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Abstract:We determine an intersection rule for extremal p-branes which are localized
in their relative transverse coordinates by solving, in a purely bosonic context, the

equations of motion of gravity coupled to a dilaton and n-form field strengths. The
unique algebraic rule we obtained does not lead to new solutions while it manages to

collect, in a systematic way, most of the solutions (all those compatible with our ansatz)
that have appeared in the literature. We then consider bound states of zero binding
energy where a third brane is accomodated in the common and overall transverse

directions. They are given in terms of non-harmonic functions. A di↵erent algebraic
rule emerges for these last intersections, being identical to the intersection rule for

p-branes which only depend on the overall transverse coordinates. We clarify the
origin of this coincidence. The whole set of solutions in ten and eleven dimensional
theories is connected by dualities and dimensional reductions. They are related to brane

configurations recently used to study non-perturbative phenomena in supersymmetric
gauge theories.
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1. Introduction

In the last two years, there has been a growing amount of evidence in favour of the
possible unification of the five known superstring theories due to the existence of non-

perturbative duality symmetries [1, 2]. An eleven dimensional theory has been conjec-
tured, M-theory, that enables us to understand the duality properties of string theory
in a unified way [3] and whose low-energy limit is given by D = 11 supergravity. A

microscopic description of this theory has been proposed in terms of the large N limit
of a supersymmetric quantum mechanical system of N ⇥ N matrices [4]. It has been

widely stressed in the literature that one of the key ingredients that leads to the identi-
fication of duality symmetries is given by a proper knowledge of the solitonic spectrum

of these theories, this involving p-dimensional excitations called p-branes.
It is known that D = 11 supergravity contains M2-branes and M5-branes, both

playing a major rôle in the dynamics of M-theory. These branes preserve one half of

the supersymmetries, hence they are BPS states. In string theory, an entire zoo of
BPS p-brane solutions has been studied in the last few years. In type II theories, there
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are two kinds of p-branes depending on the sector of the world-sheet theory where
the charge that they carry is originated. The NS-NS sector contains the fundamental

string and the solitonic fivebrane, the NS5-brane. The p-branes that carry R-R charge
have been shown to be described by hypersurfaces where open strings can end, called

D-branes [5].

One of the most interesting aspects of this variety of branes is given by the pos-
sibility of constructing composite brane configurations –starting from the previously

mentioned basic bricks– that preserve a certain amount of supersymmetries. This
kind of configurations has led very recently to a large number of celebrated results

both in supergravity and supersymmetric gauge theories. Intersections of a large
number of D-branes has made possible to identify and count the microscopic states

corresponding –after compactification– to certain black hole geometries, in complete
agreement with the semiclassical entropy [6, 7, 8]. Another remarkable fact is that
some of the non-perturbative properties of supersymmetric gauge theories in various

spacetime dimensions were found to have a natural explanation in string theory, by
studying the low-energy dynamics of a certain class of intersecting brane configura-

tions [9, 10, 11, 12, 13, 14]. In this scenario, it is of great interest to derive, on general
grounds, a set of rules that states and classifies all possible brane configurations that
preserve a specific amount of supersymmetries.

For the case of D-branes, by using the string theory representation of the branes
and duality, certain rules were derived in Refs. [15, 16, 17]. The case of intersecting M-

branes was considered in [18] and the study of intersecting p-branes starting from eleven
dimensional supergravity has led to the formulation of the so-called harmonic superpo-
sition rule [19]. Intersection of both M-branes and D-branes were subsequently classified

in Ref. [20]. Another derivation of the intersection rules, not based on supersymmetry
arguments, was done by requiring that p-brane probes in q-brane backgrounds feel no

force and can thus create bound states with vanishing binding energy [21].

More recently, a general rule determining how extremal branes can intersect in a
configuration with zero binding energy has been derived in Ref. [22].1 This rule is

obtained from the bosonic equations of motion of the low-energy theory and unifies in
a remarkably simple way all classes of branes in any spacetime dimension.2 The kind of

configurations considered there are translational invariant in all directions tangent to
any participating brane. This is an appropriate restriction if one is to consider toroidal

compactification in which each p-brane is wrapped on a p-cycle to end with a solution
representing an extreme black hole of the compactified supergravity theory. In spite of
the fact that it is useful for a wide range of intersecting brane configurations, several

of the most interesting cases that recently appeared in the literature in the context
of supersymmetric gauge theories are excluded, namely, the localized overlappings (or

intersections) of p-branes.

1Also, following a slightly di↵erent approach, in Ref. [23].
2It was also generalized in Ref. [24] to include intersections of non-extreme p-branes.
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Two overlapping branes can be obtained from intersecting branes by separating
each brane in a direction transverse to the remaining one. This sort of configurations

are included in the analysis of Ref. [22]. However, as pointed out in Refs. [18, 25, 26,
27], this kind of solutions are not true overlappings or intersections in the sense that

the harmonic function corresponding to a given brane is translational invariant in the
directions tangent to the other brane or, what is the same, each brane is delocalized

in its relative transverse space. Instead, we would like to consider in this paper p-
brane configurations with localized intersections which are, as we briefly argued above,
relevant for the study of strong coupling phenomena in supersymmetric gauge theories.

To our knowledge, the first example of this kind of configuration was first constructed by
Khuri [28] while studying a string-like soliton solution in heterotic string theory, though

the interpretation as a system of localized intersecting branes was not discussed there.
Recently, Gauntlett, Kastor and Traschen [25] have clarified this issue showing that it
corresponds to two NS5-branes intersecting on a string in type II string theory. As also

shown in Ref. [25], when uplifting this solution to eleven dimensions, one is faced with a
configuration of two M5-branes overlapping on a string that has a striking characteristic:

although the harmonic functions do depend on the relative transverse directions, they
are translational invariant in the remaining overall transverse direction. There may be

solutions in which the M5-branes are also localized in the overall transverse direction
but, if so, they shall not be given by the harmonic superposition rule [29].

