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Abstract. A cosmological analysis considering the inclusion of dark energy and dark matter cosmic
components in the context of some particular cases for intersecting s-brane solutions is presented
and discussed. Direct solution of d-dim field equations and dimensional reduction processes, are
implemented for the pure dark energy and dark energy with dark matter cosmological scenarios,
respectively. In the first case, explicit expressions and evolution for d-dim scale factors are founded
and studied. Secondly, a low energy effective 4-dim model is obtained analytically and their resulting
field equations are solved numerically. The role of internal space geometry is always a central element
of our analysis. In some intersecting cases and under certain considerations, a suitable late-time
cosmic acceleration description is founded and an adequate behavior for scale factor a(t) and realistic
values for dark energy ΩDE and dark matter ΩDM relative energy densities are obtained as well. As
a result, we do specifically obtain late-time cosmic acceleration in one scenario where our universe
makes part either of an SM2⊥SM2 or an SM2⊥SM5 intersection. This could give rise to further
possible configurations where late-time cosmic acceleration is present.
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1 Introduction

Many recent observational data suggest that our universe is currently under an accelerated expansion
phase [1]-[5], so the problem of dark energy and, even more, its explanation in the context of fun-
damental theories such as M/string theory, have gained considerable importance during last years.
Although, it is possible to build cosmological models with the desired features by suitable modifica-
tions of Einstein’s gravity [6][7], it is imperative to deduce some cosmological effects of current cosmic
state from super-gravity theories [8].
Today, we know that in order to derive such effects from compactifications in super-gravity theories,
it is necessary to consider the compact internal space like a manifold with time-dependent volume,
since otherwise, a called no-go theorem appears excluding the possibility of getting accelerated cosmic
expansion under these models, because they naturally satisfy a strong energy condition (SEC) [9][10].
It has found that this no-go theorem can be avoided if it is included time-dependence for internal space,
obtaining a solution for a vacuum universe under hyperbolic compactification [11], which corresponds
to one particular case of a general solution for an arbitrary number of orthogonally intersecting S-
branes, into a super-gravity model including dark energy by a dilatonic-scalar coupling [12][13].
In this context, new analytic solutions have taken place, in the case of SM2 and SD2 branes, describing
accelerating cosmologies from compactifications, only for plane and hyperbolic internal space [14][18].
However, it was also showed that, under certain considerations and for certain time interval, spherical
case works as well [16].
We shall give continuity to this kind of developments, studying the possibility of describing acceler-
ating and effective 4-dim cosmologies from d-dim super-gravity, but constructing some intersecting
s-branes solutions using the harmonic rules discussed in [15] and including the dark matter compo-
nent in a phenomenological setting, as was proposed in [8]. Our main purpose consists in showing
that these intersecting s-branes scenarios can describe the current cosmic acceleration according to
observational data.
The document is structured as follows. In Section 2, essential details about the model and the two
different implemented methods are presented. The harmonic intersecting rules, the particular cases
of study and the basis of dimensional reduction process are presented as well. In section 3, cosmo-
logical properties of the particular considered solutions are analyzed and discussed. In section 4, the
conclusions and perspectives are condensed.
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2 The Model and Methodology

We start with the action [12]

Sd = κd

∫
ddx
√
−g

[
Rd −

1

2
(∂φ)

2 −
m∑
A=1

1

2nA!
eaAφF 2

nA

]
, (2.1)

which describes the d-dimensional (d = 4 +n) gravity coupled to the dilaton and m different nA-form
field strengths, representing the electromagnetic interaction of each S-brane. In the above equation,
κd ≡ 1/(16πGd).
In this paper, we study cosmic acceleration from this model with two different but complementary
methods: the first one consists of solving directly d-dim equations of motion, focusing our atten-
tion in the scale factors’ time evolution for a completely filled dark energy universe without other
matter-energy form presence. The second one, corresponds to a dimensional reduction process by the
calculation of Ricci components, considering that the entire d-dim space (and hence its associated
metric tensor) can be decomposed in two sub-spaces, namely, an observable part or external and, a
non-observable part or internal, which can be represented with a 4-dim Lorentzian and n-dim semi-
Riemannian manifolds, respectively.
Subsequently, it is possible to build a 4-dim action from (2.1) and to make the corresponding cos-
mological analysis, studying like in the first case, scale factors’ time evolution and, additionally,
complementing the model with dark matter contribution in a phenomenological way, introducing a
dark energy-momentum tensor.

2.1 Direct Solution of d-dim Field Equations

The action (2.1) has been solved by N. Ohta in [12], taking the metric

ds2d = −e2u0dξ2 +

p∑
α=1

e2uαdyα
2 + e2BdΣ2

n,σ, (2.2)

where uo, uα and B are functions only of ξ and chosen to satisfy a gauge condition given by

− u0 +

p∑
α=1

uα + nB = 0,

which is used to simplify the equations of motion. Finding the corresponding field equations to (2.1)
for the above metric, it is possible to find expressions for uo, uα, B, so that the solution takes the
form

ds2d =
∏
A

[cosh c̃A(ξ − ξA)]
2
qA+1

∆A

{
e2ng(ξ)+2c0ξ+c

′
0

[
−dξ2 + e−2(n−1)g(ξ)dΣ2

n,σ

]
+

p∑
α=1

∏
A

[cosh c̃A(ξ − ξA)]
−2

γ
(α)
A

∆A e2c̃αξ+2c′αdy2α

}
, (2.3)

which represents a general solution for an arbitrary number m of orthogonally intersecting S-branes.
One can show, for M-theory, that the above general solution defines a simple set of rules, through
which, it is possible to build a solution for each intersection case of S-branes consistent with the rules
discussed in [15] (deduction of these rules is included for completeness in appendix A). In order to
clarify the analysis, we shall present its principal ideas as follows.

