with respect the RR fields are the D-branes. These

branes differ from the NS-branes in that their tension is related to the string coupling

and charge via T ∼ Q/g. This fact is closely related to the fact that D-branes have

a very simple perturbative description in string theory [3]. At weak coupling, they are

surfaces in flat spacetime where open strings can end i.e., if we let Xµ, µ = 0, . . . , p, be

the coordinates tangent and XT , T = p+ 1, . . . , 10 be the coordinates transverse to the

brane, then the strings coordinates Xµ(τ, σ) satisfy Neumann boundary conditions and

XT (τ, σ) satisfy Dirichlet boundary conditions. This perturbative description has played

a central role in recent developments in string theory. Note that D9-branes fill all of

space and a closer analysis leads one to the type I theory. They are not associated with

any supergravity solution. The world-volume theory for all Dp-branes is given by the

dimensional reduction of ten-dimensional superYang-Mills theory to (p+ 1) dimensions.
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The bosonic fields are 9− p scalars and a single vector field.

It will be convenient when we come to discussing intersecting brane solutions to know

how the above solutions are related. We noted earlier that if we wrap the M2- or M5-

brane on a circle we are led to the type IIANS-string and D4-brane, respectively, while if

we reduce the M-branes then we get the D2-brane and the NS5-brane, respectively. The

second observation is that the type II brane solutions are related by various symmetries

of the supergravity equations of motion. The type IIB supergravity has an SL(2,R)

symmetry of which an SL(2,Z) is conjectured to survive as a non-perturbative symmetry

of the string theory. The action on the low-energy fields is as follows: the NSNS and

RR two-forms B(i)
µν transform as a doublet, the self dual four-form A+

µ1µ2µ3µ4
and the

Einstein metric are invariant and the dilaton and RR scalar can be packaged into a

complex scalar τ = l + ie−φ which undergoes fractional liner transformations. The

Z2 “S-duality” transformation that interchanges the two forms and acts as τ → −1/τ

allows us to construct the NS5-brane and NS-string solutions from the D5-brane and

D1-brane solutions, respectively, and vice-versa. Note that the D3-brane is left inert

under this and all SL(2,Z) transformations. For the behaviour of the D7-brane see [57].

If we employ more general SL(2,Z) transformations then we obtain “non-marginal”

BPS branes in the type IIB theory. Specifically if we start with a NS5-brane we obtain

a (p, q) 5-brane that is a bound state p NS5-branes and q D5-branes, with p and q

relatively prime integers. Similarly from the NS-string we get (p, q) strings [58]. All

of these preserve 1/2 the supersymmetry: the projections on the Killing spinors are

the SL(2,Z) rotations of those in (31). The (p, q) 5-branes will play a role when we

discuss branes intersecting at angles in the next section. Note also that these SL(2,Z)

transformations do not break supersymmetry.

The other basic tool to relate various branes is T -duality. The type IIA theory

compactified on a circle of radius R is T -dual to the IIB theory compactified on a circle

of radius 1/R. This can be established exactly in perturbation theory. It is not hard
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to show that T -duality interchanges Dirichlet with Neumann boundary conditions [3].

Thus, if we perform T -duality in a direction orthogonal (tangent) to a Dp-brane we

obtain a D(p+ 1)-brane (D(p− 1)-brane). This can also be seen at the level of classical

supergravity solutions using the fact that T -duality manifests itself as the ability to map

a solution with an isometry into another solution. For diagonal metrics, the action of

type II T -duality with respect to a symmetry direction α, on the dilaton and string

metric is simply given by

ḡαα = 1/ĝαα, e−2ϕ̄ = ĝααe
−2φ̂, (32)

where φ̂ is the IIA dilaton and ϕ̄ is the IIB dilaton. The action on the gauge fields is more

involved and we will not write them down here (see e.g., [74]). Let us note however, that

off diagonal components of the metric gµα get interchanged with components Bµα of the

NS two-form. For our applications the new solution obtained by T -duality will preserve

the same amount of supersymmetry as the original one. Using these transformations we

again see that if we perform T -duality on a direction tangent to a Dp-brane solution

(30) then we are led to a D(p − 1)-brane solution since the metric component gαα =

H−1/2 → H1/2. But note that we do not arrive at the most general solution as the

harmonic function of the D(p− 1)-brane is invariant under the α direction. Similarly, if

we take a Dp-brane that is delocalised in a transverse direction and perform T -duality

in that direction we get a D(p+ 1)-brane solution. Performing T -duality on a direction

transverse to a IIA/B NS-string (28) delocalised in that direction will transform it into

a IIB/A fundamental string. Acting on a direction tangent to the IIA/B string, say in

the {1} direction, will replace the B01 field with an off diagonal term in the metric g01.

