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Abstract

It is known that chiral fermions naturally appear at certain intersections of branes at

angles. Motivated by this fact, we propose a string scenario in which di↵erent standard

model gauge interactions propagate on di↵erent (intersecting) brane worlds, partially

wrapped in the extra dimensions. Quarks and leptons live at brane intersections, and

are thus located at di↵erent positions in the extra dimensions. Replication of fam-

ilies follows naturally from the fact that the branes generically intersect at several

points. Gauge and Yukawa couplings can be computed in terms of the compactifica-

tion radii. Hierarchical Yukawa couplings appear naturally, since amplitudes involving

three di↵erent intersections are proportional to e�Aijk , where Aijk is the area of a string

world-sheet extending among the intersections. The models are non-supersymmetric

but the string scale may be lowered down to 1-10 TeV. The proton is however stable

due to a set of discrete symmetries arising from world-sheet selection rules, exact to

all orders in perturbation theory. The scenario has some distinctive features like the

presence of KK, winding and other new excited states (‘gonions’), with masses below

the string scale and accessible to accelerators. The models contain scalar tachyons with

the quantum numbers of standard SU(2)⇥ U(1) Higgs doublets, and we propose that

they induce electroweak symmetry breaking in a somewhat novel way. Specific string

models with D4-branes wrapping on T2 ⇥ (T2)2/ZN, leading to three-family realistic

spectra, are presented in which the above properties are exemplified.



1 Introduction

Two of the most important aspects of the observed fermion spectrum of the standard

model (SM) are its chirality and the family replication. Any fundamental theory ex-

plaining the structure of the SM should thus give an understanding of these two very

prominent features. With the developments of string theory of the last five years we

have learnt that a natural setting to understand gauge interactions in this context is

that of Type II Dp-branes, which contain gauge fields localized in their world-volume.

However, Dp-branes isolated on a smooth space have extended supersymmetry, and

hence do not lead to chiral fermions. Thus, for example, Type IIB D3-branes at a

smooth point in transverse space have N = 4 supersymmetry on their four-dimensional

world-volume.

A simple possibility to obtain chirality is to locate the D3-branes on some singu-

larity in transverse space, the simplest possibility being a C

3/ZN orbifold singularity

[1, 2]1. There is however an interesting alternative to obtain chiral fermions, which has

not being very much exploited in the past from the phenomenological viewpoint. As

first pointed out in [8], when Dp-branes intersect at non-vanishing angles, open string

stretched between them may give rise to chiral fermions living at the intersection. Our

purpose in the present article is to study the phenomenological potential of this kind

of configurations, in which the observed quarks and leptons are associated to intersec-

tions among Dp-branes. In our setting the di↵erent SM gauge interactions propagate

on di↵erent branes, and chiral fermions propagate at their intersections. That is, we

have gauge bosons propagating on intersecting brane worlds, with quarks and leptons

populating the intersections.

Explicit string theory compactifications with branes intersecting at angles have ap-

peared in [9], and more extensively in [10]. We will concentrate in this paper on the

simplest non-trivial case, corresponding to D4-branes with one of their world-volume

dimensions wrapped on a circle inside a two-torus [10]. Thus the model contains di↵er-

ent stacks of D4-branes for the di↵erent SM gauge groups, wrapping on the two-torus,

and intersecting on four-dimensional subspaces, on which chiral fermions propagate.

For example, left-handed quarks appear at the intersection of the SU(3) D4-branes with

the SU(2)L D4-branes. A pictorial depiction of this type of configuration is shown in

Fig 1. Interestingly enough, two non-parallel D4-branes on a torus typically intersect at

1Specific semirealistic string models based on this possibility with the gauge group of the SM or a
left-right extension were recently constructed in [3]. See e.g. [4] for other attempts to build realistic
string models of the brane world scenario [5, 6, 7]
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Figure 1: A simplified picture of the intersecting brane world scenario. Each gauge inter-

action propagates along a D-brane with four flat dimensions (not shown in the figure), and

partially wrapped on a cycle in the internal space parameterized by X4, X5 (a two-torus in

our models). All branes are transverse to the space parameterized by X6, X7, X8, X9. Chiral

fermions, such as quarks and leptons, are localized at the intersections of the wrapped branes

(for simplicity, we have shown only one such intersection, even though generically multiple

intersection points exist).

more than one point, leading to several copies of the same matter content. Thus repli-

cation of quark-lepton generations is a generic property in this kind of configurations.

In particular, it is easy to construct models with a triplication of generations.

Another interesting feature of these constructions is the structure of Yukawa cou-

plings. Some intersection give rise also to scalar fields, which may transform with the

quantum numbers of Weinberg-Salam Higgs doublets. Their Yukawa couplings with

left(right)-handed fermions FL(FR) will be proportional to exp(�Aijk), where Aijk is

the area of the worldsheet extending among the intersections where the Higgs, FL and

FR live. Due to this fact, it is easy to obtain a hierarchical structure of quark and

lepton masses, as we show in some specific models.

The models we are describing are generically non-supersymmetric. In order to avoid
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the gauge hierarchy problem, one may lower the string scale down to 1-10 TeV in the

usual way [5], by having some or all of the four extra dimensions transverse to the

two-torus large enough 2. An important property of these models is that they do not

predict gauge coupling unification at the string scale. Rather, the gauge coupling of

each gauge group is inversely proportional to the length of the wrapped cycle. The

values of the coupling constants can therefore be computed in terms of the compact

radii, leading to results which may be made compatible with the experimental values.

We also show that a generic di�culty in models with a low string scale, proton stability,

is naturally solved in these configurations, where quarks and leptons live on intersecting

branes. The reason is that a proton decay process requires an overall interaction

with three incoming SU(3) triplets (and no outgoing ones). Such processes require

worldsheets with an odd number of quark insertions, which do not exist (to any order

in perturbation theory).

The scenario we propose has additional specific features. We show that there exist

Kaluza-Klein (KK) and/or winding excitations of the SM gauge bosons, which may

have masses well below the string scale. Moreover there is a new class of extra excited

modes of fields at intersections (with spin=1/2,0,1). They correspond to excited open

strings stretching in the vicinity of the intersections of the branes at angles. Their

masses are proportional to the brane angles, hence we refer to them as ‘gonions’. They

may have masses just above the weak scale, and thus could provide the first signatures

of a low-scale string theory.

To show that the properties advertised above are indeed possible within the context

of string theory, we construct a class of specific string compactifications yielding the

above general structure. In particular one can easily construct a large set of three-

generation models based on D4-branes with one dimension wrapped on circles in T

2⇥
(T4/Z3) [10]. They are non-supersymmetric, and typically involve extra heavy leptons

beyond those in the SM. In these specific examples, in addition to the quarks and

leptons, some intersections also contain scalar tachyons. They are a reflection of the

absence of supersymmetry in the configuration, and signal an instability against the

rearrangement of the D4-branes, which tend to align parallel. Interestingly enough, in

some cases these tachyons have the quantum numbers of Higgs fields, and we propose

that their presence just signals electroweak symmetry breaking.

2See [11] for an early proposal of a low string scale.
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2 Intersecting Standard Model brane-worlds

In order to explore the building of models with quarks and leptons at brane intersec-

tions, we are going to consider the simplest case of sets of D4-branes wrapping di↵erent

circles on a two-torus. More specifically, we consider the compactification of Type IIA

string theory on a compact variety of the form T

2⇥B4, where B4 is a four-dimensional

variety whose specific form is not necessary for the moment 3. We will skip the more

technical details here and postpone issues like tadpole cancellation and the form of

the variety B4 to section 7. We do this to simplify the presentation, but also be-

cause the main physical issues we are discussing are present in other more complicated

string constructions with intersecting branes [9, 10]. Thus, we consider several sets

of D4-branes with one world-volume dimension wrapped on di↵erent circles within a

two-torus. Consider first a square two-torus, obtained by quotienting two-dimensional

flat space R

2 by the lattice of translations generated by the two vectors e1 = (1, 0),

e2 = (0, 1). Thus one makes the identification X = X + l2⇡e1 + p2⇡e2, l, p 2 Z. The

corresponding two circles are taken with arbitrary radii R1 and R2, respectively. We

denote by (n, m) a non-trivial cycle winding n times around the cycle defined by e1 and

m times around the cycle defined by e2. Di↵erent stacks of D4-branes wrap around

di↵erent (n, m) cycles.