2.2 Intersecting S-branes Solutions Rules in M-Theory

The starting point consists of introducing several constants, three by each S-brane qi, ξi, Mi, corre-
sponding to electric charge, a given instant of time and a positive number, respectively. One takes
Σn,σ, as the n-dim transverse hyper-surface , which corresponds to an unitary sphere, hyperbola or
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plane space, depending on the σ value (-1, 0 and 1, respectively). For an Sp-brane, the 11-dimensions
can be parameterized by (x1, ..., xp+1, y1, ..., yq, ξ, Σn,σ), where x and y parameterize tangent and
relative common directions and ξ,Σn,σ denote the general transverse or internal space.
Furthermore, for each brane, one defines the following function depending on qi, ξi y Mi

Hi =

(
qi
Mi

)2

cosh2 [Mi(ξ − ξi)] . (2.4)

Additionally to Hi, we need other function characterizing the general transverse space, this is

Gn,σ =


2n(n−1)
M2 sinh2[

√
n−1
2n M |ξ|], σ = −1;

2n(n−1)
M2 cosh2[

√
n−1
2n Mξ], σ = +1;

e−2M
√

n−1
2n ξ, σ = 0.

, (2.5)

with M2 =
∑
iM

2
i . In terms of these functions, the corresponding metric for a fixed number of

possible intersections, i.e., their solution, can be obtained from the next simple rules.

• General transverse space takes the form:

G
− n

(n−1)
n,σ

[
−dξ2 +Gn,σdΣ2

n,σ

]
. (2.6)

• We can find the metric form, multiplying brane and transverse directions by suitable powers of
Hi-functions, such that

SM2− branes

 brane directions, H
−1/3
i ;

transverse direction, H
1/6
i .

, (2.7)

SM5− branes

 brane directions, H
−1/6
j ;

transverse direction, H
1/6
j .

. (2.8)

In other words, each Hi function appears in the metric as H1/2, multiplying transverse directions and
there is a conformal general factor H−1/3 for SM2-branes and H−1/6 for SM5-branes.
On the other hand, following these rules for three interesting cases, namely SM2-brane, SM2⊥SM2(0)
and SM2⊥SM5(1), one can analyze their solutions cosmologically through comparison with the stan-
dard metric for super-gravity given by

ds2 = δ−n(ξ)
[
−S6(ξ)dξ2 + S2(ξ)dx2α

]
+ δ2(ξ)dΣ2

n,σ, (2.9)

obtaining expressions for the observable and non-observable scale factors S(ξ) and δ(ξ) respectively,
and then analyzing their time evolution.1 Additionally, if the substitution,

dt = S3(ξ)dξ, (2.10)

is imposed, we clearly have a FRLW universe with scale factor S(ξ), which should satisfy the conditions

P (ξ) =
dS

dt
> 0 and Q(ξ) =

d2S

dt2
> 0, (2.11)

in order to describe positive acceleration.

1Note that we have used here the same notation ⊥ and (n) to refer to an intersection and the dimension of the
resulting S-brane respectively, like in all previous related and cited papers.
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2.2.1 SM2-brane

In the presence of a single SM2-brane, the 11-dim space-time can be decomposed as (11=3+1+7), so
that n = 7 and

ds2 = H−1/3
[
dx21 + dx22 + dx23

]
+H1/6G

−7/6
7,σ

[
−dξ2 +G7,σdΣ2

7,σ

]
. (2.12)

Therefore, comparing with (2.9), we have

δ(ξ) =

(
H

G7,σ

)1/12

S(ξ) = H−1/6δ7/2(ξ) =

(
H3/7

G7,σ

)7/24

. (2.13)

Thus, we find expressions that allow us to study the cosmic evolution in terms of observable and
non-observable scale factors, where both depend on the specific form of Gn,σ function according to
(2.5). Analyzing the hyperbolic case (σ = −1), we see that our results are in complete agreement
with the expressions given by Gutperle et. al. in [8], having the relationship between constants q ≡ b
and q√

84
≡ b

3

√
3
28 , when M = 3.

2.2.2 SM2⊥SM2(0)

For this case, we have n = 5 and the space-time is decomposed as (11=1+2+2+1+5), so we get

ds2 = (H1H2)
−1/3

[dx2] +H
−1/3
1 H

1/6
2 [dy21 + dy22 ] +H

1/6
1 H

−1/3
2 [dy23 + dy24 ]

+ (H1H2)
1/6

G
−5/4
5,σ

[
−dξ2 +G5,σdΣ2

5,σ

]
. (2.14)

For the sake of simplicity, we consider

1. Both SM2−Branes have the same charge: q1 = q2 = q.

2. Positive numbers Mi are the same too: M1 = M2 = m⇒M =
√
M2

1 +M2
2 =
√

2m.