The final solution is a pp-wave of the IIB/A theory. Note that this is is the spacetime

manifestation of the fact that in perturbation theory T -duality interchanges winding

and momentum modes. Acting with T -duality in a direction tangent to a NS5-brane

(29) will lead to a IIB/A NS5-brane. If it is in a direction transverse to a delocalised

NS5-brane then we again get off diagonal terms in the metric. One finds that the non-

trivial part of the metric is given by Taub-NUT space, which we will review in the next
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section. These T -duality results are summarised in the following table:

Parallel T ransverse

NS1 pp− wave inert

NS5 inert Taub−NUT

Dp D(p− 1) D(p+ 1)

Table 1: T-Duality Rules For Type II Branes

Using these duality transformations we can essentially obtain all others starting from,

say the M2-brane. Reducing the M2-brane to D=10 we obtain the IIA D2-brane. T -

dualising this solution leads to all Dp-brane solutions of the IIA and IIB theory. To

implement this for p ≥ 7 one must use the massive IIA supergravity [50]. On the

otherhand S-duality on the D1 and D5-branes gives the IIB NS-string and the NS5-

brane solutions. The corresponding IIA NS-branes are then obtained by T -dualising

on a transverse or tangent direction, respectively. Similarly, we obtain the IIA/B pp-

waves (Taub-NUT) from the IIB/A NS-string (NS5-brane) by T -dualising on a tangent

(transverse) direction. The M5-brane solution can be obtained by “uplifting” either the

D4-brane or the IIANS5-brane toD=11. Note that in performing these transformations

we will be led to the correct BPS solutions but possibly not the most general solution

as the harmonic function may become delocalised in the procedure, as we noted above.

3.2 Intersecting NS and D-Branes

We can use the duality transformations discussed in the last section to obtain all inter-

secting brane solutions in type II string theory. Lets start with the M2 ⊥M2(0) solution

with the M2-branes oriented along say the {1, 2} and {3, 4} directions. Reducing this
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configuration along an overall transverse direction we obtain a D2 ⊥ D2(0) solution

with the D2-branes having the same orientations. If we now perform T -duality in a

direction parallel to one of the D2-branes, say the {2} direction, we transform it into a

D1-brane in the {1} direction and the other D2-brane into a D3-brane with orientation

{2, 3, 4}. The final configuration is thus D1 ⊥ D3(0). One can continue T -dualising in

all possible ways and one generates the following list of intersecting D-branes [7, 8]:

IIA : 2 ⊥ 2(0); 4 ⊥ 4(2); 6 ⊥ 6(4); 2 ⊥ 4(1); 4 ⊥ 6(3);

6 ⊥ 8(5); 0 ⊥ 4(0); 2 ⊥ 6(2); 4 ⊥ 8(4);

IIB : 3 ⊥ 3(1); 5 ⊥ 5(3); 7 ⊥ 7(5); 1 ⊥ 3(0); 3 ⊥ 5(2);

5 ⊥ 7(4); 1 ⊥ 5(1); 3 ⊥ 7(3); 5 ⊥ 9(5); (33)

These solutions all preserve 1/4 of the supersymmetry and can be directly constructed

using the analogue of the harmonic function rule we used for M-branes. The harmonic

functions for each brane depends on the overall transverse coordinates. Note that for the

cases where the branes overlap in a 5-brane the overall transverse directions have shrunk

to a point and the derived solution is just Minkowski space. Their could however, be

more general solutions for these cases since, for example, the case 5 ⊥ 9(5) corresponds

to a type I D5-brane which does correspond to a classical solution.

In all of these solutions the dimension of the relative transverse directions is 4.

There is an elegant way of characterising these D-brane configurations in perturbation

theory. Consider open strings with one end on each of the two intersecting branes. The

string coordinates can either be NN, DD or ND depending on whether the coordinate

has Neumann (N) or Dirichlet (D) boundary conditions at each end. In the above

intersections the number of coordinates with mixed ND boundary conditions is four in

all cases. One can also show in perturbation theory that these configurations preserve

1/4 of the supersymmetry [3].

If we also act with S-duality in the type IIB theory we can generate solutions con-
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taining NS-branes. Further acting with T -duality gives:

Dp ⊥ NS1(0), 0 ≤ p ≤ 8;

Dp ⊥ NS5(p− 1), 1 ≤ p ≤ 6;

NS1 ⊥ NS5(1); NS5 ⊥ NS5(3);

NS1 +W ; NS5 +W ; Dp+W, p ≥ 0, (34)

where the configurations in the last line correspond to pp-waves which travel in one

direction on the brane and the solutions with NS-branes only are valid in both IIA

and IIB. Note that we have not included Taub-NUT configurations. We also have not

included “non-marginal” configurations that are obtainable by employing more general

SL(2,Z) transformations. The M2 ⊥ M5(1) and the M5 ⊥ M5(3) solutions can both

be obtained from the above solutions, as claimed earlier. For example, one can uplift

NS1 ⊥ NS5(1) and D4 ⊥ D4(2), respectively.

These configurations can be broadly classified into three categories: self-intersections,

branes ending on branes and branes within branes. Before describing this we should like

to emphasise that we will be restricting ourselves here to rather general comments.

The D-brane self intersections in (33) take the form Dp ⊥ Dp(p − 2) and the case

NS5 ⊥ NS5(3) for IIA and IIB in (34) all satisfy the (p − 2) self-intersection rule

that we described earlier. The second category is where branes can end on branes,

p ⊥ q(p − 1). Although the solutions are too general to directly describe this setup we

expect that this is the physical situation they are naturally associated with in the same

way that we explained for the M2 ⊥ M5(1) configuration (14). The best understood

example of branes ending on branes is the case NS1 ⊥ Dp(0) which corresponds to a

fundamental string ending on a Dp-brane. Note that the end of the fundamental string

appears as either an electric or magnetic point source in the D-brane world-volume.