It is clear that, starting from this eleven dimensional configuration, a large class

of solutions would be accesible, whose distinguishing characteristic will be that all
branes, while being localized in the relative transverse space, are delocalized in the
overall transverse directions. This defines an appropriate kind of configurations in the

context of the recently developed brane techniques for the study of non-perturbative
phenomena and dualities of supersymmetric gauge theories [9, 10, 11, 12, 13, 14]. In

fact, these techniques involve arrangements of flat p-branes with localized intersections,
such that the field theory on the world-volume of the branes has the desired gauge
symmetry, matter content and degree of supersymmetry in the spacetime dimension

which is specifically chosen (three in [9], four in the rest of the papers cited above). In
these approaches, one of the constituent brane is finite in a given direction in which

it is stretched between other much heavier branes. To obtain explicit solutions of
supergravity displaying this behaviour is, of course, an involved task. However, a first

approach in this direction is given by finding generic configurations of infinite p-branes
with localized intersections, that preserve a certain number of supersymmetries. Indeed,
as discussed in Ref. [27], under certain circumstances it is possible to think of these

configurations as corresponding to a p-brane stretched between other branes.

In this paper we establish some rules for this kind of intersections. We find these
rules purely from the bosonic equation of motion of the low-energy theory, in the spirit

of Ref. [22]. The rule corresponding to localized intersections of p-branes is obtained
in section 2 by solving the equations of motion using an ansatz that accounts for the

3
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properties of extremality and zero binding energy. The whole set of classical fields
is written in terms of a number of functions equal to the number of single branes

involved in the configuration. It also implies the preservation of a specific amount
of supersymmetry. In section 3, we analize the resulting solutions in ten and eleven

dimensional theories and comment on their relation with certain brane configurations
which are relevant for the study of non-perturbative supersymmetric gauge theories.

It is important to point out that there are no new solutions within our ansatz. Our
rule manages to collect many of the solutions that have appeared in the literature3

in a unique algebraic expression which is fully derived within the bosonic sector of

the theory. These solutions are connected among themselves by a chain of dualities
and dimensional reductions, a fact which is at the root of the possibility to build

a unique expression that accounts for an entire family of solutions. We think that
most of the interest of our approach is given by the fact that it provides a systematic
alternative procedure –with respect to the usual one relying on �-matrices algebra

(see, for example, [29] and references therein)– to build and classify intersecting brane
configurations. Indeed, generalizations of our ansatz should lead to the appearance of

new solutions as, e.g., non-extremal branes, branes at angles, (p,q) webs, etc.

In section 4, we show that a third brane can be added into the configuration with
vanishing binding energy. We derive the corresponding intersection rule. We impose

some new conditions on the metric that reproduce the extremality nature of the con-
figuration. In section 5, we analyze the solutions that emerge from these intersection

rules, which again fit several known cases in the literature, and comment on their close
relation with some of the configurations used in the brane approach to strong coupling

phenomena of supersymmetric gauge theories. These configurations, as well as other
pairwise intersections that can be obtained from them, are given in terms of a non-
harmonic function. We show that they provide a generalization of the class of solutions

discussed in Ref. [22], thus obeying the same intersection rule. Finally, in section 6, we
discuss our results and make some futher comments. In the Appendices, the detailed

expression for the Ricci tensor is given both for the two brane and three brane cases,
and the way the extremality condition appears in our framework is clarified.

2. Localized intersection of two branes

Consider the following general expression for the bosonic sector of the low-energy e↵ec-
tive action corresponding to superstring theory in any spacetime dimension D, D  11,

S =
1

16⇡G
D

Z
dDx
p
�g

0

@R�
1

2
(@�)2 �

QX

A=1

1

2n
A

!
eaA�F 2

n

A

1

A , (2.1)

3We should mention that there are also solutions representing localized intersections of p-branes
that could not be reached from our starting ansatz (e.g. those obtained in Ref. [30] from hyper–Kähler
manifolds).
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The action includes gravity, a dilaton and Q field strengths of arbitrary form degree
n
A

 D/2 and coupling to the dilaton a
A

. The metric is expressed in the Einstein

frame. There may be Chern-Simons terms in the action but we omit them as they
are irrelevant for the kind of solutions we will concentrate on. Although we take the

spacetime to have a generic dimension D, this action is most suitable for describing
the bosonic part of D = 10 or D = 11 supergravities. The equations of motion can be

written in the following form:

Rµ
⌫

=
1

2
@µ�@

⌫

� +
QX

A=1

⇥
A

µ

⌫

, (2.2)

1
p
�g

@
µ

(
p
�g@µ)� =

QX

A=1

a
A

2n
A

!
eaA�F 2

n

A

, (2.3)

@
µ1

⇣p
�geaA�F µ1...µnA

⌘
= 0 , (2.4)

where ⇥
A

µ

⌫

is the contribution to the stress-energy tensor corresponding to the n
A

-
form,

⇥
A

µ

⌫

=
1

2n
A

!
eaA�

✓
n
A

F µ⇢2...⇢nAF
⌫⇢2...⇢n

A

�
n
A

� 1

D � 2
F 2
n

A

�µ
⌫

◆
. (2.5)

We must supplement the equations of motion by imposing the Bianchi identities to the

n
A

-forms,

@[µ1Fµ2...µn
A

+1] = 0 . (2.6)

as they are field strengths of (n
A

� 1)-form potentials. We are interested in classical
solutions describing a pair of p-branes that are translationally invariant in the overall
transverse directions but are localized in the relative transverse coordinates. Thus, we

set (for simplicity) all but two field strengths to zero (a condition that will be relaxed
in section 4).

Let us now specialize to a particular form of the metric which is a slight general-

ization of the p-brane ansatz, and lead us to obtain the class of configurations we want
to deal with. The line element is given by

ds2 = �B2dt2 + C2�
ij

dsidsj +X2�
ab

dxadxb + Y 2�
↵�

dy↵dy�

+W 2�
µ⌫

dwµdw⌫ , (2.7)

where the s
i

’s span the intersection, i, j = 1 . . . q̄, the x
a

’s and y
↵

’s are the relative
transverse coordinates a, b = 1 . . . p1 and ↵, � = 1 . . . p2, whereas the w

µ

’s are the

overall transverse coordinates µ = 1 . . . p
t

. The functions B, C, X, Y and W depend
only on the relative transverse coordinates xa, y↵. It is clear that the relation q̄ + p1 +

p2 + p
t

= D � 1 must be satisfied. Furthermore, we will consider solutions that allow
a factorization of the form:

F(xa, y↵) ⌘ F
x

(xa)F
y

(y↵) , (2.8)
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a

’s and y
↵

’s are the relative
transverse coordinates a, b = 1 . . . p1 and ↵, � = 1 . . . p2, whereas the w

µ

’s are the

overall transverse coordinates µ = 1 . . . p
t

. The functions B, C, X, Y and W depend
only on the relative transverse coordinates xa, y↵. It is clear that the relation q̄ + p1 +

p2 + p
t

= D � 1 must be satisfied. Furthermore, we will consider solutions that allow
a factorization of the form:

F(xa, y↵) ⌘ F
x

(xa)F
y

(y↵) , (2.8)
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for the whole set of functions. These solutions will represent a q1-brane and a q2-brane
with a q̄-dimensional localized intersection, being q

A

= p
A

+ q̄.

