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This is a pedagogical introduction to theories with branes and extra dimensions. We first

discuss the construction of such models from an effective field theory point of view, and

then discuss large extra dimensions and some of their phenomenological consequences.

Various possible phenomena (split fermions, mediation of supersymmetry breaking and

orbifold breaking of symmetries) are discussed next. The second half of this review is

entirely devoted to warped extra dimensions, including the construction of the Randall–

Sundrum solution, intersecting branes, radius stabilization, Kaluza–Klein phenomenol-

ogy and bulk gauge bosons.
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Table of Contents

1 Introduction 969

2 Large Extra Dimensions 970

2.1 Matching the higher dimensional theory to the 4D effective

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970

2.2 What is a brane and how does one write an effective theory

for it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

2.3 Coupling of SM fields to the various graviton components . 980

2.4 Phenomenology with large extra dimensions . . . . . . . . . 986

3 Various Models with Flat Extra Dimensions 990

3.1 Split fermions, proton decay and flavor hierarchy . . . . . . 991

3.2 Mediation of supersymmetry breaking via extra dimensions

(gaugino mediation) . . . . . . . . . . . . . . . . . . . . . . 997

3.3 Symmetry breaking via orbifolds . . . . . . . . . . . . . . . 1004

3.3.1 Breaking of the grand unified gauge group via orbifolds

in SUSY GUT’s . . . . . . . . . . . . . . . . . . . . 1007

3.3.2 Supersymmetry breaking via orbifolds . . . . . . . . 1012

4 Warped Extra Dimensions 1015

4.1 The Randall–Sundrum background . . . . . . . . . . . . . . 1016

4.2 Gravity in the RS model . . . . . . . . . . . . . . . . . . . . 1022

4.3 Intersecting branes, hierarchies with infinite extra dimensions 1029

4.3.1 Localization of gravity to brane intersections . . . . 1029

4.3.2 The hierarchy problem in the infinite RS case . . . . 1032

5 Phenomenology of Warped Extra Dimensions 1033

5.1 The graviton spectrum and coupling in RS1 . . . . . . . . . 1033

5.2 Radius stabilization . . . . . . . . . . . . . . . . . . . . . . 1035

5.3 Localization of scalars and quasi-localization . . . . . . . . 1045

5.4 SM Gauge fields in the bulk of RS1 . . . . . . . . . . . . . . 1047

5.5 AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050

6 Epilogue 1053

References 1054



September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings csaki

Extra Dimensions and Branes 969

1. Introduction

Theories with extra dimensions have recently attracted enormous attention.

Here we attempt to give an introduction to these new models. We start

Section 2 by motivating theories with branes in extra dimensions, and then

explain how to write down an effective theory of branes, and what kind of

4D excitations one would expect to see in such models and how these modes

couple to the standard model (SM) fields. Section 2 is closed with a discus-

sion of the main phenomenological implications of models with large extra

dimensions. In Section 3 we discuss various possible scenarios for theories

with flat extra dimensions that could be relevant to model building. First we

discuss split fermions, which could give a new way of explaining the fermion

mass hierarchy problem, and perhaps also explain proton stability. Next

we discuss mediation of supersymmetry (SUSY) breaking via a flat extra

dimension, and finally we close this section with a discussion of symmetry

breaking via orbifolds. These topics were chosen such that besides getting

to know some of the most important directions in model building the reader

will also be introduced to most of the relevant techniques used in this field.

The second half of this review deals exclusively with warped extra di-

mensions: the Randall–Sundrum model and its variations. In Section 4 we

first show in detail how to obtain the Randall–Sundrum solution, and how

gravity would behave in such theories. Then localization of gravity to brane

intersections is discussed, followed by a possible solution to the hierarchy

problem in infinite extra dimensions. Finally Section 5 discusses various is-

sues in warped extra dimensions, including the graviton Kaluza–Klein (KK)

spectrum, radius stabilization and radion physics, quasi-localization of fields,

bulk gauge fields and the AdS/CFT correspondence.

Inevitably, many important topics have been left out of this review. These

include the cosmology of extra dimensional models, running and unification

in AdS space, universal extra dimensions and KK dark matter, black hole

physics, brane induced gravity, electroweak symmetry breaking with extra

dimensions, and the list goes on. The purpose of this review is not to cover

every important topic, but rather to provide the necessary tools for the

reader to be able to delve deeper into some of the topics currently under

investigation. I have tried to include a representative list of references for

the topics covered, and also some list for the topics left out from the review.

Clearly, there are many hundreds of references that are relevant to the topics

covered here, and I apologize to everyone whose work was not quoted here.

Other recent reviews of the subject can be found in [1].
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2. Large Extra Dimensions

Extra dimensions were first introduced in the 1920s by Kaluza and Klein [2],

who were trying to unify electromagnetism with gravity, by assuming that

the photon field originates from the fifth component (gµ5) of the five dimen-

sional metric tensor. The early 1980s lead to a revitalization of these ideas

partly due to the realization that a consistent string theory will necessarily

include extra dimensions. In order for such theories with extra dimensions to

not flatly contradict with our observed four space-time dimensions, we need

to be able to hide the existence of the extra dimensions in all observations

that have been made to date. The most plausible way of achieving this is

by assuming that the reason why we have not observed the extra dimen-

sions yet is that contrary to the ordinary four space-time dimensions which

are very large (or infinite), these hypothetical extra dimensions are finite,

that is they are compactified. Then one would need to be able to probe

length scales corresponding to the size of the extra dimensions to be able

to detect them. If the size of the extra dimensions is small, then one would

need extremely large energies to be able to see the consequences of the extra

dimensions. Thus by making the size of the extra dimensions very small,

one can effectively hide these dimensions. So the most important question

that one needs to ask is how large could the size of the extra dimensions

be without getting into conflict with observations. This is the first point we

will address below. We will see that answering this question will naturally

lead us towards theories with fields localized to branes. In order to be able

to examine such theories, we will consider how to write down an effective

Lagrangian for a theory with a brane, and find out how the different modes

in such theories would couple to the particles of the SM of particle physics.

We close this section by explaining how to calculate various processes in-

cluding the Kaluza–Klein modes of the graviton, and by briefly sketching

ideas about black-hole production in theories with large extra dimensions.

The very basics of Kaluza–Klein theories have been explained, e.g., in the

review by Keith Dienes [3]. I will assume that the reader is familiar with

the concept of Kaluza–Klein decomposition of a higher dimensional field.

Otherwise, this review should be self-contained.

2.1. Matching the higher dimensional theory to the 4D

effective theory

The first question that we would like to answer is how large the extra di-

mensions could possibly be without us having them noticed until now. For

this we need to understand how the effectively four dimensional world that
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we observe would be arising from the higher dimensional theory. In more

formal terms, this procedure is called matching the effective theory to the

fundamental higher dimensional theory. Thus what we would like to find

out is how the observed gauge and gravitational couplings (which should be

thought of as effective low-energy couplings) would be related to the “fun-

damental parameters” of the higher dimensional theory.

Let us call the fundamental (higher dimensional) Planck scale of the

theory M∗, assume that there are n extra dimensions, and that the radii

of the extra dimensions are given by r. In order to be able to perform the

matching, we need to first write down the action for the higher dimensional

gravitational theory, including the dimensionful constants, since these are

the ones we are trying to match. For this it is very useful to examine the

mass dimensions of the various quantities that will appear. The infinitesimal

distance is related to the coordinates and the metric tensor by

ds2 = gMNdxMdxN . (2.1)

We will always be using the (+,−,−, . . . ,−) sign convention for the metric.

Assuming that the coordinates carry proper dimensions (that is they are

NOT angular variables) the metric tensor is dimensionless, [g] = 0. Since

we can calculate the Christoffel symbols as

ΓA
MN ∼ gAB∂MgNB , (2.2)

we get that the Christoffel symbols carry dimension one, [Γ] = 1. Since

RMN ∼ Γ2, the Ricci tensor will carry dimension two, [RMN ] = 2, and

similarly the curvature scalar [R] = 2. The main point is that all of this is

independent of the total number of dimensions, since these were based on

local equations. In order to generalize the Einstein–Hilbert action to more

than four dimensions, we simply assume that the action will take the same

form as in four dimensions,

S4+n ∼
∫

d4+nx

√

g(4+n)R(4+n). (2.3)

In order to make the action dimensionless, we need to multiply by the ap-

propriate power of the fundamental Planck scale M∗. Since d4+nx carries

dimension −n− 4, and R(4+n) carries dimension 2, this has to be the power

n + 2, thus we take

S4+n = −Mn+2
∗

∫

d4+nx

√

g(4+n)R(4+n). (2.4)
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What we need to find out is how the usual four dimensional action

S4 = −M2
P l

∫

d4x

√

g(4)R(4) (2.5)

is contained in this higher dimensional expression. Here MP l is the observed

4D Planck scale ∼ 1018 GeV. For this we need to make some assumption

about the geometry of the space-time. We will for now assume, that space-

time is flat, and that the n extra dimensions are compact. So the metric is

given by

ds2 = (ηµν + hµν)dxµdxν − r2dΩ2
(n) , (2.6)

where xµ is a four dimensional coordinate, dΩ2
(n) corresponds to the line

element of the flat extra dimensional space in some parametrization, ηµν is

the flat (Minkowski) 4D metric, and hµν is the 4D fluctuation of the metric

around its minimum. The reason why we have only put in 4D fluctuations

is that our goal is to find out how the usual 4D action is contained in the

higher dimensional one. For this the first thing to find out is how the 4D

graviton is contained in the higher dimensional metric, this is precisely what

is given in (2.6). This does not mean that there wouldn’t be additional terms

(and in fact there will be as we will see very soon). From this we can now

calculate the quantities that appear in (2.4),

√

g(4+n) = rn
√

g(4), R(4+n) = R(4), (2.7)

where these latter quantities are to be calculated from h. Therefore we get

S4+n = −Mn+2
∗

∫

d4+nx

√

g(4+n)R(4+n) = −Mn+2
∗

∫

dΩ(n)r
n

∫

d4x

√

g(4)R(4).

(2.8)

The factor
∫

dΩ(n)r
n is nothing but the volume of the extra dimensional

space which we denote by V(n). For toroidal compactification it would simply

be given by V(n) = (2πr)n. Comparing (2.8) with (2.5) we find the matching

relation for the gravitational couplings that we have looked for,

M2
P l = Mn+2

∗ V(n) = Mn+2
∗ (2πr)n. (2.9)

Let us now repeat the same matching procedure for the gauge couplings.

Assume that the gauge fields live in the extra dimensions, and use a normal-

ization where the gauge fields are not canonically normalized,

S(4+n) = −
∫

d4+nx
1

4g2∗
FMNFMN

√

g(4+n) . (2.10)
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M,N denote indices that range from 1 to 4 + n, and g∗ denotes the higher

dimensional (“fundamental”) gauge coupling. Clearly, the four dimensional

part of the field strength Fµν is included in the full higher dimensional FMN .

Again performing the integral over the extra dimension we find

S(4) = −
∫

d4x
V(n)

4g2∗
FµνF µν

√

g(4) . (2.11)

Thus the matching of the gauge couplings is given by

1

g2
eff

=
V(n)

g2∗
. (2.12)

Note, that it is clear from this equation, that the coupling constant of a

higher dimensional gauge theory is not dimensionless, but rather it has di-

mension [g∗] = −n/2. As a consequence it is not a renormalizable theory,

but can be thought of as the low-energy effective theory of some more fun-

damental theory at even higher energies.

Now let us try to understand the consequences of Eqs. (2.9) and (2.12).

Since the gauge coupling is dimensionful in extra dimensions, one needs to

ask what should be its natural size. The simplest assumption is that the

same physics that sets the strength of gravitational couplings would also set

the gauge coupling, and thus

g∗ ∼
1

M
n
2∗

. (2.13)

Then we would have the two equations

1

g2
4

= V(n)M
n
∗ ∼ rnMn

∗ ,

M2
P l = V(n)M

n+2
∗ ∼ rnMn+2

∗ , (2.14)

from which it follows that

r ∼ 1

MP l
g

n+2
n

4 . (2.15)

This would imply that in a “natural” higher dimensional theory r ∼ 1/MP l!

In this case there would be no hope of finding out about the existence of

these tiny extra dimensions in the foreseeable future. This is what the pre-

vailing view has been until the 90’s about extra dimensions. However, we

should note that these arguments crucially depended on the assumption that

every field propagates in all dimensions. The purpose of this review is to

understand what kind of physical phenomena one could expect if some or all
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the fields of the standard model were localized in the extra dimensions to a

“brane.” This possibility has been first raised in [4, 5] (see also [6, 7]).

Before jumping into the detailed description of theories with branes, we

would like to first understand what the restrictions on the size of extra

dimensions would be if, contrary to the previous assumption, the SM fields

were localized to 4 dimensions and only gravity (or other yet unobserved

fields) were to propagate into the extra dimension. In this case, new physics

will only appear in the gravitational sector, and only when distances as short

as the size of the extra dimension are actually reached. However, it is very

hard to test gravity at very short distances. The reason is that gravity is

a much weaker interaction than all the other forces. Over large distances

gravity is dominant because there is only one type of gravitational charge,

so it cannot be screened. However, as one starts going to shorter distances,

inter-molecular van der Waals forces and eventually bare electromagnetic

forces will be dominant, which will completely overwhelm the gravitational

forces. This is the reason why the Newton-law of gravitational interactions

has only been tested down to about a fraction of a millimeter using essentially

Cavendish-type experiments [8]. Therefore, the real bound on the size of an

extra dimension is

r ≤ 0.1 mm (2.16)

if only gravity propagates in the extra dimension. How would a large value

close to the experimental bound affect the fundamental Planck scale M∗?
Since we have the relation M 2

P l ∼ Mn+2
∗ rn, if r > 1/MP l, the fundamental

Planck scale M∗ will be lowered from MP l. How low could it possibly go

down? If M∗ < 1 TeV, that would imply that quantum gravity should have

already played a role in the collider experiments that have been performed up

to now. Since we have not seen a hint of that, one has to impose that M∗ ≥ 1

TeV. So the lowest possible value (and thus the largest possible size of the

extra dimensions) would be for M∗ ∼ 1 TeV. Such models are called theories

with “Large extra dimensions”, proposed by Arkani-Hamed, Dimopoulos and

Dvali [9], see also [10]. For earlier papers where the possibility of lowering

the fundamental Planck scale has been mentioned see [11, 12]. Let us check

how large a radius one would need, if in fact M∗ was of the order of a TeV.

Reversing the expression M 2
P l ∼ Mn+2

∗ rn we would now get

1

r
= M∗

(

M∗
MP l

) 2
n

= (1 TeV)10−
32
n , (2.17)

where we have used M∗ ∼ 103 GeV and MP l ∼ 1019 GeV. To convert into
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conventional length scales one should keep the conversion factor

1 GeV−1 = 2 · 10−14cm (2.18)

in mind. Using this we finally get

r ∼ 2 · 10−1710
32
n cm . (2.19)

For n = 1 this would give the absurdly large value of r = 2 · 1015 cm,

which is grater than the astronomical unit of 1.5 × 1013 cm. This is clearly

not possible; there can’t be one flat large extra dimension if one would

like to lower M∗ all the way to the TeV scale. However, already for two

extra dimensions one would get a much smaller number r ∼ 2 mm. This is

just borderline excluded by the latest gravitational experiments performed

in Seattle [13]. Conversely, one can set a bound on the size of two large

extra dimensions from the Seattle experiments, which gave r ≤ 0.2 mm=

1012 1/GeV. This results in M∗ ≥ 3 TeV. We will see that for two extra

dimensions there are in fact more stringent bounds than the direct bound

from gravitational measurements.

For n > 2 the size of the extra dimensions is less than 10−6 cm, which

is unlikely to be tested directly via gravitational measurements any time

soon. Thus for n > 2 M∗ ∼ 1 TeV is indeed a possibility that one has to

carefully investigate. If M∗ was really of order the TeV scale, there would

no longer be a large hierarchy between the fundamental Planck scale M∗
and the scale of weak interactions Mw, thus this would resolve the hierarchy

problem. In this case gravity would appear weaker than the other forces at

long distances because it would get diluted by the large volume of the extra

dimensions. However, this would only be an apparent hierarchy between the

strength of the forces, as soon as one got below scales of order r one would

start seeing the fundamental gravitational force, and the hierarchy would

disappear. However, as soon as one postulates the equality of the strength

of the weak and gravitational interactions one needs to ask why this is not

the scale that sets the size of the extra dimensions themselves. Thus by

postulating a very large radius for the extra dimensions one would merely

translate the hierarchy problem of the scales of interactions into the problem

of why the size of the extra dimension is so large compared to its natural

value.



September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings csaki

976 Csaba Csáki

2.2. What is a brane and how does one write an effective

theory for it?

Above we have seen that theories where certain particles (especially the light

SM particles) are localized to four dimensions, while other particles could

propagate in more dimensions could be very interesting. In this review

we would like to study theories of this sort. We will refer to the surface

along which some of the particles are localized as “branes”, which stands

for a membrane that could have more spatial dimensions than the usual 2

dimensional membrane. A p-brane will mean that the brane has p spatial

dimensions, so a 2-brane is just the usual membrane, a 1-brane is just a

string, while the most important object for us in this review will be a 3-

brane, which has 3 spatial dimensions just like our observed world, which

could be embedded into more dimensions.

What is a brane really? In field theory, it is best to think of it as a

topological defect (like a soliton), which could have fields localized to its

surface. For example, as we will see in the next section in detail, domain

walls localize fermions to the location of the domain wall. String theories

also contain objects called D-branes (shorthand for Dirichlet branes). These

are surfaces which an open string can end on. These open strings will give

rise to all kinds of fields localized to the brane, including gauge fields. In

the supergravity approximation these D-branes will also appear as solitons

of the supergravity equations of motion.

In our approach, we will use a low-energy effective field theory description.

We will (usually) not care very much where these branes come from, but

simply assume that there is some consistent high-energy theory that would

give rise to these objects. Therefore, our theory will be valid only up to some

cutoff scale, above which the dynamics that actually generates the brane has

to be taken into account. For our discussion we will follow the description

and notation of Sundrum in Ref. [14].

To describe the branes, let us first set up some notation. The 3-brane will

be assumed to be described by a flat four-dimensional space-time equivalent

to R4, while the extra dimensions by Rn or if compactified by T n (an n

dimensional torus). The coordinates in the bulk (bulk stands for all of

spacetime) are denoted by XM , M = 0, 1, . . . , 3 + n, the coordinates on the

brane are denoted by xµ, µ = 0, 1, 2, 3, while the coordinates along the extra

dimensions only are denoted by xm, m = 4, . . . , 3 + n. For now we will

concentrate on the bosonic degrees of freedom. What are these degrees of

freedom that we need to discuss in a low-energy effective theory? Since we

need to discuss the physics of higher dimensional gravity, this should include
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the metric in the 4 + n dimensions GMN (X), and also the position of the

brane in the extra dimensions Y M (x). Note, that the metric is a function

of the bulk coordinate XM , while the position of the brane is a function of

the coordinate along the brane xµ. In addition, we would like to take into

account the fields that are localized to live along the brane. These could be

some scalar fields Φ(x), gauge fields Aµ(x) or fermions ΨL(x). These fields

are also functions of the coordinate along the brane xµ.

X

X
X

Y(x)

x
x

1

2

3

1

2

Figure 1. Parametrization of the position of the brane in the bulk.

The effective theory that we are trying to build up should describe small

fluctuations of the the fields around the vacuum state. So we have to specify

what we actually mean by the vacuum. We will assume that we have a flat

brane embedded into flat space. The corresponding choice of vacua is then

given by

GMN (X) = ηMN ,

Y M (x) = δM
µ xµ. (2.20)

Here and everywhere in this review we will use the metric convention ηMN =

diag(+,−, −, . . . ,−). The bulk action will then just be the usual higher

dimensional Einstein–Hilbert action as discussed in the previous section,

plus perhaps a term from a bulk cosmological constant Λ,

Sbulk = −
∫

d4+nX
√

|G|(Mn+2
∗ R(4+n) + Λ) . (2.21)

In order to be able to write down an effective action for the brane localized

fields one has to first find the induced metric on the brane. This is the metric

that should be used to contract Lorentz indices of the brane field. To get

the induced metric, we need the distance between two points at x and x+dx
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on the brane,

ds2 = GMNdY (x)MdY (x)N = GMN
∂Y M

∂xµ
dxµ ∂Y N

∂xν
dxν . (2.22)

From this the induced metric can be easily read off,

gµν = GMN (Y (x))∂µY M∂νY
N . (2.23)

This is the general expression for arbitrary background metric and for an

arbitrary brane. For the flat vacuum that we have chosen one can easily

see from (2.23) that the induced metric will fluctuate around the flat 4D

Minkowski metric ηµν .