All other cases of the form p ⊥ q(p − 1) can be obtained by S- and T - duality on

these configurations. For example S-duality immediately gives the D1 ⊥ D3(0) and

D1 ⊥ NS5(0) configurations in the IIB theory. It is perhaps worth highlighting some
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other cases: the D3 ⊥ NS5(2) case in the IIB theory was used in [40] to study three

dimensional gauge theories on the 2+1-dimensional intersection. The case of a D4-brane

ending on a NS5-brane, NS5 ⊥ D4(3) in IIA was used to study four-dimensional gauge

theories [59]. It is interesting that this can be lifted to M-theory as a single M5-brane

[42]. The third category of configurations are the branes inside of branes which have

the form p ⊥ q(p). These correspond to brane soliton solutions inside the world-volume

theory. As an example consider D0 ⊥ D4(0). If we consider N parallel D4-branes then

we should consider a U(N) super-Yang-Mills theory on the 4 + 1 dimensional world-

volume [60]. Four dimensional euclidean U(N) instantons correspond to static solitons

in the world-volume theory which can also be interpreted as D0-branes [61].

We now comment on some different configurations of branes that give rise to D=4

and D=5 black holes. Start with the M2 ⊥ M5(1) configuration with a pp-wave along

the intersection (20) which gives a D=5 black hole upon dimensional reduction. One

can now perform the following steps:

M5 : 1 2 3 4 5

M2 : 1 10

W : 1

R10
−→

NS5 : 1 2 3 4 5

NS1 : 1

W : 1

T1
−→

NS5 : 1 2 3 4 5

W : 1

NS1 : 1

S
−→

D5 : 1 2 3 4 5

W : 1

D1 : 1

(35)

where we have dimensionally reduced on the 10 direction, T -dualised on the 1 direction

and then performed S-duality. The resulting configuration D5 ⊥ D5(1) plus a pp-wave

[62] is the case that has been most studied in black hole entropy studies. We noted that

the M2 ⊥ M2 ⊥ M2 solution (18) can also give a D=5 black hole. Lets see how it is

related to the above configuration by dimensional reduction and duality:

M2 : 1 10

M2 : 2 3

M2 : 4 5

R10
−→

N1 : 1

D2 : 2 3

D2 : 4 5

T145
−→
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W : 1

D5 : 1 2 3 4 5

D1 : 1

. (36)

We mentioned two ways in which D=4 black holes can be obtained from intersecting

M-branes: M5 ⊥M5 ⊥M5 with momentum flowing along a common string direction,

and M5 ⊥ M5 ⊥ M2 ⊥ M2. Both of these can be related to a very symmetrical

configuration of four D3-branes [6, 9]. Lets see how this works for the second case:

M5 : 1 2 3 4 5

M5 : 1 2 3 6 10

M2 : 4 6

M2 : 5 10

R10
−→

NS5 : 1 2 3 4 5

D4 : 1 2 3 6

D2 : 4 6

NS1 : 5

ST1
−→

D5 : 1 2 3 4 5

D3 : 2 3 6

D3 : 1 4 6

D1 : 5

T34
−→

D3 : 1 2 5

D3 : 2 4 6

D3 : 1 3 6

D3 : 3 4 5

. (37)

Let us now turn to the overlapping brane solutions that can be generated from the

M5 ⊥M5(1) overlap (22). Reducing on the common string direction we get D4 ⊥ D4(0)

and T -duality generates the list of overlapping D-branes:

IIA : 0 ⊥ 8(0); 2 ⊥ 6(0); 2 ⊥ 8(1); 4 ⊥ 4(0); 4 ⊥ 6(1);

IIB : 1 ⊥ 7(0); 1 ⊥ 9(1); 3 ⊥ 5(0); 3 ⊥ 7(1); 5 ⊥ 5(1). (38)

These solutions all break 1/4 of the supersymmetry and can also be directly constructed

using the harmonic function rule but taking into account that the harmonic functions

depend on the relative transverse coordinates not the overall transverse coordinates. At

the level of string perturbation theory, these configurations correspond to D-branes that

have eight string coordinates with mixed ND boundary conditions. Employing S-duality
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we obtain configurations with NS branes:

NS5 ⊥ Dp(p− 3) 3 ≤ p ≤ 8;

NS5 ⊥ NS5(1). (39)

Recall that to properly interpret the M5 ⊥ M5(1) solution we observed that the

solution could be generalised to include an extra M2-brane without breaking any more

supersymmetry. After dimensional reduction of this solution and performing dualities

we find analogous generalisations of the above solutions. For the D-brane intersections

in (38) that intersect in a point, we find that we can add a fundamental string without

breaking anymore supersymmetry. This can then be interpreted as a fundamental string

being stretched between the two D-branes. If the D-branes intersect in a string then

we find that we can add a pp-wave along this string intersection without breaking any

more supersymmetry. One interesting example of this is the 1 ⊥ 9(1) case. Since the