For the n
A

-form field strengths, we can generally make two kinds of ansätze. The
electric ansatz is done asking that the Bianchi Identities are trivially satisfied. Consider,

for example, an electrically charged q1-brane. It couples naturally to a q1+2-form, F
n1 ,

F0i1...iq̄a1...ap1↵ = ✏
i1...iq̄✏a1...ap1@↵E1 . (2.9)

For a magnetic brane, on the other hand, one asks that the equations of motion for

the field strength (2.4) are trivially satisfied. Thus, a magnetically charged q1-brane
couples to a (D � q1 � 2)-form that can be written as follows form,

F µ1...µpt↵1...↵p2�1 =
1
p
�g

e�a�✏µ1...µpt ✏↵1...↵p2�1↵@
↵

E1 . (2.10)

We remark here on the fact that the derivative is always taken with respect to directions
which are perpendicular to the respective brane. This is in accordance with the cases

considered in [25] and with the ansätze of [22] for intersecting branes. Also the dilaton
depends on the relative transverse coordinates.

Let us now discuss in some detail the next ansätze that we will make in order to
solve the equations of motion (2.2)–(2.4). The Ricci tensor that corresponds to the

metric (2.7) (which is computed in an Appendix) displays several terms that mix non-
trivially the di↵erent components of the metric. On the other hand, we should be

able to write B, C, X and Y in terms of a pair of functions in order to make the
distinction between the constituent branes. These functions are supplemented by the
metric component relative to the overall transverse space W , the dilaton � and the set

of functions E
A

. We are thus forced to impose further constraints on our configuration.
If viewed as a classical configuration of supergravity, the conditions that one should

impose would be the vanishing of the supersymmetry transformations –corresponding
to a given infinitesimal parameter ⌘ that satisfies certain chirality constraints– for all
the fermions. This amounts to the preservation of some of the supersymmetries (those

related to the particular parameter ⌘). In our approach, we are not going to analyze the
whole content of the supergravity theory that is behind (2.1). We should, instead, take

profit of the signals left into the purely bosonic configuration by the existence of certain
unbroken supersymmetries, that is, the vanishing binding energy of the overlapping

brane configuration. To this end, we impose that the mixing terms of the Ricci tensor
mentioned above vanish [22]. This happens provided that the following constraints are
imposed:

B
x

C q̄
x

Xp1�2
x

Y p2
x

W p

t

x

= 1 , (2.11)

B
y

C q̄
y

Xp1
y

Y p2�2
y

W p

t

y

= 1 . (2.12)

These constraints can be physically interpreted as enforcing extremality. They can be
read as a way to express W as a function of the other metric components. It is also
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interesting to point out now, that all the solutions investigated in Refs. [25, 26, 27]
satisfy them, as will be better described below.
After (2.11) and (2.12), we can rewrite Einstein equations as

lnB =
1

2
p
�g

2X

A=1

⇠0
A

D � 2
S
A

(r>EA)2 , (2.13)

lnC =
1

2
p
�g

2X

A=1

⇠s
A

D � 2
S
A

(r>EA)
2 , (2.14)

�
ab

lnX +X�2 [(p1 � 2)@
a

lnX@
b

lnX + p2@a lnY @
b

lnY

+ q̄@
a

lnC@
b

lnC + p
t

@
a

lnW@
b

lnW + @
a

lnB@
b

lnB] =

= 1
2
p
�g

hP2
A=1

⇠

x

A

D�2SA(r>EA)2�
ab

+ S2(@aE2)(@bE2)
i
, (2.15)

�
↵�

lnY + Y �2 [p1@↵ lnX@
�

lnX + (p2 � 2)@
↵

lnY @
�

lnY

+ q̄@
↵

lnC@
�

lnC + p
t

@
↵

lnW@
�

lnW + @
↵

lnB@
�

lnB] =

= 1
2
p
�g

P2
A=1

⇠

y

A

D�2SA(r>EA)
2�
↵�

+ S1(@↵E1)(@�E1)
�
, (2.16)

(p1 � 2)@
a

lnX@
�

lnX + (p2 � 2)@
a

lnY @
�

lnY + 2@
a

lnY @
�

lnX

+q̄@
a

C@
�

C + @
a

B@
�

B + p
t

@
a

W@
�

W = 0 , (2.17)

lnW =
1

2
p
�g

2X

A=1

⇠w
A

D � 2
S
A

(r>EA)
2 , (2.18)

where we have introduced the symbol r>EA to refer to the gradient of E
A

with respect

to coordinates relatively transverse to the q
A

-brane. It is worth noting that this does
not mean at all that functions E

A

depend only on those coordinates, as will be clear

below. We have also introduced the D’Alembertian, which after (2.11) and (2.12) is
simply,

= Y �2r2
y

+X�2r2
x

. (2.19)

and the quantities ⇠z
A

(z being the label for the di↵erent blocks of coordinates), whose

value is given by

⇠z
A

=

(
D � q

A

� 3 if z is longitudinal to the q
A

-brane ,

�(q
A

+ 1) if z is transverse to the q
A

-brane .
(2.20)

Finally, we have defined for convenience the quantities S
A

,

S1 =
W 2p

tY 2(p2�1)
p
�g

e✏1a1� , (2.21)

S2 =
W 2p

tX2(p1�1)
p
�g

e✏2a2� , (2.22)
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where ✏
A

is a positive sign for the electric membranes and a negative sign for the mag-
netic ones. Note that the metric determinant has a very simple form as a consequence

of the ‘no-force’ conditions (2.11)–(2.12) imposed to the metric,

p
�g = X2

x

Y 2
y

. (2.23)