Consider now a stack of Ni overlapping D4-branes with wrapping numbers (ni, mi)

and a second stack of Nj D4-branes with wrapping numbers (nj , mj). As is well

known, each set of branes gives rise to a unitary gauge factor, giving a gauge group

U(Ni)⇥U(Nj). Notice that these gauge interactions live in Minkowski space plus one

extra bulk dimension, which is di↵erent for each gauge factor. Matter multiplets arise

at the intersections between the two sets of D4-branes. The number of intersections in

the two-torus is given by

Iij = nimj � njmi (2.1)

At those intersections there arise chiral fermions 4 which transform in the bi-

fundamental representation (Ni, N j) of U(Ni) ⇥ U(Nj). These bi-fundamentals cor-

respond to open strings stretching between both stacks of branes, and hence localized

3More generally, one can consider Type IIA compactified on a six-dimensional variety (e.g. a CY
manifold), which is a torus bundle over a base B4. That is, for any small patch U in B4 the local
geometry factorizes as T2 ⇥ U , but the global topology is not T2 ⇥B4.

4Actually, in order for the fermions at the intersection to be chiral, the transverse variety B4

mentioned above has to fulfill certain conditions, namely it must be singular, as we describe in Section
7. We assume in this section that this is the case.
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near the intersections. Thus chiral fermions are localized in the six compact dimensions.

Due to the multiple number of intersections, we obtain Iij copies of such fermion con-

tent 5, hence replication of the spectrum is a generic feature in this type of construction.

In fact, it is quite easy to obtain configurations with three generations. To see that,

let us discuss the following example

Example 1

We choose a configuration of D4-branes at angles leading to a left-right symmetric

model. With that purpose, we consider four sets of branes with N1 = 3, N2 = 2,

N3 = 2 and N4 = 1, and wrapping numbers

N1 : (1, 0) ; N2 : (0, 3) ; N3 : (1,�3) ; N4 : (1, 0). (2.2)

The resulting gauge group is U(3)⇥U(2)L⇥U(2)R ⇥U(1). The intersection numbers

(2.1) computed using the wrappings (2.2), are either zero or ±3 for any pair of branes.

We obtain a set of chiral fermions transforming under the non-abelian factors as

3(3, 2, 1) + 3(3̄, 1, 2) + 3(1, 2, 1) + 3(1, 1, 2) + 3(1, 2, 2) (2.3)

Notice that the fermion content is that of three generations of quark and leptons. In

addition there are “Higgsino-like” fermions transforming in (1, 2, 2).

The model contains four U(1) gauge symmetries, from the U(Ni) factors in the

di↵erent sets of branes, with generators Qi, i = 1, . . . , 4. In fact, all fields in the model

are neutral under the diagonal combination Qdiag =
P

i Qi, which therefore decou-

ples. Moreover some of the remaining U(1) symmetries are anomalous (with anomaly

cancelled by a generalized Green-Schwarz mechanism). Their detailed discussion [10]

requires an explicit construction within string theory, to be performed in Section 7. For

our purposes here, the main conclusion from the analysis is that the anomalous U(1)’s

gain a mass of the order of string scale, and that one of the surviving anomaly-free

linear combinations can be identified with the standard (B-L) symmetry of left-right

symmetric models (see section 7).

This D4-brane configuration is depicted in Fig. 2. In that figure opposite sides of the

square are identified to recover the topology of a two-torus. Gauge fields are localized

along the straight lines within the square, which represent the wrapped D4-branes.

For example, the SU(2)R branes are wrapping (minus) three times around e2 and once

5Actually (2.1) gives the intersection number counted with orientation, which agrees with the
naive intersection number up to a sign. A negative Iij indicates that the intersections give rise to �Iij

fermions of opposite chirality.
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Figure 2: D4-branes wrapping on a two-torus yielding a three-generation SU(3)⇥SU(2)L⇥
SU(2)R ⇥U(1) model, example 1. Gauge bosons propagate along one world-volume internal

dimension, depicted as lines. Quarks and leptons, appearing in three copies, are located at

the intersection points of di↵erent pairs of branes. Notice that the SU(2)L branes wrap three

times around the depicted circle, hence have three (coincident) intersection with each of the

remaining branes.
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around e1. Chiral fermions are localized at the intersection points of the di↵erent lines,

and transform as bi-fundamental representations under the gauge symmetries on the

corresponding branes. Notice that the fields H i, Qi
L, Li, i=1,2,3 are triplicated because

the SU(2) branes intersect three times with any other set of branes. Also notice the

important point that, since intersections take place at di↵erent points in the two-torus,

the di↵erent quarks and leptons sit at distant locations in the extra dimensions. This

turns out to be important when studying the structure of Yukawa couplings in this

kind of models (see Section 4).

Example 2

There is in fact a wealth of possibilities 6. For instance, we can construct a Standard

Model configuration, based on four sets of branes with N1 = 3, N2 = 2 , N3 = N4 = 1,

and wrapping numbers

N1 : (1, 0) ; N2 : (1, 3) ; N3 : (0,�3) ; N4 : (1,�3) . (2.4)

The resulting gauge group is U(3) ⇥ U(2)L ⇥ U(1) ⇥ U(1). The intersection numbers

(2.1) corresponding to these wrapping numbers are ±3, or ±6. The resulting chiral

fermions transform as

3(3, 2) + 3(3̄, 1) + 3(3̄, 1) + 3(1, 2) + 3(1, 1) + 6(1, 2) (2.5)

Which correspond to three quark-lepton generations plus an extra set of three vector-

like leptons (“Higgsinos”). This D4-brane configuration is depicted in Fig. 3. As in the

above left-right symmetric model, out of the original four U(1) interactions the diagonal

combination decouples, and other two combinations are anomalous and become massive

(of order the string scale). There is however an anomaly-free combination, roughly of

the form

QY = �1

3
Q1 �

1

2
Q2 �Q4 , (2.6)

which can be identified with standard hypercharge. Here Qi is the U(1) generator of

the ith stack of D4-branes.

Up to this point, we have not mentioned whether there are scalar fields at the

intersections. In general there are such fields, as we describe in Section 7. Their exis-

tence depends on the geometry of the transverse compact space B4. Phenomenological

models require the existence of Higgs scalars, which in our models should arise at

6One can in fact classify di↵erent families of models (wrapping numbers) leading to three genera-
tions. See section 7.
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the intersections of the SU(2)L branes with some U(1) (or SU(2)R) branes. This is

certainly the case in many explicit string theory models, as we discuss in Section 7.

Leaving their detailed study for later sections, we proceed, assuming for the time being

that the models under study indeed contain appropriate scalars to play the role of

standard model Higgs fields.

3 The gauge coupling constants

Unlike what happens in other string scenarios, the couplings for the di↵erent gauge

factors in the model do not have the same value at the string scale, so there is no uni-

fication of gauge couplings 7. The gauge fields on di↵erent sets of wrapping D4-branes

have di↵erent gauge couplings gi, with fine structure constant inversely proportional

to the length of the wrapped cycle

4⇡2

g2
i

=
Ms

�II
|(ni, mi)| (3.1)

where Ms is the string scale, �II is the Type II string coupling, and |(n, m)| is the length

of the cycle (n, m). Here we will consider the case of a general metric for the torus.

This length depends on the compactification radii R1, R2, and the angle ✓ between the

two vectors defining the torus lattice. Distances on a flat torus can be seen as a scalar

product of vectors with the metric

g =

0

@

g11 g12

g21 g22

1

A = (2⇡)2

0

@

R2
1 R1R2 cos ✓

R1R2 cos ✓ R2
2

1

A (3.2)

The length of a cycle v = (n, m) is

|(n, m)| = (gabv
avb)1/2 = 2⇡

q

n2R2
1 + m2R2

2 + 2nmR1R2 cos ✓ (3.3)

Thus the relative size of the di↵erent coupling constants is governed by the wrapping

numbers (ni, mi), the compactification radii R1, R2 and cos ✓. In the case of an anomaly

free U(1) defined by a linear combination

Q =
X

i

ci Qi (3.4)

the corresponding coupling is given by

1

g2
U(1)

=
X

i

ci
1

g2
i

. (3.5)

7The question of gauge couplings in multiple brane scenarios has also been considered in [12, 13,
14, 3].

9



In the case of models analogous to that of example 2, one finds

↵QCD
�1 =

1

⇡�II
|(n1, m1)| (3.6)

↵�1
2 =

1

⇡�II
|(n2, m2)| (3.7)

↵�1
Y = (3↵QCD)�1 + (2↵2)

�1 +
1

⇡�II
|(n4, m4)| (3.8)

where lengths are measured in string units. This leads to a weak angle

sin2 ✓W =
g2

y

g2
y + g2

2

=
6

(9 + 2⇠1 + 6⇠4)
(3.9)

where ⇠1 = g2
2/g

2
1 and ⇠4 = g2

2/g
2
4.

These are the values of the couplings at the string scale, which, since the models are

non-supersymmetric, should be of the order of 1-10 TeV to avoid a hierarchy problem.