IIB D9-brane leads to the type I theory, our interpretation translates into the fact that a

type I D-string can carry momentum without breaking any more supersymmetry. This

D-string can be interpreted as a heterotic string soliton [63] and the supersymmetry

properties of the heterotic string with momentum were studied in detail in [55, 56]. For

the cases with NS- and D-branes (39) we find that we can add a D(p−2)-brane that can

be thought of as being stretched between the NS5-brane and the Dp-brane that ends

on each in a D(p− 3) brane, cases that were considered above in (34). One example of

this is a D3-brane stretched between a NS5-brane and a D5-brane, intersecting each on

a two-brane. This setup was considered in [40]. The NS5 ⊥ NS5(1) case is considered

below.

In the next section we will be considering some of these configurations but generalised

so that the branes intersect at angles. In preparation for this let us be a little more

explicit about some cases. Start with the NS5 ⊥ D5(2) configuration of IIB with the

extra D3-brane which preserves 1/4 of the supersymmetry and perform T -duality in one
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of the common intersection directions:

N5 : 1 2 3 4 5

D5 : 1 2 7 8 9

D3 : 1 2 6

T2
−→

N5 : 1 2 3 4 5

D4 : 1 7 8 9

D2 : 1 6
(40)

We can now uplift this IIA solution to give the M-theory solution (24):

M5 : 1 2 3 4 5

M5 : 1 7 8 9 10

M2 : 1 6

. (41)

Reducing on the 6 direction and then relabeling the 10 direction as the 6 direction we

get the IIA solution
NS5 : 1 2 3 4 5

NS5 : 1 6 7 8 9

NS1 : 1

. (42)

Performing T -duality on the 1 direction we get the IIB configuration

NS5 : 1 2 3 4 5

NS5 : 1 6 7 8 9

W : 1

. (43)

It is interesting to note that in the IIA theory we can add a fundamental string to the

NS5 ⊥ NS5(1) configuration without breaking any more supersymmetry, while in the

IIB theory we can add a pp-wave. Since the IIA and IIB theories have the same NS-

fields the configuration (42) does give a solution of the IIB theory, but it breaks 1/8 of

the supersymmetry not 1/4. Finally carrying out S-duality on (43) we get

D5 : 1 2 3 4 5

D5 : 1 6 7 8 9

W : 1

. (44)
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4 Branes Intersecting at Angles

In the configurations that we have studied so far all of the branes have orthogonal in-

tersections. In a perturbative D-brane context Berkooz, Douglas and Leigh pointed out

that certain rotations away from orthogonality lead to configurations that still preserve

some supersymmetry [64]. In this section we will summarise some recent work on con-

structing classical supergravity solutions that describe such intersections [37]. Other

recent work on finding configurations with non-orthogonal intersections will not be dis-

cussed [36, 38, 65, 66]. The solutions in [37] which we shall describe are much more

complicated than the ones we have seen so far. They have a common origin in D=11

using toric Hyper-Kähler manifolds. To motivate the solutions we shall first begin by

recasting some of the orthogonal solutions in a similar language.

4.1 Taub-NUT space and Overlapping Branes

We begin by reviewing the construction of the D6-brane solution of the type IIA theory

in terms of Taub-NUT space [69]. Taub-NUT space is a four-dimensional Hyper-Kähler

manifold. That is, the manifold admits three covariantly constant complex structures

J (m) and the metric is Kahler with respect to each. Consider the Hyper-Kähler metrics

ds2
TN = V (x)dx · dx + V −1(x)(dψ + A(x) · dx)2,

∇×A = ∇V. (45)

Choosing the harmonic function V to have single centre, V = 1 + m/r, and hence

A = m cos θdφ, where (r, θ, φ) are spherical polar coordinates on E3, gives Taub-NUT

space. The metric appears singular at r = 0 but it is in fact a coordinate singularity if we

choose ψ to be a periodic coordinate with period 4πm. The U(1) isometry corresponding

to shifts in the coordinate ψ is tri-holomorphic i.e., the Lie derivative of the complex

structures with respect to the U(1) killing field vanishes. The topology of each surface
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with fixed r is a three sphere which is a circle bundle over a two-sphere base with ψ being

the coordinate of the fibre. The global topology of the manifold is E4. From the metric

we note that as r→∞ the radius of the circle approaches 4πm which suggests that we

can use Taub-NUT space in a Kaluza-Klein setting [67, 68]. Since it is Hyper-Kähler

the manifold is automatically Ricci-flat and hence will solve Einstein’s equations. We

can use this to give an D=11 supergravity solution by adding in 6+1 Minkowski space:

ds2 = −dt2 + dx2
1 + . . .+ dx2

6 + ds2
TN

A = 0. (46)

If we now reduce this solution along the U(1) Killing-vector using (27) we obtain the

D6-brane solution with metric and dilaton as in (30) with the non-trivial RR one-form

coming from the off diagonal terms in the metric. It is worth emphasising that while

the D6-brane is a singular solution in ten-dimensions, it has a non-singular resolution

in M-theory. If V is multicentred, V = 1 + Σmi/ri with ri = |x − xi|, then we obtain

the multicenter Hyper-Kähler manifolds. They are non-singular provided that no two

centres coincide. Upon dimensional reduction they give rise to parallel D6-branes.