After this we can discuss the basic principle for writing down the brane

induced part of the action: it has to be invariant both under the general

coordinate transformation of the bulk coordinates X and under the general

coordinate transformations of x. It is clear that the invariance under the

general coordinate transformation of the bulk coordinates just corresponds

to the usual general covariance of a higher dimensional gravitational the-

ory. The additional requirement that the action also be invariant under

the coordinate transformations of the brane coordinate x is an expression of

the fact that x is just one possible parametrization of the surface (brane),

which itself can not have a physical significance, and any different choice of

parametrization has to give the same physics. This will ensure the usual 4D

Lorentz invariance of the brane induced action. Thus there are two separate

coordinate transformations that the action has to be invariant under, that

corresponding to X and to x. Practically this means that one has to con-

tract bulk indices with bulk indices, and brane indices with brane indices.

For example ∂µY M would be a vector under both the bulk and the brane co-

ordinate invariance, and both indices have to be contracted to form a scalar

that can appear in the action, while the induced metric gµν would be a ten-

sor under the brane reparametrization, but a scalar under bulk coordinate

invariance, etc. Thus the general form of the brane action would be of the

form

Sbrane =

∫

d4x
√

|g|
[

−f4−R(4) +
gµν

2
DµΦDνΦ−V (Φ)− gµνgρσ

4
FµρFνσ+. . .

]

.

(2.24)

Here the possible constant piece f corresponds to the energy density of the

brane, called the brane-tension. This brane tension has to be small (in the

units of the fundamental Planck scale) in order to be able to neglect its back-

reaction on the gravitational background. In Chapter 4 we will investigate

warped backgrounds where this back-reaction will be taken into account. As
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discussed above, in addition to the usual bulk coordinate invariance which

everyone is familiar with, there is also a 4D reparametrization invariance,

which corresponds to the fact that a different parametrization of the surface

describing the brane would yield the same physics; that is x → x′(x) is

an invariance of the Lagrangian. Thus one needs an additional gauge fixing

condition, which will eliminate the nonphysical components from Y M . There

are four coordinates, so one needs four conditions, which can be picked as

Y µ(x) = xµ, (2.25)

which is a complete gauge fixing. Thus out of the 4 + n components of Y M

only the components along the extra dimension Y m(x), m = 4, 5, . . . , 3 + n

correspond to physical degrees of freedom. These n physical fields correspond

to the position of the brane within the bulk.

Let us now discuss how to normalize the fields in order to end up with

canonically normalized 4D actions. The bulk metric GMN is dimensionless,

and we expand it in fluctuations around the background which we assume

to be flat space,

GMN = ηMN +
1

2M
n
2
+1

∗
hMN . (2.26)

This way the graviton fluctuation hMN has dimension n
2 + 1 which is the

right one for a bosonic field in 4 + n dimensions. The prefactor was chosen

such that the kinetic term reproduces the canonically normalized kinetic

term when expanding the Einstein–Hilbert action in h.

To get a canonically normalized field for the coordinates describing the

position of the brane Y m(x) we expand the leading term in the brane action

which is just the brane tension,
∫

d4x
√

|g|
[

−f4 + . . .
]

. (2.27)

For the induced metric the leading dependence on Y is

gµν = GMN∂µY m∂νYm = ηµν + ∂µY m∂νYm + ... , (2.28)

and expanding the determinant of the metric in powers of Y we obtain

det g = −∂µY m∂µYm , (2.29)

from which the leading term in the action is

S =

∫

d4xf4∂µY m∂µYm . (2.30)
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Thus, the canonically normalized field will be

Zm ≡ f2Y m . (2.31)

Note, that it is the brane tension which sets the size of the kinetic term for

the Y m fields. In particular, if the tension is negative, then one would have

a field with negative kinetic energy, which is thus a physical ghost. This

shows that a brane with negative tension is likely unstable, the brane wants

to crumble unless somehow these modes with negative kinetic energy are

projected out by not allowing the brane to move. This possibility will be

encountered when we consider branes at orbifold fixed points.

2.3. Coupling of SM fields to the various graviton

components

In the previous section we have discussed how one should construct an action

for fields localized on branes coupled to gravity. Next we would like to

explicitly construct the generic interaction Lagrangians between the matter

on the brane (which we will simply call the SM matter) and the various

graviton modes. For our discussion we will follow the work of Giudice,

Rattazzi and Wells [15]. We have seen above that the SM fields feel only the

induced metric

gµν(x) = GMN (X)∂µY M∂νY N . (2.32)

It is quite clear from the previous subsection how to deal with the Y m fields,

so we will concentrate on the modes of the bulk graviton, and for now set the

fluctuations of the brane to zero, that is set Y M = δM
µ xµ, and thus Y m = 0.

In this case

gµν(x) = Gµν(xµ, xm = 0) . (2.33)

The action is given by

S =

∫

d4xLSM
√

g(gµν ,Φ,Ψ, A, . . .) . (2.34)

The definition of the energy-momentum tensor is given by

√
gT µν =

δSSM

δgµν
. (2.35)

From this it is clear that at linear order the interaction between the SM

matter and the graviton field is given by (expanding in the fluctuation around
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flat space again gµν = ηµν +
hµν(xµ)

M
n
2 +1
∗

)

Sint =

∫

d4xT µν hµν(xµ)

M
n
2
+1

∗
. (2.36)

Thus, generically, the graviton couples linearly to the energy-momentum

tensor of the matter (this is in fact the definition of the stress-energy tensor,

but it is a quantity that we know quite well and is easy to find). Note that

in the above expression what appears is the graviton field at the position of

the brane, which is not a mass eigenstate field from the 4D point of view but

rather a superposition of all KK modes. Using Ref. [3] we write the graviton

field in the KK expansion as

hMN (x, y) =

∞
∑

k1=−∞
. . .

∞
∑

kn=−∞

h
~k
MN (x)√

Vn
ei

~k·~y
R , (2.37)

where we have denoted the coordinates along the extra dimension by ym

(until now they were simply denoted by xm), and assumed a toroidal com-

pactification with volume Vn = (2πR)n. Plugging the KK expansion back

into (2.36) we find the coupling of the SM fields to the individual KK modes

to be

∑

~k

∫

d4xT µν 1

M
n
2
+1

∗

h
~k
µν√
Vn

=
∑

~k

∫

d4x
1

MP l
T µνh

~k
µν , (2.38)

where we have again used the relation between the fundamental Planck scale

and the observed one. Thus we can see that an individual KK mode couples

with strength 1/MP l to the SM fields. However, since there are many of

them, the total coupling in terms of the field at the brane sums up to a

coupling proportional to 1/M∗, as we have seen in (2.36).

Next let us discuss what the different modes contained in the bulk gravi-

ton field are. Clearly, the graviton is a D by D symmetric tensor, where

D = n + 4 is the total number of dimensions. Therefore this tensor has in

principle D(D+1)/2 components. However, we know that general relativity

has a large gauge symmetry – D dimensional general coordinate invariance.

Therefore we can impose D separate conditions to fix the gauge, for example

using the harmonic gauge

∂MhM
N =

1

2
∂NhM

M . (2.39)

However, just like in the ordinary Lorentz gauge for gauge theories, this
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is not yet a complete gauge fixing. Gauge transformations which satisfy

the equation �εM = 0 are still allowed (where the gauge transformation is

hMN → hMN+∂MεN+∂NεM ), and this means that another D conditions can

be imposed. This means that generically a graviton has D(D +1)/2− 2D =

D(D − 3)/2 independent degrees of freedom. For D = 4 this gives the usual

2 helicity states for a massless spin two particle, however in D = 5 we get 5

components, in D = 6 we get 9 components, etc. This means that from the

4D point of view a higher dimensional graviton will contain particles other

than just the ordinary 4D graviton. This is quite clear, since the higher

dimensional graviton has more components, and thus will have to contain

more fields. The question is what these fields are and how many degrees

of freedom they contain. We will go through these modes carefully in the

following.

• The 4D graviton and its KK modes

These live in the upper left 4 by 4 block of the bulk graviton which is

given by a 4 + n by 4 + n matrix



















G
~k
µν



















. (2.40)

These modes are labeled by the vector ~k, which is an n-component vector,

specifying the KK numbers along the various extra dimensions. These modes

are generically massive, except for the zero mode. In the limit of no sources

these modes satisfy the 4D equation

( + k̂2)G
~k
µν = 0 (2.41)

which as usual would imply 10 components, however the gauge conditions

∂µG
~k
µν = 0, Gµ~k

µ = 0 (2.42)

eliminate 5 components, and we are left generically with 5 degrees of freedom,

which is just the right number for a massive graviton in four dimensions. The

reason is that a massive graviton contains a normal 4D massless graviton

with two components, but also “eats” a massless gauge field and a massless

scalar, as in the usual Higgs mechanism. Thus 5 = 2 + 2 + 1.
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• 4D vectors and their KK modes

The off-diagonal blocks of the bulk graviton form vectors under the four

dimensional Lorentz group. This is clear, since they come from the Gµj

components of the graviton,















V
~k
µj

V
~k
µj















. (2.43)

Naively one could think there there would be n such four dimensional vectors,

however we have seen before that the 4D graviton has to eat one 4D vector

to form a full massive KK tower, thus there are only n−1 massive KK towers

describing spin 1 particles in 4D. The absence of the last tower is expressed

by the constraint

k̂jV
~k
µj = 0 . (2.44)

The usual Lorentz gauge condition can also be imposed

∂µV
~k
µj = 0 . (2.45)

Each of these massive vectors absorbed a scalar via the Higgs mechanism.

• 4D scalars and their KK modes

The remaining lower right n by n block of the graviton matrix clearly

corresponds to 4D scalar fields,

















 S
~k
ij



















. (2.46)

Originally there are n(n + 1)/2 scalars, however as we discussed before the

graviton eats one scalar, and the remaining n−1 vectors eat one scalar each.

In addition, there is a special scalar mode, whose zero mode sets the overall

size of the internal manifold, and therefore this special scalar is usually called

the radion. Thus there are n(n + 1)/2 − n− 1 = (n2 − n− 2)/2 scalars left.



September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings csaki

984 Csaba Csáki

The equations that express the fact that n fields were eaten are

k̂jS
~k
jk = 0 , (2.47)

while the fact that we usually separate out the radion as a special field not

included among the scalars is expressed as the additional condition

S
~kj
j = 0 . (2.48)

The radion is then given by h
~kj
j .

Let us now count the total number of degrees of freedom taken into

account: 5 (graviton) +3(n − 1) (vectors) +(n2 − n − 2)/2 (scalars) +1

(radion) = (4 + n)(1 + n)/2 = D(D − 3)/2. Thus we can see that all the

modes of the graviton have been accounted for.

The explicit expressions for the canonically normalized 4D fields are given

in unitary gauge by (using the notation κ =
√

3(n−1)
n+2 )

radion H
~k =

1

κ
h

~kj
j ,

scalars S
~k
ij = h

~k
ij −

κ

n − 1

(

ηij +
k̂ik̂j

k̂2

)

H
~k ,

vectors V
~k
µj =

i√
2

h
~k
µj ,

gravitons G
~k
µν = h

~k
µν +

κ

3

(

ηµν +
∂µ∂ν

k̂2

)

H
~k . (2.49)

The equation of motion in the presence of sources is given for the above

fields by

( + k̂2)













G
~k
µν

V
~k
µj

S
~k
ij

H
~k













=











1
MPl

[−Tµν + (ηµν +
∂µ∂ν

k̂2
)T µ

µ /3]

0

0
κ

3MPl
T µ

µ











. (2.50)

We can see why the radion is special; besides setting the overall size of the

compact dimension it also is the only field besides the 4D graviton that

couples to brane sources. It couples to the trace of the energy-momentum

tensor. All the other fields are not important when one tries to calculate the

coupling of the matter fields on the brane to the modes of the bulk graviton.
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For example, if we take QED on the brane, the Lagrangian is given by

L =
√

g(iΨ̄γaDaΨ − 1

4
FµνF µν) , (2.51)

where the covariant derivative for fermions is given by

Da = eM
a (∂µ − ieQAµ +

1

2
σbceν

b∂µeνc) , (2.52)

where eM
a is the vielbein, and σbc the spin-connection (we will not go into

detail in this review on how to couple fermions to gravity, for those interested

in more details we refer to [14]). From this the energy-momentum tensor is

given by

Tµν =
i

4
Ψ̄(γµ∂ν +γν∂µ)Ψ− i

4
(∂µΨ̄γν+∂νΨ̄γµ)Ψ+

1

2
eQΨ̄(γµAν +γνAµ)Ψ

+ FµλF λ
ν +

1

4
ηµνF

λρFλρ. (2.53)

Typical Feynman diagrams involving the graviton which we would get from

this T when coupled to gravity on the brane are given by

f

f

G

f

f G

G

G

A

A

A

A

A

The last one appears only in non-Abelian gauge theories. There are similar

vertices involving the radion field.
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2.4. Phenomenology with large extra dimensions

We have discussed before that the mass splitting of the KK modes in large

extra dimensional theories is extremely small,

∆m ∼ 1

r
= M∗

(

M∗
MP l

) 2
n

=

(

M∗
TeV

)
n+2

2

10
12n−31

n eV. (2.54)

This implies that for a typical particle physics process with high energies

there is an enormous number of KK modes available. This suggests that

since the splitting of the KK modes is very small, it is useful to turn the

sum over KK modes into an integral. If N denotes the number of KK modes

whose momentum along the extra dimension is less than k, then clearly

dN = Sn−1k
n−1dk , (2.55)

where Sn = (2π)
n
2 /Γ(n/2) is the surface of an n dimensional sphere with

unit radius. The actual mass of a given KK mode is given by m = |k|
R ,

therefore we get that

dN = Sn−1m
n−1Rn−1dmR = Sn−1

M2
P l

Mn+2
∗

mn−1dm . (2.56)

In order to calculate an inclusive cross-section for the production of graviton

modes, what one needs to do is to first calculate the cross-section for the

production of an individual mode with mass m, dσm/dt, and then using the

above formula get

d2σ

dtdm
= Sn−1

M2
P l

Mn+2
∗

mn−1 dσm

dt
. (2.57)

Since the cross section for an individual KK mode is proportional to 1/M 2
P l,

the inclusive cross section will have a behavior of the form

d2σ

dtdm
∼ Sn−1

mn−1

Mn+2
∗

. (2.58)

With this we have basically covered all elements of calculating processes

with large extra dimensions. In the following we will briefly list some of the

most interesting features/constraints on these models. Clearly, not every-

thing will be covered here, for those interested in further details we refer

to the original papers. A nice general overview of the phenomenology of

large extra dimensions is given in [16]. For collider signals see [15, 17–19].

For the running of couplings and unification in extra dimensions see [20].

For consequences in electroweak precision physics see [21]. For neutrino

physics with large extra dimensions see [22]. For topics related to inflation
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with flat extra dimensions see [23]. Issues related to radius stabilization for

large extra dimensions are discussed in [24]. Connections to string theory

model building can be found e.g. in Ref. [25–27]. More detailed description

of supernova cooling into extra dimensions is in [28], while of black hole

production in [29, 30].

• Graviton production in colliders [15, 16, 31]

Some of the most interesting processes in theories with large extra di-

mensions involve the production of a single graviton mode at the LHC or at

a linear collider. Some of the typical Feynman diagrams for such a process

are given by [15–17, 31]

f

f

q

q

q

g

g

g

g

q

g

G

G

G

G

γ

+

Note, that the lifetime of an individual graviton mode is of the order Γ ∼
m3

M2
Pl

, which means that each graviton produced is extremely long lived, and

once produced will not decay again within the detector. Therefore, it is

like a stable particle, which is very weakly interacting since the interaction

of individual KK modes is suppressed by the 4D Planck mass, and thus

takes away undetected energy and momentum. Thus in the above diagrams

wherever we see a graviton, what one really observes is missing energy. This

would lead to the spectacular events when a single photon recoils against

missing energy in the linear collider, or a single jet against missing energy
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at the LHC. These are processes with small SM backgrounds (only coming

from Z production with initial photon radiation, followed by the Z decaying

to neutrinos), and also usually quite different from the canonical signals

of supersymmetry, where one would usually have two jets, or two photons

produced in the presence of missing energy.

• Virtual graviton exchange [15, 17, 18]

Besides the direct production of gravitons, another interesting conse-

quence of large extra dimensions is that the exchange of virtual gravitons

can lead to enhancement of certain cross-sections above the SM values. For

example, in a linear collider the e+e− → f f̄ process would also get contri-

butions from the diagram

f

f

e

e

The scattering amplitude for this process can be calculated using our

previous rules to be

A ∼ 1

M2
P l

∑

k

[

Tµν
P µναβ

s − m2
Tαβ +

κ2

3

T µ
µ T ν

ν

s − m2

]

≡ S(s)τ , (2.59)

where S(s) = 1
M2

Pl

∑

k
1

s−m2 and τ = T µνTµν − 1
n+2T µ

µ T ν
ν . Note, that for

n ≥ 2 the above sum is ultraviolet (UV) divergent, which implies that the

result will be UV sensitive. For more details see [15, 17, 18].

• Supernova cooling [16, 28]

Some of the strongest constraints on the large extra dimension scenar-

ios come from astrophysics, in particular from the fact that just as axions

could lead to a too fast cooling of supernovae, since gravitons are also weakly

coupled particles they could also transport a significant fraction of the en-

ergy within a supernovae. These processes have been discussed in detail in

Refs. [28], here we will just briefly mention the essence of the calculation.

The production of axions in supernovae is proportional to the axion decay

constant 1/f 2
a . The production of gravitons as we have seen is roughly pro-

portional to 1/M 2
P l(T/δm)n ∼ T n/Mn+2

∗ , where T is a typical temperature

within the supernova. This means that the bounds obtained for the axion

cooling calculation can be applied using the substitution 1/f 2
a → T n/Mn+2

∗ .
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For a supernova T ∼ 30 MeV, and the usual axion bound fa ≥ 109 GeV

implies a bound of order M∗ ≥ 10 − 100 TeV for n = 2. For n > 2 one does

not get a significant bound on M∗ from this process.

• Cooling into the bulk [16]

Another strong constraint on the cosmological history of models with

large extra dimensions comes from the fact that at large temperatures emis-

sions of gravitons into the bulk would be a very likely process. This would

empty our brane from energy density, and move all the energy into the bulk

in the form of gravitons. To find out at which temperature this would cease

to be a problem, one has to compare the cooling rates of the brane energy

density via the ordinary Hubble expansions and the cooling via the graviton

emission. The two cooling rates are given by

dρ

dt expansion
∼ −3Hρ ∼ −3

T 2

M2
P l

ρ , (2.60)

dρ

dt evaporation
∼ T n

Mn+2
∗

. (2.61)

These two are equal at the so called “normalcy temperature” T∗, below which

the universe would expand as a normal 4D universe. By equating the above

two rates we get

T∗ ∼
(

Mn+2
∗

MP l

)
1

n+1

= 10
6n−9
n+1 MeV. (2.62)

This suggests, that after inflation the reheat temperature of the universe

should be such, that one ends up below the normalcy temperature, otherwise

one would overpopulate the bulk with gravitons, and overclose the universe.

This is in fact a very stringent constraint on these models, since for example

for n = 2, T∗ ∼ 10 MeV, so there is just barely enough space to reheat above

the temperature of nucleosynthesis. However, this makes baryogenesis a

tremendously difficult problem in these models.

• Black hole production at colliders [29]

One of the most amazing predictions of theories with large extra dimen-

sions would be that since the scale of quantum gravity is lowered to the

TeV scale, one could actually form black holes from particle collisions at the

LHC. Black holes are formed when the mass of an object is within the hori-

zon size corresponding to the mass of the object. For example, the horizon

size corresponding to the mass of the Earth is 8 mm, so since the radius of



September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings csaki

990 Csaba Csáki

the Earth is 6000 km most of the mass is outside the horizon of the Earth

and it is not a black hole.