In order to compare the values (3.8) with low-energy data, running from the string scale

to the weak scale should be taken into account. The details of this running depend on

the precise low-energy content of the model 8. There seems to be enough freedom in this

class of models to accommodate the experimental values by appropriately varying the

choice of (ni, mi), the radii R1,2, and the angle ✓. A detailed analysis of possibilities is

beyond the scope of this paper. For illustration, an estimation of the coupling constants

values is performed in Section 7 for an explicit string SM example.

4 The structure of Yukawa couplings

As we have seen in previous sections, quarks, leptons and Higgs fields live in general at

di↵erent intersections. Yukawa couplings among the Higgs H i and two fermion states

F j
R, F k

L arise from a string worldsheet stretching among the three D4-branes which

cross at those intersections. The worldsheet has a triangular shape, with vertices on

the relevant intersections, and sides within the D4-brane world-volumes. The area

of such world-sheet depends on the relative locations of the relevant fields, and some

couplings may even require world-sheets wrapped around some direction in the two-

torus.

The size of the Yukawa coupling is, for a square torus, of order 9

Yijk = exp(�R1R2

↵0 Aijk) (4.1)

8As studied in Section 6, there may be KK/winding and other type of excitations in the region
between MZ and Ms. They may lead to important modifications of the coupling running to some
extent analogous to those in [15].

9For a general metric one just has to replace R1R2 ! R1R2|sin✓|.
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where Aijk is the adimensional area (the torus area has been scaled out) of the world-

sheet connecting the three vertices. Since the areas involved are typically order one in

string units, corrections due to fluctuations of the worldsheet may be important, but

we expect the qualitative behaviour to be controlled by (4.1). This structure makes

very natural the appearance of hierarchies in Yukawa couplings of di↵erent fermions,

with a pattern controlled by the radii and the size of the triangles.

The cycle wrapped by the ith D4-brane around a rectangular torus is given by a

straight line equation

X i
2 = ai(2⇡R2) +

miR2

niR1
X i

1, (4.2)

and the ith and jth D4-branes intersect at the point:

(X1, X2)ij =
2⇡

Iij
(ninj(ai � aj)R1, (ainimj � ajnjmi)R2) (4.3)

where Iij is the intersection number for the two D-branes. Hence, the area of each

triangle depends not only on the wrapping numbers (ni, mi) but also on the ai’s.

It is clear from the above structure that one can easily generate hierarchies of

Yukawa couplings and possibly interesting textures for suitable choices of the free

parameters in the models, i.e. the wrapping numbers, the compact radii (and the

angle between axes for non-square tori), and the parameters ai of each stack of branes.

A systematic search for phenomenologically interesting textures is beyond the scope

of this paper. However, let us illustrate the idea by considering as an example the

left-right symmetric model considered in section 2 (example 1).

The configuration is shown for the case of a square lattice in Fig. 4, where in order

to get a better visualization, we include several fundamental domains of the torus. The

left(right)-handed quarks are denoted by Qi
L(Qi

R) and the left(right)-handed leptons

by Li(Ri). Scalars transforming as (1, 2, 2) appear at the intersection of the SU(2)L

and SU(2)R branes and are denoted by Hi. Let us first consider the structure of quark

Yukawa couplings to one of the Higgs fields, say H3. For the choice of brane positions

shown in Fig. 4, the couplings of H3 to the three generations of quarks

h3H3Q
3
LQ3

R ; h2H3Q
2
LQ2

R ; h1H3Q
1
LQ1

R (4.4)

are in ratios

h3 : h2 : h1 = exp(
�R1R2

6↵0 �2) : exp(
�R1R2

6↵0 (1� �)2) : exp(
�R1R2

6↵0 (2� �)2) (4.5)

where � = a1�a3. For example, for R1R2/(6↵0) = 10 and � = 0.26, a vev for H1 would

lead to essentially massless quarks for the first generation and a ratio m3/m2 / 100,

which is of the required order of magnitude.
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In this example there are additional Yukawa couplings, which are perhaps more

evident in the representation in Fig. 2, involving the remaining Higgs fields, H1, H2.

The full set of quark Yukawas is of the form

h3H3Q
3
LQ3

R ; h3H2Q
2
LQ3

R ; h3H1Q
1
LQ3

R

h2H3Q
2
LQ2

R ; h2H2Q
1
LQ2

R ; h2H1Q
3
LQ2

R

h1H3Q
1
LQ1

R ; h1H2Q
3
LQ1

R ; h1H1Q
2
LQ1

R

where hi are in ratios as above, eq. (4.5). Hence, assuming H3 has the dominant vev

as above, vevs for H1, H2 contribute to non-diagonal entries in the quark mass matrix.

Clearly, a similar pattern holds for leptons.

In fact, the existence of mixing is generic in this class of brane models. This

is explicit also in the SM example of Figure 3. If we assume that the Higgs fields

which couple to the u-type quarks arise at the intersections labeled Li, it is clear from

the figure that the scalars in the locations L4, L5, L6 couple diagonally to the quarks

whereas those in L1, L2, L3 generate o↵-diagonal couplings.

In the left-right symmetric models the Yukawa couplings of u-type and d-type

quarks are equal, although the masses are di↵erent if the vevs of the Higgs fields

coupling to u- and d-quarks are di↵erent. In the case of SM configurations the Yukawa

couplings of u- and d-quarks are in general di↵erent. For example, one may consider a

SM obtained from the left-right model depicted in Fig. 4 by replacing the two SU(2)R

D4-branes by two parallel branes next to each other, as shown in Fig. 5. In this case,

the areas of the di↵erent triangles corresponding to u- and d-quark Yukawa couplings

are di↵erent, leading to di↵erent hierarchical patterns. This example illustrates how

the location of the di↵erent branes allows for di↵erent patterns (textures) for fermion

masses. It would be very interesting to study the di↵erent general classes of quark,

lepton and neutrino textures which can be accommodated in schemes of this type.

Notice that the origin of hierarchies in this class of models is somewhat similar to that

suggested for heterotic orbifolds in ref.[16] (see also [17] ). For a recent proposal in the

context of brane worlds see [18].

5 Mass scales and nucleon stability

The models we are considering are in general non-supersymmetric and hence, we must

set the string scale close to the weak scale to avoid a hierarchy problem. The four-

dimensional Planck scale Mp is related to the string scale Ms and the compact volumes
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by (see e.g. [13])

Mp =
2
p

V2V4

�II↵02 (5.1)

where V4 is the volume of the compact variety B4 transverse to the torus where the D4-

branes wrap and V2 = R1R2| sin ✓| is the area of the torus. In order to have not too small

gauge and Yukawa couplings
p

V2/(�II↵
0) cannot be very large. Still, one can obtain

the required value for Mp by appropriately choosing a large value for V4. In particular,

setting the string scale Ms = 1�10 TeV , one should choose V4 ⇡ 1016�1010 (GeV)�4.

For isotropic compactifications, this requires Mc ⇡ 3 ⇥ 10�4 � 10�2 GeV, but this is

not the only choice. In fact, two of the dimensions inside B4 could be kept of order

the string length, while the remaining two are taken in the millimeter range, leading

to a phenomenology similar to some brane-world scenarios considered in the recent

literature.

One of the main problems for the construction of brane-worlds with a low scale of

order 1-10 TeV is proton stability. If the fundamental scale of the theory is that low,

one expects (unless some symmetry forbids it) the existence of four-fermion dimension

six operators mediating proton decay, which would be suppressed only by powers of

1/M2
s . Interestingly enough, nucleon decay is automatically forbidden (to all orders

in perturbation theory) in intersecting brane world models. In order for proton decay

to proceed, there must be an e↵ective operator involving three incoming quarks and

no (net) outgoing ones. In our case, this would require a string amplitude, with e.g.

the topology of a disk, with boundary on the intersecting D-branes, and involving just

three vertex operator insertions associated to the quarks. These arise at intersections of

the SU(3) branes with some other SU(2) or U(1) stack of branes. On the world-sheet

boundary, each such insertion changes the worldsheet boundary conditions from those

associated to SU(3) branes to those associated to SU(2) or U(1) branes (or viceversa).

Hence, any amplitude must involve an even number of such insertions, so there is no

disk configuration which can contribute to proton decay. The argument in fact is valid

for other string worldsheet topologies, with any number of holes and boundaries, hence

the result is exact to all orders in perturbation theory.

In other words, the above argument applied to any stack of branes shows that there

is an exact discrete symmetry (Z2)K , where K is the number of brane stacks. Under

this symmetry, any state arising from an open string stretched between the ith and

jth stacks of branes is odd under the ith and jth
Z2’s, and even under the rest. The

Z2 associated to the SU(3) stack of branes prevents proton decay. Notice that Higgs

scalars are neutral under this Z2, hence their vevs do not break this symmetry. These
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discrete symmetries are expected to be broken by non-perturbative e↵ects, but their

violations are presumably negligible.