We must still impose the equations of motion corresponding to the dilaton,

� = �
1

2
p
�g

2X

A=1

✏
A

a
A

S
A

(r>EA)2 , (2.24)

and the q
A

-forms,

@
↵

(S1@↵E1) = @
a

(S1@↵E1) = 0 , (2.25)

@
a

(S2@aE2) = @
↵

(S2@aE2) = 0 , (2.26)

We will finally consider the following ansatz:4

E1 = l1S1
�1
x

H�11 , E2 = l2S2
�1
y

H�12 , S1
y

= H21 , S2
x

= H22 , (2.27)

(with l1 and l2 a couple of –up to now– arbitrary constants), that enables us to write

everything in terms of a pair of functions H
A

which, after eqs. (2.25)–(2.26), must be
harmonic,

r2
y

H1 = r2
x

H2 = 0 . (2.28)

In this way, our solutions are going to be characterized by a pair of harmonic functions
corresponding to the same number of constituents branes that participate on the con-
figuration. From the point of view of supergravity, this shall mean that we are dealing

with configurations that preserve one quarter of the supersymmetries. The most gen-
eral solutions to eqs. (2.28) are given by an arbitrary set of superpositions of identical

branes localized along the relative transverse directions:

H1 = 1 +
X

j

c
j

|~y � ~y
j

|p2�2
, (2.29)

H2 = 1 +
X

j

d
j

|~x� ~x
j

|p1�2
. (2.30)

This is the well-known multicenter solution whose existence is due to the no-force
condition [21] that we previously imposed in (2.11)–(2.12). Now, if we demand the set
of conditions,

W 2p
t

x

Y 2(p2�2)
x

e✏1a1�x = 1 , (2.31)

W 2p
t

y

X2(p1�2)
y

e✏2a2�y = 1 , (2.32)

4We present eqs. (2.27) as an ansatz for simplicity. It is possible to argue that they are forced by
the equations of motion following the lines of Ref. [24].
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it is quite easy to solve the dilaton equation of motion,

� =
2X

A=1

✏
A

a
A

↵
A

lnH
A

, (2.33)

as well as the diagonal components of the Einstein equations,

lnB = lnC = �
2X

A=1

D � q
A

� 3

D � 2
↵
A

lnH
A

, (2.34)

lnX = �
2X

A=1

⇠x
A

D � 2
↵
A

lnH
A

, (2.35)

lnY = �
2X

A=1

⇠y
A

D � 2
↵
A

lnH
A

, (2.36)

lnW =
2X

A=1

q
A

+ 1

D � 2
↵
A

lnH
A

, (2.37)

provided ↵
A

= 1
2 l
2
A

. The fact that B and C are equal could have been directly predicted

from the SO(1, q̄) boost invariance of the extremal configuration. The only equations
that remain to be solved are the o↵-diagonal Einstein equations which at this stage
simply reduce to a set of algebraic equations:

"
(p2 + p

t

� 2)(q1 + 1)2 + (q1 + 1)(D � q1 � 3)2

(D � 2)2
+

1

2
a21

#

↵1 = 1 , (2.38)

"
(p1 + p

t

� 2)(q2 + 1)2 + (q2 + 1)(D � q2 � 3)2

(D � 2)2
+

1

2
a22

#

↵2 = 1 , (2.39)

and
2X

A 6=B=1

(q̄ + 3)(D � q
A

� 3)(D � q
B

� 3) + p
t

(q
A

+ 1)(q
B

+ 1)

�2(p
A

� 2)(D � q
A

� 3)(q
B

+ 1) +
1

2
(D � 2)2✏

A

a
A

✏
B

a
B

= 0 . (2.40)

From the first two equations, we obtained an explicit value for the ↵
A

’s in terms of the

dimensions of the constituent branes and the dilaton couplings

↵
A

=
D � 2

�
A

, (2.41)

where
�
A

= (q
A

+ 1)(D � q
A

� 3) +
1

2
(D � 2)a2

A

, (2.42)

that coincides with the one obtained in the case studied in Ref. [22]. The third equation

leads us directly to the announced rule for localized intersections of p-branes which is
one of the main results of this paper:

q̄ + 3 =
(q1 + 1)(q2 + 1)

D � 2
�

1

2
✏1✏2a1a2 . (2.43)
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This expression is very similar to that of Ref. [22], except for a shift of two units
in q̄. We will show in the next section, that this rule leads to most known cases of

localized intersections of p-branes appearing in the literature (within the scope of our
ansatz), and that it does not have further solutions. In that respect, we think that

the main interest of eq. (2.43) relies in the fact that it is a unique algebraic expression
that collects a complete family of solutions which are related by various dualities and

dimensional reductions.

Let us close this section by stressing that the configuration we have obtained so far,

B = C =
2Y

A=1

H�(D�qA�3)/�A
A

, (2.44)

X =
2Y

A=1

H
�⇠x
A

/�
A

A

, (2.45)

Y =
2Y

A=1

H
�⇠y
A

/�
A

A

, (2.46)

W =
2Y

A=1

H(qA+1)/�A
A

, (2.47)

e� =
2Y

A=1

H✏AaA(D�2)/�A
A

, (2.48)

E1 =
p

2↵1H
�1
1 H

�2
⇠

x

2�⇠
y

2
�2

2 , (2.49)

E2 =
p

2↵2H
2
⇠

x

1�⇠
y

1
�1

1 H�12 , (2.50)

is consistent with the conditions (2.31) and (2.32), and obeys the harmonic superposi-

tion rule [19].