A natural generalisation of the above construction is to consider an eight dimen-

sional Ricci-flat manifold obtained as the product of two Taub-NUTS. By adding in

2+1 dimensional Minkowski space we get a D=11 supergravity solution:

ds2 = ds2(E1,2) + ds2
TN1

+ ds2
TN2

A = 0. (47)

Label the coordinates of the circles of the two Taub-NUT metrics by x6 and x10, respec-

tively. Before interpreting this solution, lets briefly return to (46). If we instead reduce

to D=10 along one of the 6 flat directions, x6 say, we obtain a IIA Taub-NUT solution.

If we now T -dualise this solution in the ψ direction, the off diagonal components of

the metric get replaced with the NS two-form and we are led to the IIB NS5-brane¶.

¶To be precise the NS5-brane is delocalised in the ψ direction transverse to the brane.
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Returning to (47) lets reduce on the x10 direction to get a IIA configuration and then

T -dualise on the x6 direction to get a type IIB solution. Reducing the second Taub-NUT

on x10 leads to a D6-brane in the 1, . . . 6 directions and T -dualising in the x6 direction

transforms it into a D5-brane. On the other hand, reducing the first Taub-NUT on

x10 gives IIA Taub-NUT and the T -duality turns it into a IIB NS5-brane. Since both

branes share the 2+1 dimensional space we see that the final configuration is a D5-brane

orthogonally overlapping a NS5-brane in a two brane, which is a solution we have al-

ready considered. Recall that by a sequence of dualities we can relate it to the first pair

of branes in (40)-(44).

4.2 Toric Hyper-Kähler Manifolds and Branes Intersecting at

Angles

To obtain solutions corresponding to non-orthogonally overlapping branes we replace

TN×TN by an eight-dimensional toric hyper-Kähler manifold i.e., one that admits a

U(1)× U(1) triholomorphic isometry:

ds2 = ds2(E1,2) + ds2
HK

A = 0. (48)

After dimensional reduction and dualities we we shall get solutions with branes as in

(40)-(44) (ignoring the last entry) that overlap non-orthogonally. We shall discuss the

inclusion of the other brane later. One interesting aspect of these solutions is that they

all come from completely regular D=11 metrics.

All of these solutions will generically preserve 3/16 of the supersymmetry. The proof

of this is essentially an application of the methods used previously in the context of KK

compactifications of D=11 supergravity (see, for example, [70]). We first decompose

the 32-component Majorana spinor of the D=11 Lorentz group into representations of
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SL(2;R)× SO(8):

32→ (2,8s)⊕ (2,8c) . (49)

The two different 8-component spinors of SO(8) correspond to the two possible SO(8)

chiralities. The unbroken supersymmetries correspond to singlets in the decomposi-

tion of the above SO(8) representations with respect to the holonomy group H of M.

Consider for example, D=11 Minkowski space for which H is trivial; in this case both

8-dimensional spinor representations decompose into 8 singlets, so that all supersymme-

tries are preserved. The generic holonomy group for an eight-dimensional hyper-Kähler

manifold is Sp(2), for which we have the following decomposition of the SO(8) spinor

representations:

8s → 5⊕ 1⊕ 1⊕ 1

8c → 4⊕ 4 . (50)

There are now a total of 6 singlets (three SL(2;R) doublets) instead of 32, so that the

D=11 supergravity solution preserves 3/16 of the supersymmetry, unless the holonomy

happens to be a proper subgroup of Sp(2) in which case the above representations must

be further decomposed. For example, the 5 and 4 representations of Sp(2) have the

decomposition

5 → (2,2)⊕ (1,1)

4 → (2,1)⊕ (1,2) (51)

into representations of Sp(1) × Sp(1). We see in this case that there are two more

singlets (one SL(2;R) doublet), from which it follows that the solution preserves 1/4 of

the supersymmetry whenever the holonomy is Sp(1)×Sp(1). Since this is the holomony

group for Taub-NUT×Taub-NUT space, we recover our previous result.
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4.3 Toric hyper-Kähler manifolds

To proceed we need to be more concrete about the properties of eight dimensional toric

hyper-Kähler manifolds. The most general metric has the local form

ds2 = Uij dx
i · dxj + U ij(dϕi +Ai)(dϕj +Aj), (52)

where Uij are the entries of a positive definite symmetric 2× 2 matrix function U of the

2 sets of coordinates xi = {xir ; r = 1, 2, 3} on each of 2 copies of E3, and U ij are the

entries of U−1. The two 1-forms Ai have the form Ai = dxj · ωωji where ωω is a triplet

of 2 × 2 matrix functions of coordinates on E6 and are determined by the matrix Uij .