What would be the characteristic size of the horizon in such models? This

usually can be read off from the Schwarzschild solution which in 4D is given

by

ds2 =
(

1 − GM

r

)

dt2 − dr2

(1 − GM
r )

+ r2d2Ω , (2.63)

and the horizon is at the distance where the factor multiplying dt2 vanishes:

r4D
H = GM . In 4 + n dimensions in the Schwarzschild solution the prefactor

is replaced by 1− GM
r → 1− M

M2+n
∗ r1+n

, from which the horizon size is given

by

rH ∼
(

M

M∗

)
1

1+n 1

M∗
. (2.64)

The exact solution gives a similar expression except for a numerical prefactor

in the above equation. Thus we know roughly what the horizon size would

be, and a black hole will form if the impact parameter in the collision is

smaller, than this horizon size. Then the particles that collided will form a

black hole with mass MBH =
√

s, and the cross section as we have seen is

roughly the geometric cross section corresponding to the horizon size of a

given collision energy

σ ∼ πr2
H ∼ 1

M2
P l

(MBH

M∗

) 2
n+1

. (2.65)

The cross section would thus be of order 1/TeV2 ∼ 400 pb, and the LHC

would produce about 107 black holes per year! These black holes would

not be stable, but decay via Hawking radiation. This has the features that

every particle would be produced with an equal probability in a spherical

distribution. In the SM there are 60 particles, out of which there are 6

leptons, and one photon. Thus about 10 percent of the time the black hole

would decay into leptons, 2 percent of time into photons, and 5 percent

into neutrinos, which would be observed as missing energy. These would be

very specific signatures of black hole production at the LHC. For black hole

production in cosmic rays see [32].

3. Various Models with Flat Extra Dimensions

In the previous section we have discussed theories with large extra dimen-

sions: the motivation, basic idea, some calculational tools and some of the
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most interesting consequences. In this section we will consider some topics

that are related to flat extra dimensions (that is theories where the gravi-

tational background along the extra dimension is flat, as compared to the

warped extra dimensional scenario discussed in the following two sections).

These models do not necessarily assume that the size of the extra dimen-

sion is as large as in the large extra dimension scenario discussed previously.

The first model, theories with split fermions will still be closely related to

large extra dimensions. The other two examples: mediation of supersym-

metry breaking via extra dimensions and symmetry breaking via orbifold

compactifications will be models of their own, usually in a supersymmetric

context, and thus in those models we will not assume the presence of large

extra dimensions at all.

3.1. Split fermions, proton decay and flavor hierarchy

If there are indeed large extra dimensions, and the scale of gravity is of order

M∗ ∼ TeV, then one has to confront the following issue. It is usually a well-

accepted fact that quantum gravity generically breaks all global symmetries

(but not the gauge symmetries), and therefore if one is assuming that a the-

ory has a global symmetry, one can only do this up to symmetry breaking

operators suppressed by the scale of quantum gravity. However, this would

generically cause problems with proton decay. In the SM baryon number

is an accidental global symmetry of the Lagrangian (this means that ev-

ery renormalizable operator consistent with gauge invariance also conserves

baryon number, without having to explicitly require that). However, one

can easily write down nonrenormalizable operators that do violate baryon

number, and would give rise to proton decay. However, in the SM if there is

no new physics up to some high scale (the GUT or the Planck scales) then

these operators are expected to be suppressed by this large scale, and proton

decay could be sufficiently suppressed.

In principle, any new physics beyond the SM could give rise to new baryon

number violating operators, suppressed by the scale of new physics. For ex-

ample, in the supersymmetric standard model the exchange of superpartners

could in principle lead to some baryon number violating operators, which

would be disastrous, since they would only be suppressed by the scale of

the mass of the superpartners. Therefore, in the minimal supersymmetric

standard model (MSSM) one has to make sure that all the interactions with

the superpartners also conserve baryon number, which can be achieved by

imposing the so-called R-parity. Then again the remaining baryon num-

ber violating operators will be suppressed by the next (very high) scale of
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physics. However, in the large extra dimensional case the situation is slightly

worse. The reason is that since we are assuming that the scale of quantum

gravity itself is of order M∗ we can not really rely on a global symmetry to

forbid the unwanted baryon number violating operators. For example the

operator

1

M2∗
QQQL (3.1)

would cause very rapid proton decay.

A very nice way out of this problem that relies specifically on the existence

of the extra dimensions was proposed by Arkani-Hamed and Schmaltz [33]

(see also [34]). Their idea is to make use of the extra dimensions in a way that

can explain why the dangerous operators are very suppressed without having

to worry about quantum gravity spoiling the suppression. This will be done

by localizing the SM fermions at slightly different points along the extra

dimension. This localization of fermions at different points is sometimes

called the “split fermion” scenario. The reason why this could be interesting

for the suppression of proton decay is that if the fermions are split, and their

wave functions have a relatively narrow width compared to the distance of

splitting, then operators in the effective 4D theory that involve fermions

localized at different points along the extra dimensions could have a very

large suppression due to the small overlap of the fermion wave functions.

This way one can generate large suppression factors without the use of any

symmetry, and this could be used both to highly suppress baryon number

violating operators, and also to generate the observed fermion mass hierarchy

of the SM fermions. In this section we will follow the discussion of [33] of

split fermions.

Until now we have not discussed the mechanism of localization of various

fields. If we want to pursue the program of localizing fermions at slightly dif-

ferent points, we will have to go into the detail of the localization mechanism

of fermions in extra dimensions. The discussion below will thus also give an

example of how one should be thinking of a “brane” from field theory.

We will discuss the simplest case, namely a single extra dimension. For

this, we have to first understand how fermions in 5D are different from

fermions in 4D. Fermions form representations of the 5D Lorentz group,

which is different from the 4D Lorentz group, since it is larger. In particular,

the 5D Clifford algebra contains the γ5 Dirac matrix as well. While in 4D

the smallest representation of the Lorentz group is a two-component Weyl

fermion, and one gets four component Dirac fermions only if one requires

parity invariance, in 5D due to the fact the Clifford algebra contains γ5
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the smallest irreducible representation is the four component Dirac fermion.

Since a Dirac fermion contains two two-component fermions with opposite

chirality, whenever one talks about higher dimensional fermions one has to

start out with an intrinsically nonchiral set of 4D fermions. Since the SM

is a chiral gauge theory, nonchirality of the higher dimensional fermions has

to be overcome somehow. We will see that the localization mechanism and

(in the next two subsection) orbifold projections can achieve this. First we

will concentrate on describing a viable localization mechanism that produces

chiral fermions localized at different points along the extra dimension.

We will use the following representation for the γ matrices,

γi =

(

0 σi

σ̄i 0

)

, i = 0, . . . , 3, γ5 = −i

(

1

−1

)

. (3.2)

The two type of 5D Lorentz invariants that can be formed from two four-

component 5D spinors Ψ1 and Ψ2 are the usual Ψ̄1Ψ2 which corresponds

to the usual 4D Dirac mass term, and ΨT
1 C5Ψ2, which corresponds to the

Majorana mass term, and where C5 is the 5D charge conjugation matrix

C5 = γ0γ2γ5.

To describe the localization mechanism for fermions, we consider a 5D

spinor in the background of a scalar field Φ which forms a domain wall. This

domain wall is a physical example of brane that has a finite width (a “fat

brane”). The background configuration of this scalar is denoted by Φ(y).

The action for a 5D spinor in this background is given by

S =

∫

d4xdyΨ̄ [iγµ∂µ
4 + iγ5∂y + Φ(y)] Ψ . (3.3)

Note that we have added a Yukawa type coupling between the scalar field

and the fermion, which will be essential for the localization of the fermions

on the domain wall. From this the 5D Dirac equation is given by
[

iγµ∂µ
4 + iγ5∂y + Φ(y)

]

Ψ = 0 . (3.4)

We will look for solutions to this which are left- or right-handed 4D modes,

iγ5ΨL = ΨL , iγ5ΨR = −ΨR . (3.5)

To find the 4D eigenmodes of this system, we look for the eigensystem of the

y-dependent piece of the above equation. To simplify the equation (as usual

when solving a Dirac-type equation) we also multiply by the conjugate of

the differential operator to get the equation
[

−iγ5∂y + Φ(y)
] [

iγ5∂y + Φ(y)
]

Ψ
(n)
L,R = µ2

nΨL,R , (3.6)
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which gives
(

−∂2
y + Φ(y)2 ± Φ̇(y)

)

ΨL,R = µ2
nΨL,R . (3.7)

If Φ(y) had a linear profile, this would exactly give a harmonic oscillator

equation. However, even for the generic background one can define creation

and annihilation operators as for the usual harmonic oscillator using the

definition

a = ∂y + Φ(y) , a† = −∂y + Φ(y) . (3.8)

With these operators one can turn the above Schrödinger-like problem into

a SUSY quantum mechanics problem, which means that one can define the

operators Q and Q† such that
{

Q,Q†} = H, where H is the Hamiltonian

of the system. For the case at hand Q = aγ0PL, Q† = a†γ0PR will give

the right anticommutation relation (here PL,R are the left and right-handed

projectors). The SUSY quantum mechanics-like Schrödinger problems have

very special properties. For example, the eigenvalues of the L and R modes

always come in pairs, except possibly for the zero modes. The pairing of

eigenmodes just corresponds to the expected vectorlike behavior of the bulk

fermions; for every L mode there is an R mode, since these are massive

modes that is exactly what one would expect. The fact that the zero modes

need not be paired is the most important part of the statement, since these

zero modes are the most interesting for us; they are the ones that could give

chiral 4D fermions. Therefore let us examine the equation for the zero mode.

Since
{

Q,Q†} = H, the solution to HΨ = 0 are the solutions to QΨ = 0 or

Q†Ψ = 0, that is

[±∂y + Φ(y)] ΨL,R(y) = 0 . (3.9)

From this we find the left and right-handed zero modes to be

ΨL ∼ e−
R y
0 Φ(y′)dy′

,

ΨR ∼ e+
R y
0 Φ(y′)dy′

. (3.10)

Since we have an exponential with two different signs for the exponent,

clearly both of these solutions cannot be normalizable at the same time.

Therefore we get chiral zero modes localized to the domain wall. For exam-

ple, if the profile of the domain wall is linear, Φ(y) ∼ 2µ2y, then the solution

for the left-handed zero mode is

ΨL(y) =
µ

1
2

(π/2)
1
4

e−µ2y2
. (3.11)
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This would be a zero mode localized at y = 0, which is exactly the point at

which the domain wall profile switches sign, that is where Φ(y) = 0. Thus

we have described a dynamical mechanism to localize a chiral fermion to

a domain wall. These are sometimes called domain-wall fermions, and are

extensively used for example in trying to put chiral fermions on a lattice [35].

Let us now consider the case when we have many fermions in the bulk,

Ψi, and their action is given by

S =

∫

d4xdyΨ̄i [iγµ∂µ
4 + iγ5∂y + λΦ(y) − m]ij Ψj . (3.12)

There will now be chiral fermion zero modes centered at the zeroes of

(λΦ(y) − m))ij . (3.13)

If we again imagine that the domain wall is linear in the region where all

these fermions will be localized, then the center of the fermion wave functions

will be at

yi =
mi

2µ2
, (3.14)

where the mi’s are the eigenvalues of the mij matrix. Thus the different

fermions will be localized at different positions!

Let us now try to write down what the Yukawa couplings between such

fermion zero modes would be in the presence of a bulk Higgs field that

connects these fermions. The 5D action would be given by

S=

∫

d5xL̄[iγM∂M+Φ(y)]L+

∫

d5xĒc[iγM∂M+Φ(y)−m]Ec+

∫

d5xκHLTC5E
c ,

(3.15)

where the last term is the bulk Yukawa coupling written such that it is

both gauge invariant and 5D Lorentz-invariant. From this the effective 4D

Yukawa coupling for the zero modes will be of the form
∫

d4xκHlec

∫

dyΨL(y)Ψec(y − r) , (3.16)

where l, ec are the zero modes of the bulk fields, and ΨL(y),Ψec(y−r) are the

wave functions of these zero modes. These wave functions are assumed to be

Gaussians centered around different points (y = 0 and y = r) in the linear

domain wall approximation, and so this integral will just be a convolution

of two Gaussians, which is also a Gaussian,
∫

dyΦL(y)Φec(y) =

√
2µ√
π

∫

dye−µ2y2
e−µ2(y−r)2 = e−

µ2r2

2 . (3.17)
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Thus the effective 4D Yukawa coupling between the zero modes is

κe−
µ2r2

2 , (3.18)

which could be exponentially small even if the bulk Yukawa coupling κ is

of order one. The exponential suppression factor depends on the relative

position of the localized zero modes. Thus split fermions could naturally

generate the fermion mass hierarchy observed in the SM. Basically, this

method translates the issue of fermion masses into the geography of fermion

localization along the extra dimension.

To close this subsection, we get back to our original motivation of proton

stability. Imagine that the leptons and the quarks are localized on oppo-

site ends of a fat brane. A dangerous proton decay operator generated by

quantum gravity at the TeV scale would have the form

∫

d5x
1

M3∗
(QT C5L)†(U cT C5D

c) . (3.19)

Again calculating the wave function overlap of the zero modes as before we

get that the effective 4D coupling is suppressed by the factor

∫

dy(e−µ2y2
)3e−µ2(y−r)2 ∼ e−

3
4
µ2r2

. (3.20)

Here r is the separation between quarks and leptons, and we can see that ar-

bitrarily large suppression of proton decay is possible in such models without

invoking symmetries.

What would a model with large extra dimensions then look like in this

scenario? One would have the large extra dimensions of size TeV−110
32
n ,

where the gravitational degrees of freedom propagate. Within that large

extra dimension there is a “fat brane”, which is basically the domain wall

that we have discussed above. The fat brane has the gauge fields and the

Higgs scalar living along its world volume. The width of this fat brane

could be of the order TeV−1, such that the KK modes of the gauge fields

arising from the “fatness” of the brane are sufficiently heavy. Within this fat

brane fermions are localized at different positions of this brane, which will

eliminate the problem with proton decay and the geography of the localized

zero modes will generate the fermion mass hierarchy. The width of the

localized fermions is much smaller than the width of the fat brane, of order

0.1 − 0.01 TeV−1. For more on split fermions see [36].
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3.2. Mediation of supersymmetry breaking via extra

dimensions (gaugino mediation)

Until now we have considered non-supersymmetric theories, and were trying

to solve the hierarchy problem using large extra dimensions. In the following

two examples we will assume that the hierarchy problem is solved by super-

symmetry, and ask the question whether extra dimensions and branes could

still play an important role in particle phenomenology. First we will discuss

the issue of mediation of supersymmetry breaking via an extra dimension,

and then discuss how to break symmetries via the geometry of the extra

dimension.

Assuming that the hierarchy problem is solved by supersymmetry, the

most important issue would then be how supersymmetry is broken. In the

MSSM (the minimal supersymmetric standard model [37]) the soft super-

symmetry breaking parameters are usually input by hand, parameterizing

our ignorance of what exactly the supersymmetry breaking sector is. How-

ever, most of the arbitrary parameter space for the supersymmetry breaking

parameters is excluded by experiments. For example, if the SUSY breaking

masses for the scalar partners of the fermions form an arbitrary mass matrix,

then there would be large flavor changing neutral currents generated at the

one loop level, contributing for example to K − K̄ mixing. In the SM the

K − K̄ is suppressed by the well-known Glashow–Iliopoulos–Maiani (GIM)

mechanism, namely the one loop diagram

d
_

s
_

s d

W W

qq

q

is proportional to leading order to the off-diagonal element of (V †V )CKM ,

which vanishes due to the unitarity of the CKM matrix. However, in the

MSSM due to the presence of the superpartners of both the quarks and the

gluino there is an additional vertex of the form

d
_

s
_

g∼ g∼

s d
qq

q
x

x

which is proportional to V †
CKMM2

squarksVCKM , and is therefore not sup-

pressed, unless the mass matrix of the squarks themselves is close to the

unit matrix, in which case the ordinary GIM mechanism would operate here
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as well. The question of why should the squarks (at least for the first two

generations) be almost degenerate is called the SUSY flavor problem. Here

we will show that extra dimensions can be used to transmit supersymmetry

breaking to the SM in a way that this SUSY flavor problem could be re-

solved. There are two prominent proposals for this: anomaly mediation [38]

(proposed by Randall and Sundrum, simultaneously to a similar proposal by

Guidice, Luty, Murayama and Rattazzi), and gaugino mediation [39] (pro-

posed simultaneously by D.E.Kaplan, Kribs and Schmaltz and by Chacko,

Luty, Nelson and Ponton). Anomaly mediation involves supergravity in the

bulk of extra dimensions, and therefore is technically more involved. Here

we will only consider the proposal for gaugino mediation of supersymmetry

breaking following the paper by Kaplan, Kribs and Schmaltz in [39], and for

anomaly mediation we refer the reader to the original papers [38] and [40].

In both anomaly mediated and gaugino mediated scenarios the main as-

sumption is that the MSSM matter fields are localized to a brane along an

extra dimension, on which supersymmetry is unbroken. Supersymmetry is

only broken on another brane in the extra dimension (it is not broken in

the bulk either), and is transmitted to the MSSM matter fields via fields

that live in the bulk, and thus couple to both the SUSY breaking brane

(the hidden brane) and the visible MSSM brane. The difference between the

two scenarios is what those bulk fields are that transmit the supersymmetry

breaking. In the anomaly mediated scenario one has pure supergravity in

the bulk, while in the gaugino mediated scenario the MSSM gauge fields

live in the bulk, and thus the gauginos of the MSSM will directly feel super-

symmetry breaking, and will get the leading supersymmetry breaking terms.

The MSSM scalars, since they are localized on a different brane will only

get SUSY breaking masses via loops in the extra dimension, and will be

therefore suppressed compared to the gaugino masses. The arrangement of

fields for the gaugino mediated scenario is given in the figure below

MSSM gauge 
      fields

SUSYMSSM matter

As mentioned before, these models have been formulated in the presence
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of a single extra dimension. In order to be able to proceed with the discussion

of the gaugino mediated model, we need to first formulate supersymmetry

in 5D. The issue is similar to the discussion of fermions in 5D when we were

considering the split fermion model: since in 5D the smallest spinor is the

four-component Dirac spinor, in 5D the smallest number of supercharges

must be 8. (As a reminder, in 4D the smallest supersymmetry algebra

corresponds to the situation when there is a single complex two-component

Weyl spinor supercharge, which means there are four real components. Thus,

N = 1 SUSY in 4D corresponds to 4 supercharges.) Since in 5D the smallest

spinor has 8 real components, N = 1 supersymmetry in 5D is twice as large

as in 4D, and the dimensional reduction of the 5D theory would correspond

to N = 2 in 4D. For example, the 5D vector multiplet would have to contain

a massless 5D vector, and also a Dirac spinor. Since the Dirac spinor has

four components on-shell, and the 5D massless vector 3, there needs to be

an additional massless real scalar in the vector multiplet, which is then

(AM , λ,Φ) ,

where AM is the 5D vector, λ is a Dirac spinor, and Φ is a real scalar. When

reduced to 4D the vector will go into a 4D vector plus A5 which is a scalar,

and the Dirac fermion into two Weyl fermions. The A5 together with Φ will

form a complex scalar, and we can see that from the 4D point of view the 5D

vector multiplet is a 4D vector multiplet plus a 4D chiral superfield in the

adjoint (or equivalently from the 4D point of view an N = 2 vector superfield,

which is exactly a vector plus a chiral superfield). This would mean that

we would get two gauginos in the 4D theory, if 5D Lorentz invariance is

completely intact. However, when one has branes in the extra dimension,

5D Lorentz invariance is anyways broken.

One of the simplest ways of implementing the breaking of the 5D Lorentz

invariance is to compactify the extra dimension on an orbifold instead of a

circle. The meaning of an orbifold is to geometrically identify certain points

along the extra dimension, and then require that the bulk fields have a

definite transformation property under this symmetry geometric symmetry.

We will discuss such orbifolds in much more detail in the next subsection,

and there is a review on them by Mariano Quiros [41].

For now we will simply compactify the extra dimension on an interval

(an S1/Z2 orbifold) rather than a circle, and require that the bulk fields are

either even or odd under the Z2 parities y → −y, and L − y → L + y. This

is basically a fancy way of saying that we require that the bulk fields satisfy

either Dirichlet or Neumann boundary conditions (bc’s). A convenient choice
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of these Z2 parities for the bulk 5D vector superfield discussed above is

(Aµ, λL) → (Aµ, λL) ,

(A5,Φ, λR) → −(A5,Φ, λR) . (3.21)

This means that Aµ and λL satisfy the Neumann boundary conditions at

y = 0, L while the other fields Dirichlet boundary conditions. Therefore,

the KK expansions for these fields will differ from the usual expansion on a

circle. The modes for the various fields will be of the form

Aµ, λL ∼ cos π
ny

L
,

A5,Φ, λR ∼ sinπ
ny

L
. (3.22)

Here the mass of the n-th mode is as usual m2
n = n2π2/L2. We can see,

that for n = 0 the wave functions of the odd modes are vanishing. Thus the

orbifolding procedure effectively “projects out” the zero mode for the states

that have odd parities (that is the ones that have a Dirichlet boundary

conditions).