3. Localized intersections in various dimensions

In this section, we study the complete set of solutions admitted by eq. (2.43) in various
spacetime dimensions. We stress on the duality chains that relate di↵erent solutions
among themselves. We will use a very convenient notation introduced in Ref. [29],

denoting by (q̄|M1,M2) to the localized overlapping or intersection between an M1-
brane and an M2-brane with q̄ common tangent directions. We will see that the

solutions are not new but they correspond to a family of configurations that have been
separately considered before by many authors.
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3.1. Localized intersections of M-branes

Let us first analyze the eleven dimensional case. There is a 4-form field strength in
D = 11 supergravity, that can describe either electric M2-branes or magnetic M5-

branes. As there is no dilaton, we simply put a
A

= 0 for the 4-forms. Then, the
overlapping rule derived in eq. (2.43) acquires the simpler form:

q̄ + 3 =
(q1 + 1)(q2 + 1)

9
, (3.1)

whose only solution is q1 = q2 = 5 and q̄ = 1, that is, M5-branes overlapping in
a string, (1|M5,M5). This is exactly the solution recently obtained in Ref. [25] by
rather di↵erent means. There, the solution is found by uplifting either overlapping

NS5-branes or mutually orthogonal D4-branes to eleven dimensions.
Explicitely, we find ↵

A

= 1/2, and a line element given by

ds2 = H2/31 H2/32
⇣
H�11 H�12 (�dt2 + ds2) +H�11 d~x2 +H�12 d~y2 + d!2

⌘
. (3.2)

As explained in Ref. [27], this solution does not satisfy the (p-2)-dimensional self-

intersection rule for p-branes [18]. This puzzle is solved by observing that a third brane
can be introduced without breaking further supersymmetries [26, 27]. We will discuss

this point in the next section, where we will obtain a general rule for the introduction
of a third brane inside an overlapping configuration. It would also be interesting to

explore what kind of solution appears if localization in the !-direction is demanded.

3.2. Localized intersections of NS-branes with other branes

The NS-NS sector of string theory is known to posses a 3-form field strength that

couples to the dilaton with a
A

= �1. It can couple to a fundamental string and to a
magnetic NS5-brane. The overlapping rule for these objects is:

q̄ + 3 =
(q1 + 1)(q2 + 1)

8
�

1

2
✏1✏2 . (3.3)

It is immediate to see that this equation admits only one solution describing two NS5-
branes overlapping in a string, (1|NS5, NS5). This solution can also be obtained from

a string-like soliton solution of heterotic string theory first considered in Ref. [28], by
setting the gauge fields to zero [25]. Once again ↵

A

= 1/2 and the line element is

simply:
ds2 = H3/41 H3/42

⇣
H�11 H�12 (�dt2 + ds2) +H�11 d~x2 +H�12 d~y2

⌘
. (3.4)

A common feature of these solutions is the appearance of an overall conformal factor,

while each direction tangent to the worldvolume of a q
A

-brane gets a factor H�1
A

as
already noticed in Refs. [26, 27, 29].

Now we look at the localized intersections of NS-branes and D-branes. We use the
fact that a

A

= (5� n
A

)/2 is the coupling to the dilaton of the n
A

-form field strengths

11
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coming from the RR sector. It is immediate to see that equation (2.43) does not
admit localized intersections of a fundamental string and the D-branes. Concerning

NS5-branes, the overlapping rule for these objects and Dq-branes is:

q̄ = q � 3 , (3.5)

which precisely agrees with the case by case result obtained in Ref. [27]. So, the possible

overlappings between NS5-branes and D-branes are (q � 3|NS5, Dq), for 3  q  8.
Here we can give two important examples of such overlapping which are going to be

better clarified in section 5. The first one is that appearing in the brane setup of Ref. [9]
for a configuration which gives N = 2 supersymmetry in 3 spacetime dimensions. It

consists of a NS5-brane with (12345) spatial directions and a D5-brane with (12789)
spatial directions such that the number of common directions are coincident with our
previously derived rule (3.5). One would, in principle, have expected that this configu-

ration matches the overlapping rule because, as explained in Ref. [9], it is crucial there
that both membranes are well-localized in their relative transverse directions. They

are also localized in the overall transverse x6-direction.
The second example appears in the brane setup of Ref. [10] for a configuration which

gives N = 1 supersymmetry in 4 spacetime dimensions. In this configuration there are
two types of NS5-branes, one denoted by NS5 in the (12345) spatial directions and one

denoted by NS5’ in the (12389) spatial directions. There are D6-branes in the (123789)
spatial directions. The rule (2.43) accounts for the localized intersection between the

D6-branes and the NS5-branes, but seems to disagree with the intersection between the
D6-branes and the NS5’-brane. Moreover, this last intersection obeys the rule (33) of

Ref. [22]. In the next section, we will show that –for the case of localized intersections–
we can add new branes with vanishing binding energy whose intersection rule is not
given by (2.43). The new intersection rule is precisely that of equation (33) in Ref. [22],

and the origin of this coincidence will be clarified.

3.3. Localized intersections of D-branes

The D-branes are the bearers of the RR charges and they give rise to field strengths
which couple to the dilaton in such a way that ✏

A

a
A

= (3� q
A

)/2 both for electrically
and magnetically charged q

A

-branes. Then the equation (2.43) gives:

2q̄ + 8 = q1 + q2 . (3.6)

The D-branes shall intersect in such a way that there are eight relative transverse direc-
tions, a condition which is also known to be required by the preservation of unbroken

supersymmetries [15, 31]. The solution (0|D4, D4) has the following line element,

ds2 = H5/81 H5/82
⇣
H�11 H�12 (�dt2) +H�11 d~x2 +H�22 d~y2 + d!2

⌘
. (3.7)

It could have also been obtained just by dimensional reduction of (1|M5,M5) on the
common string direction. One can obtain the remaining type II solutions by a chain of
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q̄ = q � 3 , (3.5)
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overlappings between NS5-branes and D-branes are (q � 3|NS5, Dq), for 3  q  8.
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are also localized in the overall transverse x6-direction.
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D6-branes and the NS5’-brane. Moreover, this last intersection obeys the rule (33) of

Ref. [22]. In the next section, we will show that –for the case of localized intersections–
we can add new branes with vanishing binding energy whose intersection rule is not
given by (2.43). The new intersection rule is precisely that of equation (33) in Ref. [22],

and the origin of this coincidence will be clarified.