Thus the nucleon is stable in this kind of brane intersection models. This is a

remarkable fact, which is important for scenarios in which the string scale is close to

the weak scale, say at Ms / 1 � 10 TeV. Let us also emphasize that this automatic

proton stability is not generic in other brane world scenarios, such as D3-branes at

singularities [3], but depend on the particular model considered. This feature makes

the intersecting brane world scenario a very interesting proposal.

6 Low energy spectrum and signatures at acceler-

ators

The models we are considering have standard quarks and leptons, arising at the in-

tersections, but are non-supersymmetric and in general squarks and sleptons are not

present. However, the models typically contain extra particles beyond the content of

the minimal SM, which can be rather light. In this Section we review the main type

of extra particles present in generic models of this type.

1) Excited KK gauge bosons

The gauge interactions of the standard model are sensitive to the presence of the

toroidal extra dimensions around which the D-branes wrap. Hence in these models

there are Kaluza-Klein replicas of gluons and electroweak gauge bosons. In our models

of D4-branes, these Kaluza-Klein gauge-boson excitations have masses (for a general

torus metric) given by :

M i
KK =

|k|
q

n2
i R

2
1 + 2nimi cos ✓R1R2 + m2

i R
2
2

with k 2 Z (6.1)

where i labels the di↵erent stacks of branes. This formula is interesting because it

can be used to relate the masses of the Kaluza-Klein replicas to the gauge coupling

constants in (3.1) at the string scale . Indeed, masses of KK states are integer multiples

of

M i
KK =

2↵i(Ms)

�II
Ms (6.2)

Thus these replicas are expected to be lighter than the string scale for (�II/2) � ↵i.

The expression (6.2) also shows that the masses of the KK replicas are on the ratios of

the fine structure constants (at the string scale) for the corresponding gauge bosons.
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Thus the electroweak excited W’s , � and Z’s will be in general the lightest KK modes,

and could be the first experimental signature of extra dimensions (see e.g. [7]).

Notice that if the excited gauge bosons are relatively light, one has to include their

e↵ect in the running of the gauge coupling constants from Ms down to the electroweak

scale. The e↵ect of these excited gauge bosons would be to make the SU(3) and SU(2)

inverse couplings to decrease faster as we increase the energies. The overall e↵ect of

this particular contribution would be analogous to the accelerated running suggested

in [15].

2) Excited gauge bosons from windings

Depending on the values of the radii R1, R2 and the wrapping numbers (ni, mi),

some string winding states may be below the string scale. Indeed, for the case of branes

multiply wrapped around R1,2, there may be open strings stretching between di↵erent

pieces of the brane in the fundamental region. For example, there exist such states

associated to open strings stretched between the SU(2)R D4-brane lines in Fig. 2, or

between the SU(2)L or U(1)0 D4-brane lines in Fig. 3. These states are massive excited

gauge bosons in the corresponding brane, with masses proportional to the separation of

the di↵erent pieces of the D4-brane under consideration. The masses of these winding

modes are (for ni, mi 6= 0)

M i
stretch = 2⇡pM2

s

R1R2| sin ✓|
q

n2
i R

2
2 + 2nimi cos ✓R1R2 + m2

i R
2
1

(6.3)

with p a positive integer. Thus, for large wrapping numbers ni, mi or small radii R1,2

or sin✓ some modes may be below the string scale. Notice that, unlike the KK modes,

these states are stringy in nature, and hence their mass depends explicitly on the string

scale. For relatively small radii (and for the case of multi-wrapped D4-branes) these

excited gauge bosons may be lighter than the corresponding KK mode (see also [20]),

so that either one or the other may be lighter than the string scale. In particular, for

the case of a square torus (R1 = R2, cos ✓ = 0) one can derive the bound for the KK

and winding replicas of each gauge boson,

M i
stretchM

i
KK  2⇡(n2

i + m2
i )

�1 M2
s (6.4)

so that one or the other could be found at accelerators before reaching the string

threshold.

Unlike the gauge sector, quarks and leptons are localized in the six extra dimensions

and do not have this type of KK excitations. Consequently, their interactions do not

conserve KK quantum numbers, i.e. there exist in principle couplings of the type
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qq̄ ! G⇤, W ⇤, B⇤, of quarks to KK excitations of gauge bosons (see [7] and references

therein). Thus KK excitations need not be produced in pairs. Similar statements can

be made about the winding states.

3) Gonions: KK-like excitations of chiral fields

We have described how the groundstates of open strings stretched between inter-

secting branes give rise to chiral fermions. There are also additional (vector-like) states

corresponding to excited open strings (with oscillator excitations) stretched between

the intersecting branes [8]. Such modes are also localized at the vicinity of the in-

tersection. They give rise to towers of excited states, with spacing controlled by the

intersection angle, and which are somewhat new in their behaviour. To distinguish

them form the normal KK and winding excitations of the gauge bosons, we call these

fields gonions, being associated to branes at angles. There may exist gonions with

spin=1/2,0 and 1. At all the intersections there are in general fermionic (vector-like)

gonions with masses given by

m2
ij(fermion) = q

|↵ij|
⇡

M2
s (6.5)

where q > 0 is an integer and ↵ij is the angle formed between the corresponding pair of

branes. On the other hand at some of the intersections (concretely, at those at which

Higgs-like fields reside, see sections 7,8) there are in addition scalar and vector gonions

with masses

m2
ij(scalar) = (q � 1/2)

|↵ij|
⇡

M2
s ; m2

ij(vector) = (q + 1/2)
|↵ij|
⇡

M2
s (6.6)

where q is a non-negative integer 10. Thus, the size of these masses depends on the

intersection angles. We will argue in section 8 that these angles may be relatively

small, in order to suppress the weak scale relative to the string scale. Notice that, the

intersection angle ↵ij depends on the shape of the torus,

cos ↵ij =
gabv

a
i v

b
j

|vi||vj|
=

=
a2ninj + a cos ✓(nimj + njmi) + mimj

q

(ani)2 + 2animi cos ✓ + m2
i

q

(anj)2 + 2anjmj cos ✓ + m2
j

(6.7)

where vi = (ni, mi) and a = R1/R2. Thus, e.g. for ✓ close to ⇡, the angle ↵ij becomes

close to zero. So, if ↵ijM
2
s is of order the weak scale, one should see the first excited

10For q = 0 there are tachyons which will be discussed in Section 8. They are associated to Higgs-like
fields.
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(vector-like) replicas of the observed quarks and leptons not much above the weak scale.

These masses will be generation independent, but di↵er from one type of standard

model fermion to the other since their masses are proportional to the corresponding

intersection angles.

These ‘KK-like’ excitations of the chiral fields in the intersections are the most

likely signature of the present scheme at accelerators. They have the same quantum

numbers under the gauge group as the corresponding quark or lepton living at the

corresponding intersection. Thus, for example, coloured gonions should be produced

by gluon fusion at a hadronic collider, and would look very much like new vector-like

quark generations with generation independent masses. In addition all type of gonions

have couplings to the ordinary quarks and leptons which will be of order of the usual

Yukawa couplings. For example, a scalar or vector gonion in the same intersection as a

Higgs field, will have couplings to quarks and leptons proportional to the corresponding

Yukawa couplings. This is because the coupling would be proportional to exp(�Aijk),

with A ijk the area of the worldsheet stretched among the gonion and the two fermion

intersections, very much like in standard Yukawa couplings. Thus, bosonic gonions

will typically decay into third generation quarks and leptons. Again, note that if these

gonions have masses not much above the weak scale (as suggested in section 8), they

will contribute to the running of the gauge couplings in between the weak and the

string scales.

4) Extra massless states in the brane bulk

The massless sector of each of the D4-branes of course includes the gauge bosons of

the corresponding gauge group, but may contain extra particles. In particular, although

the complete theory is non-supersymmetric due to the presence of the intersections, the

gauge sector living on the bulk of the D4-branes (i.e. within the brane, but away from

the intersections) may be supersymmetric, even with N = 2 or N = 4 supersymmetry.

In this case, besides the gauge bosons, there exist fermionic and/or bosonic partners

transforming in the adjoint of each gauge group. The presence or not of these enhanced

SUSY sectors depends on the geometry of the transverse compact variety B4
11.