3. Time instants ξi which each brane assumes q and M previous point defined values, are equal to
zero, this is, considering a time-scale shift: ξ1 = ξ2 = 0.

Applying these restrictions, is evident that as a consequence, we would have H1 = H2 = H and,
therefore, the metric (2.14) becomes

ds2 = H−2/3[dx2] +H−1/6[dy21 + dy22 ] +H−1/6[dy23 + dy24 ] +H2/6G
−5/4
5,σ

[
−dξ2 +G5,σdΣ2

5,σ

]
. (2.15)

In order to get an uniform expanding universe, we propose the next re-definition of x (the common
coordinate) as

x→ H−1/4x̃, or dx2 → H−1/2dx̃2,

representing a time variable measure along the common coordinate direction and letting us deduce
expressions for scale factors analytically, again, by comparison with (2.9). After this process, we get

ds2 = H−1/6
{

[dx2] +
[
dy21 + dy22

]
+
[
dy23 + dy24

]}
+H2/6G

−5/4
5,σ

[
−dξ2 +G5,σdΣ2

5,σ

]
, (2.16)

and, finally

δ(ξ) = H1/6G
−1/8
5,σ and S(ξ) = δ5/2(ξ)H−1/2. (2.17)

If we consider now that (q1,M1) 6= (q1,M2) which yields H1 6= H2, we can see that, in addition for
this case, we could propose the common coordinate re-definition as

dx→ H
1/2
2 dx̃ or dx→ H

1/2
1 dx̃,
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where the last assumptions would correspond to consider that spatial coordinates of the observable
universe lie in just one of the S2-branes, such that the remaining ones will not be considered in our
analysis. It is possible to show that for both re-definitions, scale factors are so similar, differing only
in one exponent (-2), changing from H1 to H2 as the case may. If some restrictions are imposed to the
constants qi, Mi prior to common coordinate re-definition, the above options would yield completely
different results.

2.2.3 SM2⊥SM5(1)

For this last case, d-dim space-time is decomposed as (11=2+1+4+1+3) and the metric takes the
form

ds2 =H
−1/3
1 H

−1/6
2

[
dx21 + dx22

]
+H

−1/3
1 H

1/3
2

[
dy21
]

+H
1/6
1 H

−1/6
2

[
dy22 + . . .+ dy25

]
+

H
1/6
1 H

1/3
2 G

−3/2
3,σ

[
−dξ2 +G3,σdΣ2

3,σ

]
. (2.18)

Now, we see that in order to describe an FRLW-type universe plus a compact internal space of
dimension n = 3, we must consider that our 4-dim universe lies in dx1, dx2 and dy1 coordinates,
neglecting the dy22 + . . .+ dy25 coordinates belonging to SM5-brane, obtaining

ds2 = H
−1/3
1 H

−1/6
2

[
dx21 + dx22

]
+H

−1/3
1 H

1/3
2

[
dy21
]

+H
1/6
1 H

1/3
2 G

−3/2
3,σ

[
−dξ2 +G3,σdΣ2

3,σ

]
. (2.19)

Let us propose, in this case, the next re-definition for dy1, of the form

dy1 → H
−1/4
2 dỹ1 or dy21 → H

−1/2
2 dỹ21 ,

such that (2.19) transforms in

ds2 = H
−1/3
1 H

−1/6
2

[
dx21 + dx22 + dỹ21

]
+H

1/6
1 H

1/3
2 G

−3/2
3,σ

[
−dξ2 +G3,σdΣ2

3,σ

]
. (2.20)

Therefore, we would have

δ(ξ) = H
1/12
1 H

1/6
2 G

−1/2
3,σ and S(ξ) = δ3/2(ξ)H

−1/6
1 H

−1/12
2 . (2.21)

2.3 Dimensional Reduction and Effective Potential

This method is applied when it has been verified that cosmological behavior of scale factors in d-dim is
suitable (last section), i. e., when they satisfy the conditions in (2.11). It consists in a compactification
that depends on the geometry of internal space considered as a compact manifold [17]. The result is a
low energy model obtained from d− dim M/string theory, coupled to a dilaton φ, a radionic (scalar)
field ψ that characterizes the volume of internal space and, a scalar potential field which depends on
the geometry of internal space and the field strength form [18]. See appendix B. The resulting action
in 4-dim from (2.1) in d-dim is

S4 = κ(4)

∫
d4x
√
−g
(
R− 1

2
∂µφ∂

µφ− n(n+ 2)

2
∂µψ∂

µψ − V (φ, ψ)

)
,

where

V (φ, ψ) =
b2

2
e−

2(n−4)
n+2 φ−3nψ − σn(n− 1)e−(n+2)ψ. (2.22)