3.3. Localized intersections of D-branes

The D-branes are the bearers of the RR charges and they give rise to field strengths
which couple to the dilaton in such a way that ✏

A

a
A

= (3� q
A

)/2 both for electrically
and magnetically charged q

A

-branes. Then the equation (2.43) gives:

2q̄ + 8 = q1 + q2 . (3.6)

The D-branes shall intersect in such a way that there are eight relative transverse direc-
tions, a condition which is also known to be required by the preservation of unbroken

supersymmetries [15, 31]. The solution (0|D4, D4) has the following line element,

ds2 = H5/81 H5/82
⇣
H�11 H�12 (�dt2) +H�11 d~x2 +H�22 d~y2 + d!2

⌘
. (3.7)

It could have also been obtained just by dimensional reduction of (1|M5,M5) on the
common string direction. One can obtain the remaining type II solutions by a chain of
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T dualities,

(0|D4, D4) T ! (0|D3, D5)
Tl Tl

(1|D5, D5)
T ! (1|D4, D6)

. (3.8)

There are more configurations that are, in principle, accesible by this procedure,

(0|D2, D6)
T ! (0|D1, D7)

T ! (0|D0, D8)

Tl Tl Tl

(1|D3, D7)
T ! (1|D2, D8)

T ! (1|D1, D9)

(3.9)

We present them separately for the following reason: the relative transverse space of
one of the D-branes, being less or equal than two-dimensional, leads to the appearance

of logarithmic or linear singularities. Consider, for example, (1|D3, D7) and see that
the harmonic function corresponding to the D7-brane is harmonic in the Euclidean
plane. So, each D7-brane produces a conical singularity and its energy per unit 7-

volume result to be logarithmically divergent. It is also interesting to mention the case
(1|D2, D8), where an harmonic function in one Euclidean coordinate corresponds to the

D8-branes thus being piecewise linear.5 Following a similar reasoning, it is immediate
to see that the configuration (1|D1, D9) is equivalent to an isolated D1-brane in empty

ten dimensional Minkowski space. In the context of supergravity, all these solutions
are known to preserve 1/4 of the original supersymmetries [26, 27]. They are related
to the configurations obtained in the previous subsection by S-duality.

4. Adding a third localized p-brane

Let us consider the possibility of adding a third brane into the picture with the following
two requirements:

(i) the brane spans the intersecting and totally transverse coordinates, thus being

a (q̄ + p
t

)-brane.
(ii) the geometry of the target space gets modified only by the introduction of a

third function H3, that corresponds to the new brane, while the contributions of the

overlapping branes are untouched. This is analogous to the ‘no-force’ condition, in the
sense that we shall add a new object that modifies the geometry without exerting any
gravitational attraction to the previous configuration. This requirement is related to

the existence of a certain amount of unbroken supersymmetries or, in our case, to the
elimination of mixing terms in the Ricci tensor.
We define new functions for the line element

ds2 = � B̂2dt2 + Ĉ2�
ij

dsidsj + X̂2�
ab

dxadxb + Ŷ 2�
↵�

dy↵dy�

+ Ŵ 2�
µ⌫

dwµdw⌫ , (4.1)

5The D8-brane is a domain wall solution of a massive version of type IIA supergravity, separating
regions of di↵erent cosmological constants [32, 33]
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such that the contribution of the new brane is given by a new factor F̃(xa, y↵),

F̂(xa, y↵) ⌘ F(xa, y↵)F̃(xa, y↵) = F
x

(xa)F
y

(y↵)F̃(xa, y↵) , (4.2)

that we allow to depend on the whole set of relatively transverse coordinates. Note the

di↵erence with respect to the previous case where we imposed a factorization (2.8) of
the coordinates dependence. Here, the coordinates which are relatively transverse to
the third brane are x

a

’s and y
↵

’s.
In order to see how our requirements (i) and (ii) severely constrain the resulting

configuration, we compute the Ricci tensor (see Appendix) in the background of the
former intersecting brane solution, and impose the ‘no-force’ conditions –thought of as

the vanishing of the mixing terms in the Ricci tensor– as before,

B̃C̃ q̄X̃p1�2Ỹ p2W̃ p

t = 1 , (4.3)

B̃C̃ q̄X̃p1Ỹ p2�2W̃ p

t = 1 . (4.4)

From these conditions, it is immediate to see that

X̃2 = Ỹ 2 (4.5)

and
B̃C̃ q̄X̃p1+p2�2W̃ p

t = 1 . (4.6)

By plugging these conditions back into the Ricci tensor, we can write the equations

of motion, in the background of the former overlapping brane configuration. The
introduction of the third brane modifies the S

A

functions, S
A

! Ŝ
A

with

Ŝ1 = W̃ 2p
tX̃2(p2�2)e✏1a1�̃S1 , (4.7)

Ŝ2 = W̃ 2p
tX̃2(p1�2)e✏2a2�̃S2 , (4.8)

where �̃ is the correction to the dilaton also due to the third brane. The only way to
solve our new system without changing the values of H1 and H2, or the ones of S1 and

S2, is to impose the following conditions:

W̃ 2p
tX̃2(p2�2)e✏1a1�̃ = 1 , (4.9)

W̃ 2p
tX̃2(p1�2)e✏2a2�̃ = 1 , (4.10)

which also lead to an expression of the dilaton in terms of the metric function X̃,

X̃2(p1�p2) = e(✏1a1�✏2a2)�̃ . (4.11)

Now, the diagonal components of the Einstein equations for a generic function F =

B,C,W,X, Y are simply given by

ˆ
ln F̃ =

1

2
p
�ĝ

⇠F
D � 2

Ŝ3
h
X̂�2(r

x

E3)
2 + Ŷ �2(r

y

E3)
2
i
, (4.12)
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Ŝ3
h
X̂�2(r

x

E3)
2 + Ŷ �2(r
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where,

Ŝ3 =
X̂2p1Ŷ 2p2
p
�ĝ

, (4.13)

while the contribution of the third brane to each metric component is given by the

factor ⇠F ,

⇠F =

(
D � (q̄ + p

t

)� 3 if F is B, C or W ,

�(q̄ + p
t

+ 1) if F is X or Y ,
(4.14)

in accordance to the previously established recipe (2.20). In order to solve (4.12), we

should set E3 = l3H
�1
3 and Ŝ3 = H23 . Now, the solution is

ln F̃ = �
⇠F

D � 2
lnH

l

2
3/2
3 , (4.15)

if and only if H3 satisfies

(H�12 r
2
x

+H�11 r
2
y

)H3 = 0 , (4.16)

thus being non-harmonic.6 This equation coincides with the one obtained in Refs. [26,
27] for the case of three branes in the context of supergravity. It was also obtained

earlier in the context of ten dimensional solutions of string theory representing extreme
dyonic black holes [34].