The simplest possibility from the phenomenological perspective is having no SUSY

in the bulk. Even in this case, there may be additional scalars and vector-like fermions

transforming in the adjoint of each gauge group, and massless at tree level. Indeed, the

11In Section 7 we construct specific string models in which B4 = T4/ZN, with an enhanced N = 2
supersymmetry in the bulk of the D4-branes. Analogous models with N = 0 may be obtained by
performing a ZN twist breaking all SUSY’s. See [10] for details.
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numbers under the gauge group as the corresponding quark or lepton living at the

corresponding intersection. Thus, for example, coloured gonions should be produced

by gluon fusion at a hadronic collider, and would look very much like new vector-like

quark generations with generation independent masses. In addition all type of gonions

have couplings to the ordinary quarks and leptons which will be of order of the usual
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Yukawa couplings. This is because the coupling would be proportional to exp(�Aijk),

with A ijk the area of the worldsheet stretched among the gonion and the two fermion

intersections, very much like in standard Yukawa couplings. Thus, bosonic gonions

will typically decay into third generation quarks and leptons. Again, note that if these

gonions have masses not much above the weak scale (as suggested in section 8), they

will contribute to the running of the gauge couplings in between the weak and the

string scales.
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The massless sector of each of the D4-branes of course includes the gauge bosons of

the corresponding gauge group, but may contain extra particles. In particular, although

the complete theory is non-supersymmetric due to the presence of the intersections, the

gauge sector living on the bulk of the D4-branes (i.e. within the brane, but away from

the intersections) may be supersymmetric, even with N = 2 or N = 4 supersymmetry.

In this case, besides the gauge bosons, there exist fermionic and/or bosonic partners

transforming in the adjoint of each gauge group. The presence or not of these enhanced

SUSY sectors depends on the geometry of the transverse compact variety B4
11.

The simplest possibility from the phenomenological perspective is having no SUSY

in the bulk. Even in this case, there may be additional scalars and vector-like fermions

transforming in the adjoint of each gauge group, and massless at tree level. Indeed, the

11In Section 7 we construct specific string models in which B4 = T4/ZN, with an enhanced N = 2
supersymmetry in the bulk of the D4-branes. Analogous models with N = 0 may be obtained by
performing a ZN twist breaking all SUSY’s. See [10] for details.
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presence of these scalars would signal the possibility of separating the branes within

a stack (i.e. like the two SU(2)R D4-branes of left-right symmetric models) into a set

of parallel branes. They would lead to e.g. SU(3) octet scalars and SU(2)L triplet

scalars. Although massless at the tree-level, both scalars and fermions would acquire

one-loop masses, see eq. (8.6), of order ⇡ ↵iMs. If present, they could also provide

interesting signatures at colliders.

In addition to the above signatures, one may have the standard signature of extra

dimensions of graviton emission to the bulk (corresponding to the large transverse

space B4), which has been extensively analyzed in the literature [19]. Obviously,

if the string scale is reached, explicit string modes would be accessible. However,

as pointed out above, in the present scenario the KK/winding excitations of gauge

bosons, and gonion excitations of chiral fields are expected to be lighter, and much

more accessible. A detailed phenomenological analysis of their production at colliders

would be interesting.

7 Explicit string models

In this section 12 we would like to present specific Type IIA string models, with D4-

branes wrapping on a torus, yielding structures very similar to the ones sketched in

the previous sections.

The kind of configurations we consider here have been recently studied in [10],

to which we refer the reader interested in the more technical details. Here we will

merely present several of these string constructions, providing explicit realizations of

the scenario discussed in section 2. As explained in [10], D4-branes in flat space lead

to non-chiral matter content in their intersection. One is therefore led to consider D4-

branes (with one direction wrapped on one-cycles in a two-torus) sitting at singular

points in a transverse space, which we take to be B4 = (T2)2/ZN.

For concreteness we center on Z3 orbifolds (extension to the general case be-

ing straightforward [10]), generated by a geometric action ✓ with twist vector v =
1
3(1,�1, 0, 0). We consider K di↵erent stacks of D4-branes, each one containing Ni

branes, with wrapping numbers around the 2-torus given by (ni, mi). We set the four

transverse coordinates of the D4-branes at the fixed point at the origin in (T2)2/Z3.

The Z3 action may be embedded in the U(Ni) gauge degrees of freedom of the ith stack

12Readers not familiar with technicalities of string theory may skip to the following section.
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of D4-branes, through a unitary matrix of the form

�✓,i = diag (1N0
i
, e2⇡i 1

3
1N1

i
, e2⇡i 2

3
1N2

i
) (7.1)

with
P

a Na
i = Ni. Due to this twist the initial gauge group

QK
i=1 U(Ni) is broken to

QK
i=1

Q3
a=1 U(Na

i ).

Cancellation of twisted tadpoles in the theory imposes the constraints 13

K
X

i=1

ni Tr �✓k,4i
= 0 ;

K
X

i=1

mi Tr �✓k,4i
= 0 (7.2)

These conditions guarantee, as usual, the cancellation of gauge anomalies. At the

intersections of the di↵erent D4-branes, there appear massless fermions transforming

under
QK

i=1

Q3
a=1 U(Na

i ) as [10]

X

i<j

3
X

a=1

Iij ⇥ [ (Na
i , N

a+1
j ) + (Na

i , N
a�1
j )� 2(Na

i , N
a
j ) ] (7.3)

with the usual convention for negative multiplicities (see footnote 5). One easily checks

that tadpole cancellation conditions indeed imply that this fermion spectrum is free

of non-Abelian gauge anomalies. Concerning mixed U(1) anomalies, some of the U(1)

gauge symmetries have triangle anomalies, as is often the case in string theory construc-

tions. The theories are nevertheless consistent, due to the cancellation of the anomaly

by a generalized Green-Schwarz mechanism, involving twisted closed string states. The

corresponding gauge bosons become massive, with mass of the order of the string scale,

by combining with certain twisted closed string scalars, whereas the orthogonal linear

combinations are anomaly-free and remain massless (see [10] for details). Armed with

the above information, we can now construct explicit string compactifications similar

to the examples given in section 2.

Before showing specific models, notice that, once the wrapping numbers have been

specified, an infinite number of models can be constructed by acting on all the wrapping

vectors (ni, mi) with (the same) SL(2,Z) transformation 14. This kind of transforma-

tions preserves the intersection numbers between di↵erent sets of branes, i.e. the chiral

13We do not impose cancellation of untwisted tadpoles, assuming they are properly cancelled by an
additional set of D4-branes away from the origin in (T2)2/Z3. Such extra branes do not change the
field theory spectrum in the sector at the origin, and hence are irrelevant for our discussion.

14Matrices of the form,

C =

 

a b

c d

!

(7.4)

where a, b, c, d are integers and det(C) = 1
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spectrum. Distances are also preserved if the metric transforms accordingly 15. Two

models in the same SL(2,Z) family represent the same physics: the spectrum is related

to the intersection matrix and the masses are related to the metric of the torus.

It is therefore interesting to classify all non-equivalent models leading, to the same

intersection matrix (chiral spectrum). Such models have the same chiral spectrum,

but di↵er in the content and masses of non-chiral fields. This number turns out to be

just the sum of the divisors of the number of generations, e.g. for three generations

there are four non-equivalent families of three generation models (1 + 3). To obtain all

non-equivalent families with a given intersection matrix, one would proceed as follows.

• Consider a pair of D-brane stacks, i and j, with intersection Ii,j, and find all

non-equivalent pairs of wrapping numbers with such intersection.

• For each fixed choice of wrapping numbers, the remaining wrapping numbers are

determined by imposing the intersection numbers with i and j, which are now

linear equations.

• Finally, one should check the intersections among branes di↵erent from i and j.

Also, solutions with non-integer wrappings should be rejected.

With an intersection number Iij > 0, we can use SL(2,Z) to bring the wrappings

of the stacks i and j to the form (ni, 0) and (nj , mj), with ni > 0, mj > nj � 0, and

nimj = Iij . The number of solutions is just the sum of all the divisors of Iij. Each

solution then determines the remaining wrapping numbers in terms of intersection

numbers. Leaving a full study of the characteristics of the di↵erent families, we turn

to studying a couple of examples of three generation models.

Example 1

Consider five sets of D4-branes with multiplicities N1 = 3, N2 = 2, N3 = 2 and

N4 = N5 = 1, and wrapping numbers

N1 : (1, 0) ; N2 : (0, 3) ; N3 : (1,�3) ; N4 : (1, 0) ; N5 = (3, 0) . (7.5)

Notice that this choice is identical to the one in example 1 of Section 2, except for one

additional D4-brane. The latter will be required in the present example in order to

cancel the twisted tadpole conditions, and render the string configuration consistent.

15If gA is metric of the original torus, the transformed metric should be of the form gB =
(C�1)T gAC�1.

22



spectrum. Distances are also preserved if the metric transforms accordingly 15. Two

models in the same SL(2,Z) family represent the same physics: the spectrum is related

to the intersection matrix and the masses are related to the metric of the torus.