Specifically, the two-forms Fi = dAi with components

F rs
jk i = ∂rjω

s
ki − ∂

s
kω

r
ji , (53)

where we have introduced the notation

∂

∂xir
= ∂ri , (54)

must satisfy

F rs
jk i = εrst∂tjUki. (55)

Note that dFi = 0 implies

∂i · ∂j U = 0 (i, j = 1, 2) . (56)

The simplest hyper-Kähler manifold, which may be considered to represent the ‘vac-

uum’, is constant U which implies Ai = 0. We shall denote this constant ‘vacuum

matrix’ by U (∞). For our applications we may restrict U (∞) to be such that

detU (∞) = 1. (57)

Regular non-vacuum hyper-Kähler metrics can be found by superposing this with some

linear combination of matrices of the form

Uij [{p}, a] =
pipj

2|
∑
k pkxk − a|

, (58)
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where the ‘p-vector’ {p1, p2} is an ordered set of coprime integers and a is an arbitrary

3-vector. Any matrix of this form may be associated with a 3-plane in E6, specified by

the 3-vector equation

p1x
1 + p2x

2 = a. (59)

If we have two p-vectors the angle between the two 3-planes can be determined and is

given by:

cos θ =
p · p′
√
p2p′2

, (60)

with inner product

p · q = (U (∞))ijpiqj . (61)

The general non-singular metric may now be found by linear superposition. For a

given p-vector we may superpose any finite number N({p}) of solutions with various

distinct 3-vectors {am({p}); m = 1, . . . , N}. We may then superpose any finite number

of such solutions. This construction yields a solution of the hyper-Kähler conditions of

the form

Uij = U
(∞)
ij +

∑
{p}

N({p})∑
m=1

Uij [{p}, am({p})]. (62)

Since each term in the sum is associated with a 3-plane in E6, any given solution is

specified by the angles and distances between some finite number of mutually intersecting

3-planes [71]. It can be shown that the resulting hyper-Kähler 8-metric is complete

provided that no two intersection points, and no two planes, coincide. This is the

analogue of the four dimensional multicenter metrics being singular when two centres

coincide and has been demonstrated by means of the hyper-Kähler quotient construction

in [37].

The simplest examples of these manifolds are found by supposing ∆U ≡ U − U (∞)

to be diagonal. For example,

Uij = U
(∞)
ij + δij

1

2|xi|
. (63)
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which is constructed from the p-vectors (1, 0) and (0, 1). Hyper-Kähler metrics with U

of this form were found previously on the moduli space of 2 distinct fundamental BPS

monopoles in maximally-broken rank four gauge theories [72] (see also [73]). For this

reason we shall refer to them as ‘LWY metrics’. Whenever ∆U is diagonal we may

choose the two one-forms Ai to be one-forms on the ith Euclidean 3-space satisfying

Fi = ?dUii (i = 1, 2), (64)

where ? is the Hodge dual on E3.

For the special case in which not only ∆U but also U (∞) is diagonal then U is

diagonal and the LWY metrics reduce to the metric product of 2 Taub-Nut metrics with

Sp(1)×Sp(1) holonomy. Note that for the LWY metrics the angle between the 3-planes,

(60) reduces to

cos θ = −
U

(∞)
12√

U
(∞)
11 U

(∞)
22

, (65)

and we see that Sp(1)×Sp(1) holonomy occurs when the 3-planes intersect orthogonally.

In general one can argue that the holonomy of a general toric Hyper-Kähler manifold is

Sp(2) and is only a proper subgroup of Sp(2) when two 3-planes or two sets of parallel 3-

planes intersect orthogonally, in which case the metric is a product of two Hyper-Kähler

4-metrics.

4.4 Overlapping branes from hyper-Kähler manifolds

Let us return to the interpretation of our D=11 solution (48) for a general hyper-Kähler

manifold specified by a matrix U as in the last subsection. We follow the steps that we

considered when we discussed TN×TN. We first reduce the solution along one of the

U(1) Killing vectors to obtain a IIA solution that preserves 3/16 of the supersymmetry

and then T -dualise along the other U(1) Killing vector. Using the T -duality rules of [74]
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we get a IIB solution with Einstein metric and other fields given by

ds2
E = (detU)

3
4 [(detU)−1ds2(E2,1) + (detU)−1Uijdx

i · dxj + dz2]

B(i) = Ai ∧ dz

τ = −
U12

U11

+ i

√
detU

U11

. (66)

As the interpretation of this solution is rather subtle lets first consider continuing

with the transformations as in (40)-(44): T -dualising on one of the E2,1 directions leads

to a IIA solution which we shall not write down. If we uplift it to D=11 one obtains:

ds2
11 = (detU)

2
3 [(detU)−1ds2(E1,1) + (detU)−1Uij dX

i · dXj + dy2]

F = Fi ∧ dϕ
i ∧ dy, (67)

where X i = (xi, φi) with φi the coordinates of the torus dual to the one with coordinates

φi. We shall start by considering the case in which U is diagonal. In the simplest of

these cases the 8-metric is the metric product of two Euclidean Taub-Nut metrics, each

of which is determined by a harmonic function with a single pointlike singularity. Let

Hi = [1 + (2|xi|)−1] be the two harmonic functions; then

U =

H1(x1) 0

0 H2(x2)

 , (68)

and we return to the M5 ⊥ M5(1) solution (22). Note that in this derivation, the Hi

are harmonic on the ith copy of E3, rather than on the ith copy of E4 and hence both

of the M5-branes are delocalised in the direction between them and in one direction

tangent to the other M5-brane. Next generalising to the LWY metrics (63) we still

interpret the singularities in U to be the locations of the two (delocalised) M5-branes.