As before, the remaining block-diagonal Einstein equations give the value of ↵3 =

l23/2 whose expression is coincident to that of ↵
A

’s previously obtained

↵3 =
D � 2

�3
, (4.17)

where

�3 = (q3 + 1)(D � q3 � 3) +
1

2
(D � 2)a23 .

Here, we introduced the dimension of the third brane q3 = q̄+p
t

. On the other hand, the
o↵-block-diagonal Einstein equations lead to the intersection rule for the third brane,

q̄ + 1 =
(q
i

+ 1)(q3 + 1)

D � 2
�

1

2
a
i

a3✏i✏3 , (4.18)

where i = 1, 2 refers to anyone of the ‘old’ two branes. Again, we should say that the

unique algebraic expression to which we arrive is a fingerprint of the various dualities
and dimensional reductions that relate the solutions of (4.18) among themselves. We

must comment on the fact that the expression for the intersecting dimension is the
same as the one obtained in Ref. [22] for intersecting branes that depend in the overall

transverse coordinates. The reason of this coincidence will be clarified below.
6Note that eq. (4.16) is indeed a curved space Laplace equation. Thus, though H3 is not harmonic

in the flat space sense, it can be thought of to be harmonic in some generalized curved space sense.
In fact, this equation appears whenever the e↵ective transverse space is curved [34]. We are grateful
to Arkady Tseytlin for his clarifying comments on this issue.
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5. Examples with three branes

In this section, we will study the three brane configurations that solve eqs. (2.43)
and (4.18). We will introduce a simple notation that generalize that of Ref. [29]: a

configuration corresponding to a localized intersection of dimension q̄ of anM1-brane
and anM2-brane, forming a bound state of zero binding energy with a third braneM3,
will be denoted as (M3|q̄|M1,M2). Note that, as discussed above, the fully localized

function corresponding to the M3-brane is, in principle, non-harmonic. We will see
that no new solutions emerge from our approach. We will consider certain examples,

which are related to well-known brane configurations used to obtain information about
dualities and strong coupling e↵ects in supersymmetric gauge theories.

5.1. Three M-branes

We start with the configuration introduced in Refs. [26, 27] and reobtained in subsection

3.1, i.e. with two M5-branes, one in (12345) spatial directions and the other one in
(16789) directions. Here, the overall transverse direction is x10 and the intersecting
direction is x1. Thus, the third brane should be an M2-brane that spans (1 10) spatial

directions. For q1 = q2 = 5, q3 = 2 and a1 = a2 = a3 = 0 the condition (4.18) is
automatically satisfied. The function corresponding to the third brane depends now on

both sets of variables which describe the wordvolumes of the two M5-branes, so we have
H3 as a function of (x2, · · · , x9) that satisfies the equation (4.16) which is just the same

as the condition (3.8) in [26] or (25) in [27]. By using the notations of formula (3.2)
for the groups of coordinates, the line element that corresponds to the (M2|1|M5,M5)
configuration is given by:

ds2 = H2/31 H2/32 H1/33
h
H�11 H�12 H�13 (�dt2 + ds2) +H�11 d~x2 +H�12 d~y2

+ H�13 dw2
i
. (5.1)

As explained in Ref. [27], this solution can be thought of as corresponding to an M2-
brane being stretched between two M5-branes: when two M5-branes are brought to-

gether to intersect on a string, one should think of the intersection as being a collapsed
M2-brane. Now we have to observe the following fact: if we start with this configura-
tion and we just take o↵ one of the M5 branes, say the one oriented in (12345) spatial

directions, we end with a configuration of an M2-brane (110) and an M5-brane (16789)
intersecting on a string. In fact, one can set H1 = 1 in (5.1) to obtain

ds2 = H2/32 H1/33
h
H�12 H�13 (�dt2 + ds2) + d~x2 +H�12 d~y2 +H�13 dw2

i
, (5.2)

which represents the configuration referred above that, in general, does not satisfy the
harmonic superposition principle. In fact,

(H�12 r
2
x

+r2
y

)H3 = 0 . (5.3)

16



J
H
E
P
0
6
(
1
9
9
8
)
0
0
3

We will use a variant of our notation to call this configuration (M2|1|M5). It is
interesting to mention that the intersection string of this configuration is localized in

the M5-brane but not in the M2-brane. It has been studied earlier in Refs. [26, 27].
Note that a similar solution with the intersection localized in the M2-brane instead

of the M5-brane exists [26] though it cannot be obtained within our approach. Our
construction of localized non-harmonic intersections as (M2|1|M5) is asymmetric from

the very beginning, a fact reflected on the di↵erent nature of H2 and H3. We would
like to stress on the fact that the amount of supersymmetry is not related to the degree
of localization of the membranes participating in a given configuration.

There is a particular solution of this system with H3 an harmonic function of the x
a

’s
coordinates.7 Thus, the configuration M2 \M5(1) that depends on the overall trans-
verse coordinates [22] is a particular case of the (more general) solution (M2|1|M5).

One can ‘deform’ smoothly (M2|1|M5) into M2 \M5(1), an operation that cannot
modify a relation between integers as it is the intersection rule previously obtained. It

is then clear why we have obtained an intersection rule (4.18) that coincides with the
one derived in Ref. [22]. The same reasoning can be straightforwardly applied to the

whole set of configurations we are considering in this section.

5.2. Configurations with NS and D branes

As we discussed in subsection 3.2, the only configuration involving localized NS-branes
is (1|NS5, NS5). Then, q̄ = 1, p

t

= 0 and q3 = 1. It can be easily seen that equa-

tion (4.18) is not satisfied for a D1-brane but is precisely an identity for a fundamental
string. That is, one can accomodate a fundamental string along the common direction

of the solitonic NS-branes with vanishing binding energy. This configuration, whose
line element is given by

ds2 = H3/41 H3/42 H1/43
h
H�11 H�12 H�13 (�dt2 + ds2) +H�11 d~x2 +H�12 d~y2

i
,

should be denoted by (NS1|1|NS5, NS5), and it is clear that it can be uplifted to eleven
dimensions yielding (5.1). One can follow the procedure mentioned in the previous
subsection to extract one of the NS5-branes ending with the configuration (NS1|1|NS5)

first introduced in Ref. [26].
Concerning localized intersection of NS-branes and D-branes, we have shown in

subsection 3.2 that the only possible configurations that can be written in terms of

harmonic functions are (q� 3|NS5, Dq), for 3  q  8. Then, for these configurations,
one has q̄ = q � 3, p

t

= 1 and q3 = q � 2. It is immediate to check in (4.18) that a

Dq3-brane can be placed with vanishing binding energy as to build the (D(q � 2)|q �
3|NS5, Dq) configuration. It is worth to mention that, in spite of the fact that the

values q = 3 and q = 7 give enough room as to introduce a fundamental string and

7Also, after this work was completed, an explicit solution of (5.3) was found for a D2-brane (also
for a NS5-brane or a wave) localized within a D6-brane, in the region close to the core of the D6-brane
[35].
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a NS5-brane, they do not satisfy the intersection rule (4.18). Consequently, in our
framework, we find that only D-branes can be stretched between a NS5-brane and

another D-brane.