For solutions in M-theory, the dilatonic coupling is taken null. One can find the equations of motion
from (2.22) applying the variational principle (with respect to the metric and scalar fields). It is
remarkable that the solutions of these equations following from the 4− dim Lagrangian are the same
as the ones from 11 − dim. Since we are interested in describing cosmic evolution, considering both
dark energy and dark matter, it is important to mention that currently the mechanisms for including
dark matter at d − dim level are not clear. However, in the phenomenological setting, one can
introduce it by adding its energy density to the energy density of the scalar field in the corresponding

– 5 –



- 2 - 1 0 1 2
- 3
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- 1

0

1

2

3

Ξ

PΣ H Ξ L ,QΣ H Ξ L

Q1 H Ξ L
P 1 H Ξ L
Q0 H Ξ L
P 0 H Ξ L
Q- 1 H Ξ L
P - 1 H Ξ L

Figure 1: The conditions to get acceleration (2.11), where the solid and dashed lines correspond to P (ξ) and Q(ξ),
respectively. Blue, green and red colors correspond to σ values of -1, 0 and 1. There is a discontinuity for blue lines,
due to the universe evolves separately from −∞ to 0 or from 0 to ∞ for hyperbolic case, but this problem does not
appear in the other two cases where the universe evolves continuously from −∞ to ∞.

equations of 4 − dim effective model. Therefore, the equations of motion that take into account the
main constituents of the universe and consider a spatially flat FRLW metric, are

ϕ̈ = − 3Hϕ̇− V ′ (2.23)

H2 =
1

3

(
ρDM +

1

2
ϕ̇2 + V (ϕ)

)
(2.24)

where, ϕ =
√

63
2 ψ and H = ȧ

a . Then, we can solve numerically these equations and plot the time

evolution of the scale factor a(t), the scalar field ϕ(t), the relative dark energy density ΩDE , and the
equation of state ω(z), where z is the red-shift defined via the scale factor as z = a−1(t)−1. Moreover
a(t) is taken to be 1 at the present time, corresponding to z = 0. In other words, we shall present
this analysis process for the SM2-brane, SM2⊥SM2 and SM2⊥SM5 intersecting cases.

3 Cosmological Analysis

3.1 SM2-brane

In figure 1 we have plotted the conditions (2.11) for d-dim observable scale factor S(ξ) and we see
that is possible to describe positive acceleration for all σ values for certain intervals of time. However,

(a) - 1.0 - 0.5 0.0 0.5 1.0
- 2

- 1

0

1

2

t

a H t L , a '' H t L

a 0 '' H t L

a 0 H t L

(b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0
? 1.0

? 0.5

0.0

0.5

1.0

z

?DM , ?DE , ΩDE

ΩDE

?DE

?DM

Figure 2: In (a) we have plotted the scale factor a(t) and its second derivative a′′(t). In (b) dark matter and dark
energy relative densities ΩDM , ΩDE and state equation parameter ωDE have been plotted, showing their evolution as
cosmological red shift z = a−1(t)− 1 functions, where z = 0 corresponds to current time.
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(b) - 1.0 - 0.5 0.0 0.5 1.0
- 2

- 1

0
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2

t

a H t L , a '' H t L

a 1 '' H t L
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Figure 3: Evolution of the potential V (ϕ) versus ϕ. The fact of V (ϕ) < 0 yields an inconsistent model with respect
to observational data.

once you want to supplement the model with CDM phenomenologically, solving (2.23) numerically,
the unique case that works according to observational data is σ = −1, as was shown previously in
[8]. The reason lies in 4-dim scale factor a(t), relative dark energy density ΩDE and state equation
parameter ωDE evolution for σ = 0 case, and on the other hand, the effective potential behavior for
σ = 1 case, as follows.

Plane Case: In figure 2 (a), we see that despite a(t) grows in time as one expects, its acceleration,
although increases, is always negative tending to zero at infinity. This yields a decelerating universe
which tends to a constant expansion. Additionally, the numerical values of ΩDE ≈ 0.09 and ωDE ≈
−0.75 described in 2 (b), are inconsistent with the current accepted values for dark matter, dark
energy and the last restrictions for state equation parameter, which say that they must be ΩDM ≈ 0.3,
ΩDE ≈ 0.7 and ωDE < −0.78, respectively. This particular behavior can be explained as a consequence
of the addition of CDM, which would be responsible for the negative acceleration due its attractive
gravitational force. Note that once you add CDM under these considerations, it becomes dominant
yielding deceleration.

Spherical Case: For this case, in figure 3 (a), we can see that one big problem is found: the potential
V (ϕ) < 0 for most of ϕ values. This yields whether the dark energy density can be negative or the
parameter state equation has positive values. Although this problem can be avoided by suitable
setting of free constants, the description is just improved a little and it is not possible solve any

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5

- 4

- 2

0

2

4

Ξ

PΣ H Ξ L ,QΣ H Ξ L

Q0 H Ξ L
P 0 H Ξ L
Q1 H Ξ L
P 1 H Ξ L
Q- 1 H Ξ L
P - 1 H Ξ L

Figure 4: The conditions (2.11), where, again, the same convention for lines type and colors has been taken. Note
that hyperbolic case also presents singular behavior around ξ = 0.
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0
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(b) 0 1 2 3 4
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0.5
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Figure 5: Again, we have plotted the same functions like in figure 2, but this time for hyperbolic internal space in
SM2⊥SM2 intersection.

cosmological problem under this scenario, as we can see in figure 3 (b) where the 4-dim acceleration
is always negative.