Therefore, the zero mode spectrum is no longer necessarily vector-like,

but orbifold compactifications can lead to a chiral fermion zero mode spec-

trum. What we see is that with the above choice of parities the zero modes

will only appear for the fields that also appear in the MSSM. Thus the

boundary conditions take care of the unwanted modes as compared to the

MSSM!

The Lagrangian of the gaugino mediated model will then schematically

be of the form

L =

∫

dy [L5 + δ(y)LMSSMmatter + δ(y − L)LSUSY breaking] . (3.23)

We will not specify the dynamics that leads to supersymmetry breaking on

the hidden brane, but rather assume that there is a field S which has a

supersymmetry breaking F -term,

〈S〉 = Fθ2 . (3.24)

Since the gauginos live in the bulk, they can couple to this SUSY breaking

field via the operator

∫

d2θ
S

M2
WαWα + h.c. (3.25)
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What should be the suppression scale M in the above operator be? We

have assumed that the gauge fields (contrary to the large extra dimensional

scenario) live in the bulk. This means that we have a 5D gauge theory.

However, the 5D gauge coupling is not dimensionless, and therefore the 5D

gauge theory is not renormalizable. This simply means that at some scale

M the 5D gauge interactions will become strong, and above this scale the

perturbative definition of the theory should not be trusted. However, below

that scale the theory is a perfectly well-defined effective field theory, which

however has to be completed in the ultra-violet (above the scale M). The real

question is how the scale M is related to the length of the extra dimension

and the 4D gauge coupling. The scale at which the theory becomes strongly

coupled is where the effective dimensionless coupling g2
5M becomes as large

as a loop factor,

g2
5M

16π2
∼ 1 . (3.26)

However, as we have seen already the effective 4D gauge coupling, which is

of order one since these are the visible MSSM gauge couplings are given by

1

g2
4

=
L

g2
5

= O(1) . (3.27)

Combining these two equations we get that ML ∼ 16π2 ∼ O(100), which

implies that the scale M is a factor of 100 or so larger than 1/L, the scale

that sets the mass of the first KK mode. This means that there is a hierarchy

between M and 1/L, and between these two scales it is justified to use an

effective 5D gauge theory picture.

Coming back to the size of the supersymmetry breaking gaugino mass,

substituting the vacuum expectation value of S into (3.25) we get that the

gaugino mass term is

F

M2
λλ|y=L . (3.28)

This is a 4D mass term (since it is on the surface of the SUSY breaking brane

only) for a 5D bulk field λ. In order to get the effective 4D mass term for the

zero mode, we have to rescale the 5D field to have a canonically normalized

kinetic term for the zero mode. Since the 5D kinetic term is just the usual

Lkin =

∫

λ̄i∂MγMλ d5x , (3.29)

after integrating over the extra dimension we get for the zero mode that

λ(5)L
1
2 = λ(4). Then the gaugino mass for the correctly normalized 4D field
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will be

mgaugino =
F

M

1

ML
. (3.30)

Note that the physical mass is suppressed by the size of the extra dimension,

and this is the consequence of the fact that the mass is localized on a brane

while the field extends everywhere in the extra dimension. (3.30) implies

that at the high scale M all gauginos have a common mass term.

The most important question is what the magnitude of the masses of

the scalar partners of the SM fermions will be since, as we have seen at

the beginning of this section, this is what leads to the SUSY flavor prob-

lem. Qualitatively we can already see its features; since we have assumed

that the SM matter fields are on the visible brane, they will not directly

couple to the SUSY breaking sector. Thus they will feel SUSY breaking

effects only through loops that go across the extra dimension and connect

the scalar fields on one brane with the SUSY breaking vacuum expectation

value on the other brane. This means that this operator should be a loop

factor smaller than the gaugino mass term. However, even this would be

too large, if arbitrary flavor structure was allowed. The important point is

that the loops in the extra dimensions involve the gaugino fields which cou-

ple universally (as determined by the gauge couplings) to the MSSM matter

fields. Therefore, just as in the so called gauge mediated models (which we

have not discussed here since those are not relying on extra dimensions) the

corrections to the soft scalar masses will be flavor universal, and thus this

setup has a chance of solving the SUSY flavor problem.

Even though we basically already roughly know the answer for what the

size of the scalar masses is going to be, it is still informative to go through the

calculation in detail since this should also teach us how to handle diagrams

that involve loops in the bulk. Before we go into details of the calculation,

let us just make one comment; every extra dimensional loop which involves

propagation from one brane to the other must be necessarily UV finite. The

reason is that usually divergences appear when the size of the loops in a

normal Feynman diagram shrinks to zero. However here the size of the ex-

tra dimension provides a UV cutoff, and the integral will be finite (the loop

can not shrink to zero in coordinate space since the fields have to propagate

from one brane to the other.)
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The diagram that one needs to calculate is illustrated below

λ

λ

λ
Ψ

φ

φ

Since we know that the fields have to propagate from one brane to the

other and back, it is useful to use the propagators in the y coordinate; how-

ever for the 4D propagators we want to use the usual momentum represen-

tation. Therefore we need the propagator in a mixed q, yi, yf representation.

Even though what we really need is the propagator for fermions, since in

the above loop it is the gaugino that is propagating through the bulk, it is

instructive to first calculate the scalar propagator P (q2, a, b), which corre-

sponds to a scalar with four momentum q2 propagating from y = a to y = b.

Since the bulk scalars are odd under the Z2, their wavefunctions are

φn(y) =

√

2

L
sin

πny

L
. (3.31)

The bulk propagator can then be written in terms of the wave functions as

P (q2, a, b)=
∑

m,n

φ∗
n(a)φm(b)

δmn

q2 + p2
n

=
2

L

∑

n

sin

(−πna

L

)

sin

(

πnb

L

)

1

q2 + p2
n

.

(3.32)

Here pn = nπ
L , and one can convert the sum to an integral via ∆n = dp L/π

to get

P (q2, a, b) = − 1

π

∫ ∞

−∞
dp

sin(bp) sin(ap)

p2 + q2
∼ − 1

2q
e−|b−a|q . (3.33)

A similar calculation for the fermions yields

P (q2, 0, L) ∼ 2PLqµγµ

q
e−qL . (3.34)

Evaluating the diagram above we get

g2
5

(

FS

M2

)2∫ d4q

(2π)4
Tr

1

qµγµ
PLP (q, 0, L)CP T (q, L, L)C−1P (q, L, 0) . (3.35)
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Plugging in the propagator and evaluating the integral we get for the scalar

mass

m2
S ∼ g2

5

16π2

(

FS

M2

)2 1

L3
=

g2
4

16π2
m2

g . (3.36)

Thus we find that as expected the scalar mass is flavor universal (it depends

only on the gauge coupling) and a loop-factor suppressed compared to the

gaugino mass.

In the end, the free parameters of the gaugino mediated model are the

size of the extra dimension L, the unified gaugino mass M 1
2
, the ratio of the

Higgs vacuum expectation values tanβ, and the sign of the µ-term. With

these input parameters one has to start running down the above SUSY

breaking soft masses from the scale M to the electroweak scale, and find

the appropriate physical mass spectrum. This gives a phenomenologically

acceptable mass spectrum, for details see [42].

3.3. Symmetry breaking via orbifolds

We have seen in the previous section that compactification can break some

of the symmetries of the higher dimensional theory. The particular example

that we discussed was the breaking of supersymmetry from 8 supercharges

(N = 2 in 4D) to just 4 supercharges (N = 1 in 4D). In this section we will

consider examples both of gauge symmetry breaking and of supersymme-

try breaking via boundary conditions in extra dimensions. Such symmetry

breakings have been considered by the string theorists for a long time, see

for example [43]. Here the first example we will discuss in detail will be

the breaking of the grand unified gauge group as proposed by Hall and

Nomura [44], see also [45–48]. while the discussion of the breaking of su-

persymmetry is based on the model by Barbieri, Hall and Nomura [49], see

also [50].

We will use orbifold projections on a theory on a circle to obtain the

symmetry breaking boundary conditions, even though these can also be for-

mulated very conveniently just by considering a theory on an interval.

Throughout this section we will just consider a single extra dimension,

and try to find what are the orbifold projections one can do to arrive at

the final set of boundary conditions. By orbifold boundary projections we

mean a set of identifications of a geometric manifold which will reduce the

fundamental domain of the theory. One can give a different description of

theories with boundary conditions by starting with the variational principle

for theories on an interval. For this approach see [51].
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Let us first start with an infinite extra dimension, an infinite line R,

parametrized by y, −∞ < y < ∞. One can obtain a circle S1 from the line

by the identification y → y + 2πR, which we can denote as “modding out”

the infinite line by the translation τ , R → S1 = R1/τ . This way we obtain

the circle.

Another discrete symmetry that we could use to mod out the line is a

reflection Z2 which takes y → −y. Clearly, under this reflection the line is

modded out to the half-line R1 → R1/Z2.

If we apply both discrete projections at the same time, we get S1/Z2,

the orbifold that we have already used in the previous section when we dis-

cussed gaugino mediation. This orbifold is nothing else but the line segment

between 0 and πR.

Let us now see how the fields ϕ(y) that are defined on the original infinite

line R1 will behave under these projections. The fields at the identified

points have to be equal, except if there is a (global or local) symmetry of the

Lagrangian. In that case, the fields at the identified points don’t have to be

exactly equal, but merely equal up to a symmetry transformation, since in

that case the fields are still physically equal. Thus, under translations and

reflection the fields behave as

τ(2πR)ϕ(y) = T−1ϕ(y + 2πR) , (3.37)

Zϕ(y) = Zϕ(−y) , (3.38)

where T and Z are matrices in the field space corresponding to some sym-

metry transformation of the action. This means that we have made the field

identifications

ϕ(y + 2πR) = Tϕ(y) , (3.39)

ϕ(−y) = Zϕ(y) . (3.40)

Again, Z and T have to be symmetries of the action. However, Z and T

are not completely arbitrary, but they have to satisfy a consistency condi-

tion. We can easily find what this consistency condition is by considering

an arbitrary point at location y within the fundamental domain 0 and 2πR,

apply first a reflection around 0 Z(0), and then a translation by 2πR, which

will take y to 2πR − y. However, there is another way of connecting these

two points using the translations and the reflections: we can first translate y

backwards by 2πR, which takes y → y−2πR, and then reflect around y = 0,

which will also take the point into 2πR−y. This means that the translation
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and reflection satisfy the relation

Z(0)τ−1(2πR) = τ(2πR)Z(0) . (3.41)

When implemented on the fields ϕ this means that we need to have the

relation

TZ = ZT−1, or ZTZ = T−1 (3.42)

which is the consistency condition that the field transformations Z and T

have to satisfy.

As we have seen, the reflection Z is a Z2 symmetry, and so Z2 = 1. T

is not a Z2 transformation, so T 2 6= 1. However, for nontrivial T ’s T 6= 1

(T is sometimes called the Scherk–Schwarz-twist) one can always introduce

a combination of T and Z which together act like another Z2 reflection. We

can take the combined transformation τ(2πR)Z(0). This combined trans-

formation takes any point y into 2πR − y. That means, that it is actually a

reflection around πR, since if y = πR−x, then the combined transformation

takes it to πR+x, so x → −x. So this is a Z2 reflection. And using the con-

sistency condition (3.42) we see that for the combined field transformation

Z ′ = TZ

Z ′2 = (TZ)2 = (TZ)(ZT−1) = 1 , (3.43)

so indeed the action of the transformation on the fields is also acting as

another Z2 symmetry. Thus we have seen that the description of a generic

  Rπ

2  Rπ

3  Rπ

0

Z

Z’

Z

Z’

Figure 2. The action of the two Z2 reflections in the extended circle picture. The fundamental

domain of the S1/Z2 orbifold is just the interval between 0 and πR, and the theory can be

equivalently formulated on this line segment as well.

S1/Z2 orbifold with nontrivial Scherk–Schwarz twists can be given as two

nontrivial Z2 reflections Z and Z ′, one which acts around y = 0 and the
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other around y = πR. These two reflections do not necessarily commute

with each other. A simple geometric picture to visualize the two reflections

is to extend the domain to a circle of radius 4πR, with the two reflections

acting around y = 0, 2πR for Z and πR, 3πR for Z ′, see Fig. 2. One can

either use this picture with the fields living over the full circle, or just living

on the fundamental domain between y = 0 and 2πR. The two pictures are

equivalent. In the remainder of this section we will focus on two particular

models that employ an orbifold structure of the form above, with the two

reflections Z and Z ′ commuting with each other.

3.3.1. Breaking of the grand unified gauge group via orbifolds in SUSY

GUT’s

One of the main motivations for considering supersymmetric gauge theo-

ries (besides the resolution of the hierarchy problem) is the unification of

gauge couplings. The SM matter fields seem to fall nicely into SU(5) rep-

resentations 10 + 5̄. This motivated people in the 70’s to consider theories

based on an SU(5) gauge symmetry, which is broken down at high scales to

SU(3)×SU(2)× U(1). If one calculates the running of the SM gauge cou-

plings in the non-supersymmetric SM, they get close to each other at a scale

∼ 1014 GeV, but don’t really unify to the level required by the experimental

precision of the three gauge couplings. However, in supersymmetric theo-

ries the precision of unification of the couplings is much better than in the

non-supersymmetric case and the scale of unification is pushed to somewhat

larger values, of order 2 · 1016 GeV. This is a consequence of the modifi-

cation of the beta functions that determine the running of the couplings

due to the addition of the superpartners at some relatively low scale. The

other important consequence of the higher unification scale is that proton

decay mediated by the exchange of gauge bosons that transform both under

SU(3) and SU(2) (the so-called X,Y gauge bosons) will be more suppressed,

since the decay rate depends on the fourth power of the X,Y gauge boson

mass, which is proportional to the unification scale. Thus it looks like a

complete supersymmetric GUT model could be completely realistic without

fine tuning. There is however one important conceptual problem in SUSY

GUT’s (and also in ordinary GUT’s in general): the doublet-triplet splitting

problem.

In order to get the set of beta functions in a SUSY GUT which leads

to a sufficiently accurate prediction of the strong coupling at low energies

one needs to have the beta functions of the MSSM. As explained before, the

SM matter fields fall into complete SU(5) multiplets, however the two Higgs
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doublets of the MSSM do not. Thus if one takes the GUT idea seriously one

needs to embed the Higgses into some complete SU(5) multiplets, and then

somehow make the extra fields much heavier than the doublet. However,

this seems very difficult: one needs to give a mass to the extra fields that

are 1014 times larger than the doublets. For example in the simplest case

the two Higgs doublets are embedded as Hu = 2 → 5, Hd = 2∗ → 5̄. In

this case we had to add an extra triplet and antitriplet of SU(3), which have

to be very heavy, while the doublets from the same multiplet light. This is

another naturalness problem that is specific to SUSY GUT’s. If the mass

of the triplet was too low, the beta functions would change, and unification

of couplings would not occur. Even if one can somehow arrange naturally

for the triplets to be heavy (there are some nice natural solutions to the

doublet-triplet splitting problem), they still contribute to proton decay at

a rate that is usually too large. The reason is that due to supersymmetry

and grand unification the fermionic partners of heavy color triplet Higgses

necessarily couple to the SM fermions and the scalar partners via a Yukawa

coupling term. Since the triplets have to be massive there is necessarily a

diagram of the form
q~ q~

H
~

H
~

q l

1 2

which is baryon number violating. Here the dotted line is a squark, and

H̃1,2 are the color triplet Higgsinos. The squark-quark-color triplet Higgsino

vertex must exist, since the ordinary Yukawa coupling must exist, and this

is the grand unified extension of the superpartner of the ordinary Yukawa

vertex. The cross denotes the mass term between the two color triplet Hig-

gsinos, which should also exist to lift the mass of these triplets to above

the GUT scale. Now one can take this diagram and dress it up with some

more couplings that turn the squarks back to quarks to get a contribution

to proton decay:

H
~

H
~

q~ q~

g,W,B~ ~~

q l

1 2

q q
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The additional vertices used in this diagram must exist due to supersymme-

try, as well as the gaugino mass insertions since the gauginos have not been

observed.

In extra dimensional theories an S1/Z2 orbifold structure with a Z2 ×Z ′
2

reflection structure could give a nice explanation for the absence of the light

triplets. In order to start building up an extra dimensional GUT, we take a

5D SU(5) gauge theory with the minimal amount of supersymmetry N = 1

in 5D (meaning eight supercharges) in the bulk. Then by definition we need

to have the 5D N = 1 vector superfields in the bulk, while for the matter

fields one can choose if they are brane fields or bulk fields. For now we will

choose the fermionic matter fields to be brane fields, while the Higgs fields

to be bulk fields. One of the two Z2 reflections will act exactly as in the case

of gaugino mediation: its role is simply to split the 4D N = 2 multiplets into

a 4D N = 1 vector superfield which has a zero mode, while the 4D N = 1

chiral superfield which does not have a zero mode:

A

λ λ
φ

µ

L R

+

−

In order to have a grand unified extra dimensional SUSY GUT, the Higgs

doublets will live in 5D chiral superfields in the 5 representation of SU(5),

which correspond to a 4D N = 2 hypermultiplet. Since we have two Higgses

in the MSSM, we will effectively introduce four 4D chiral superfields in the

5 of SU(5),

H = (5, 5̄) , H ′ = (5′, 5̄′) . (3.44)

We will use the second Z2 reflection to break the SU(5) GUT symmetry

down to the SU(3)×SU(2)×U(1) of the MSSM. We will do this by picking the

representation matrix for Z ′
2 on the fundamental of SU(5) to be nontrivial,

Z ′
2 :













5













→













−
−

−
+

+

























5













. (3.45)

Once the action of the second reflection is fixed on the fundamental 5 of
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SU(5), we can also determine its action on the adjoint 24. Since an adjoint

is a product of a fundamental and antifundamental, the action of Z ′
2 will be

such that the various components of the adjoint matrix pick up the following

signs,

Z ′
2 :









24









→









+ −

− +









. (3.46)

This implies, that the fields at the position of the X,Y gauge bosons will

be odd under this second reflection, while the others will be even. The

fields that are even under both Z2 reflections will have a zero mode, while

the others will not. We can now list the parities of all the bulk fields and

find out what kind of KK towers these fields will have. The bulk fields are

the following. The 5D vector superfield of SU(5) consists of the 4D vector

superfield and the 4D chiral superfield in the adjoint,








V a
SM X

Y V a
SM









,









λa x

y λa









. (3.47)

The bulk Higgs fields decompose as

H = (3 + 2, 3̄ + 2̄) , H ′ = (3′ + 2′, 3̄′ + 2̄′) . (3.48)

With this notation we can give the two Z2 charges of all fields, and the

corresponding KK masses:

(Z2, Z
′
2) mode KK mass wave function

(+,+) V a
SM , 2, 2′ 2n

R cos 2ny
R

(+,−) λa, 3, 3̄′ 2n+1
R sin (2n+1)y

R

(−,+) x, y, 3̄, 3′ 2n+1
R cos (2n+1)y

R

(−,−) X,Y, 2̄, 2̄′ 2n+2
R sin 2ny

R

n = 0, 1, 2, . . . . (3.49)

We can see from this table that with the charge assignments as above we

would get a zero mode only for the fields that are present in the MSSM as

well, while the KK towers for the other fields would start at a nonvanishing

value, which is determined by the radius of the extra dimension.

The structure of the KK towers for the various fields is depicted in Fig. 3.

From this figure we can see that by simply assigning different Z2 transforma-
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V ,2,2’
a

,x,y,3,3,3’,3’
_ _

λ
a X,Y,2,2’

_ _

Mass

1/R
2/R
3/R
4/R

0

. .
 . 

. .
 . . .

 . 

. .
 . 

Figure 3. The KK towers for the various modes of the orbifold GUT theory of Hall and Nomura.

tion properties to the doublet and the triplet in 5 one can achieve doublet-

triplet splitting, due to the fact that the boundary condition for the triplet

will not allow the existence of a triplet zero mode while there is one for the

doublet. Also note that, since 3 and 3̄ have different wave functions, there

can be no mass term of the form 33̄, which implies that the dimension five

proton decay operator discussed above is vanishing, since in that diagram

the mass insertion (the cross) is vanishing. Instead the 3 and 3̄ get masses

with 3̄′ and 3’ respectively, which will not give any contribution to proton

decay. The vanishing of the 33̄ mass term is a consequence of N = 2 super-

symmetry. However, at the brane where N = 2 supersymmetry is broken

to N = 1 one could in principle add an operator that would include a mass

term for these fields. These mass terms can nevertheless be forbidden by re-

quiring that a U(1)R global R-symmetry is obeyed, under which the charges

of the fields are given by

Σ H H̄ H ′ H̄ ′ T10 F5̄

U(1)R 0 0 0 2 2 1 1
. (3.50)

Since we are talking about a GUT model, it is important to make sure

that the model would actually predict the unification of the gauge couplings.