At this point, we should come back to the examples that we started to discuss on

section 3 which, after the addition of the third localized brane, are very similar to the
ones used in [9] for a N = 2 configuration and in [10] for a N = 1 configuration.

Let us start with the NS5 (12345) - D5 (12789) configuration which preserves 1/4

of the supersymmetry. Then we have the intersection given by (12) and the overall
transverse coordinate given by (6). Then we see the possibility of adding a third

brane in the (126) direction and this will be a D3-brane. This does not break further
supersymmetries. The intersection dimension agrees with formula (4.18). By studying

the brane dynamics and the conservation of magnetic charge, the appearance of the
D3-brane was explained in [9]. The di↵erence between our case and theirs is that our
D3-brane is of infinite extension on x6 direction whereas their D3-brane is of finite

extension on x6 direction, this extension being just the inverse of the coupling constant
of the gauge group U(N) if we have N D3-branes on top of each other. In our case,

by having D3-branes with infinite extension on x6 direction, would give only global
groups, with coupling constant zero.

The second example is the one used in [10]. Consider the localized intersection of

NS5 (12345) - D6 (123789). The intersection is given by (123) and the overall transverse
by (6). Then we see the possibility of introducing a D4-brane in the (1236) direction.

Again our D4-brane is of infinite extension in the x6 direction, as compared with [10]
where the D4-branes are finite in that direction. Note, that we are not able to consider

within our framework the addition of the NS5’-branes that complete the configuration
considered in Ref. [10].

5.3. Configurations with D-branes

It is remarkable that, within our approach, there is a unique type IIB configuration
of three D-branes with vanishing binding energy, (D1|1|D5, D5), as can be easily seen

from (4.18). There are, of course, other solutions that can be constructed from it by
delocalizing in a set of coordinates and applying T-dualities along them [26]. Finally, it

is interesting to mention that the intersection rule (4.18) allows to locate a fundamental
string in the transverse direction of any of the configurations of section 3 but it does
not allow the fundamental string to be in the common direction of a pair of localized

D-branes.

6. Conclusions and discussion

In the present paper we discussed configurations with two and three branes which
are localized in their relative transverse coordinates. We obtained an intersection rule

for the case of two branes by solving the equations of motion in a purely bosonic
context. Our intersection rule does not give new solutions and it just collects some
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of the solutions that have appeared in the literature. It di↵ers from the rule derived
in Ref. [22] –corresponding to intersecting branes which are localized in the overall

transverse coordinates– by a shift of two units. We considered the introduction of a
third brane with vanishing binding energy. We derived the corresponding intersection

rule between the first two branes and the third one which happens to be identical to
the one of Ref. [22]. We clarified the origin of this coincidence by showing that the

configurations which are localized in the overall transverse coordinates can be obtained
from those of three branes with localized intersections. All branes are BPS states
so for a threshold superposition we used the ‘no-force’ condition which led to strong

simplifications of the equations of motion.

It would be interesting to generalize our work to include non-extreme8 as well as

extreme but non-supersymmetric configurations. In spite of the fact that it is not clear
if non-supersymmetric brane configurations represent consistent stable backgrounds,

an explicit construction of a generic configuration of this kind could be a first step
in order to study non-supersymmetric gauge theories by using brane techniques. As
well, it would be very interesting to obtain within our approach other kind of brane

configurations which have been recently considered in the literature as p-branes at
angles [37] and the so-called (p,q) polymers [38] or (p,q) webs [39] of branes. There are

certain critical values for the angles of these configurations which might be thought of
as being originated from the ‘no-force’ conditions obtained from the Ricci tensor.9 It
should also be interesting to understand this kind of intersections as the appearance of

a certain soliton in the worldvolume field theory of the complementary p-brane in the
way recently introduced in Ref. [29, 40, 41].

Another aspect that deserves a future study is the relation of the kind of configura-
tions appearing in our work and other geometries. The intersecting brane configurations

where all the functions depend on the overall transverse coordinates have been related
by T-dualities and changes of coordinates with geometries of type adS

k

⇥El⇥Sm [42].
The main observation was that the harmonic functions lose the constant part for a

specific choice of transformations and so the geometry is changed from a flat one to an
adS

k

one. In 11 dimensions, they have started from the general M2 (012) - M5 (023456)

solution and have considered the near horizon geometry for which the constant parts of
the harmonic functions become negligible. The spacetime factorizes as adS3⇥E5⇥S3.
In our case, we do not have a single radius variable and we could not identify a specific
geometry when we neglect the constant term. Also, for the three M-branes configu-
ration (M2|1|M5,M5), the function H3 is not harmonic so we do not have the case

of [42]. We think that it would be very interesting to identify the geometries that are
connected with our original ones by T-dualities and changes of coordinates of the near

horizon geometry in 11 dimensions. We hope to report on some of these problems
elsewhere.

8After the completion of this work, a paper appeared covering this subject [36].
9We are grateful to Amihay Hanany for his suggestions and comments on this respect.
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A. Ricci tensor of the localized intersections

In this appendix we present the non-vanishing components of the Ricci tensor that
corresponds to the overlapping brane metric
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B. Third brane with zero binding energy

Let us now consider an additional contribution to all functions of the metric
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in such a way that
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where F are the solutions to the Einstein equations corresponding to (A.11)–(A.16).
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These expressions suggest that the ‘no-force’ condition that must be satisfied in

order that the third brane could be bounded to the old configuration with zero binding
energy are:
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ln Ŷ @
�

ln Ŷ

+ q̄@
↵

ln Ĉ@
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