3.2 SM2⊥SM2

For this case, in addition to considerations in section 2.2.2, let us fix the q and m numerical values for
H function in (2.16), in 1 and 3, respectively, as we did for SM2 case. This is done with the purpose of
analyzing the resulting scenario for two intersecting SM2-branes like was treated in previous section.
Under these considerations, in figure 4, the behavior of d-dim scale factors is showed. We can see that
is possible to get positive acceleration for certain intervals of time for all σ values. However, not all
of them works once you add CDM as we shall see.

Hyperbolic Case: In figure 5 (a), we can see 4-dim scale factor a(t) behavior, which evolves from
the big bang at t ≈ −1 until its present value a(0) ≈ 1 and continues speeding up forward the future.
After approximately half the universe life time, the acceleration remains positive and increases its
value continuously. This 4-dim scenario corresponds quite well with the current evidence, which tells
us that the universe could be eventually formed by the intersection of two SM-branes.
Additionally, the fact ωDE < −0.74 as is required, makes us think about the possibility to improve our
results making different considerations. It’s remarkable and pretty unexpected how the dark energy
dominates at the initial stages but later decreases relatively fast. After both energy contributions have
the same value for z ≈ 1, dark matter begins to dominate. Despite all of this, if we look at numerical
values and evolution of dark matter and dark energy relative densities ΩDM , ΩDE , as well as state
equation parameter ωDE , the model fails and does not correspond with the accepted standard, i. e.,
the model for two intersecting SM2-branes under our conditions, works partially.

Plane Case: Repeating the procedure for this geometry, we find that, as is showed in figure 6,
neither the 4-dim scale factor a(t) nor the numerical values for dark contributions correspond to what
is expected for them. In figure 6 (a), we see that despite we get positive acceleration a(t) never

(a) - 0.8 - 0.6 - 0.4 - 0.2 0.0
- 10

- 5

0

5

10

t

a H t L , a '' H t L

a '' H t L

a H t L

(b)
0 1 2 3 4 5

? 0.5

0.0

0.5

1.0

1.5

z

?DM ? z ? , ?DE? z ? , ΩDE? z ?
ΩDE ? z ??DE ? z ??DM? z ?

Figure 6: Again, we have plotted the same functions like in figure 2, for plane internal space in SM2⊥SM2 intersection.
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Figure 7: Here, we have plotted the potential V (ϕ) as in 3, for spherical internal space in SM2⊥SM2 intersection. As
before, it is negative for most of ϕ values.

reaches its current accepted value. In figure 6 (b), we find also inconsistent behaviors for the plotted
properties, e.g. ωDE has value −0.5 at z = 0.

Spherical Case: Finally, as we expected, in figure 7 (a), we find once again an inadequate behavior
for the potential V (ϕ), which eliminates any possibility as was discussed above. Despite this, in figure
7 (b), a(t) grows as is expected but its acceleration is always negative, emphasizing even more how
much fails this model when internal space has spherical geometry.

3.3 SM2⊥SM5

In this case, let us consider the positive numbers Mi in Hi functions being equal, i. e., both branes
having the same time-scaling value. We shall not proceed in the same way with qi numbers (charges),
because it is interesting to investigate what would yield if proposing another relationship between
them. Here, for the sake of simplicity, let us consider a linear dependence, i.e., q2 = αq1, where α is a
fixed parameter. By this process, we find as final result that behavior of d-dim scale factors and their
derivatives, only vary slightly under this assumption. Therefore, we choose the values of α and q1 so
that we could get the best possible description. In figure 8, as above, the evolution of P (ξ) and Q(ξ)
is showed for all σ values. As is possible to get positive acceleration, let us analyze how the 4-dim
model evolves including CDM for each geometry, as follows.

- 3 - 2 - 1 0 1 2 3

- 4

- 2

0

2

4

Ξ

P Σ H Ξ L , Q Σ H Ξ L

Q 1 H Ξ L
P 1 H Ξ L
Q 0 H Ξ L
P 0 H Ξ L
Q - 1 H Ξ L
P - 1 H Ξ L

Figure 8: The conditions (2.11), where, once more, the same convention for lines type and colors has been taken.
Positive acceleration is obtained for all cases in certain small intervals of time.
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Figure 9: Again, we have plotted the same functions like in figure 2, for hyperbolic internal space in SM2⊥SM5
intersection.

Hyperbolic Case: Now we have added CDM, in figure 9 it is interesting note in cosmic related
parameters evolution for this geometry, that scale factor a(t) grows as we expected, we get positive
acceleration and the numerical current values for ΩDM , ΩDE and ωDE , which are ≈0.32, ≈0.67 and
≈-0.89, respectively, are closer to accepted standard than before. Once again, dark energy component
dominates at the “initial stage” (z = 0 or a = 1), but after both dark components reach the same
value (z ≈ 0.22), dark matter becomes the cosmological dominant component at the infinite future.