It is therefore interesting to classify all non-equivalent models leading, to the same

intersection matrix (chiral spectrum). Such models have the same chiral spectrum,

but di↵er in the content and masses of non-chiral fields. This number turns out to be

just the sum of the divisors of the number of generations, e.g. for three generations

there are four non-equivalent families of three generation models (1 + 3). To obtain all

non-equivalent families with a given intersection matrix, one would proceed as follows.

• Consider a pair of D-brane stacks, i and j, with intersection Ii,j, and find all

non-equivalent pairs of wrapping numbers with such intersection.

• For each fixed choice of wrapping numbers, the remaining wrapping numbers are

determined by imposing the intersection numbers with i and j, which are now

linear equations.

• Finally, one should check the intersections among branes di↵erent from i and j.

Also, solutions with non-integer wrappings should be rejected.

With an intersection number Iij > 0, we can use SL(2,Z) to bring the wrappings

of the stacks i and j to the form (ni, 0) and (nj , mj), with ni > 0, mj > nj � 0, and

nimj = Iij . The number of solutions is just the sum of all the divisors of Iij. Each

solution then determines the remaining wrapping numbers in terms of intersection

numbers. Leaving a full study of the characteristics of the di↵erent families, we turn

to studying a couple of examples of three generation models.

Example 1

Consider five sets of D4-branes with multiplicities N1 = 3, N2 = 2, N3 = 2 and

N4 = N5 = 1, and wrapping numbers

N1 : (1, 0) ; N2 : (0, 3) ; N3 : (1,�3) ; N4 : (1, 0) ; N5 = (3, 0) . (7.5)

Notice that this choice is identical to the one in example 1 of Section 2, except for one

additional D4-brane. The latter will be required in the present example in order to

cancel the twisted tadpole conditions, and render the string configuration consistent.

15If gA is metric of the original torus, the transformed metric should be of the form gB =
(C�1)T gAC�1.

22

The twists acting on CP indices are taken to be

�✓,1 = 13

�✓,2 = �✓,3 = ↵12

�✓,4 = ↵

�✓,5 = ↵2 (7.6)

where ↵ = exp(2⇡i/3). One can easily check that these choices of wrapping numbers

and CP twist matrices verify the tadpole cancellation conditions (7.2). The gauge

group is U(3) ⇥ U(2)L ⇥ U(2)R ⇥ U(1)4 ⇥ U(1)5. Using (2.1) and (7.3), one easily

obtains the massless chiral fermion spectrum displayed in Table 1.

Intersection Matter fields Q1 Q2 Q3 Q4 Q5 B � L X

(12) 3(3, 2, 1) 1 -1 0 0 0 1/3 0

(13) 3(3̄, 1, 2) -1 0 1 0 0 -1/3 0

(23) 6(1, 2, 2) 0 1 -1 0 0 0 0

(24) 6(1, 2, 1) 0 1 0 -1 0 1 -1

(34) 6(1, 1, 2) 0 0 -1 1 0 -1 1

(25) 9(1, 2, 1) 0 -1 0 0 1 -1 2/3

(35) 9(1, 1, 2) 0 0 1 0 -1 1 -2/3

Table 1: Spectrum of the SU(3) ⇥ SU(2)L ⇥ SU(2)R model. We present the quantum

numbers of the chiral fermions under the U(1)5 group, as well as the charge under the B�L

linear combination and the additional anomaly-free generator QX .

Non-abelian cubic anomalies automatically cancel, while there are two anomalous

U(1)’s and three anomaly-free U(1)’s. One of the latter, the diagonal sum of the five

U(1) generators, actually decouples since all particles have zero charge under it. The

remaining two anomaly-free linear combinations are

QB�L = �2

3
Q1 �Q2 �Q3 � 2Q4 � 2Q5

QX = Q4 +
2

3
Q5 (7.7)

We have displayed the charge under these two generators in Table 1. The first linear

combination plays the role of B-L symmetry. The model contains three quark-lepton
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chiral generations, plus some additional vector-like leptons 16. Comparing with example

1 in Section 2, besides these extra leptons there is an additional U(1) interaction QX .

It arises from the additional D4-brane we have introduced for technical reasons, namely

in order to achieve cancellation of twisted tadpoles. Similarly, the additional leptons

arise from the new intersections the additional brane introduces.

Example 2

Consider five di↵erent stacks of D4i-branes, with multiplicities N1=3, N2 = 2 and

N3 = N4 = N5 = 1, and wrapping numbers 17

N1 : (1, 0) ; N2 : (1, 3) ; N3 : (0,�3) ; N4 : (1,�3) ; N5 = (3, 0) . (7.9)

This choice is similar to example 2 in Section 2, di↵ering only in the introduction of

one additional D4-brane, required to achieve cancellation of twisted tadpoles in the

model. The twists acting on CP indices are taken to be

�✓,1 = 13

�✓,2 = ↵12

�✓,3 = �✓,4 = ↵

�✓,5 = ↵2 (7.10)

Again, one can easily check that these choices of wrapping numbers and CP twist

matrices verify the tadpole cancellation conditions (7.2). The gauge group is U(3) ⇥
U(2)L ⇥U(1)3 ⇥ U(1)4 ⇥ U(1)5. From (2.1) and (7.3), the spectrum of chiral fermions

is easily computed, and the result is shown in Table 2.

There are two anomaly-free U(1) linear combination (apart from the diagonal one,

which decouples) given by

QY = �1

3
Q1 �

1

2
Q2 �Q4 �Q5

QX = Q3 �Q4 �
2

3
Q5 (7.11)

16Notice that the number of generations arises from the intersection number between the cycles
(7.5), and is completely unrelated to the order of the orbifold group Z3.

17Indeed, there are other three SL(2,Z) families with the same chiral spectrum,

N1 : (1, 0) ; N2 : (0, 3) ; N3 : (1,�3) ; N4 : (2,�3) ; N5 = (3, 0)

N1 : (1, 0) ; N2 : (2, 3) ; N3 : (�1,�3) ; N4 : (0,�3) ; N5 = (3, 0)

N1 : (3, 0) ; N2 : (0, 1) ; N3 : (3,�1) ; N4 : (6,�1) ; N5 = (9, 0) . (7.8)

Each family of models gives rise to di↵erent physics.
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Table 2 also provides the charges under these linear combinations. Interestingly, we

see that the first of these generators can be identified with standard weak hypercharge.

Again, the model contains three quark-lepton generations plus some vector-like leptons

and additional U(1) gauge factor. Comparing with example 2 of Section 2, we find the

model is almost identical, the di↵erences being due to the presence of an additional

D4-brane, which we have been forced to introduce in order to satisfy twisted tadpole

cancellation conditions.

Intersection Matter fields Q1 Q2 Q3 Q4 Q5 Y X

(12) 3(3, 2) 1 -1 0 0 0 1/6 0

(13) 3(3̄, 1) -1 0 1 0 0 1/3 1

(14) 3(3̄, 1) -1 0 0 1 0 -2/3 -1

(23) 6(1, 2) 0 1 -1 0 0 -1/2 -1

(24) 12(1, 2) 0 1 0 -1 0 1/2 1

(25) 9(1, 2) 0 -1 0 0 1 -1/2 -2/3

(34) 6(1, 1) 0 0 -1 1 0 -1 -2

(35) 9(1, 1) 0 0 1 0 -1 1 5/3

(45) 9(1, 1) 0 0 0 1 -1 0 -1/3

Table 2: Spectrum of a standard model. We present the quantum numbers of the chiral

fermions under the U(1)5 group, as well as the hypercharge linear combination and the

additional QX generator.

The above two examples illustrate how the general properties described in the

previous sections may in fact be obtained in the context of string theory. Although

in these particular examples, due to technical reasons, we were forced to add an extra

brane, which led to an extra U(1) and additional leptons, our discussion of gauge and

Yukawa couplings, structure of mass scales, proton stability, and the possible presence

of light KK/winding gauge boson excitations remains valid for these explicit string

examples.

As an illustration we can estimate the possible values of coupling constants as

discussed in section 3. Recall that, since the hypercharge generator (7.11) involves the

additional D4-brane, not present in (2.6) in the toy model in Section 2, we must replace

|(n4, m4)|! |(n4, m4)| + |(n5, m5)| in (3.8). For instance, by choosing cos ✓ ' �1 and

R2/R1 = 1.57, we obtain the ↵i’s are in the ratios 1 : 0.27 : 0.09 which coincide,
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additional QX generator.
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within less than 6 % with experimental ratios 1 : 0.268 : 0.0861. A more precise

determination of low-energy would require taking into account the e↵ect of di↵erent

thresholds as discussed above. In any event, as claimed in Section 3, there seems to be

enough freedom to reproduce experimental values of coupling constants in the present

setup.