Since the M5-branes have a string direction in common, the configuration is determined

by the relative orientation of two 4-planes in the 8-dimensional space spanned by both.

Because of the delocalisation the angle between the two four planes is taken to be the

angle between the singular three planes (65). It can be argued that this rotation can
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be thought of as an Sp(2) rotation of one M5-brane relative to the other in E8 [37].

We thus conclude that the process of rotating one M5-brane away from another by an

Sp(2) rotation preserves 3/16 supersymmetry. In the more general case in which ∆U

is non-diagonal the solution can be interpreted as an arbitrary number of M5-branes

intersecting at angles determined by the associated p-vectors; these angles are restricted

only by the condition that the pairs of integers pi be coprime‖. It is an interesting open

question whether these 3/16 supersymmetric solutions can be generalized to allow U to

depend on all eight coordinates {X(i), i = 1, 2}.

Reducing on the overall transverse coordinate we obtain a IIA solution which we shall

omit. In the simplest case that U is diagonal as in (68) it is the NS5 ⊥ NS5(1) solution

in (42). For more general U there is an arbitrary number of NS5-branes intersecting

at angles determined by their p-vectors as in the M5-brane case. Again there is an

extra delocalisation in one direction tangent to each of the NS5-branes. If we now T-

dualize in the common string direction to find a solution of IIB supergravity with an

identical interpretation that involves IIB NS5-branes. This may be mapped to a similar

configuration involving only D5-branes by S-duality. In this way we deduce that

ds2
E = (detU)

1
4 [ds2(E1,1) + Uij dX

i · dXj]

B′ = Ai ∧ dϕ
i

τ = i
√

detU , (69)

is also solution of IIB supergravity preserving 3/16 supersymmetry. In the simplest case,

in which U is of LWY type, this solution represents the intersection on a string of two

D5-branes, with one rotated relative to the other by an Sp(2) rotation with angle θ,

given by (65). We are now in a position to make contact with the work of Berkooz,

Douglas and Leigh [64]. They considered two intersecting Dirichlet (p+q)-branes with

‖Note that this condition comes from demanding that the Hyper-Kählermanifold is regular. If we

just wanted to have solutions to the supergravity equations of motion then we could allow the p-vectors

to be two arbitrary real numbers.
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a common q-brane overlap using perturbation theory. According to their analysis, each

configuration of this type is associated with an element of SO(2p) describing the rota-

tion of one (p+q)-brane relative to the other in the 2p-dimensional relative transverse

space. The identity element of SO(2p) corresponds to parallel branes, which preserve

1/2 the supersymmetry. Other elements correspond to rotated branes. The only case

considered explicitly in [64] was an SU(p) rotation, but it was noted that the condition

for unbroken supersymmetries was analogous to the reduced holonomy condition arising

in KK compactifications. The case we are considering corresponds to an Sp(2) rotation

in SO(8). The analysis of [64] was generalised in [37] to show that this setup preserves

3/16 supersymmetry. In addition the solution (69) shows that at least for the Sp(2)

case the analogy with holonomy is exact since this IIB solution is dual to a non-singular

D=11 spacetime of Sp(2) holonomy.

Let us now return to the interpretation of the IIB solution (66). When U is diagonal

we return to the NS5 ⊥ D5(2) solution. Since the two fivebranes share two common

directions, the singular three planes correspond to the location of the fivebranes in

the six-dimension space. For this case the fivebranes are just delocalised in the extra

direction that separates them i.e., there is no further delocalisation in directions tangent

to the other brane as above. By studying the action of SL(2,Z) on the solution and

recalling that a IIB (p, q) 5-brane can be constructed using SL(2,Z) transformations,

we come to the following interpretation for a general Hyper-Kähler metric: a ‘single

3-plane solution’ of the hyper-Kähler conditions with p-vector (p1, p2) is associated with

a IIB superstring 5-brane with 5-brane charge vector (p1, p2). This implies that there is

a direct correlation between the angle at which any given 5-brane is rotated, relative to

a D5-brane, and its 5-brane charge. An instructive case to consider is the three 5-brane

solution involving a D5-brane and an NS-5-brane, having orthogonal overlap, and one

other 5-brane. As the orientation of the third 5-brane is changed from parallel to the

D5-brane to parallel to the NS-5-brane it changes, chameleon-like, from a D-brane to

an NS-brane.
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4.5 Intersecting branes from hyper-Kähler manifolds

There is a generalisation of (48) called a ‘generalized membrane’ solution which takes

the form

ds2 = H−
2
3ds2(E2,1) +H

1
3ds2

8

F = ±ω3 ∧ dH
−1, (70)

where ω3 is the volume form on E2,1 and H is a T 2-invariant∗∗ harmonic function on

the hyper-Kähler 8-manifold. Provided the sign of the expression for the 4-form F in

(70) is chosen appropriately it can be shown that the solution with F 6= 0 breaks no

more supersymmetries than the solution (48) with F = 0. Point singularities of H are

naturally interpreted as the positions of parallel membranes. For our purposes we require

H to be independent of the two ϕ coordinates, so singularities of H will correspond to

membranes delocalized on T 2. Such functions satisfy

U ij∂i · ∂jH = 0. (71)

Proceeding as before we can now convert this D=11 configuration into various inter-

secting brane configurations. Lets first consider the case of the Hyper-Kähler manifold

being a product of two Taub-NUT manifolds. Recall that we first reduced on one of the

Taub-NUT circles and then T -dualised on the other circle and for H = 1 we obtained

the NS5 ⊥ D5(2) configuration. For H 6= 1, the reduction gives a D2-brane and the

T -duality converts it into a D3-brane and we arrive at the first configuration in (40).