Plane Case: As in all the above models for this geometry, although it is possible to describe
acceleration, the numerical values for “dark parameters” are too far away from reality. This can be
seen in figure 10.

Spherical Case: Finally, as we expected, spherical geometry does not work, because again the
potential is a negative valued function. The 4-dim acceleration is also negative. This can be seen in
figure 11.

4 Conclusions

Initially, we have reviewed the study of cosmic scenarios from a model in M-theory when the universe
is completely dark energy dominated in d-dim via scale factors evolution and when the cold dark
matter is added phenomenologically into the 4-dim cosmic evolution equations. Only the dark energy
component is deduced from d-dim formulation and is represented by a scalar field which characterizes
the internal space volume named radionic field. It has been exposed the main reasons why the plane
and spherical cases do not work like hyperbolic geometry does in one single SM2 scenario, analyzing
the numerical values of ΩDM , ΩDE and ωDE for each case as well as the scalar potential behavior
V (ϕ). Under special and approximate conditions, we have studied those properties applying the same
method for intersecting branes SM2⊥SM2 and SM2⊥SM5 cases, finding that always the hyperbolic
geometry describes better the current cosmological state. It is remarkable and new the fact that

(a) - 1.0 - 0.5 0.0 0.5 1.0

- 2

- 1

0

1

2

t

a H t L , a '' H t L

a '' H t L

a H t L

(b) 0 1 2 3
? 1.0

? 0.5

0.0

0.5

1.0

z

?DM ? z ? , ?DE? z ? , ΩDE? z ?

ΩDE ? z ??DE ? z ??DM? z ?

Figure 10: Again, we have plotted the same functions like in figure 2, for plane internal space in SM2⊥SM5 intersection.
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(b) - 1.0 - 0.5 0.0 0.5 1.0

- 2

- 1

0

1

t

a H t L , a '' H t L

a '' H t L

a H t L

Figure 11: Here, we have plotted the potential V (ϕ) as in 3, for spherical internal space in SM2⊥SM5 intersection.
As before, is negative for most of ϕ values.

we can reproduce quite well the standard values for the studied cosmic parameters in several cases,
mainly for SM2⊥SM5 with hyperbolic geometry. It seems attractive to give continuity to this kind of
developments, maybe our universe can be formed by one or several SM-branes intersection.
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A Harmonic Rules for S-branes in M-theory

We start form the general solution for a number m of Sq − Branes that intersect orthogonally, proposed by
N. Ohta above mentioned in [13], this is

ds2
d =

∏
A

[cosh c̃A(ξ − ξA)]
2
qA+1
∆A

[
e2ng(ξ)+2c0ξ+c

′
0 ·
(
−dξ2 + e−2(n−1)g(ξ)dΣ2

n,σ

)

+

p∑
α=1

∏
A

[cosh c̃A(ξ − ξA)]
−2

γ
(α)
A

∆A e2c̃αξ+2c′αdy2
α

]
, (A.1)

where the involved functions and constants are given by

c0 =
∑
A

qA + 1

∆A
c̃A −

1

n− 1

p∑
α=1

cα,

c′0 = − 1

n− 1

p∑
α=1

c′α,

c̃α = cα −
∑
A

δ
(α)
A + 1

∆A
c̃A, (A.2)

c̃φ = cφ +
∑
A

(d− 2)εAaA
∆A

c̃A,

and

∆A = (qA + 1)(d− qA − 3) +
1

2
aA

2(d− 2),

γ
(α)
A =

{
d− 2, for yαεqA;
0, otherwise.

(A.3)

We also have,

g(t) =


1

n−1
ln β

sinh[(n−1)β|ξ−ξ0|]
, σ = −1;

±β(ξ − ξ0), σ = 0;
1

n−1
ln β

cosh[(n−1)β|ξ−ξ0|]
, σ = +1.

, (A.4)
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with

β = ±

√√√√ 1

n(n− 1)

[
1

n− 1

(
p∑

α=1

cα

)2

+

p∑
α=1

c2α +
1

2
c2φ

]
(A.5)

Let us make the next definition:

Υ
(α)
A =

{
−1
qA+1

, for yα ∈ qA − brane;
1

d−qA−3
, otherwise.

(A.6)

We shall build a more particular solution which is valid only in M-Theory framework (d = 11, aA = 0). In
this sense, we start by restrict some integration constants in order to satisfy the condition:

cα = −
∑
A

Υ
(α)
A c̃A (A.7)

Is easy to note from (A.6), for each qA − brane is true that:

p∑
α=1

Υ
(α)
A =

1− n
d− qA − 3

(A.8)

Replacing (A.7) (taking into account (A.8)), in equations (A.2), we get:

c̃α = c0 = 0 (A.9)

Consequently, in the M-Theory framework and with the condition (A.7), we can rewrite the metric given by
(A.1) as

ds2
d =

∏
A

[
cosh2 c̃A(ξ − ξA)

] 1
d−qA−3

{
e2ng(ξ)e2c′0

[
−dξ2 + e2(1−n)g(ξ)dΣ2

n,σ

]
+

p∑
α=1

∏
A

[
cosh2 c̃A(ξ − ξA)

]Υ(α)
A e2c′αdy2

α

}
(A.10)