The specific examples discussed in this section have however a potential problem,

regarding the scalar sector, as pointed out in [10]. In the class of models with D4-

branes wrapping on T

2⇥ (T2)2/ZN that we are discussing, there are tachyonic scalars

appearing at some of the D4-brane intersections. In particular, for a general set of

D4-branes at a Z3 orbifold, there appear complex scalars at intersections involving

D4-branes with the same eigenvalue in the CP twist matrix �✓k,4i
. They transform

under
QK

i=1

Q3
a=1 U(Na

i ) as

X

i<j

3
X

a=1

Iij ⇥ (Na
i , N

a
j ) (7.12)

Their masses are given by

M2
ij = �M2

s

2
|↵ij

⇡
| (7.13)

where |↵ij| is the angle at which the corresponding pair of D4-branes intersect on the

torus. Thus the model contains tachyons at those intersections. Their properties are

discussed in more detail in next Section.

8 Tachyons and electroweak symmetry breaking

In the specific string compactifications described in previous section, besides the chiral

fermions present at every intersection, there exist complex scalars at some of them.

For example, as one can read from (7.12), in the standard model example 2 of previous

Section there are complex scalars in the intersections (23), (24) and (34), transforming

as (1, 2)�1/2 , (1, 2)1/2 and (1, 1)�1 under SU(3) ⇥ SU(2) ⇥ U(1)Y respectively. In

the case of the left-right model, example 1, there are complex scalars at the same

intersections, transforming as (1, 2, 2), (1, 2, 1) and (1, 1, 2) under SU(3)c ⇥ SU(2)L ⇥
SU(2)R.

As we mentioned in the previous chapter their masses are given by (7.13), and

hence they are tachyonic. This signals an instability of the brane configuration which

tends to favour the alignment of the D4-branes along parallel directions. On the other

hand, the fact that in these examples some of the tachyons have precisely the quantum
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numbers of Higgs fields suggests that perhaps what these tachyons indicate is some

stringy version of a Higgs mechanism [10] (see also [21] for an early proposal of the SM

Higgs as tachyon, in a di↵erent (but related) context). Since many of the theoretical

aspects of the tachyon potential and dynamics are still under study (see [22, 23, 24]

for some recent references on tachyon condensation in brane-antibrane systems), our

discussion in this Section is tantalizing, but to some extent qualitative.

A possible obstacle for this interpretation is that naively tachyonic masses are of

the order of the string scale. In the case of the Standard Model, that would require a

string scale of the order of the weak scale, a possibility not consistent with experimental

observations. The situation would be better for the case of tachyonic SU(2)R doublets

in left-right symmetric models, since SU(2)R breaking at the TeV scale would require

a string scale in the region 1-10 TeV, which can be achieved without contradiction with

experiment.

However, the situation is better, even for SM configurations. In fact, as follows

from (7.13), the mass of tachyons may be substantially smaller than the string scale

if the intersection angles ↵ij are su�ciently small (but non-vanishing, so that the

branes intersect to yield a chiral model). In particular, by varying the shape (complex

structure) of the torus one can make all these angles arbitrarily small.

In particular consider the case of a squashed torus with ✓ close to ⇡, so that cos ✓ =

�1+ ✏2/2. In that case one can check using (6.7) that the angles between the di↵erent

D4-branes are proportional to ✏, and hence be made arbitrarily small. In particular it

is easy to find in that limit:

M2
ij = �M2

s

2
|↵ij

⇡
| = �M2

s

2

a✏ |Iij |
|ani �mi||anj �mj |

(8.1)

where, if mi 6= 0, a = R1/R2 > ni/mi, nj/mj. Here Iij is the intersection matrix

described in chapter 2. Thus we see that the size of the negative tachyonic mass may

be made arbitrarily low by fixing ✏ (or in some cases a) to a su�ciently small value.

In terms of the e↵ective field theory, this negative mass square signals the breaking

of the gauge symmetry. Consider first the SM example 2. The SU(2)L doublets at the

intersections (24) and (23) and the SU(2)L singlet at the intersection (34) have masses

M2
24 = �M2

s

3a✏

(a2 � 9)
; M2

23 = �M2
s

a✏

2(a� 3)
; M2

34 = �M2
s

a✏

2(a + 3)
(8.2)

with a > 3. Consider for example a value a = R1/R2 = 10/3. Then these negative

masses would be in the ratios 54/19 : 3 : 3/19 respectively. Thus the negative mass
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Figure 6: Qualitative form of the tachyon (Higgs) potential originated by intersecting brane

instability.

square of the Higgs doublets in the intersections are much larger than that of the

charged singlet and hence standard electroweak breaking would be preferred 18.

This would certainly be an intriguing origin for electroweak symmetry breaking.

Whereas in the standard model a negative (mass)2 is put by hand for the Higgs doublet,

in the present scheme it appears naturally due to the presence of tachyons at brane

intersections. Hence chirality and gauge symmetry breaking are linked in these models:

chirality requires intersecting branes, which yield tachyonic modes which in turn trigger

electroweak symmetry breaking.

¿From the point of view of string theory the interpretation goes as follows. The

presence of tachyons in two intersecting D4-branes signal an instability of the system

under recombination of both into a single D4-brane. For example, consider again the

SM construction, example 2 above. There are two parallel D4-branes with wrapping

numbers (n, m) = (1, 3) which give rise to SU(2)L gauge interactions. They intersect

with another brane with wrapping number (0,�3), and at the intersections we get

tachyonic scalars with masses as in (8.2). Their presence indicates an instability of the

system against the recombination of e.g. one of the (1, 3) branes with the (0,�3) brane,

giving rise to a single D4-brane with wrapping numbers (1, 3) + (0,�3) = (1, 0). The

string theory construction shows that the recombination process corresponds to the

18As discussed below, loop e↵ects tend to give positive contributions to the scalar masses, which
can easily overcome the tiny tachyonic mass of the singlet scalar.
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tachyon field rolling to a minimum, which is reached in the final configuration. In the

process, the tachyon condensate breaks the gauge symmetry. Namely, the non-Abelian

SU(2)L generators disappear from the massless spectrum since there only remains one

(1, 3) brane instead of two. Thus, with the tachyon at the minimum of its potential

two intersecting D4-branes have merged into a single one.

The detailed form of this scalar potential is not known, although the properties of

similar tachyons in brane-antibrane configurations have been studied e.g. in [22, 23, 24].

For instance, adapting the results in [22], one concludes that, if a D4-brane i combines

with a D4-brane j to form a combined D4-brane c, the depth of the potential is given

by the di↵erence of the D-brane tensions (after compactification on their corresponding

cycles). That is, �V = Tc � (Ti + Tj), where [25]

Ti =
M4

S

(2⇡)4�II
|(ni, mi)| = M4

s /(16⇡3↵i(Ms)) (8.3)

and analogously for the branes j and c. Here |(n, m)| is the length (3.3), and ↵i the

fine structure constant for the corresponding group. This is schematically shown in

Fig. 6.

In the regime of small interbrane angles discussed above, the potential depth is

small. Specifically, for the recombination discussed above (1, 3)+ (0,�3)! (1, 0), one

obtains

�V =
M4

S

(2⇡)4�II

3(R1MS)

2(a� 3)
✏2 (8.4)

so for R1 of order one in string units, �V is of the order of ✏2M4
S. Even though the

detailed form of the potential is not known, one can make a rough estimate of the

tachyon vev at its minimum (by computing at which vev the mass term cancels the

tension di↵erence) to be of order
p

✏Ms.

If we communicate an amount of energy larger than Ms
p

✏ to the system, the vev of

the tachyon becomes irrelevant. This means that we are able to resolve the combined

brane into the original pair of branes, and produce W -bosons. This is certainly a

quite intriguing interpretation of the process of electroweak symmetry breaking in the

standard model 19.

Something similar would happen with the case of the left-right symmetric example

2. One may, in that case, generate two di↵erent scales of gauge symmetry breaking for

19As pointed out in [10] the tachyon condensation process is analogous to a standard Higgs mecha-
nism as long as no other gauge symmetry enhancements are available in the probed energy range. In
our case, this would require that other sets of branes with total wrapping (1, 0) are heavier than the
considered pair (1, 3) + (0,�3). Suitable choices of geometric moduli lead to this behaviour.
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the SU(2)L and SU(2)R symmetries. For convenience of the argument, we now relabel

the second set of branes N2 as giving rise to SU(2)R and the third to SU(2)L. The

(23),(24) and (34) intersections give rise to tachyons with quantum numbers (1, 2R, 2L),

(1, 2R, 1) and (1, 1, 2L). They have masses

M2
23 = �M2

s

a✏

2(a + 3)
; M2

24 = �M2
s

✏

2
; M2

34 = �M2
s

3✏

2(a + 3)
(8.5)

where now a = R1/R2 is arbitrary. For e.g. a = 3, the three negative (mass)2 are in

the ratios 1/4 : 1/2 : 1/4. Thus the scalar transforming as (1, 2R, 1) would normally

acquire the largest vev, breaking SU(2)R, whereas standard electroweak breaking would

be induced at lower energies. This example shows how more complicated patterns of

gauge symmetry breaking are possible in the present scheme.