Continuing with the various dualities we arrive at all of the configurations in (40)-(44)

In the case of (41) we recover the M-theory solution considered in (24). Note that

substituting (68) into (71) produces (25).

If we now consider a general toric Hyper-Kähler manifold in (70) we obtain solutions

∗∗This condition on H is needed for our applications; it is not needed to solve the D=11 supergravity

equations.
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corresponding to the configurations in (40)-(44) with the first two branes overlapping

non-orthogonally and the third brane is stretched between them.

5 Conclusions

In this paper we have reviewed supergravity solutions corresponding to BPS intersect-

ing branes in M-theory and in type II string theory. We first discussed three basic

intersections of two M-branes: M2 ⊥ M2(0), M2 ⊥ M5(1) and M5 ⊥ M5(3). Upon

dimensional reduction these configurations were related to type II intersecting D-branes

with the number of ND string coordinates equalling four, as well as to other configura-

tions involving NS-branes. We argued that these solutions could be interpreted in one

of three ways: self intersections of branes in (p−2) dimensions, branes within branes, or

branes ending on branes. All of the solutions have the property that they are delocalised

along the relative transverse directions. We pointed out that the harmonic function of

one of these branes can be generalised to have a dependence on the coordinates tangent

to the other brane. It would be interesting if more general solutions of (25) could be

found. More generally it would be of interest to construct fully localised intersecting

brane solutions.

We noted that multi intersections of n-branes are allowed and that they generically

break 2−n of the supersymmetry. An interesting exception to this are various special

triple overlaps that allow an extra brane to be added without breaking more supersym-

metry. We showed that intersecting branes can be dimensionally reduced to give black

holes with non-zero horizon area in D=4 and D=5. Considering the intersecting D

brane configurations from a perturbative point of view has had remarkable success at

reproducing the black hole entropy counting.

We also discussed the M5 ⊥M5(1) overlap. This solution have the interesting prop-
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erty that the M5-branes are localised inside the world-volume of the other brane, but

are delocalised in the direction that separates them. We noted that these configura-

tions violate the (p − 2) self intersection rule and that this is resolved by the fact that

there are more general solutions with an extra M2-brane that still preserve 1/4 of the

supersymmetry. The extra M2-brane is interpreted as being stretched between the two

M5-branes. After dimensional reduction these are related to D-brane intersections with

the number of ND string coordinates being eight.

We showed that toric hyper-Kähler manifolds can be used to construct generalisations

of the M5 ⊥M5(1) solution which preserve 3/16 supersymmetry where the M5-branes

overlap non-orthogonally. Similar configurations can be obtained by dimensional reduc-

tion and duality. One interesting case is two D5-branes intersecting non-orthogonally.

The two D5-branes are related by an Sp(2) rotation in the eight relative transverse di-

rections. Since the solution is related by duality to a non-singular D=11 spacetime of

Sp(2) holonomy it makes precise the analogy between the fraction of supersymmetry

preserved by non-orthogonal D-branes and the standard holonomy argument in Kaluza-

Klein compactifications that was discussed in [64]. In view of this it would be of interest

to consider other subgroups of SO(8). As pointed out in [64], the holonomy analogy

would lead one to expect the existence of intersecting D-brane configurations in which

one D-brane is rotated relative to another by an SU(4), G2 or Spin(7) rotation matrix.

If so, there presumably exist corresponding solutions of IIB supergravity preserving 1/8,

1/8 and 1/16 of the supersymmetry, respectively. These IIB solutions would presum-

ably have M-theory duals, in which case one is led to wonder whether they could be

non-singular (and non-compact) D=11 spacetimes of holonomy SU(4), G2 or Spin(7).

By considering a generalised membrane solution involving the toric Hyper-Kähler

manifold allowed us to construct solutions corresponding to branes overlapping non-

orthogonally with an additional brane stretched in between them. In the case in which

a D3-brane intersects overlapping IIB 5-branes, the fact that the solution preserves
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3/16 of the supersymmetry implies an N=3 supersymmetry of the field theory on the

2-brane intersection. When the 5-branes overlap orthogonally the field theory has N = 4

supersymmetry and Hanany and Witten have shown that this brane point of view is a

powerful tool to determine the low-energy effective actions of these field theories [40]. It

would be interesting if these techniques could be adapated to the N = 3 case when the

5-branes overlap non-othogonally.

We hope to have given the impression that although much is known about intersecting

branes there is still much to be understood.
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