Since the GUT symmetry is broken at one of the endpoints of the interval,

there can be a brane-induced kinetic term for the SM gauge fields on the

GUT breaking brane which does not necessarily have to be SU(5) symmetric.
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Therefore the tree-level matching between the 4D effective SM couplings and

the 5D gauge coupling is given by

1

g2
eff, i

=
πR

g2
5

+
1

g2
brane, i

, (3.51)

where the first term on the right is the SU(5) symmetric bulk gauge coupling,

while the second term is the (possibly) SU(5) violating brane coupling. How

precisely the couplings will unify depends on the ratio of the brane induced

term to bulk term. If the size of the extra dimension is reasonably large com-

pared to the cutoff scale (for example 1/R ∼ MGUT , Mcutoff ∼ 100MGUT )

then the SU(5) violating brane term will be volume suppressed, and it is

reasonable to expect unification to a good precision.

Of course it is not enough to build an extra dimensional GUT model, it

is also important to check that the appearance of the new states charged

under the SM gauge groups (the KK modes of the various gauge and Higgs

fields) do not ruin the actual unification of couplings of the MSSM. This has

been shown to be the case in [44], and the reader is referred for the details

of that calculation to the original paper.

3.3.2. Supersymmetry breaking via orbifolds

We have seen in the previous two models that we can use a Z2 projection

under the y → −y reflection symmetry to break N = 2 supersymmetry

down to N = 1 SUSY. We have also seen that in the case of a single extra

dimension there are two separate Z2’s at our disposal at both ends of the

interval. This yields the following nice possibility: one could use one Z2 to

break one half of the supercharges, and the other Z2 to break the other half,

A

λ λ
φ

µ

L R

+

−

A

λ λ
φ

µ

L R

+

−

First  Z Second Z2 2

The two Z2’s leave a different combination of N = 1 supercharges un-

broken. The two projections together completely break supersymmetry, but

locally there is always some amount of supersymmetry unbroken. The full

supersymmetry breaking is only felt globally. This will have the important

implication that the properties which follow from local supersymmetry will

be maintained in the nonsupersymmetric theory.

The next task is to also include the MSSM matter fields and Higgs fields
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into this theory. A generic matter field of the SM will be an N = 2 hyper-

multiplet (two fermions and two scalars), and we can assign the Z2 parities

for the matter fields again such that only the one of the fermions will have

a zero mode, while all the other fields from this hypermultiplet will have no

zero modes. For example for quarks this can be achieved by the following

choice of Z2 projections

q~

q c

q~ c q~ c
q~

q c

+

−

+

−

First  Z Second Z2 2

q q

For the Higgs, one has two possibilities: introducing two separate hyper-

multiplets for the two MSSM Higgs fields, which is the more straightforward

but less exciting possibility, or introduce just a single Higgs doublet hyper-

multiplet which contains both of the MSSM Higgs doublets. We will consider

the latter possibility, and then use the projections

ψ
Η

ψ
Η

φΗ
φ

Η

ψ
Η
c+ ψ

Η
c+

φ
Η
c+ φ

Η
c++

−

First  Z Second Z2 2

+ +

−

In this case, there will only be a single Higgs zero mode, contrary to the

MSSM which has two Higgs doublets. So the zero mode spectrum really

reproduces that of the SM, and not that of the ordinary particles of the

MSSM.

N = 2 supersymmetry does not allow a Yukawa-type coupling between

hypermultiplets. This means that in the bulk one cannot write down the

appropriate couplings necessary for generating the fermion masses from the

Yukawa couplings to the Higgs field. However, since on the fixed points

N = 2 supersymmetry is broken to N = 1, these couplings can be added

on the fixed points. One may wonder how this could be possibly done in a

supersymmetric theory with just one Higgs field. The point is that since it is

a different set of supercharges that remains unbroken at the two fixed point,

one needs to use a different splitting of the bulk Higgs hypermultiplet into

N = 1 chiral multiplets on the two fixed points. Thus from the full bulk
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Higgs hypermultiplet




ΨH

H Hc†

Ψc†
H



 (3.52)

we form the chiral multiplets

Hu ∼
(

H

ΨH

)

, Hd ∼
(

H∗

Ψc
H

)

. (3.53)

Note that it is the same scalar component (the one with a zero mode) ap-

pearing in both chiral multiplets, while one has a different fermionic partner

corresponding to them depending on which set of supercharges are unbro-

ken. Thus, we can write down the following superpotential terms at the

fixed point yielding the required Yukawa couplings,

  Rπ

2  Rπ

3  Rπ

H QU
_

λ
u

u

λd λd
e

H QD+  H LE
_

d

0

Z

Z’

Z

Z’

The tree-level Higgs potential will be fixed just as in ordinary supersym-

metric theories. Without a bulk mass term the form of the potential is just

determined from the D-terms, and is given by

Vtree =
g2 + g′2

8
|H|4 . (3.54)

This on its own determines that the Higgs mass has to be light, as in any

supersymmetric theory. Electroweak symmetry breaking can then happen

radiatively, due to the top quark loops. Since the top Yukawa coupling is

localized at one of the fixed points, the resulting contribution to the Higgs

potential can also only be a term at the fixed point. Since at least some of

supersymmetry is locally unbroken everywhere, the contribution can not be

quadratically divergent. In fact, the contribution to the potential from the

top quark loop is actually finite. However, there can be localized U(1) Fayet–

Iliopoulos terms at the fixed points which can be quadratically divergent and
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which will contribute to the Higgs potential. Also, one can add a bulk mass

term for the Higgs hypermultiplet, which also obviously contributes to the

Higgs mass. For further details on the prediction of the physical Higgs mass

of this model see [46, 49, 52].

4. Warped Extra Dimensions

Until now we have considered flat extra dimensions, that is assumed that

whatever gravitational sources there are present, their effects will be negligi-

ble for determining the background metric, that is we ignored the backreac-

tion of gravity to the presence of the branes themselves. If the tensions of the

branes are small, then this is a good approximation. However, interesting

situations may arise if this is not the case.

One can immediately see that taking the reaction of gravity to brane

sources into account could be very important. The reason is that if one has

a 4D theory with only 4D sources, these will necessarily lead to an expanding

universe. However, if one has 4D sources in 5D, one can balance the effects

of the 4D brane sources by a 5D bulk cosmological constant to get a theory

where the effective 4D cosmological constant would be vanishing, that is the

4D Universe would still appear to be static and flat for an observer on a

brane [4]. The price to pay for this is that the 5D background itself will

be curved, which is clear from the fact that one had to introduce a bulk

cosmological constant. Thus one can “off-load curvature” from the brane

into the bulk [4,53], and keep the brane flat by curving the extra dimension.

Such curved extra dimensions are commonly referred to as “warped extra

dimensions.” This possibility has been first pointed out by Rubakov and

Shaposhnikov [4]. This shows that for example the cosmological constant

problem will be placed into a completely different light from an extra di-

mensional point of view: in 4D one had to explain why the vacuum energy

is very small, while in higher dimensions one has to explain why the vacuum

energy of the SM fields is exactly canceled by a bulk vacuum energy [53].

In the following we will discuss the best known and most concrete exam-

ple of warped extra dimensions, the Randall–Sundrum (RS) model [54, 55].

First we discuss in detail how to solve the Einstein equations to find the RS

background, and discuss the mass scales in the model. Then we discuss the

phenomenology of various interesting models based on the Randall–Sundrum

backgrounds.
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4.1. The Randall–Sundrum background

We will show how to derive the Randall–Sundrum solution (and the condi-

tions under which a 4D flat background exists). We will begin again with

a finite length [54] for the extra dimension, that is we consider an S1/Z2

orbifold, which by now is familiar to everyone. Since we are interested in

warped solutions, we will assume that there is a nonvanishing 5D cosmolog-

ical constant Λ in the bulk. We are also interested in solutions that have

the property mentioned above; even though the extra dimension is curved,

the brane itself remains static and flat and therefore it preserves 4D Lorentz

invariance. This means that the induced metric at every point along the

extra dimension has to be the ordinary flat 4D Minkowski metric, and the

components of the 5D metric depend only on the fifth coordinate y. The

ansatz for the most general metric satisfying these properties is given by

ds2 = e−A(y)dxµdxνηµν − dy2 . (4.1)

The amount of curvature (warping) along the extra dimension depends on

the function e−A(y), which is therefore called the warp-factor. Our task is to

find this function A(y). Note that there are of course various ways of writing

this metric by doing various coordinate transformations. For example one

could as well have gone into the coordinate system where there is an overall

prefactor in front of all coordinates, which is called the conformally flat

metric. This is the simplest coordinate system, and this is what we will use to

find A. To go into the conformally flat frame, we need to make a coordinate

transformation of the form z = z(y). The coordinate transformation should

not depend on the 4D coordinates x since those would induce off-diagonal

terms in the metric. In order to ensure that the metric be conformally flat

in the new frame, dy and dz have to be related by

e−A(z)/2dz = dy , (4.2)

such that the full metric in the z coordinates will be

ds2 = e−A(z)(dxµdxνηµν − dz2) . (4.3)

This metric is conformally flat, so a conformal transformation (that is an

overall rescaling of the metric) connects it to the flat metric,

gMN = e−A(z)g̃MN , g̃MN = ηMN . (4.4)

A very useful relation connects the Einstein tensor GMN = RMN − 1
2gMNR

calculated from g̃ and g in any number of dimensions and for arbitrary
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function A (see for example [56]),

GMN = G̃MN +
d − 2

2

[1

2
∇̃MA∇̃NA + ∇̃M∇̃NA

− g̃MN

(

∇̃K∇̃KA − d − 3

4
∇̃KA∇̃KA

)

]

. (4.5)

Here the covariant derivatives ∇̃ are with respect to the metric g̃, while on the

left the Einstein tensor GMN is calculated from gMN . For us g̃MN = ηMN ,

and therefore the covariant derivative ∇̃M → ∂M , and d = 5. Using these

expression we can now easily evaluate the nonvanishing components of the

Einstein tensor,

G55 =
3

2
A′2 ,

Gµν = −3

2
ηµν(−A′′ +

1

2
A′2) . (4.6)

This takes care of the left hand side of the bulk Einstein equation GMN =

κ2TMN , where κ2 is the higher dimensional Newton constant and in 5D is

related to the 5D Planck scale by

κ2 =
1

M3∗
. (4.7)

The 5D Einstein action for gravity with a bulk cosmological constant Λ is

S = −
∫

d5x
√

g(M3
∗R + Λ) . (4.8)

One can then use the definition of the stress-energy tensor to find the Ein-

stein equation

GMN = κ2TMN =
1

2M3∗
ΛgMN . (4.9)

The 55 component of the Einstein equation will then be

3

2
A′2 =

1

2M3∗
Λe−A . (4.10)

The first thing that we can see is that a solution can only exist if the bulk

cosmological constant is negative, Λ < 0. This means that the important

case for us will be considering anti-de Sitter spaces, that is spaces with a

negative cosmological constant. Once a negative cosmological constant is
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fixed, we can take the root of the above equation

A′ =

√

− Λ

3M3∗
e−A/2 . (4.11)

Introducing the new function e−A/2 ≡ f we get the equation

−f ′/f2 =
1

2

√

− Λ

3M3∗
, (4.12)

from which we can read off the solution for the metric

e−A(z) =
1

(kz + const.)2
, (4.13)

where we have introduced

k2 = − Λ

12M3∗
. (4.14)

The constant in (4.13) can be fixed by fixing the value of the metric at some

point (this is an irrelevant rescaling of the units), we choose e−A(0) = 1, from

which the constant is set to 1. So a simple form for writing the metric is

e−A(z) =
1

(kz + 1)2
. (4.15)

However since we are on a S1/Z2 orbifold, the solution must be symmetric

under z → −z reflection, and therefore the final form of the RS solution can

be written in the form

ds2 =
1

(k|z| + 1)2
(ηµνdxµdxν − dz2) . (4.16)

With this the 55 component of the Einstein equations is solved every-

where. However, one needs to check whether the 4D components are

also satisfied. We have seen above that these components are given by

−3/2ηµν(−A′′ + A′2/2). This means that (unlike in the 55 component) A′′

will appear, which will imply that there are delta function contributions to

the Einstein tensor at the fixed points. Thus (4.16) can be a solution only if

there are also localized energy densities on the brane that compensate these

delta functions. This is exactly as we have expected at the beginning of this

section: there can be a nonvanishing bulk cosmological constant and still

have flat induced 4D space if there is some energy density on the brane that

compensates. Note however, that the 55 component of the Einstein equation

already determined (together with the S1/Z2 assumption) the full solution.
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So the energy density on the brane necessary to have a static solution would

be fine-tuned against the bulk cosmological constant. Evaluating A′′ we get

A′′ = − 2k2

(k|z| + 1)2
+

4k

k|z| + 1

(

δ(z) − δ(z − z1)
)

, (4.17)

where z1 is the location of the negative tension brane, and so the µν com-

ponents of the Einstein tensor are

Gµν = −3

2
ηµν

[

4k2

(k|z| + 1)2
− 4k(δ(z) − δ(z − z1))

k|z| + 1

]

. (4.18)

The first term (the term without the delta functions) exactly matches the

bulk contribution to the energy momentum tensor from the bulk cosmologi-

cal constant. Therefore the remaining delta function terms are the ones that

need to be compensated by adding additional sources onto the branes. To

match these sources we need to find out what the energy-momentum tensor

of a brane tension term V (an energy density localized on the brane) would

be. The action for this is given by

∫

d4xV
√

ginduced =

∫

d5xV

√
g

√
g55

δ(y) (4.19)

for a flat brane at y = 0. This implies that the energy momentum tensor is

Tµν =
1√
g

δS

δgµν
=

1

2
√

g55
gµνV δ(y) . (4.20)

Thus, the final form of the energy-momentum tensor for a brane tension is

T tension
µν =

1

2
diag(V,−V,−V,−V, 0) e−A/2δ(y) . (4.21)

Therefore to satisfy the Einstein equations at the brane we need to have two

brane tensions, one at each end of the interval (at the two fixed points), and

so we need the equality

−3

2
ηµν

[

−4k(δ(z) − δ(z − z1))

k|z| + 1

]

=
ηµν

2M3∗

[

V0δ(z) + V1δ(z − z1))

k|z| + 1

]

. (4.22)

This implies that the two brane tensions at the two fixed points will have to

be opposite, and given by

V0 = −V1 = 12kM3
∗ . (4.23)
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Plugging in the expression for k we obtain that the bulk cosmological con-

stant and the brane tensions have to be related by

Λ = − V 2
0

12M3∗
, V1 = −V0 . (4.24)

Thus there is a static flat solution only if the above two fine tuning conditions

are satisfied. At this point it is not clear why we ended up with two fine

tuning conditions. We could have expected at least one fine tuning, related

to the vanishing of the 4D cosmological constant. However, at this point the

meaning of the second fine tuning condition is obscure, but we will find out

the reason behind the second fine tuning shortly in Sec. 5.2.

Now that we have found that the RS solution in the z coordinates where

the metric is conformally flat is

ds2 =
1

(k|z| + 1)2
(ηµνdxµdxν − dz2) , (4.25)

we can ask what the metric in the original y coordinates would be. The

reason why this is interesting is that y is the physical distance along the

extra dimension, since in that metric there is no warp factor in front of the

dy2 term. Since the relation between z and y was given by

e−A(z)/2dz =
dz

k|z| + 1
= dy , (4.26)

we get that (by choosing y = 0 to correspond to z = 0)

1

(k|z| + 1)2
= e−2k|y| , (4.27)

and so the RS metric in its more well-known form is finally given by

ds2 = e−2k|y|dxµdxνηµν − dy2 . (4.28)

Let us now discuss what the physical scales in a theory like this would

be, if the matter fields were localized on one of the fixed points. First we

assume this to be the brane with the negative tension (the brane where the

induced metric is exponentially small compared to the other fixed point).

Consider thus a scalar field (for example the Higgs scalar) on the negative

tension brane. Its action would be given by

SHiggs =

∫

d4x
√

gind
[

gµνDµHDνH−V (H)
]

, V (H) = λ
[

(H†H)−v2)2
]

.

(4.29)
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If the size of the extra dimension is b, then the induced metric at the negative

tension is given by

gind
µν |y=b = e−2kbηµν . (4.30)

Plugging this in for the above action we get that the action for the Higgs is

given by

SHiggs =

∫

d4x e−4kb
[

e2kbηµν∂µH∂νH − λ(H†H − v2)2
]

. (4.31)

We can see that due to the nontrivial value of the induced metric on the neg-

ative tension brane the Higgs field will not be canonically normalized. To get

the action for the canonically normalized field one needs a field redefinition

H̃ = e−kbH. In terms of this field the action is

SHiggs =

∫

d4x
[

ηµν∂µH̃∂νH̃ − λ[(H̃†H̃) − (e−kbv)2]2
]

. (4.32)

This is exactly the action for a normal Higgs scalar, but with the vacuum

expectation value (which sets all the mass parameters) “warped down” to

ṽHiggs = e−kbv . (4.33)

This shows that all mass scales are exponentially suppressed on the nega-

tive tension brane, but not on the positive tension brane. Therefore, the

positive tension brane is often also referred to as the Planck brane, since

the fundamental mass scale there would be unsuppressed and of the order

of the Planck scale, while the negative tension brane is referred to as the

TeV brane since the relevant mass scale there is TeV. The curvature in the

bulk leads to a redshifting of all energy scales away from the positive tension

brane. This means that if one introduces a bare Higgs vacuum expectation

value (and thus also the Higgs mass) of the order of the 5D Planck scale M∗
into the Lagrangian, the physical Higgs mass and vacuum expectation value

will be exponentially suppressed.

In order to find out whether this exponential suppression is interesting

we need to also find out what the effective scale of gravity (the 4D Planck

scale) would be in this model. For this we need to find out how the effective

4D gravitational action depends on the radius b of the extra dimension. To

find this out quickly, for now we will just assume that the 4D graviton hµν

is embedded into the full 5D metric as

ds2 = e−2k|y|[ηµν + hµν(x)]dxµdxν − dy2 . (4.34)
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The subject of the next section will be mostly to verify this and to analyze

the consequences of this equation in more detail, but for now we just accept

this result. In this case the 5D Ricci tensor R
(5)
µν will contain the Ricci tensor

calculated from hµν ,

R(4)
µν ⊂ R(5)

µν .

The reason behind this is that Rµν is invariant under a constant rescaling of

the metric. Plugging in the explicit metric factors that appear in the action

we get that the relevant piece of the 5D Einstein–Hilbert action containing

the 4D metric is

S = −M3
∗

∫

d5x
√

gR(5) ⊃ −M3
∗

∫

e−4k|y|
√

g(4)e2k|y|R(4)d5x . (4.35)

From this we can read off the value of the 4D effective Planck scale,

M2
P l = M3

∗

∫ y=b

y=−b
e−2k|y|dy =

M3
∗

k
(1 − e−2kb) . (4.36)

For moderately large values of b this expression barely depends on the size of

the extra dimension, and it is completely different from the analogous expres-

sion (2.9) for large extra dimensions. It also shows that if all bare parameters

M∗,Λ, V0, vHiggs are of the same order and of the order of the Planck scale,

then while the scale of the Higgs vacuum expectation value (the weak scale)

gets exponentially suppressed, the scale of gravity itself will remain of the

order of the Planck scale. This means that with a moderately large b one

can naturally introduce an exponential hierarchy between the weak and the

Planck scales! This is exactly what one would like to achieve when solving

the hierarchy problem. So we can see that the Randall–Sundrum model

has the possibility of giving a completely new explanation to the hierarchy

problem. We will have a much better understanding of how the RS model

solves the hierarchy problem after the next section, where we consider the

behavior of gravity at different locations along the extra dimension in this

model.

4.2. Gravity in the RS model

To find out more why the RS model solves the hierarchy problem, we need

to study the properties of gravity in this AdS background in more detail [55].

Thus we really need to find the KK decomposition of the graviton in this

curved background. Normally, when one has a flat extra dimension on a

circle, one expects that there would be a graviton zero mode, a scalar zero

mode and a vector zero mode, making up for the five degree of freedom in the
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5D massless graviton, while at the massive level there would just be massive

4D gravitons, which also have 5 degrees of freedom. However, due to the

y → −y orbifold projection the zero mode of the vector will be eliminated.