The tachyonic scalar masses given in (8.2), (8.5) are tree-level results. In addition all

scalars receive corrections to their (mass)2 from loop e↵ects. One can estimate those

corrections from the e↵ective field theory. In particular, one gauge boson exchange

gives corrections of order

�M2(µ) =
X

a

4Ca
F ↵a(Ms)

4⇡
M2

s fa log(Ms/µ) + �M2
KK/W (8.6)

where the sum on a runs over the di↵erent gauge interactions and Ca
F is the eigenvalue

of the quadratic Casimir in the fundamental representation. Here �M2
KK/W denotes

further contributions which may appear from the KK/W and gonion excitations if they

are substantially lighter than the string scale Ms. The function fa is given by

fa =
2 + ba

↵a(Ms)
4⇡ t

1 + ba
↵a(Ms)

4⇡ t
(8.7)

where t = 2 log(Ms/µ) and ba are the coe�cients of the one-loop �-functions. These

corrections are positive and may overcome in some cases the tachyonic masses if the

latter are small. Extra KK/winding excitations may contribute to this e↵ect if they lie

between the weak and the string scales. In particular, notice that since the intersection

angles are small, as suggested above, there will be relatively light gonion excited fields,

of the type discussed in Section 6, just above the weak scale, and contributing to

one-loop corrections.

In addition, a doublet scalar should have a large Yukawa coupling to the top quark,

giving rise to a negative one-loop contribution to the (mass)2 of the doublet. This

would contribute further to inducing electroweak symmetry breaking, very much as

in the radiative symmetry breaking mechanism [26]. A full description of electroweak

symmetry breaking in this class of models would thus require an understanding of these

loop corrections which may compete with the tree-level ones.
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9 Final comments and outlook

In this paper we have presented a string scenario in which there is one brane-world per

SM gauge interaction. At the intersections of the branes live the quarks and leptons,

which are the zero modes of open strings close to each intersection. Our original

motivation for this proposal was the fact that brane intersections is one of the few

known ways to obtain chirality in the brane world context in string theory. In addition

it o↵ers an explanation for quark-lepton family replication, since generically branes can

intersect at multiple points.

While studying the proposal we have found a number of interesting aspects of

this scheme. For instance, hierarchical Yukawa couplings naturally appear due to the

fact that the quarks, leptons and Higgs fields are located at di↵erent points in the

compact dimensions. The Yukawas are proportional to e�Aijk , where Aijk is the area

of the worldsheet extending among the intersections where the fermions and the Higgs

live. Due to this fact, it is easy to obtain hierarchical results for the di↵erent Yukawa

couplings. Next, the models are non-supersymmetric, but the hierarchy problem may

be solved by lowering the string scale down to 1� 10 TeV, and taking the dimensions

transverse to the branes large enough. Interestingly enough, even though the string

scale is so low, the proton is naturally stable to all orders in perturbation theory, due

to discrete symmetries following from worldsheet selection rules. The proton is stable

because its decay would require an overall interaction with three incoming quarks and

no outgoing ones. Such process would require worldsheets with an odd number of quark

insertions, which do not exist. Finally, concerning gauge coupling constants, we have

found that they do not unify in this setup, since each brane comes along with its own

coupling constant. However, they may be computed in terms of the compactification

radii, and may be made compatible with the observed values.

One of the interesting aspects of the intersecting brane-worlds scenario is that it

predicts the existence of certain particle excitations in the energy region between the

weak and the string scales. There are KK (and/or winding) replications of the gauge

bosons, which could be directly produced at colliders by quark-antiquark annihilation.

In addition there is a new class of states, which we have baptized as gonions, which

have masses proportional to the string scale times the intersection angles, (hence the

name gonions). They correspond to excited strings stretched close to the intersection of

two branes. They include massive vector-like copies of quarks and leptons. In addition

there are bosons with spin=0,1 close to some of the intersections. All of them come

in KK-like towers starting about the weak scale. It should be interesting to study in
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more detail the experimental signatures of these new fields as well as setting limits on

their masses from present data.

Like in many non-supersymmetric models, the spectrum contains scalar tachyons.

Interestingly enough, in the specific string models that we construct, those tachyons

have precisely the quantum numbers of Higgs fields. Thus it is tempting to propose that

these tachyonic states are just signaling the presence of spontaneous gauge symmetry

breaking. It should be interesting to explore in more detail the theoretical viability of

this exciting possibility.

In this article we have concentrated on the simplest possibility of D4-branes wrap-

ping at angles on a torus. We would like to emphasize, however, that most of the

general structures we find apply more generally, to any configuration involving collec-

tions of branes intersecting at angles in more general varieties 20. Another point worth

mentioning is that the case of D4-branes admits an interesting M-theory lift. Indeed,

D4-branes correspond to M-theory 5-branes wrapping on the eleventh dimension, com-

pactified on a circle S

1. Thus the models discussed in the paper may be regarded as

M-theory compactifications on S

1 ⇥T

2 ⇥B4 with M5-branes wrapping on S

1 ⇥T

2.

There are a number of issues to be further studied. On the theoretical side, the brane

configurations we have considered are non-supersymmetric, and hence the question

of their stability deserves further study. In this regard, it is worth mentioning that

(meta)stable configurations on analogous models using wrapping D6-branes have been

recently discussed in [10]. Also, consideration of more general string configurations

with branes at angles could lead to improvements in model building in this setup. On

the more phenomenological side, it should be interesting to carry out a general study of

possible three-generation models leading to interesting gauge coupling predictions, and

fermion mass textures, using the built-in mechanism for the generation of hierarchies

in this class of models. There are other aspects that we have not discussed, such as

the question of neutrino masses, or the strong CP problem. It should be interesting to

examine whether this scenario provides some new understanding for these questions.

Finally, the study of signatures of the di↵erent KK, windings and gonion particles at

accelerators should also be interesting. Unlike other string scenarios, this seems to be

amenable to direct experimental test.

In summary, we believe that the intersecting brane worlds setup provides new ways

to look at the specific physics of brane world scenarios with a low string scale. It also

20For more general possibilities involving higher dimensional branes see [9], and the more extensive
analysis in [10]. See also [27] for systems of D6-branes on 3-cycles in general Calabi-Yau spaces.
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suggests natural solutions to some of its potential problems, like proton stability and

predicts the presence of new KK/winding and gonion particles in between the weak and

the string scales which should be accessible to future colliders. It would be interesting

to work out in more detail the predictions of this scenario which could perhaps provide

an exciting alternative to the much more studied case of low-energy supersymmetry.
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[4] G. Aldazabal, L. E. Ibáñez, F. Quevedo, JHEP 0001 (2000) 031, hep-th/9909172;

JHEP02 (2000) 015, hep-ph/0001083.

M. Cvetic, M. Plumacher, J. Wang, JHEP 0004 (2000) 004, hep-th/9911021;

M. Cvetic, A. M. Uranga, J. Wang, hep-th/0010091.

[5] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263, hep-

ph/9803315;

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali Phys. Lett. B436 (1999)

257, hep-ph/9804398.

[6] R. Sundrum, Phys.Rev. D59 (1999) 085009, hep-ph/9805471; Phys. Rev. D59

(1999) 085010, hep-ph/9807348;

G. Shiu, S.H. Tye, Phys. Rev. D58 (1998) 106007, hep-th/9805157;

Z. Kakushadze, Phys. Lett. B434 (1998) 269, hep-th/9804110; Phys. Rev. D58

(1998) 101901, hep-th/9806044;

C. Bachas, JHEP 9811 (1998) 023, hep-ph/9807415;

Z. Kakushadze, S.H. Tye, Nucl.Phys. B548 (1999) 180, hep-th/9809147;

K. Benakli, Phys. Rev. D60 (1999) 104002, hep-ph/9809582;
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[26] L. E. Ibáñez, G. G. Ross, Phys. Lett. B110 (1982) 215.

[27] S. Kachru, J. McGreevy, Phys. Rev. D61 (2000) 026001, hep-th/9908135;

S. Kachru, S. Katz, A. Lawrence, J. McGreevy, Phys. Rev. D62 (2000) 026001,

hep-th/9912151; hep-th/0006047; S. Kachru, ‘Lectures on warped compactifica-

tions and stringy brane constructions’, hep-th/0009247.

36



[24] B. Zwiebach. JHEP 0009 (2000) 028, hep-th/0008227; J. A. Minahan, B. Zwiebach,

JHEP 0009 (2000) 029, hep-th/0008231; hep-th/0009246.

[25] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724-4727, hep-th/9510017.
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