We rename the constants as follows

ec
′
α =

m∏
A=1

(
QA
c̃A

)Υ
(α)
A

(A.11)

Using the expression for c′0 given by (A.2), with the above condition and taking into account (A.8), one can
show that

ec
′
0 =

m∏
A=1

(
QA
c̃A

) 1
d−qA−3

(A.12)

Furthermore, using (A.11) and (A.12) we can rewrite (A.10) as

ds2
d =

∏
A

[(
QA
c̃A

)2

cosh2 c̃A(ξ − ξA)

] 1
d−qA−3 {

e2ng(ξ)
[
−dξ2 + e2(1−n)g(ξ)dΣ2

n,σ

]

+

p∑
α=1

∏
A

[(
QA
c̃A

)2

cosh2 c̃A(ξ − ξA)

]Υ
(α)
A

dy2
α

}
(A.13)

We also define the next function

Gn,σ = e2(1−n)g(ξ) (A.14)

therefore

e2kg(ξ) = G
− n
n−1

n,σ . (A.15)

If we introduce the next constant

M =

√√√√ 2

n− 1

(
p∑

α=1

cα

)2

+ 2

p∑
α=1

c2α + c2φ (A.16)
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from equation (A.5), we have

β = ± M√
2n(n− 1)

. (A.17)

Replacing (A.17) in (A.4) and choosing ξ1 = 0, which is possible by a simple shift in time, it follows that

g(ξ) =


ln

(√
2n(n−1)
M

sinh[
√
n−1
2n

M|ξ|]
)

1−n , σ = −1;
M√

2n(n−1)
t, σ = 0;

ln

(√
2n(n−1)
M

cosh[
√
n−1
2n

Mξ]

)
1−n , σ = +1

(A.18)

where, we have taken

β =


M√

2n(n−1)
, for ξ ≥ 0;

− M√
2n(n−1)

, for ξ < 0.
(A.19)

Substituting (A.18) in (A.14), we get

Gn,σ =


2n(n−1)

M2 sinh2[
√

n−1
2n

M |ξ|], σ = −1;

2n(n−1)

M2 cosh2[
√

n−1
2n

Mξ], σ = +1;

e2M
√
n−1
2n , σ = 0.

(A.20)

Now, defining the functions

HA =

[(
QA
c̃A

)2

cosh2 c̃A(ξ − ξA)

] 1
d−qA−3

(A.21)

H̃A =

[(
QA
c̃A

)2

cosh2 c̃A(ξ − ξA)

] −1
qA+1

(A.22)

H
(α)
A =

{
HA, for yα ∈ qA − brane;
H̃A, otherwise;

(A.23)

then using (A.23) and (A.20) (taking into account (A.14) and (A.15)), we can rewrite (A.13) as

ds2
d =

∏
A

HAG
− n
n−1

n,σ

[
−dξ2 +Gn,σdΣ2

n,σ

]
+

p∑
α=1

∏
A

H
(α)
A dy2

α (A.24)

Therefore, we can conclude that the metric (2.3) is totally equivalent to (A.24), if the conditions (A.7), (A.11)
and (A.16), are fulfilled, into the M-Theory framework (d = 11, aA = 0).

B Dimensional Reduction

This process consist in obtaining 4-dim gravity coupled to scalar field from d-dim. We start from

L =
1

2
C
√
−gdRd, (B.1)

where C = 1/8πGd and we are considering n = d − 4. The n-dim space is compactified to a small region,
letting the 4-dim part extended infinitely in space-time. The corresponding field equations to (B.1) are

RAB −
1

2
RgAB = 0, A,B = 0, 1, . . . , d− 1, (B.2)

where gAB is the metric of d-dim total space-time. The next step is to interpret the d-dim metric tensor gAB ,
as being composed of one observable (external) and other non-observable (internal) parts. Assuming that
total d-dim space-time manifold N is formed by he product

Nd = L4 ×Mn → gAB =

(
gµν(xρ) 0

0 gik(xc)

)
, (B.3)
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where µ, ν = 0, 1, 2, 3 e i, k = 4, ..., d− 1, the metric gik is associated to internal compact space. With the aim
to attribute dynamical properties to that space, we are going to consider

gAB =

(
e−nψ(xµ)ḡµν(xρ) 0

0 e2ψ(xµ)g̃ik(xj)

)
, (B.4)

such that
gµν = e−nψ(xµ)ḡµν and gik = e2ψ(xµ)g̃ik(xj). (B.5)

On the other hand, the Christoffel symbols are defined as usual

ΓABC =
1

2
gAD (∂BgDC + ∂CgDB − ∂DgBC) . (B.6)

Computing the non-zero symbols, we have

Γλµν = Γλνµ, Γµij = Γµji = −1

2
gµν (∂νgij)

Γiµj = Γijµ =
1

2
gik (∂µgkj) , Γijk = Γikj . (B.7)

However, they are composed 2

Γλµν = Γ̄λµν + Ω−1
[
δλν (∂µΩ) + δλµ (∂νΩ)− (∂λΩ)ḡµν

]
, (B.8)