The reason is that from the generic form of the metric

ds2 = e−2k|y|gµνdxµdxν + Aµdxµdy − b2dy2, (4.37)

where gµν parametrizes the graviton, Aµ the vector and b the scalar fluctu-

ations, one can see that since ds2 is symmetric under y → −y, Aµ has to

be flipping sign, and thus can not have a zero mode. Therefore at the zero

mode level one expects only a graviton and a scalar, while at the massive

level only gravitons. First we will focus exclusively on the graviton modes

setting the scalar fluctuation to zero at first, and then later we will discuss

the relevance of the scalar mode.

In order to find the KK expansion of the graviton modes, we will go to

the conformal frame for the metric, and parametrize the graviton fluctuation

by

ds2 = e−A(z)
[

(ηµν + hµν(x, z))dxµdxν − dz2
]

. (4.38)

Clearly the most general graviton fluctuations can be parametrized like this.

Now we use our formula (4.5) that relates the Einstein tensor of conformally

related metrics. We take as the metric g the metric following from (4.38),

while the conformally related metric is given by g = e−A(z)g̃. Then the

Einstein tensors are related by

GMN = G̃MN +
d − 2

2

[1

2
∇̃MA∇̃NA + ∇̃M∇̃NA

− g̃MN

(

∇̃R∇̃RA − d − 3

4
∇̃RA∇̃RA

)

]

, (4.39)

in general d dimensions. Next we impose the gauge choice for the perturba-

tions

hµ
µ = ∂µhµ

ν = 0 , (4.40)

which is usually called the RS gauge choice. We will get back to the possi-

bility of always choosing such a gauge later.

Since g̃ is the fluctuation of a flat metric, the linearized Einstein tensor

for this case G̃µν is written in every book on general relativity. This is

however not everything, since the covariant derivatives ∇̃ is evaluated with

respect to the perturbed metric ηµν + hµν , and so the Christoffel symbols

are not all vanishing (as they would be for the flat background). Taking

these extra terms in the derivatives in (4.39) into account is a tedious but
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doable work, which we will leave to the reader as an exercise. Finally, we

need the perturbation of the right hand side of the Einstein equation (the

perturbation of the energy-momentum tensor TMN ), which is quite trivial

since the only change is due to gMN → gMN +δgMN . The perturbed Einstein

equation is of course δGMN = κ2δTMN , which after putting all the terms

together yields the linearized Einstein equation in a warped background to

be

−1

2
∂R∂Rhµν +

d − 2

4
∂RA∂Rhµν = 0 . (4.41)

In order to get to an equation that we have more intuition about, we can

transform it into the form of a conventional one-dimensional Schrödinger

equation, by rescaling the perturbation as

hµν = e
d−2
4

Ah̃µν . (4.42)

This field redefinition was chosen such that the first derivative terms in the

differential equations cancel, so one is really left with a second derivative

(kinetic energy) term and a no-derivative potential term. The form of the

equation in the new basis is

−1

2
∂R∂Rh̃µν +

[

(d − 2)2

32
∂RA∂RA − d − 2

8
∂R∂RA

]

h̃µν = 0 . (4.43)

The second derivative is given by ∂R∂R = − x − ∇2
z, where the 4D box

operator is defined as = −ηµν∂µ∂ν . Finally, we separate the variables as

h̃µν(x, z) = ĥµν(x)Ψ(z), and require that the ĥ be a four dimensional mass

eigenstate mode ĥµν = m2ĥµν . Then the final Schrödinger type equation

that we get for the KK modes is given by [55, 57–59]

−∂2
zΨ +

(

9

16
A′2 − 3

4
A′′
)

Ψ = m2Ψ . (4.44)

Thus the Schrödinger potential is given by

V (z) =
9

16
A′2 − 3

4
A′′ . (4.45)

In our case e−A(z) = 1/(1 + k|z|)2, A = 2 log(k|z| + 1), and so the potential

is

V (z) =
15

4

k2

(1 + k|z|)2 − 3kδ(z)

1 + k|z| . (4.46)

This potential has the shape of a volcano, since there is a peak in it due

to the first term, but then there is a delta function which is like the crater
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of the volcano. This is why it is commonly referred to as the “volcano

potential.” Note, that for any warp factor A(z) one can always define the

operators Q = ∂z + 3
4A′ and Q† = −∂z + 3

4A′, such that the equation is

written as Q†QΨ = m2Ψ [57–59]. This means, that we are again facing

a SUSY quantum mechanics problem, which can be solved as in the case

when discussing the localization of fermions. Therefore, as we know there is

always a zero mode solution to this equation given by

Ψ0 = e−
3
4
A(z) =

1

(1 + k|z|) 3
4

. (4.47)

The existence of a zero mode is not very surprising, since we have not broken

4D Lorentz invariance, so we expect a massless 4D graviton to exist. The

interesting question to ask is under what circumstances will this graviton

zero mode actually be normalizable. For this we have to evaluate the usual

quantum mechanical norm

∫ z0

0
dz |Ψ0|2 =

∫ z0

0
dz e−3/2A(z) =

∫ z0

0
dz

1

(1 + k|z|) 3
2

. (4.48)

If one is wondering whether this is really the relevant normalization, one can

simply follow all the field and coordinate redefinitions backwards and find

that the coefficient of the 4D kinetic term of the graviton zero mode is indeed

proportional to this factor. Above z0 is the size of the extra dimension in

the z coordinates.

The most important comment about the above integral is that it is con-

verging even in the limit when the size of the extra dimension becomes

infinitely large, z0 → ∞. This usually does not happen in extra dimensional

theories: when there is a compact extra dimension there is usually a graviton

zero mode and KK tower. As the size of the extra dimension gets infinitely

large, the zero mode becomes more and more decoupled due to its huge

spread in the extra dimension, however the KK modes become lighter and

lighter, and eventually form a continuum that reproduces higher dimensional

gravity. Here however one does not find that the zero mode would decouple

in the infinitely large extra dimension limit, and the reason for that is that

contrary to the flat extra dimensional case, the zero mode of the graviton

has a nontrivial wave function that is peaked around the positive tension

brane. This implies that in the RS model gravity itself becomes localized

around the positive tension brane, and far away one only has a small tail for

the graviton wave function. In the original y coordinates the wave function
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of the graviton zero mode is given by

ds2 = e−2k|y|(ηµν + hµν) − dy2. (4.49)

This confirms the ansatz that we have used in (4.34) to calculate the effective

4D Planck scale, and also sheds much more light on the nature of the solution

to the hierarchy problem in the RS model. Since gravity is confined to the

positive tension brane, observers living far away from the positive tension

brane (for example on the other end of the interval) will only feel the tail end

of the graviton wave function, which is exponentially suppressed compared

to the Planck brane. On the other hand particle physics interactions will

have equal strength irrespectively of where one is along the extra dimension.

So the solution of the hierarchy problem can be summarized by saying that

gravity is weak compared to particle physics because we happen to live at a

point in extra dimension that is far away from where gravity is localized. As

a comparison, in large extra dimensions the way that the hierarchy problem

is resolved is by saying that gravity is much weaker than particle physics

because its fundamental strength does get diluted by fluxes spreading out

into the large dimensions, while since particle physics is localized on a brane

it does not get diluted and we feel the fundamental strength of interactions.

Getting back to the issue of the wave function of the graviton zero mode:

since it is localized around the Planck brane, and remains normalizable even

in the limit of infinite extra dimension, it opens the possibility of recovering

4D gravitational interactions even when the size of the extra dimension is

very large, since the zero mode remains localized around the Planck brane.

However, this on its own is not sufficient to really have a 4D gravity theory

without compactification. As explained above in the infinite extra dimension

limit there will be a continuum of KK modes for the graviton, and usually

these continuum modes are responsible for turning gravity into higher di-

mensional gravity. There will be a continuum of KK modes in the RS model

as well, however there is hope that these would not turn gravity over into a

higher dimensional theory of gravity, since these continuum modes also feel

the volcano potential of Fig. 4, and this means that in order to get to the

TeV brane they have to tunnel through a large barrier, and thus their wave

functions will be strongly suppressed at the Planck brane [55].

One can easily estimate the suppression of the wave function by a the

WKB approximation for the tunneling rate [57]. Consider a continuum

mode with mass m, then the semiclassical tunneling amplitude is

T (m) ∼ e
−2

R z1(m)

z0(m)
dz
√

V (z)−m2

, (4.50)
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V(z)

z

Figure 4. The shape of the volcano potential that localizes gravity in the RS model.

where z0(m) and z1(m) are the classical turning points for a particle with

mass m in the volcano potential. In order for the KK modes to not give

a large contribution to the 4D gravitational potential one would need that

limm→0 T (m) = 0. The reason is that the potential between two test charges

located at the Planck brane is given by the exchange of the zero mode and

the KK modes,

U(r) ∼ GNM1M2

r
+

1

M3∗

∫ ∞

0
dm

M1M2e
−mr

r
Ψ2

m(0) , (4.51)

where the first term comes from the exchange of the zero mode which would

cause 4D gravitational interactions, but the second term is due to the ex-

change of the KK modes. If for small m → 0 we would have Ψm(0) → const.,

we would get unsuppressed 1/r2 corrections due to the integral around

m = 0. Thus we need that Ψm(0) → 0 for small m, and this can only

be due to T (m) → 0. In the RS case V (z) ∼ 1/z2 for large z, and so as

m → 0 we get that

T (0) ∼ e−
R ∞
0

1
z
dz . (4.52)

The integral in the exponent diverges, so that we expect the KK modes

indeed to decouple in the RS model and to recover 4D gravity even in the

infinitely large extra dimension limit. In order to really establish this rigor-

ously, a slightly more precise analysis is needed. Assume that the volcano

potential for large z behaves like α(α + 1)/z2 (for the RS case α = 3/2).

Then the asymptotic form of the Schrödinger equation

−Ψ′′
m +

α(α + 1)

z2
Ψm = m2Ψm (4.53)
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has solutions in terms of the Bessel functions

Ψm = amz
1
2 Yα+ 1

2
(m(z + 1/k)) + bmz

1
2 Jα+ 1

2
(m(z + 1/k)) . (4.54)

If one does a careful matching of the wave function inside and outside the

potential we get that in the RS case

Ψm(0) ∼
(m

k

) 1
2
. (4.55)

Therefore the correction to Newton’s law is of the form
∫ ∞

0
dm

M1M2

r
e−mr

(m

k

)

. (4.56)

Since
∫∞
0 e−mrm ∼ 1/r2 we get the final form of the corrected Newton

potential to be

V (r) = GN
M1M2

r

(

1 +
C

(kr)2

)

, (4.57)

where C is a calculable constant of order one. This shows, that the full

correction due to the KK modes is extremely small for distances larger than

the AdS curvature 1/k, which in our case is of the order of the Planck length.

This means that for distances above the Planck length one would really get

a 4D gravitational potential irrespectively of the compactification. Thus in

the presence of localized gravity there is no need to compactify [55] the extra

dimension! Also, due to the wave function suppression of the KK modes the

production of the continuum KK modes would be suppressed on the Planck

brane by p2/k2.

Besides reproducing the ordinary 4D Newton potential, one should how-

ever go somewhat further before claiming that 4D gravity as we know it (that

is 4D Einstein gravity, not just Newtonian gravity) is in fact reproduced on

the brane. The reason is that as we mentioned several times before, there

could be an extra massless scalar in the graviton. That would also give a

1/r potential, so would also lead to Newtonian gravity, however the tensor

structure of the graviton propagator could be modified, which would lead to

a so called scalar-tensor theory of gravity. It is somewhat subtle to show that

this does not indeed happen, and one needs to take so called brane bending

effects into account for that. The analysis that shows that RS reproduces

4D Einstein gravity completely on the Planck brane has been performed

in [60, 61], see also [62].
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4.3. Intersecting branes, hierarchies with infinite extra

dimensions

We close this section by discussing two pressing issues. The first is what

happens if we have more than a single extra dimension: can we still localize

gravity somehow? The second issue is whether if one has an infinite extra

dimension, can one still solve the hierarchy problem (since now there is no

negative tension brane)?

4.3.1. Localization of gravity to brane intersections

The easiest way to localize 4D gravity in more than one extra dimension is

to consider the intersection of co-dimension one branes (that is intersection

of d − 1 spatial dimensional branes in d spatial dimensions). The simplest

possibility for intersecting branes is for two 4-branes in 6 space-time dimen-

sions to intersect orthogonally [63]. To find the solution we should first think

about what the RS solution with just the Planck brane is (this situation is

usually referred to as the RS2 model); it is nothing else but two copies of

slices of AdS5 spaces glued together at the Planck brane. This is what we

need to do in the case of orthogonally intersecting 4-branes as well; we need

to take four “quarters” (or quadrangles) of the AdS6 space and glue them

together at the branes (of course in the general case of intersecting 2 + n

branes one needs to glue 2n copies). One quadrangle can just be given by

the usual AdS6 metric. An AdS6 metric is exactly the same form as the

AdS5 metric in the conformally flat coordinates,

ds2 =
1

(kz + 1)2
[

dxµdxνηµν − dy2 − dz2
]

, (4.58)

where we can bring this metric by the coordinate redefinition z = (z1 +

z2)/
√

2, y = (z1 − z2)/
√

2 to

ds2 =
1

(k(z1 + z2) + 1)2
[

dxµdxνηµν − dz2
1 − dz2

2

]

. (4.59)

A simple way of patching these solutions together at two four-branes is by

the metric

ds2 =
1

(k(|z1| + |z2|) + 1)2
[

dxµdxνηµν − dz2
1 − dz2

2

]

. (4.60)

This metric will be the same AdS6 metric in all four quadrangles, and con-

tinuous at the intersections. Generically for the intersection of n branes in
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4 + n space-time dimensions the metric can be written as

ds2 = Ω2(z)(dxMdxNηMN ) , Ω(z) =
1

(k
∑n

i=1 |zi| + 1)
. (4.61)

To find out what the relation of the tensions of the intersecting branes to

the bulk cosmological constant is we need to find the Einstein tensor for the

above metric. One can again use the formula for a conformally flat metric

that gives the Einstein tensor,

GMN = (n + 2)
[

∇̃M log Ω∇̃N log Ω − ∇̃M∇̃N log Ω + g̃MN (∇̃R∇̃R log Ω

+
n + 1

2
∇̃R log Ω∇̃R log Ω)

]

, (4.62)

and we find that

GM
N =

n(n + 2)(n + 3)

2
k2δM

N − 2(n + 2)k

Ω
δ(z1)
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. (4.63)

This needs to be equated with the energy-momentum tensor from the bulk

cosmological constant, which exactly matches the first term, and the brane

tensions on the intersecting branes exactly have to match the individual

subleading terms. From these we get matching relations analogous to that

of the 5D RS model,

n(n + 2)(n + 3)

2
k2 = Λκ2

4+n , 2(n + 2)k = V κ2
4+n , (4.64)

where Λ is the 4 + n dimensional bulk cosmological constant, while V is

the (common) brane tension. One can again find the perturbed Einstein
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equation for the graviton, the result is given by



−1

2
∇2

z +
n(n + 2)(n + 4)k2

8
Ω2 − (n + 2)kΩ

2

∑

j

δ(zj)



Ψ =
1

2
m2Ψ .

(4.65)

One can again show [63] that there is a single bound state zero mode solution

to this equation, and its wave function is proportional to Ω
n+2

2 . The zero

mode is localized to the intersection of the branes. The relevant length scale

for gravity is again the AdS curvature scale L ∼ k−1, where this is given by

k2 ∼ Λκ2
4+n ∼ Λ/M2+n

∗ and κ4+n is the 4+n dimensional Newton constant,

while M∗ as always is the 4 + n dimensional Planck scale. Therefore,

L ∼
(

M2+n
∗
Λ

)
1
2

, (4.66)

and so we get a relation between the AdS length, the 4 + n D Planck scale

and the 4D Planck scale of the form [63]

M2+n
∗ Ln = M2

P l . (4.67)

For scales much larger than L gravity will behave like ordinary 4D gravity,

while for distances smaller than that scale gravity will behave as 4 + n

dimensional gravity. (4.67) implies that the scale L is analogous to the

real radius of compact flat extra dimensions. Thus one can try to solve the

hierarchy problem in the presence of infinite extra dimensions by lowering

the fundamental Planck scale M∗ down to a TeV, which would of course also

imply that the brane tensions and the bulk cosmological constants would be

themselves much smaller than M∗.
One can go further with the intersecting brane picture, and consider brane

junctions [64] – that is semi-infinite co-dimension one branes ending at the

same point, the brane junction (see Fig. 5). One can show that such static

junctions may exist only if the total force from the tensions acting on the

junction vanishes,

∑

i

~Vi = 0 . (4.68)

In that case there will be a single remaining fine tuning relation between

the bulk cosmological constant and the brane tensions, equivalent to the

vanishing of the 4D cosmological constant. For more details see [64].
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V1

V2

V 3

Figure 5. Intersecting branes in the RS model.

4.3.2. The hierarchy problem in the infinite RS case

Finally, one may ask whether a solution to the hierarchy problem really

necessitates the compactification as discussed at the beginning of this section.

One possible way to avoid this we have seen above, where we simply lower

the fundamental Planck scale M∗ down to the TeV as in the large extra

dimension scenarios. However, this would then raise the issue of why the

AdS curvature L is so large compared to its natural value. However, one

could just live in the infinite extra dimensional scenario on a brane (that

has a very small tension) away from the Planck brane [65]. Due to the small

curvature gravity would not be much affected, and due to the large warp

factor one would still get that the particle physics scales on this brane would

be warped down to an exponentially small scale. But would we still get 4D

gravity on this brane? The corrections to Newton’s law would be given by

the form

V (r) = GN
M1M2

r

(

1 +

∫ ∞

0
dm

e−mr

r

(

Ψm(z0)

Ψ0(z0)

)2
)

. (4.69)

The important point is that it is the local ratio of the KK amplitudes vs.

the zero mode that will appear in this expression. One can show that this

ratio is still scaling the same way as at the Planck brane

Ψm(z0)

Ψ0(z0)
=

Ψm(0)

Ψ0(0)
∼ m

1
2 , (4.70)

for small values of m. Thus the corrections to Newton’s potential will be

similarly negligible far away from the Planck brane as on the Planck brane.

Thus the conclusion is that one really does not need to compactify, one can

recover 4D gravity and solve the hierarchy problem. In fact, one can show

without too much calculation that this indeed needs to be the case; the

zero mode contribution gives a potential of the form k/(M 3
∗ r), while the KK

modes at worst would give 1/(M 3
∗ r2). For relatively large values of r the
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second term is always suppressed compared to the first and gravity will have

to look four dimensional.

5. Phenomenology of Warped Extra Dimensions

This section will cover some important topics about further developments in

the RS model, and warped spaces in general.

5.1. The graviton spectrum and coupling in RS1

The first issue that we would like to discuss is what the phenomenology of

the graviton KK modes would be in the RS model with two branes, which

is often also referred to as the RS1 model. We have already seen that the

graviton fluctuations obey the Schrödinger-type equation

−∂2
zΨ + (

9

16
A′2 − 3

4
A′′)Ψ = m2Ψ , (5.1)

where hµν = e3A/4ĥµν(x)Ψ(z), where the ĥµν(x) are the 4D modes that

satisfy ĥµν = m2ĥµν . For the RS background A = 2 log(k|z| + 1). Until

now we have not discussed much what the BC of these equations should be,

since we were imagining them in the infinite RS2 case. For the case with

finite branes we need to find the appropriate set of BC’s, which can be read

off from the fact that we imposed an orbifold projection y → −y, under

which the graviton was symmetric. Therefore, in y coordinates ∂yhµν = 0

at the two fixed points, from which it follows that also ∂zhµν = 0. Since the

graviton can be recovered from the Schrödinger frame wave function Ψ(z)

as hµν = e3A/4ĥµν(x)Ψ(z), and A = 2 log(k|z| + 1) we can translate the BC

on hµν to a BC on Ψ so that

∂zΨ = −3

2
kΨ|z=0 ,

∂zΨ = −3

2

k

k|z1| + 1
Ψ|z=z1 , (5.2)

where z1 is the location of the second fixed point (with negative tension) in

the z coordinates, z1 = ekb/k. The equation between the two boundaries for

the RS case is

−∂2
zΨ +

15

4

k2

(kz + 1)2
Ψ = m2Ψ . (5.3)

Generically, the solution of this equation is given in terms of Bessel functions,

Ψ(z) = am(kz + 1)
1
2 Y2(m(z + 1/k)) + bm(kz + 1)

1
2 J2(m(z + 1/k)) . (5.4)
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The two boundary conditions will completely determine the masses of the

KK tower m’s, where the nth solution is given by

m(n) = kxne−kb = O(TeV ) , J1(xn) = 0 , (5.5)

where b is the distance between the two branes. Thus the spacing of the

graviton zero modes is of order TeV, and not of order MP l as one would

have naively suspected from the fact that the proper length of the extra

dimension is of order 1/MP l. The fact that the KK modes are spaced by

TeV suggests that it is better to think of this model with extra dimension

of size 1/TeV, that is a relatively large extra dimension, rather than a really

small one. The answer to any physical observable will convey this impression.

For example, if one were to ask how long it takes for light to bounce back

and fourth between the two branes, the time we get will be of order 1/TeV

due to the warping, much longer than the naively expected 1/MP l.

Let us now ask how one would detect these KK graviton resonances if

one were to live on the TeV brane (the negative tension brane, where the

hierarchy problem is resolved). Ordinarily one would think that these states

will be completely unobservable, since they are relatively heavy (of order

TeV), and only gravitationally coupled. However, our naive intuition fails

us again! The point is that even though these KK modes are indeed grav-

itationally coupled, since they are repelled from the Planck brane by the

tunneling through the volcano potential, their wave function must be expo-

nentially peaked on the TeV brane. Therefore their couplings will also be

exponentially enhanced to matter on the TeV brane (compared to gravita-

tional strength coupling). Thus the picture that emerges is the following. On

the TeV brane one has the graviton zero mode, which is peaked on the other

brane so that its coupling to TeV brane matter is weak (this is what sets

the scale of gravitational coupling); and one also has the KK modes of the

graviton whose masses are of order TeV, but their couplings are enhanced

to 1/TeV rather than 1/MP l on the TeV brane,

LTeV = − 1

MP l
Tαβh

(0)
αβ − 1

MP le−kb
Tαβ

∞
∑

n=1

h
(n)
αβ . (5.6)

The detailed coefficients in the equation above have been worked out in [66],

but by now none of the features of this coupling are surprising: the graviton

modes couple to the stress-energy tensor of matter on the TeV brane, and

the scales of coupling come from the consideration of the wave functions of

the zero and KK modes as discussed above.

This implies that in TeV scale colliders, such as the LHC will be (and
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the Tevatron already is), one could study these KK modes as individual

resonances in the scattering cross section. Some of these cross-sections have

been worked out in detail by Davoudiasl, Hewett and Rizzo in [66]. Some

sample cross sections in the presence of the KK resonances for the LHC

and a linear collider calculated in [66] are given in Fig. 6. Note, that the

phenomenology of the RS model is very different from that of large extra

dimensions. In the case of large extra dimensions the spacing of the KK

modes is very small, in the extreme case of 2 large extra dimensions of

order 10−3 eV. This is tiny enough to allow energetics to produce it in all

colliders, but since the coupling of the individual modes is extremely small,

of gravitational strength 1/MP l, one can certainly not see the individual

modes. Their collective effects will be visible as an increase in cross sections

at the LHC or the Tevatron. However, for RS as we discussed the individual

KK modes are much heavier and much more strongly coupled, leading to

well-defined resonances in high energy scatterings.

Figure 6. Scattering cross section for e+e− → µ+µ− at a linear collider in the presence of the

tower of Randall–Sundrum KK gravitons, as calculated and plotted by Davoudiasl, Hewett and

Rizzo [66]. The mass of the first KK resonance is fixed to be 600 GeV, and the various curves

correspond to different values of k/MPl = 1, 0.7, 0.5, 0.3, 0.2, 0.1 from top to bottom. For details

and LHC processes see the original paper [66].

5.2. Radius stabilization

Until now we have treated the radius of the RS1 model as a fixed given

constant, and found that radius r (which we have denoted b until now) has

to be r ∼ 30/k in order for the hierarchy problem to be resolved (since

Mweak ∼ 10−16MP l, from which rk ∼ log 1016 ∼ 30). This raises several
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important questions that need to be addressed:

• Since the radius is not dynamically fixed at the moment, but rather

just set to its desirable value, there will be a corresponding massless

scalar field in the effective theory, which corresponds to the fluctua-

tions of the radius of the extra dimensions, called the radion [67–70].

One can understand the masslessness of this field by realizing that

the RS solution discussed until now did not make any reference to

the size of the extra dimension; it was a solution for arbitrary val-

ues. This means that in the effective theory this parameter is also

arbitrary, and thus has no potential, and so is a flat direction. Thus

it can have no mass. This massless radion would contribute to New-

ton’s law and result in violations of the equivalence principle (would

cause a fifth force), which is phenomenologically unacceptable, and

therefore it does need to obtain a mass – the radius has to be stabi-

lized.

• The radius has to be stabilized at values somewhat larger than its

natural value (we need kr ∼ 30, while one would expect r ∼ 1/k).

Does this reintroduce the hierarchy problem?

• We have seen that one needed two fine tunings to obtain the static

RS solution, one of which was equivalent to the vanishing of the 4D

cosmological constant, and is thus expected. But can we shed light

on what the nature of the second fine tuning is and whether we can

eliminate it somehow?

A mechanism for radius stabilization will address all the above mentioned

issues. The simplest and most elegant solution for stabilization of the size of

the extra dimension was proposed by Goldberger and Wise [67], and is known

as the Goldberger–Wise (GW) mechanism. Here we will discuss the details of

this mechanism and its effect on the radion mass and radion physics; however

before plunging into the details and the formalism let us first summarize the

main idea behind the GW mechanism. Radius stabilization at nontrivial

values of the radius usually occurs dynamically if there are different forces

some of which would like to drive the extra dimension very large, and some

very small. Then there is a hope that these forces may balance each other at

some value and a stable nontrivial minimum for the radius could be found.

A possible way to find such a tension between large and small radii is if there

is a tension between a kinetic and a potential term, one which would want

derivatives to be small (and thus large radii) and the other which would want

small radii to minimize the potential. The proposal of Goldberger and Wise
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was to use exactly this scenario. Introduce a bulk scalar field into the RS

model, and add a bulk mass term to this field. This will result in a nontrivial

potential for the radius, since due to the bulk mass the radius wants to be

as small as possible. However, if we somehow achieve that there is also

a nontrivial profile (a vacuum expectation value that is changing with the

extra dimensional coordinate) for this scalar, then the kinetic term would

want the radius to be as large as possible, so as to minimize the kinetic

energy in the 5th direction. Then there would be a nontrivial minimum. To

achieve the nontrivial profile for this scalar field GW suggested adding brane

potentials for this scalar on both fixed points, which have minima at different

values from each other. Then one is guaranteed the nontrivial profile, and

thus radius stabilization as well. The main question is not whether this

mechanism works, it is intuitively clear that it should, but rather whether

one can naturally achieve the somewhat large radius using this mechanism

without fine tuning, and if yes what will be the characteristic mass of the

radion.

To describe the GW mechanism in some detail one needs to set up some

formalism for theories with extra scalar fields in the bulk. The reason is

that as we will see the back-reaction of the metric to the presence of the

scalar field in the bulk will be important; therefore it would be very nice

to simultaneously solve the Einstein and the bulk scalar equations, to have

the back-reaction exactly under control. One can get away without such

an exact solution either by just calculating a 4D effective potential for the

radion [67,68], or by calculating the back-reaction order-by-order. However,

with some formalism we will be able to solve the coupled equations exactly

for certain scalar potentials, and therefore we will discuss the issue of radius

stabilization using this approach [57, 58, 71, 72]. Denote the scalar field in

the bulk by Φ, and consider the action

∫

d5x
√

g

[

−M3
∗R +

1

2
(∇Φ)2 − V (Φ)

]

−
∫

d4x
√

g4λP (Φ)−
∫

d4x
√

g4λT (Φ) ,

(5.7)

where the first term is the usual 5D Einstein–Hilbert action and the bulk

action for the scalar field, while the next two terms are the brane induced

potentials for the scalar field on the Planck (P) and on the TeV (T) branes.

We will denote the 5D Newton constant as always by κ2 = 1/2M3
∗ , and look

for an ansatz of the background metric again of the generic form as in the

RS case to maintain 4D Lorentz invariance,

ds2 = e−2A(y)ηµνdxµdxν − dy2. (5.8)
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The Einstein equations are exactly as we have derived for the RS case, except

here we have an energy-momentum tensor that is derived from the action of

the scalar field. So everyone should be able to derive the following equations

on their own using the tools already presented:

4A′2 − A′′ = −2κ2

3
V (Φ0) −

κ2

3

∑

i=P,T

λi(Φ0)δ(y − yi) ,

A′2 =
κ2

12
Φ′2

0 − κ2

6
V (Φ0) . (5.9)

The first equation is the i, j component of the Einstein equations, while the

second one is the 5, 5 component. Φ0 denotes the solution of the scalar field,

which (by the requirement of Lorentz invariance) is assumed to be only a

function of y: Φ = Φ0(y). In addition to these two equations that we have

already used there will be another one determining the shape of the scalar

field in the bulk, and it is simply the bulk scalar equation of motion in the

warped space, derived from the generic scalar equation

∂µ
√

ggµν∂νΦ =
∂V

∂Φ

√
g . (5.10)

By the substituting the scalar and metric ansatz into this equation we get

Φ′′
0 − 4A′Φ′

0 =
∂V

∂Φ0
+
∑

i

∂λi(Φ0)

∂Φ
δ(y − yi) . (5.11)

We can separate these equations into the bulk equations that do not contain

the delta functions, and the boundary conditions which will be obtained

by matching the coefficients of the delta functions at the fixed points. For

example, the first Einstein equation contains the explicit delta function term

−κ2

3

∑

i=P,T λi(Φ0)δ(y−yi) at the branes which naively does not seem to be

balanced by anything. However, there is no requirement for the derivative

of the metric to be continuous (the metric itself is a physical quantity which

should be continuous), and so there could be a jump in the derivative A′ at

the branes, which would imply that A′′ also contains a term proportional to

a delta function. If the derivative A′ jumps from A′(0 − ε) to A′(0 + ε), this

implies that locally A′ contains a term of the form (A′(0+ε)−A′(0−ε))θ(y),

where θ(y) is the step function. Therefore, A′′ will contain the term (A′(0 +

ε)−A′(0− ε))δ(y), thus the delta function is proportional to the jump of the

derivative of A, sometimes denoted by [A′]0 ≡ A′(0+ε)−A′(0−ε). Therefore,

the boundary conditions derived this way are sometimes also called the jump
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equations, which in our case will be given by

[A′]i =
κ2

3
λi(Φ0) ,

[Φ′
0]i =

∂λi(Φ0)

∂Φ
. (5.12)

The bulk equations (5.9-5.11) together with these boundary conditions form

the equations of the coupled gravity-scalar system. These are coupled second

order differential equations, which are quite hard to solve. However, for

specific potentials it is possible to simplify the solution. Let us assume

that we have found a solution to the system of equations above given by

A(y),Φ0(y). We can define the function W (Φ) via the equations

A′ ≡ κ2

6
W (Φ0) ,

Φ′
0 ≡ 1

2

∂W

∂Φ
. (5.13)

If we plug these expressions for A′ and Φ′
0 into the Einstein and scalar

equations we will find that all equations are satisfied, if the consistency

condition

V (Φ) =
1

8

(

∂W

∂Φ

)2

− κ2

6
W (Φ)2 (5.14)

holds, and the jump conditions are given by

1

2
[W (Φ0)]i = λi(Φ0) ,

1

2
[
∂W

∂Φ
]i =

∂λi(Φ0)

∂Φ
. (5.15)

If W were given we would reduce the equations from coupled second order

differential equations to ordinary first order equations that are quite easy to

solve. The price to pay is that it is very hard to find W for a given V (Φ); one

needs to solve a nonlinear second order differential equation (5.14) to find

the “superpotential” W . However, if our goal is not to solve the equations

for a very particular bulk potential V (Φ), but rather a bulk potential which

has some properties, we can simply start with a superpotential W that will

produce a V with the required properties, and we will be able to easily get

the full solution of the equations. In our case we would like the bulk potential

to include a cosmological constant term (independent of Φ) and a mass term

(quadratic in Φ), but we will not care if there are some other terms as well
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if those make solving the equations simpler. So we choose [58]

W (Φ) =
6k

κ2
− uΦ2 . (5.16)

The first term is just what one needs for a cosmological constant, while the

second term will provide the mass term when taking the derivative. Let us

first discuss the jump conditions. Since the metric is an even function of y,

if we try to solve the equations on the S1/Z2 orbifold again as in the RS

case A(y) must also be an even function, and therefore A′ is odd. However,

one of the equations we have above is that A′ ∼ W , which means that W

must be an odd function at the branes, it must change signs. To satisfy the

jump conditions (5.15) I must choose the brane potentials to be of the form

λ(Φ)± = ±W (Φ±) ± W ′(Φ±)(Φ − Φ±) + γ±(Φ − Φ±)2, (5.17)

where Φ± are the values of the scalar field at the two branes, which we will

also denote by Φ+ = ΦP at the Planck brane, and Φ− = ΦT at the TeV

brane. Then the solution will be given by the solution of the equation

Φ′ =
1

2

∂W

∂Φ
= −uΦ , (5.18)

which is simply

Φ0(y) = ΦP e−uy . (5.19)

From this the value of the scalar field at the TeV brane is determined to be

ΦT = ΦP e−vr. (5.20)

This means that the radius is no longer arbitrary, but given by

r =
1

u
ln

ΦP

ΦT
. (5.21)

The value of the radius is determined by the equations of motion, which

is exactly what we were after. This is the GW mechanism. The metric

background will then be obtained from the equation

A′ =
κ2

6
W (Φ0) = k − uκ2

6
Φ2

P e−2uy (5.22)

given by the solution

A(y) = ky +
κ2Φ2

P

12
e−2uy . (5.23)
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The first term is the usual RS warp factor (remember that A has to be

exponentiated to obtain the metric), while the second term is the back-

reaction of the metric to the nonvanishing scalar field in the bulk. We will

assume that the back-reaction is small, and thus that κ2Φ2
P , κ2Φ2

T � 1, and

that v > 0. The values of ΦP and ΦT are determined by the bulk and brane

potentials, so ΦP/ΦT is a fixed value. Since we want to generate the right

hierarchy between the Planck and weak scales we need to ensure that

kr ∼ 30 , (5.24)

from which we get that

k

u
ln

(

ΦP

ΦT

)

∼ 30 , (5.25)

which implies that u/k is somewhat small (but not exponentially small).

This is the ratio that will set the hierarchy in the RS model, and we can

see that indeed one can generate this hierarchy using the GW stabilization

mechanism by a very modest (O(50)) tuning of the input parameters of the

theory.

Once we have established the mechanism for radius stabilization, we know

that the radion is no longer massless. The next obvious question then is

what will be the value of the radion mass? Is it naturally sufficiently large

to avoid the problems mentioned at the beginning of this section or not?

We will answer this question by finding what the radion mode is in the GW

stabilized RS model, and explicitly find its mass [72,73], see also [68,69,74].

For this, we need to find the scalar fluctuations of the coupled gravity-scalar

system. This can be parametrized as

ds2 = e−2A−2F (x,y)ηµνdxµdxν − (1 + G(x, y))2dy2,

Φ(x, y) = Φ0(y) + ϕ(x, y) . (5.26)

At this moment it looks like there would be three different scalar fluctuations,

F,G and ϕ. However, if we plug this ansatz into the Einstein equation the

4D off-diagonal µν components are satisfied only if

G = 2F , (5.27)

while the µ5 components imply the further relation among the fluctuations,

ϕ =
1

Φ′
0

3

κ2
(F ′ − 2A′F ) . (5.28)
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This means, that in the end there is just a single independent scalar fluctu-

ation in the coupled equation, which we can choose to be F . Requiring the

above two relations we find that the rest of the Einstein equations are all

satisfied if

F ′′ − 2A′F ′ − 4A′′F − 2
Φ′′

0

Φ′
0

F ′ + 4A′ Φ′′
0

Φ′
0

F = e2A
�F (5.29)

holds in the bulk and the boundary condition

(F ′ − 2A′F )i = 0 (5.30)

is imposed. Let us first assume that there is no stabilization mechanism,

that is the background is exactly the RS background given by A = k|y|, and

Φ0 = 0. In this case most of the terms in the above equation disappear, and

we are left with

F ′ − 2kF = e2kym2F , (F ′ − 2kF )i = 0 . (5.31)

We can see that the only solution is for m2 = 0, and the wave function of

the un-stabilized radion will be given by

F (y) = e2k|y| . (5.32)

This wave-function has been first found by Charmousis, Gregory and

Rubakov, and thus the metric corresponding to radion fluctuations in the

RS model corresponds to

ds2 = e−2k|y|−2ek|y|f(x)ηµνdxµdxν − (1 + 2e2k|y| f(x)) dy2 . (5.33)

This is a single scalar mode, that is exponentially peaked at the TeV brane,

just like all the graviton KK modes. Since it is peaked on the TeV brane,

it means that its coupling on the Planck brane will be strongly suppressed,

while it will be of its natural size (suppressed by 1/TeV) on the TeV brane.

The exponential peaking on the TeV brane also implies that if we move the

TeV brane to infinity (that is consider the RS2 model) then the radion will

no longer be a normalizable mode and completely decouples from the theory.

This implies that in that case one is really recovering 4D gravity with just

the tensor couplings on the Planck brane in RS2.

Generically, for the RS1 case we now have a complete set of modes (the

radion mode is the one that is missing if we are imposing the RS gauge

choice); without stabilization at the zero mode level there is a graviton and

a radion mode (which does not have a KK tower), while at the massive

level there are the graviton KK modes only. In the presence of the GW

stabilization the scalar mode will acquire a KK tower; the lowest mass mode
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of this tower will behave like the radion, while the higher mass modes will

be identified with what used to be the KK tower of the GW bulk scalar.

To find the radion mass for the case with stabilization, we simply need

to plug into (5.29) the full background for A and Φ0 with stabilization,

F ′′ − 2A′F ′ − 4A′′F + 2uF ′ − 4uA′F + m2e2AF = 0 . (5.34)

We can see that if the back-reaction of the metric was neglected (A′′ = 0)

we would still not get a mass for the radion zero mode. Thus to find the

leading term for the radion mass we expand in terms of the back-reaction of

the metric in the parameter l = κΦP /
√

2, and obtain the mass of the radion

m2
radion =

4l2(2k + u)u2

3k
e−2(u+k)r. (5.35)

As a reminder, the mass of the graviton KK modes is of the order

mgraviton ∼ ke−kr, (5.36)

and so the radion/graviton mass ratio is

m2
radion

m2
graviton

∼ l2
u2

k2
e−2ur. (5.37)

Thus we can see that the radion mass is smaller than the graviton mass, and

the radion would be likely the lightest new particle in the RS1 model. The

other scalar KK modes that originate mostly from the GW bulk scalar will

have masses of the same order as the graviton.

In order to find the coupling of the radion to SM matter fields on the

TeV brane we need to find the canonically normalized radion field. The

wave function (not yet normalized) is of the form

F (x, y) = e2k|y|(1 + corrections)R(x) , (5.38)

where the correction terms above are suppressed by the back-reaction, and

since these are not the leading terms we can neglect them. R(x) is the 4D

radion field. The induced metric will be

gind
µν = e−2Aηµν(1 − 2F (x, y)) . (5.39)

The coupling to matter on the TeV brane will be given as usual by Tµνg
µν ,

which will result in a coupling of the form T µ
µ R(x). The question is what will

be the coefficient in front of this coupling be? Once we go to the canonically

normalized radion field r(x) we find (after calculating the normalization of
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the kinetic term for the radion) that the radion coupling is given by

1√
6MP le−kr

r(x)TrT . (5.40)

Thus the coupling is suppressed by the TeV scale just as for the graviton

KK modes, except the masses are somewhat smaller. One can also write

this coupling in the form

v√
6Λ

r(x)

v
TrT ≡ γ

r(x)

v
TrT , (5.41)

where we have denoted Λ = MP le
−kr as the “TeV scale” that one obtains

from the RS hierarchy, γ = v/
√

6Λ, and v is the usual Higgs vacuum ex-

pectation value v = 246 GeV. This coupling is exactly equivalent to the

coupling of the SM Higgs boson. The reason is that both the radion and the

Higgs will couple to the mass terms in the Lagrangian, the Higgs via H/v,

the radion via r/v, the only difference is the extra suppression factor γ in

the strength of the radion coupling. Thus the phenomenology of the radion

would be very similar to that of the SM Higgs boson.

There is one more important possibility for the physics of the radion.