Γikj = Γ̃ikj . (B.9)

and, specifically, we obtain

Γρik = Γρki = −e(n+2)ψ ḡρν (∂νψ) g̃ik

Γiµj = Γijµ = δij (∂µψ) . (B.10)

We can now calculate
RAB = Rµν +Rik, (B.11)

remembering that
RAB = ∂CΓCAB + ΓCCDΓDAB − (A↔ B). (B.12)

Thus, the 4-dim and n-dim components of Ricci tensor are given by

Rµν = R̄µν +
n

2
�ψḡµν −

n(n+ 2)

2
(∂µψ)(∂νψ), (B.13)

Rik = R̃ik − e(n+2)ψ�ψg̃ik, (B.14)

Riµ = Rµi = 0, (B.15)

with
�ψ = gρλOλOρ(ψ). (B.16)

Finally, the scalar of curvature is

R = enψR̄+ e−2ψR̃− n

2
(n+ 2) (Ōψ)2 + nenψ�ψ, (B.17)

where
(Ōψ)2 = ḡµν(∂µψ)(∂νψ). (B.18)

Here, R̄ and R̃, represent the scalars of curvature 4-dim and n-dim, respectively. In order to relate those
quantities, we take the (µν) component in (B.2), such that

R̄µν −
1

2
ḡµνR̄ =

n(n+ 2)

2

[
(∂µψ)(∂νψ)− 1

2
(∂ρψ)(∂ρψ)ḡµν

]
− V (ψ)ḡµν , (B.19)

with

V (ψ) = − R̃
2
e−(n+2)ψ. (B.20)

2Here, according to (B.4) Ω = e−nψ(xµ)
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Now, multiplying by e(n+2)ψ ḡµν , we have

2R̃ = −e(n+2)ψ

[
R̄− n(n+ 2)

2
∂ρψ∂ρψ

]
. (B.21)

The L.H.S and R.H.S of this expression are only xa and xµ dependent, respectively, therefore, both are equal
to one constant, namely, 2K. Thus, we get

R̃ = K, (B.22)

− e(n+2)ψ

[
R̄

2
− n(n+ 2)

4
∂ρψ∂ρψ

]
= K, (B.23)

and also

R̃ = g̃ikR̃ik = K → R̃ik =
K

n
g̃ik. (B.24)

Using this last equation, we can re-write (B.17) as being

R = enψR̄+Ke−2ψ − n(n+ 2)

2
enψ (Ōψ)2 + nenψ�ψ. (B.25)

On the n-dim manifold, it must be satisfied that

R̃ik = σ(n− 1)g̃ik, → R̃ = K = σn(n− 1) (B.26)

Hence, substituting (B.25) and (B.26) in (B.1) and building the corresponding d-dim action, we will have

Sd =
C

2

∫
ddx
√
−gd

[
enψR̄+ σn(n− 1)e−2ψ − n(n+ 2)

2
enψ(Ōψ)2 + nenψ�ψ

]
. (B.27)

The d-dim determinant would be

gd = det[e−nψ ḡµν ]det[e2ψ g̃ik] = e−2nψ ḡg̃. (B.28)

Substituting this result in the above expression and separating the integration volumes, we find that

Sd =
C

2

∫
Vµ

d4x
√
−ḡ
[
R̄− n(n+ 2)

2
(Ōψ)2 + σn(n− 1)e−(n+2)ψ + n�ψ

]
·
[∫
Vi

dnx
√
g̃
]
, (B.29)

with Vµ and Vi being the 4-dim and n-dim integration volumes, respectively. Like
∫
Vi
dnx
√
g̃ = Vn, i.e., the

internal space volume and Gd = VnG4, the action becomes in

S4 =
C′

2

∫
Vµ

d4x
√
−ḡ
[
R̄− n(n+ 2)

2
(Ōψ)2 + σn(n− 1)e−(n+2)ψ

]
+

∫
Vµ

d4x
√
−ḡn�ψ. (B.30)

Analyzing the last term and applying the divergence theorem, we see that∫
Vµ

d4x
√
−ḡ�ψ =

∫
∂Vµ

√
−ḡḡµν(∂ν)dSµ. (B.31)

Since δḡµν = 0 in ∂Vµ, so then ∫
Vµ

d4x
√
−ḡn�ψ = 0. (B.32)

Thus, we get the result

S4 =
C′

2

∫
Vµ

d4x
√
−ḡ
[
R̄− n(n+ 2)

2
(Ōψ)2 − 2V (ψ)

]
, (B.33)

with
V (ψ) = −σn(n− 1)e−(n+2)ψ, (B.34)

and

C′ =
1

8πG4
. (B.35)

After this process, we can conclude two important aspects

• The metric g̃ab of the internal space Mn corresponds to a manifold with constant curvature scalar.
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R̃ = K =⇒ R̃ab =
K

n
g̃ab. (B.36)

• The scalar of curvature of the manifold Nd only depends of the external coordinates belonging to L4.

R = enψR̄+Ke−2ψ − enψ n(n+ 2)

2
(Ōψ)2 + nenψ�ψ. (B.37)

The above procedure and expressions can be used to reduce a d-dim action of super-gravity to one scalar-tensor
coupling gravity model in 4-dim.
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