There could be a brane-induced operator on the TeV brane mixing the radion

and the SM Higgs field H [75],
∫

d4x ξH†HR(gind)
√

gind . (5.42)

Using our master-formula (4.5) for calculating curvature tensors for confor-

mally flat metrics we get

R(Ω2(r)ηµν) = −6Ω−2(� lnΩ + (∇ lnΩ)2) . (5.43)

The interaction term will then be given by

Lξ = −6ξΩ2(� lnΩ + (∇ ln Ω)2)H†H . (5.44)

Expanding both the Higgs H and the warp factor Ω in the uneaten physical

Higgs and the radion respectively

H =

(

0
v+h√

2

)

, Ω(r) = 1 − γ
r

v
+ . . . (5.45)

we get

Lξ = 6ξγh�r + 3ξγ2(∂r)2. (5.46)
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Thus there will be kinetic mixing induced between the Higgs and the radion

fields. One needs to diagonalize the full quadratic Lagrangian

L = −1

2
h�h − 1

2
m2

hh2 − 1

2
(1 + 6ξγ2)r�r − 1

2
m2

rr
2 + 6ξγh�r . (5.47)

After the diagonalization, we find that not only is the coupling of the radions

affected, but the couplings of the SM Higgs will also be modified from their

SM expressions, and thus the radion-Higgs mixing could significantly affect

ordinary Higgs physics as well [72, 76].

5.3. Localization of scalars and quasi-localization

We have seen in previous sections that the zero mode graviton is strongly

peaked at the Planck brane, that is gravity is localized by the RS background.

An important question to discuss is whether fields with spins other than 2

would also be localized or not. In the following we will discuss two examples

of that: a bulk scalar field and a bulk gauge field. We will not discuss the

issue of bulk fermions, the reader is referred to references [77–82] for that

case.

We will start by (again) considering a bulk scalar field (see e.g. [79,83]).

We have already discussed the equation of motion for the bulk scalar, in the

absence of a bulk potential it is given by

∂M (
√

ggMN∂NΦ) = 0 . (5.48)

If we are interested in whether or not a zero mode exists, we simply have

to assume that the 4D derivative on Φ vanishes, so the equation that a zero

mode has to satisfy is

∂ye
−4ky∂yΦ = 0 . (5.49)

The solution to this is simply Φ = const. = Φ0. However, this is not enough.

We need to figure out whether or not this mode is normalizable in the limit

when the extra dimension becomes infinitely large (that is we want to find

out if the effective 4D kinetic term remains normalizable or not). We write

the zero mode as Φ = Φ0ϕ(x), where ϕ is the 4D wave function for a massless

4D mode �4ϕ = 0. The normalization of the kinetic term then comes from
∫ √

g∂µΦ∂νΦgµνdyd4x =

∫

e−4kye2kyΦ2
0dy

∫

∂µϕ∂νϕηµνd4x . (5.50)

We can see that the y-integral converges even when the extra dimension

is infinitely large, so this means that the scalar field is localized in the RS

background, even though in y coordinates its wave function is constant (if
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we went to the z coordinates we would of course find a wave function peaked

at the Planck brane). However, this analysis was done in the absence of

a mass term (or bulk potential in general), which is quite unnatural for a

scalar field. Let us ask how the solutions will be modified if there is a bulk

potential (and still keep the extra dimension infinitely large). The equation

of motion will now be

∂M (
√

ggMN∂NΦ) =
√

g
∂V

∂Φ
. (5.51)

Clearly, there will be no more zero mode solution. In order to find out

what happened to the zero mode, we need to consider the full continuum

spectrum [84]. The scalar equation for a 4D mode with 4D momentum p in

the presence of a bulk mass term m2Φ2 in the bulk potential will be

∂2
yΦ − 4kΦ′ + p2e2kyΦ − m2Φ = 0 . (5.52)

As we mentioned before, p2 = 0 is not a solution to this equation, there is

no zero mode. Naively we would have thought that the zero mode just picks

up a mass from the bulk mass term and will sit at p2 = m2, but p2 = m2

is not a solution to the bulk equations either. So now we might be really

puzzled what happened to our zero mode. The continuum spectrum can

be determined at large y, where the extra m2 term from the bulk mass is

unimportant. Thus the continuum spectrum will be unchanged compared to

the m2 = 0 spectrum, except the wave functions will be distorted for small

y. The general solution to the equation above will be in terms of Hankel

functions,

Φ(y) = const · e2kyH(1)
ν

(p

k
eky
)

, ν =

√

4 +
m2

k2
. (5.53)

Since we have not included a source on the Planck brane the Z2 symmetry

will imply that the BC (jump equation) at the Planck brane will just be

∂yΦ|y=0 = 0. This implies that

pH
(1)
ν−1(

p
k )

kH
(1)
ν ( p

k )
+ 2 − ν = 0 . (5.54)

The solution to this equation for small values of the bulk mass m is

p = m0 − iΓ , m2
0 =

m2

2
,

Γ

m0
=

π

16

(m0

k

)2
. (5.55)

Thus what we find is that rather than having a single localized mode with

mass m, the mass will be shifted to m0, and pick up an imaginary part.

This implies that a discrete mode with a finite lifetime will exist. We call
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this mode a quasi-localized mode for the following reason: if the lifetime

is sufficiently long, then this mode for relatively short times will behave

like an ordinary localized 4D mode. However, after some long time it will

decay into some continuum bulk KK modes due to its finite lifetime. This

mode can also be interpreted as a resonance in the continuum KK spectrum,

rather than an individual mode with complex mass. This interpretation

could be understood by calculating the effective volcano-type potential for

this system. What we find is that the tunneling out amplitude for the mode

trapped in the volcano will now be finite, and therefore it will have a finite

width and lifetime.

Either way the result is the same; for short times one has an effectively

localized 4D particles, which however decays into the bulk after a long time.

If this field were to carry bulk gauge charges, then it would lead to ap-

parent nonconservation of this charge from the 4D observers point of view,

even though of course there is no real violation of charge conservation in the

full 5D theory once the continuum KK modes are also taken into account

(which are however suppressed on the brane). This case is merely the sim-

plest example of quasi-localization in an infinite volume space-time. Several

attempts have been made to construct a viable quasi-localized model for

gravity, which would be very exciting, since that would tell that the gravi-

ton would not strictly be massless, and have a finite width. The examples

include the GRS model [85], and the DGP modes [86]. However, none of

them are quite satisfactory, either since there is an inherent instability in the

spectrum, or because 4D gravity is not reproduced at large distances (the

latter issue is still subject to debate).

5.4. SM Gauge fields in the bulk of RS1

The next example we will discuss is the theory with gauge fields in the

bulk [79, 87]. In this case one has to solve Maxwell’s equation in a curved

background, which is given by

∂µ(
√

ggµνgαβFνβ) = 0 . (5.56)

We will choose a gauge where ∂µAµ = A5 = 0. The equation for the zero

mode (similar to the considerations for the scalar) is just given by

A′′
µ = 0 . (5.57)

The solution would again be a constant wave-function along the fifth dimen-

sion, Aµ = A0aµ(x), however in this case (contrary to the case with the bulk

scalar) the wave function is not normalizable (the kinetic term for the 4D
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gauge zero mode diverges), as one can see from
∫

d5x
√

ggµνgαβFµαFνβ =

∫

dye−4kye2kye2kyA2
0

∫

d4xF (4)
µν F (4)µν . (5.58)

Due to the different power of the warp factor (which is simply due to the

more indices in the gauge field) the y integral is no longer normalizable,

and thus there will be no localized zero mode. In fact, as we will see below

the zero mode wave function is flat also in the z coordinates, and is thus

not localized. One can show similarly, that bulk fermions would also not be

localized in RS2.

Nevertheless, we can consider the RS1 model with the two branes in the

presence of bulk gauge fields (and also possibly bulk fermions). However,

we will assume that the Higgs is still localized on the negative tension brane

(there is good reason to do that – it turns out that if it was in the bulk

one would need extreme fine tuning in the bulk mass parameter to lower the

Higgs mass from TeV to ∼ 100 GeV). One should ask, how in this case with

Higgs on the brane and gauge fields in the bulk would electroweak symmetry

breaking work. The Lagrangian for the gauge fields would be given by (after

the Higgs on the TeV brane gets a vacuum expectation value)

∫

d4x

∫ R′

R
dz

√
G

[

−1

4
GMP GNQ

(

1

g2
5

W a
MNW a

PQ +
1

g′5
2 BMNBPQ

)

+
v2

8

δ(z − R′)√
G55

GMP (W 1
MW 1

P +W 2
MW 2

P +(W 3
M−B3

M )(W 3
P −B3

P ))

]

. (5.59)

Here we have used perhaps the simplest form of the RS metric

ds2 =

(

R

z

)2

(ηµνdxµdxν − dz2) , (5.60)

where R = 1/k (do not confuse this with the size of the extra dimension in

proper y coordinates), and the variable z runs between R and R′, R′/R =

ekr = 1016. g5 and g′5 are the 5D bulk SU(2)L×U(1)Y gauge couplings.

One would actually like to calculate the gauge boson masses and check if

the prediction agrees with that of the SM [88]. If there was no Higgs vacuum

expectation value, we have seen that the gauge boson would have zero modes

and completely flat wave functions. However, the Higgs vacuum expectation

value on the TeV brane will deform the gauge boson wave functions, and the

expression for the gauge boson masses will not be as simple as in the SM.

To find the MW ,MZ masses one needs to actually solve the bulk equations

in the presence of a nontrivial boundary condition set by the brane Higgs
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field, and find the lowest lying eigenstates which should be identified with

the bulk gauge bosons. The bulk equation for an eigenmode is
(

∂2
z − 1

z
∂z + m2 − 1

4
v2g2

5δ(z − R′)
R

R′

)

Ψ(z) = 0 . (5.61)

The solutions are as always Bessel functions zJ1(mz) and zY1(mz), and

the BC’s are that Ψ is flat at the Planck brane and satisfies a mixed BC

depending on the Higgs vacuum expectation value on the TeV brane. The

equation determining the W mass is then

J0(MW R)(4MW R′Y0(MW R′) + g2
5v

2RY1(MW R′))

= Y0(MW R)(4MW R′J0(MW R′) + g2
5v

2RJ1(MW R′)) . (5.62)

Expanding the solution of this equation in powers of R2v2 we get that

M2
W =

g2
5

R ln R′

R

R2v2

4R′2 − g4
5R

2v4R′2

32R′4 ln R′

R

+ . . . . (5.63)

The term
g2
5

R ln R′

R

can be identified with the tree-level 4D gauge coupling (see

next section on AdS/CFT), and the term R2v2

R′2 = v2e−2kr is just the warped

down (physical) Higgs vacuum expectation value. Thus the first term is just

the usual SM expression for the W -mass, however there is a relatively large

correction to this expression which is of the order of

∆M2
W

M2
W

∼ (vSMR′)2

16
ln

R′

R
. (5.64)

This on its own is not yet very meaningful, since a shift in a single mass can

always be absorbed by redefining the value of the Higgs vacuum expectation

value v slightly. What one needs to do is calculate the full set of electroweak

precision observables (for example the MW/MZ mass ratio, etc) and com-

pare those to the experimental values. This has been done in [88], where it

was found that generically all electroweak precision observables will get these

type of corrections, and can be brought in agreement with experiment only

if the value of the TeV scale 1/R′ is raised to above 10 TeV. This would be

quite bad for these models, since in a case like this both the graviton and the

KK gauge boson masses would be raised to values above those observable at

the LHC. However, it has been pointed out recently in [89] that the reason

for these corrections is that custodial SU(2) of the SM is violated. They have

proposed a model based on SU(2)L × SU(2)R bulk gauge symmetry where

the corrections to electroweak precision observables can be greatly reduced

and the bound on R′ relaxed (see also the discussion in the next section).
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5.5. AdS/CFT

A big advance of string theory has been the recent realization that cer-

tain string theories in an AdS background are completely equivalent to 4D

supersymmetric gauge theories. In particular, Maldacena conjectured [90],

that type IIB string theory on AdS5 × S5 space is equivalent to N = 4

supersymmetric SU(N) Yang-Mills theory for large N . AdS5 × S5 is a ten

dimensional space (as superstring theories live in 10 space-time dimensions),

and the AdS5 space that appears here is the full, un-truncated AdS space,

for example given by the metric (5.60) for 0 < z < ∞. This supersymmetric

gauge theory is also a conformal field theory in four dimensions. The mean-

ing of this correspondence is that if you take any operator O in the N = 4

SU(N) theory, there will be a field Φ in the string theory that couples to this

operator as OΦ on the boundary of the AdS space. Then all correlators in

the field theory will be related to the boundary-to-boundary propagator of

this field Φ in the AdS space. The important piece for us is the notion that

the bulk of AdS5 space is equivalent to a conformal field theory in 4D. By

bulk here we really mean the KK modes of gravity in the AdS background

as discussed in the RS model. That it is the AdS and not the 5-sphere that

really gives the conformal field theory (CFT) can be seen from the fact that

the conformal symmetry group is exactly equivalent to the isometries of the

AdS space.

However, in the above correspondence gravity does not appear on the 4D

CFT side. Why is that? The reason is that we have considered the full AdS

space, without the Planck and the TeV branes as in the RS model. Without

these branes the graviton zero mode will not be normalizable, and decouples

from the theory. So it is not so surprising that the 5D gravity theory on

AdS space corresponds to a 4D theory without gravity. However, once the

Planck brane is introduced, and AdS space is cut off, the zero mode will

become normalizable [91, 92]. This means that gravity will be coupled to

the CFT, and also due to the appearance of a brane at high energies the

CFT will have a UV cutoff determined by the position of the Planck brane.

If we were to also introduce matter on the Planck brane, this matter would

couple with order one strength to the zero mode graviton; however as we

have seen the KK modes are exponentially suppressed on the Planck brane,

and therefore will basically not couple to matter on the Planck brane. Since

the KK modes represent correspond to the CFT, this means that in the dual

CFT picture the matter fields on the Planck brane do not couple directly to

the CFT, only through the fact that the graviton zero mode couples both to

the matter fields and the CFT. This picture can be checked via a nontrivial
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calculation. If the above proposal is right, one should be able to predict

the form of the corrections to Newton’s law on the Planck brane due to

the fact that these corrections come from the KK modes, which should also

have a prediction in terms of a CFT. This has been done by Gubser [91],

and below we will briefly summarize his argument. In AdS/CFT language

the correction to the graviton propagator is due to the interaction with the

CFT. A graviton always couples to the stress-energy tensor, so in this case

it would be gµνT µν
CFT . The correction will be of the form

TCFT TCFT1/p2

Thus we can see that the corrections to Newton’s potential generically boil

down to calculating the two-point function of the stress-energy tensor in a

CFT, 〈TT 〉CFT . In conformal field theories this correlator is well-known (and

determined by conformal invariance). The result is given by 〈T (x)T (0)〉 ∼
c/x8, since the dimension of the stress-energy tensor in 4D is 4. Converting

this to momentum space we get 〈T (p)T (−p)〉 = p4 log p. Thus the Newton

potential from the figure above will pick up the terms

1

p2
+

1

p2
p4 log p

1

p2
. (5.65)

Fourier-transforming back to coordinate space we get that the first term

is of course 1/x2, while the second is the Fourier transform of 1/x4, thus

AdS/CFT predicts the form of the gravitational potential on the Planck-

brane to be

F ∼ Gm1m2

r2

(

1 + C
1

(kr)2

)

. (5.66)

This is in agreement with what we have seen in (4.57).

What would be the interpretation of the negative tension (TeV) brane

on the CFT side [93, 94]? Once the TeV brane is introduced, instead of

the continuum spectrum of KK modes we will get the discrete spectrum of

KK gravitons strongly peaked on the brane. These have a well-defined mass

scale, which implies that conformal invariance must have been broken on the

CFT side in the IR. Thus we may think of the RS1 scenario as an almost

conformal field theory, that runs very slowly but suddenly becomes strongly

interacting at some scale around the TeV, spontaneously breaking the con-

formal invariance, confining, and producing the bound state resonances that

correspond to the KK gravitons. All the modes localized on the TeV brane
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should correspond to such CFT bound states, including the SM Higgs and

SM matter and gauge fields. So the RS1 model can be simply interpreted as

a CFT that becomes strongly interacting and produces the composite SM

matter and Higgs fields. The hierarchy problem is simply solved due to the

compositeness of the Higgs field!

What happens if we put gauge fields in the bulk of AdS [93,94]? We have

mentioned at the beginning of this section, that N = 4 SYM corresponds to

the full AdS5 × S5 type IIB string theory. The gauge theory has an SU(4)

global symmetry, called the R-symmetry. This global symmetry is reflected

by the isometries of the S5 internal space. An isometry implies gauge boson

zero modes, which we can indeed find in the string theory side. We thus

conclude, that the global symmetry of the CFT corresponds to a gauge sym-

metry in the bulk [93, 94]. This global symmetry may be weakly gauged, if

there is a normalizable zero mode for the bulk gauge field (as in the case of

RS1). But then the CFT modes couple directly to the gauge fields (since

they are no longer on the Planck brane), and will give direct contribution

to the running of the gauge coupling. In fact, we have seen before that the

matching relation between the 4D and the 5D gauge couplings at tree level

is

g2
4 =

g2
5

R log R′/R
. (5.67)

The extra log appearing in this matching relation exactly reflects this run-

ning due to the CFT modes first noted by Pomarol, which is a tree-level

effect in the gravity side, however a quantum loop effect on the CFT side.

The nicest interpretation of the RS1 model is when the gauge fields and

fermions are in the bulk, while the Higgs is on the brane. In this case there

is a CFT that is slowly running, the gauge and matter fields are coupled

to the CFT, but are not composites. At some scale the slow running of

the CFT will suddenly turn into strong interactions breaking the conformal

symmetry, and producing a composite Higgs particle, which then breaks the

electroweak symmetry. Thus this should be interpreted as a walking tech-

nicolor model with a composite Higgs [93]. From the AdS/CFT point of

view we now also understand why we got the large corrections to the W and

Z masses: in the SM the relation of these masses is protected by a global

symmetry called custodial SU(2). However, we have seen that if there was

a global symmetry like this, we would need to see bulk gauge fields. So the

real problem is that the strong interaction (the CFT) does not obey the

custodial SU(2) symmetry. The resolution is simple [89]: simply impose this

additional global SU(2) by putting SU(2)L × SU(2)R gauge bosons in the
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bulk, and break the SU(2)R on the Planck brane to eliminate its zero mode.

This way custodial SU(2) will be restored and the corrections to electroweak

observables will be smaller. However, this model would still correspond to

a walking technicolor with a composite Higgs. One may ask, what would

real technicolor (without a Higgs) then correspond to? In that case it is

the strong interactions themselves (the appearance of the negative tension

brane) which should break electroweak symmetry, rather than a composite

Higgs on the TeV brane. This means that to get real technicolor, one needs

to break electroweak symmetries by BC’s on the TeV brane. A model for

this has been recently proposed in [95], (see also [51]).

6. Epilogue

In this review I was trying to summarize some of the important/interesting

topics in theories with extra dimensions. These notes should be sufficient

for an advanced graduate student to get started on research in this area.

However, the topics covered here are by far not complete. Some exam-

ples of entire fields left out are brane cosmology [96,97], higher dimensional

warped space [98], the self-tuning approach to the cosmological constant

problem [53], 1/TeV size extra dimensions [99], dark matter from Kaluza–

Klein modes [100], unification in warped extra dimensions [101], black holes

in the RS models [102], electroweak symmetry breaking using the fifth com-

ponent of the gauge field as a Higgs [103–105], supersymmetric Randall–

Sundrum models [78,106], deconstruction of extra dimensions [107,108], and

the list could go on and on. That the list of omitted topics is so extensive

shows how much interest there is currently in this subject. Whether any

of these ideas will become reality or remain speculation forever can only

be decided by experiment. All of those in the field hope that in ten years

some of the topics listed will no longer be speculation about the behavior of

nature at high energies, but undeniable facts established by experiments at

the LHC. Until then we will happily keep on speculating...
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71. C. Csáki, J. Erlich, C. Grojean and T. J. Hollowood, Nucl. Phys. B 584, 359 (2000)

[hep-th/0004133].
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82. C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Phys. Rev. D 70, 015012
(2004) [hep-ph/0310355].

83. W. D. Goldberger and M. B. Wise, Phys. Rev. D 60, 107505 (1999) [hep-ph/9907218].
84. S. L. Dubovsky, V. A. Rubakov and P. G. Tinyakov, Phys. Rev. D 62, 105011 (2000)

[hep-th/0006046].
85. R. Gregory, V. A. Rubakov and S. M. Sibiryakov, Phys. Rev. Lett. 84, 5928 (2000)

[hep-th/0002072]; Phys. Lett. B 489, 203 (2000) [hep-th/0003045]; C. Csáki, J. Erlich
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